WorldWideScience

Sample records for dose enhancement effects

  1. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  2. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  3. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  4. Experimental study on x-rays dose enhancement effects for floating gate ROMs

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Han Fu Bin; He Chao Hui; Zhao Hui

    2002-01-01

    Experimental results of x-ray dose enhancement effects are given for floating gate read-only memory (ROMs) irradiated in the Beijing Synchrotron Radiation Facility. The wrong byte numbers vs. total irradiation dose have been tested and the equivalent relation of total dose damage is provided compared the response of devices irradiated with sup 6 sup 0 Co gamma-ray source. The x-ray dose enhancement factors for floating gate ROMs are obtained firstly in China. These results can be an effective evaluation data for x-rays radiation hardening technology

  5. Study of hard X-ray dose enhancement effects for some kinds of semiconductor devices

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Zhou Hui; He Chao Hui; Xie Ya Ning; Huang Yu Ying; He Wei; Hu Tian Dou

    2002-01-01

    Experimental results of X-ray dose enhancement effects are given for CMOS4069 and floating gate ROMs irradiated in Beijing Synchrotron Radiation Facility and in cobalt source. Shift of threshold voltage vs. total dose for CMOS4069 and the errors vs. total dose for 28f256 and 29c256 have been tested on line and the equivalent relation of total dose damage under the same accumulated dose is provided comparing the response of devices irradiated by X-ray and gamma-ray source. These results can be provided for X-ray radiation hardening technology as an effective evaluation data

  6. The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters

    Science.gov (United States)

    Alamoudi, D.; Lohstroh, A.; Albarakaty, H.

    2017-11-01

    This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.

  7. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  8. Enhanced low dose rate radiation effect test on typical bipolar devices

    International Nuclear Information System (INIS)

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  9. Monte Carlo simulation of dose enhancement effect of X-ray at Au/Si interface

    International Nuclear Information System (INIS)

    Wu Zhengxin; He Chengfa; Lu Wu; Guo Qi; Yu Xin; Zhang Lei; Deng Wei; Zheng Qiwen; ARKIN Abulim

    2013-01-01

    Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au. (authors)

  10. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, AL; Kam, WW-Y; Scales, N; McMahon, SJ; Bennett, JW; Byrne, HL; Schuemann, J; Paganetti, H; Banati, R; Kuncic, Z

    2016-01-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies ~ 70 eV, substantially lower than that of liquid water ~ 78 eV. Monte Carlo simulations for 10 – 50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of ~ 1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol. PMID:27435339

  11. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    Science.gov (United States)

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  12. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  13. Double dose: High family conflict enhances the effect of media violence exposure on adolescents’ aggression

    NARCIS (Netherlands)

    Fikkers, K.M.; Piotrowski, J.T.; Weeda, W.D.; Vossen, H.G.M.; Valkenburg, P.M.

    2013-01-01

    We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low

  14. Double Dose: High Family Conflict Enhances the Effect of Media Violence Exposure on Adolescents’ Aggression

    Directory of Open Access Journals (Sweden)

    Patti M. Valkenburg

    2013-07-01

    Full Text Available We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low conflict families. A total of 499 adolescents (aged 10 to 14, 48% girls participated in a two-wave longitudinal survey (4-month interval. Survey questions assessed their exposure to violence on television and in electronic games, family conflict, and aggressive behavior. Analyses revealed a significant interaction between media violence and family conflict. In families with higher conflict, higher media violence exposure was related to increased subsequent aggression. This study is the first to show a double dose effect of media violence and family conflict on adolescents’ aggression. These findings underscore the important role of the family in shaping the effects of adolescents’ media use on their social development.

  15. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  16. Model predictions and analysis of enhanced biological effectiveness at low dose rates

    International Nuclear Information System (INIS)

    Watt, D.E.; Sykes, C.E.; Younis, A.-R.S.

    1988-01-01

    A severe challenge to all models purporting to describe the biological effects of ionizing radiation has arisen with the discovery of two phenomena: the anomalous trend with dose rate of the frequency of neoplastic transformation of mammalian cells and the apparent excessive damaging power of electron-capture radionuclides when incorporated into cell nuclei. A new model is proposed which predicts and enables interpretation of these phenomena. Radiation effectiveness is found to be expressible absolutely in terms of the geometrical cross-sectional area of the radiosensitive sites. The duration of the irradiation, the mean free path for ionization, the influence of particles in the slowing-down spectrum perrtaining in the medium and two collective time factors determining the mean repair rate and the mean lifetime of unidentified reactive chemical species [pt

  17. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    International Nuclear Information System (INIS)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang; Wu Lijun

    2007-01-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of γ-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process ( G -methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy α-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose α-particle irradiation and nitric oxide generated by irradiation was also very important in this process

  18. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  19. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  20. Low dose radiation enhancing inhibitory effect of tumor-associated antigen peptide extract on H-22 hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuyue, Sun; Jingyi, Fu; Yong, Zhao [Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Inst. of Zoology, Chinese Academy of Sciences, Beijing (China); Jianxiang, Liu; Zhibo, Fu; Xiuyi, Li; Shuzheng, Liu; Shouliang, Gong

    2005-06-15

    Objective: To determine whether there is synergically inhibitory effect of low dose radiation (LDR) and tumor-associated antigen peptides (TAP) on tumor growth in vivo, which may provide experimental basis for potential clinical co-application of these two approaches to treat cancers. Methods: TAP extract (MW {<=}3x10{sup 6}) from tumor cell membrane was prepared with mild acid elution method , as reported. The mice were whole-bodily irradiated with 75 mGy X-rays 12 h before immunization with TAP extract. After immunization , the levels of CD3, CD69, TCR{alpha}{beta} cells and T cell subsets in the spleen were detected with FACS. The tumor growth rate was estimated, and the responses to Con A, the cytokine productions and CTL activities of splenocytes were also analyzed 7 d after immunization with TAP. Results: The present experimental results showed that the TAP extract significantly reduced the incidence of the transplanted tumor, delayed the average appearing time and decreased the growth speed of the tumor. The response of splenocytes from mice immunized with TAP extract to Con A increased significantly compared with that in the control group. Irradiation with 75 mGy X-rays 12 h before immunization further enhanced the inhibitory effect of TAP extract on tumor growth, and increased the percentage of CD8{sup +} splenocytes. Conclusion: These results suggest that whole-body irradiation with LDR exerts a synergic inhibitory effect with TAP on tumor growth in vivo, in which enhanced cellular immune responses may be involved. (authors)

  1. SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Altundal, Y; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: The goal of radiotherapy is to maximize radiation dose to diseased cells while minimizing radiation damage to normal tissues. In order to minimize damage to normal tissues, cerium oxide nanoparticles (nanoceria) are currently considered as a radioprotectant. However, some studies have reported concerns that nanoceria can also lead to radiotherapy dose enhancement due to the high atomic number of cerium, especially when used in conjunction with kV energy and brachytherapy sources. In this study, this concern is investigated to determine if the concentrations of nanoceria employed in in-vivo studies to confer radioprotection can engender a significant dose enhancement. Methods: Radiation with energies ranging from 50kVp to 140kVp is investigated in this work along with brachytherapy sources Pd-103 and I-125. A previously established theoretical model is used to calculate the dose enhancement factor (DEF). In this model, each cell is assumed to be a voxel of size (10 µm, 10 µm, 10 µm) with nanoceria homogeneously distributed among them. Electron energy loss formula of Cole is used to calculate energy (and hence dose) deposited by photoelectrons and Auger electrons in each tissue voxel due to irradiation of nanoceria. The DEF is defined as the ratio of the dose with and without nanoparticles. Results: DEF calculation results are smaller than 1.02 with dosages of nanoceria smaller than 0.645 mg/g, which is shown to be sufficiently protective by some previous in-vitro and in-vivo experiments. The brachytherapy sources show higher DEF’s than kVp radiations. DEF peaks are consistent with K shell and L shell energies of cerium, 40 keV and 6 keV, respectively. Conclusion: The results show that for sufficiently radioprotective concentrations of nanoceria, there will be minimal DEF when used in conjunction with clinically applicable kV energy radiotherapy sources or brachytherapy sources.

  2. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  3. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  4. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis.

    Science.gov (United States)

    Daftarian, Pirouz M; Stone, Geoffrey W; Kovalski, Leticia; Kumar, Manoj; Vosoughi, Aram; Urbieta, Maitee; Blackwelder, Pat; Dikici, Emre; Serafini, Paolo; Duffort, Stephanie; Boodoo, Richard; Rodríguez-Cortés, Alhelí; Lemmon, Vance; Deo, Sapna; Alberola, Jordi; Perez, Victor L; Daunert, Sylvia; Ager, Arba L

    2013-12-01

    Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.

  5. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  6. Biodegradation of an oil-hydrocarbon contaminated soil, enhanced by surfactants: Effect of the type and dose of surfactant

    International Nuclear Information System (INIS)

    Torres, L. G.; Galindo, C.; Rojas, N.; Iturbe, R.

    2009-01-01

    The aim of this work was to study the effect of different parameters, such as surfactant type an dose, soil initial hydrocarbons concentration, and soil granulometry, over the total petroleum hydrocarbons TPH degradation, as well as over the microbial count (as colony formation units CFU/g soil) along the process. (Author)

  7. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  8. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  9. A Monte Carlo Study of dose enhancement according to the enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-03-15

    Dose enhancement effects at megavoltage (MV) X and γ-ray energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide (Fe2O3) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co60 γ-ray were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

  10. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M Azarniya

    2012-05-01

    Full Text Available

    Background and objectives

    Oxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.

    Methods

    In our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days.

    Results

    The results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.

    Conclusion

    The results show that oxymetholone decreases the ovarian growth and the rate of ovulation.

  11. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M. Azarniya

    2007-04-01

    Full Text Available Background and objectivesOxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.MethodsIn our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days. ResultsThe results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.ConclusionThe results show that oxymetholone decreases the ovarian growth and the rate of ovulation. Keywords: Oxymetholone; Anabolic Steroid; Oogenesis; Androgens

  12. High-dose contrast-enhanced MRI in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Koudriavtseva, T. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Pozzilli, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Di Biasi, C. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Iannilli, M. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Trasimeni, G. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Gasperini, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Argentino, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Gualdi, G.F. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy)

    1996-05-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs.

  13. High-dose contrast-enhanced MRI in multiple sclerosis

    International Nuclear Information System (INIS)

    Koudriavtseva, T.; Pozzilli, C.; Di Biasi, C.; Iannilli, M.; Trasimeni, G.; Gasperini, C.; Argentino, C.; Gualdi, G.F.

    1996-01-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs

  14. Dose enhancement in a room cobalt-60 source

    International Nuclear Information System (INIS)

    Simons, M.; Pease, R.L.; Fleetwood, D.M.; Schwank, J.R.; Krzesniak, M.

    1997-01-01

    A room Co-60 source was characterized using TLDs and pMOS RADFETs. Dose enhancement was measured using RADFETs with and without gold- flashed kovar lids. A methodology was developed to predict dose enhancement vs position and test configuration

  15. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  16. SU-F-T-661: Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (Korea, Republic of); Chung, K; Han, Y; Park, H [Samsung Medical Center, Sungkyunkwan University School of Medicine radiation oncology (Korea, Republic of)

    2016-06-15

    Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beams of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].

  17. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lechtman, Eli [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4 (Canada)

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2

  18. Effect of three different doses of arginine enhanced enteral nutrition on nutritional status and outcomes in well nourished postsurgical cancer patients: a randomized single blinded prospective trial.

    Science.gov (United States)

    De Luis, D A; Izaola, O; Terroba, M C; Cuellar, L; Ventosa, M; Martin, T

    2015-01-01

    Patients with head and neck cancer undergoing surgery have a high occurrence of postoperative complications. The aim of our study was to investigate whether postoperative nutrition of head and neck cancer patients, using an enhanced enteral formula with three different doses of arginine could improve nutritional variables as well as clinical outcome, depending of arginine dose. A population of 84 patients with oral and laryngeal cancer was enrolled. At surgery patients were randomly assigned to three different treatment groups, each one containing at less 28 patients. Group I (28 patients) received an enteral diet supplements with a low physiological dose of arginine (5.7 g per day), group II (28 patients) received an isocaloric, isonitrogenous enteral formula with a medium dose of arginine (12.3 g per day) and group III (28 patients) received an isocaloric, isonitrogenous enteral formula with a high dose of arginine (18.9 g per day). The length of postoperative stay had a trend to be better with high dose of arginine received (31.9 ± 17.2 days in group I vs 27.8 ± 15.2 days in group II vs 24.8 ± 18.3 days in group III: p = 0.034). No differences were detected in postoperative infections complications and diarrhea. Fistula was less frequent in groups II and III than I (10.7% group I vs 3.6% group II vs 3.6% group III: p = 0.033), The length of postoperative stay had a trend to be better with high dose of arginine received (31.9 ± 17.2 days in group I vs 27.8 ± 15.2 days in group II vs 24.8 ± 18.3 days in group III: p = 0.034). Our results suggest that these patients could benefit from a high dose of arginine enhanced enteral formula to decrease length of hospital stay and fistula wound complications.

  19. Plutonium dose-effect relationship

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1976-01-01

    Dose in internal exposure to Pu was investigated, and dose-effect relationship was discussed. Dose-effect relationship in internal exposure was investigated by means of two methods, which were relationship between dose and its effect (relationship between μ Ci/Kg and its effect), and exposure dose and its effects (rad-effect), and merits and demerits of two methods were mentioned. Problems in a indication method such as mean dose were discussed with respect to the dose in skeleton, the liver and the lung. Pu-induced osteosarcoma in mice rats, and beagles was described, and differences in its induction between animals were discussed. Pulmonary neoplasma induced by 239 PuO 2 inhalation in beagles was reported, and description was made as to differences in induction of lung cancer between animals when Pu was inhaled and was taken into the lung. A theoretical and experimental study of a extrapolation of the results of the animal experiment using Pu to human cases is necessary. (Serizawa, K.)

  20. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  1. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  2. Determination of organ doses and effective doses in radiooncology

    International Nuclear Information System (INIS)

    Roth, J.; Martinez, A.E.

    2007-01-01

    Background and Purpose: With an increasing chance of success in radiooncology, it is necessary to estimate the risk from radiation scatter to areas outside the target volume. The cancer risk from a radiation treatment can be estimated from the organ doses, allowing a somewhat limited effective dose to be estimated and compared. Material and Methods: The doses of the radiation-sensitive organs outside the target volume can be estimated with the aid of the PC program PERIDOSE developed by van der Giessen. The effective doses are determined according to the concept of ICRP, whereby the target volume and the associated organs related to it are not taken into consideration. Results: Organ doses outside the target volume are generally < 1% of the dose in the target volume. In some cases, however, they can be as high as 3%. The effective doses during radiotherapy are between 60 and 900 mSv, depending upon the specific target volume, the applied treatment technique, and the given dose in the ICRU point. Conclusion: For the estimation of the radiation risk, organ doses in radiooncology can be calculated with the aid of the PC program PERIDOSE. While evaluating the radiation risk after ICRP, for the calculation of the effective dose, the advanced age of many patients has to be considered to prevent that, e.g., the high gonad doses do not overestimate the effective dose. (orig.)

  3. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  4. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  5. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  6. Effect of duration of contrast material injection on peak enhancement times and values of the aorta, main portal vein, and liver at dynamic MDCT with the dose of contrast medium tailored to patient weight

    International Nuclear Information System (INIS)

    Erturk, S.M.; Ichikawa, T.; Sou, H.; Tsukamoto, T.; Motosugi, U.; Araki, T.

    2008-01-01

    Aim: To investigate the effects of contrast material injection duration on peak enhancement times and attenuation values of the aorta, main portal vein, and liver at MDCT when the dose of contrast material is adjusted to patient weight. Material and methods: Seventy-five patients were randomly assigned to one of five groups, with durations of injection of 25, 30, 35, 40, or 45 s. All patients were injected with 2 ml/kg iodine (300 mg/ml). Attenuation values and peak enhancement times for the aorta, main portal vein, and liver were determined. The relationship between patient weight and enhancement times and values, the differences regarding peak enhancement times, and the relationship between injection duration and enhancement values were investigated using Pearson correlation, analysis of variance (ANOVA), and Spearman rank correlation, respectively. Results: No significant correlations were seen between patient weight and peak enhancement times or values. Mean peak enhancement times for the aorta, main portal vein, and liver were 9-11 s, 18-22 s, and 30-34 s, respectively (p > 0.05). The correlations between injection duration and peak enhancement values were significant and negative. Conclusions: Regardless of patient weight and injection duration, peak enhancement times of aorta, main portal vein and liver were approximately 10, 20, and 30 s, respectively. The enhancement values tended to be higher for shorter injection durations

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  9. Notes on the effect of dose uncertainty

    International Nuclear Information System (INIS)

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated

  10. Enhanced therapeutic effect of APAVAC immunotherapy in combination with dose-intense chemotherapy in dogs with advanced indolent B-cell lymphoma.

    Science.gov (United States)

    Marconato, L; Stefanello, D; Sabattini, S; Comazzi, S; Riondato, F; Laganga, P; Frayssinet, P; Pizzoni, S; Rouquet, N; Aresu, L

    2015-09-22

    The aim of this non-randomized controlled trial was to compare time to progression (TTP), lymphoma-specific survival (LSS), and safety of an autologous vaccine (consisting of hydroxyapatite ceramic powder and Heat Shock Proteins purified from the dogs' tumors, HSPPCs-HA) plus chemotherapy versus chemotherapy alone in dogs with newly diagnosed, clinically advanced, histologically confirmed, multicentric indolent B-cell lymphoma. The vaccine was prepared from dogs' resected lymph nodes and administered as an intradermal injection. Forty-five client-owned dogs were enrolled: 20 dogs were treated with dose-intense chemotherapy, and 25 received concurrent immunotherapy. Both treatment arms were well tolerated, with no exacerbated toxicity in dogs also receiving the vaccine. TTP was significantly longer for dogs treated with chemo-immunotherapy versus those receiving chemotherapy only (median, 209 versus 85 days, respectively, P=0.015). LSS was not significantly different between groups: dogs treated with chemo-immunotherapy had a median survival of 349 days, and those treated with chemotherapy only had a median survival of 200 days (P=0.173). Among vaccinated dogs, those mounting an immune response had a significantly longer TTP and LSS than those with no detectable response (P=0.012 and P=0.003, respectively). Collectively these results demonstrate that vaccination with HSPPCs-HA may produce clinical benefits with no increased toxicity, thereby providing a strategy for enhancing chemotherapy in dogs with advanced indolent lymphoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  12. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  13. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  14. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  15. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  16. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  17. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  18. SU-F-T-93: Breast Surface Dose Enhancement Using a Clinical Prone Breast Board

    International Nuclear Information System (INIS)

    Guerra, M; Jozsef, G

    2016-01-01

    Purpose: The use of specialized patient set-up devices in radiotherapy, such as prone breast boards, may have unwanted dosimetric effects. The goal of this study was to evaluate the effect of a clinically used prone breast board on skin dose due to buildup. Methods: GafChromic film (EBT3) was used for dose measurements on the surface of a solid water phantom shaped to mimic the curvature of the breast. We investigated two setup scenarios: the medial field border placed at the medial edge of the board and 1 cm contralaterally from that edge. A strip of film was taped to the medial surface of the phantom. Gantry angles varied from 10 to 30 degrees below the lateral gantry position, representing anterior oblique fields. The measurements were performed with and without the presence of the board; the ratio of their corresponding doses (dose enhancement) was evaluated. Results: For the cases where the field edge is at the edge of the board, the dose enhancement is negligible for all the tested angles. When the field edge is 1 cm inside the board, the maximum surface dose enhancement varies depending on the gantry angle between 2.2 for 30 degrees and 3.2 for 20 degrees. The length on the film at which the presence of the board is detectable (i.e. where there is dose enhancement) is longer for the shallower angles. Conclusion: Even the low-density, thin carbon fiber board with a thin soft foam pad on the top can produce significant dose enhancement on the skin in prone breast treatment due to loss of buildup. However, it happens only when the patient mid-sternum is over the board, i.e. the medial edge of the field traverses through the board and pad. Even then, the effect occurs only at the field edge, i.e. the penumbral region.

  19. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Aakeson, P

    1996-10-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs.

  20. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    International Nuclear Information System (INIS)

    Aakeson, P.

    1996-01-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs

  1. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  2. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  3. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  4. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  5. Radiation dose of aircrews during a solar proton event without ground-level enhancement

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2015-01-01

    Full Text Available A significant enhancement of radiation doses is expected for aircrews during ground-level enhancement (GLE events, while the possible radiation hazard remains an open question during non-GLE solar energetic particle (SEP events. Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 μSv h−1 at a conventional flight altitude of 12 km during the largest SEP event that did not cause a GLE. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere during non-GLE SEP events.

  6. Low dose gamma irradiation enhances defined signaling components of intercellular reactive oxygen-mediated apoptosis induction

    International Nuclear Information System (INIS)

    Bauer, G

    2011-01-01

    Transformed cells are selectively removed by intercellular ROS-mediated induction of apoptosis. Signaling is based on the HOCl and the NO/peroxynitrite pathway (major pathways) and the nitryl chloride and the metal-catalyzed Haber-Weiss pathway (minor pathways). During tumor progression, resistance against intercellular induction of apoptosis is acquired through expression of membrane-associated catalase. Low dose radiation of nontransformed cells has been shown to enhance intercellular induction of apoptosis. The present study was performed to define the signaling components which are modulated by low dose gamma irradiation. Low dose radiation induced the release of peroxidase from nontransformed, transformed and tumor cells. Extracellular superoxide anion generation was strongly enhanced in the case of transformed cells and tumor cells, but not in nontransformed cells. Enhancement of peroxidase release and superoxide anion generation either increased intercellular induction of apoptosis of transformed cells, or caused a partial protection under specific signaling conditions. In tumor cells, low dose radiation enhanced the production of major signaling components, but this had no effect on apoptosis induction, due to the strong resistance mechanism of tumor cells. Our data specify the nature of low dose radiation-induced effects on specific signaling components of intercellular induction of apoptosis at defined stages of multistep carcinogenesis.

  7. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  8. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  9. Quantitative MR changes in Gd-DTPA enhancement after high dose intravenous methylprednisolone in multiple sclerosis

    International Nuclear Information System (INIS)

    Barkhof, F.; Valk, J.; Hommes, O.R.; Scheltens, P.

    1991-01-01

    The purpose of this study was to investigate the effect of high dose intravenous methylprednisolone (MP) on gadolinium-DTPA enhancement in MS-lesions. By means of this the influence of MP on the permeability of the blood-brain barrier can be studied. (author). 19 refs.; 1 fig

  10. Measurement bias dependence of enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Mayer, D.C.; Fleetwood, D.M.

    1998-03-01

    Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases

  11. Effect of combination vitamin E and single long-acting progesterone dose on enhancing pregnancy outcomes in the first two parities of young rabbit does.

    Science.gov (United States)

    Salem, Anas A; Gomaa, Yasmin A

    2014-11-10

    Vitamin E (Vit. E) is needed for young rabbits to prevent reproductive abnormalities, abortion and poor survivability of kits. Also, exogenous progesterone (P4) is needed for rabbits to enhance early embryonic development because of inadequate corpus luteum (CL) development at this age. Hence, the aim of this study was to investigate the effect of injecting Vit. E and the combination Vit. E+P4 in young does on live body weight (LBW) gain, gestation length (GL), numbers of services/conception (NS), conception rate (CR), abortion rate (AR), litter size (LS), kit weight (KW), total litter weight (TLW), mortality rate (MR) and progesterone (P4) concentration. The group treated with Vit. E+P4 had a greater LBW gain and lesser AR at first and second pregnancy. Treatments did not have significant impact on GL and LS in the first two parities. Treatments resulted in a significantly lesser MR and greater TLW at the second parity. The Vit. E+P4 treatment resulted in a significantly lesser NS at the first parity, while Vit. E alone resulted in a significant reduction in NS at the second parity. Vit. E+P4 had a positive effect on CR at the first parity compared with controls. Vit. E alone increased CR at the second parity compared with that of the control group. The mean P4 concentration from mating to mid-pregnancy at first parity was significantly greater in the Vit. E+P4 than Vit. E and control groups. In conclusion, treatment with Vit. E+P4 at the first parity may be economically applied on rabbit farms because this treatment resulted in a greater maintenance of the first pregnancy and improved reproductive performance at the second parity as compared with results from the Vit. E treated and control groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The concept of the effective dose

    International Nuclear Information System (INIS)

    Jacobi, W.

    1975-01-01

    Irradiation of the human body by external or internal sources leads mostly to a simultaneous exposure of several organs. However, so far no clear and consistent recommendations for the combination of organ doses and the assessment of an exposure limit under such irradiation conditions are available. Following a proposal described in ICRP-publication 14 one possible concept for the combination of organ doses is discussed in this paper. This concept is based on the assumption that at low doses the total radiation detriment to the exposed person is given by the sum of radiation detriments to the single organs. Taking into account a linear dose-risk relationship, the sum of weighted organ doses leads to the definition of an 'Effective Dose'. The applicability and consequences of this 'Effective Dose Concept' are discussed especially with regard to the assessment of the maximum permissible intake of radionuclides into the human body and the combination of external and internal exposure. (orig.) [de

  13. Comparison of half-dose and full-dose gadolinium MR contrast on the enhancement of bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Costelloe, Colleen M. [University of Texas M. D. Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas (United States); University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Murphy, William A.; Haygood, Tamara M.; Kumar, Rajendra; McEnery, Kevin W.; Madewell, John E. [University of Texas M. D. Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas (United States); Stafford, R.J. [University of Texas M. D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas (United States); Roy, Anjali [Cancer Treatment Centers of America Medical Diagnostic Imaging Group, Arizona (United States); Bassett, Roland L.; Harrell, Robyn K. [University of Texas M. D. Anderson Cancer Center, Department of Biostatistics, Houston, Texas (United States)

    2011-03-15

    To evaluate the effect of half-dose intravenous gadolinium contrast on the enhancement of bone and soft tissue tumors. This study is HIPAA compliant and informed consent was waived by the institutional review board. An institutional database search was performed over a 1-year period for patients with full- and half-dose MR examinations performed for musculoskeletal oncologic indications. Examination pairs that were identical with regard to field strength and presence or absence of fat saturation were included, resulting in 29 paired examinations. When multiple, the lesion that was best delineated and enhanced well on the first examination in the pair was chosen, yielding 17 bone and 12 soft tissue. Five musculoskeletal radiologists blinded to dosages were asked to assess for a difference in enhancement when comparing the lesion on both examinations and to rate the degree of difference on a three-point scale. They were also asked to identify the examination on which the lesion enhanced less (tallied as low dose). Results were analyzed with the exact binomial test. The readers perceived an enhancement difference in 41% (59/145) of studies (p = 0.03) and the majority were rated as ''mild'' (66%, 39/59). The readers did not accurately identify the low-dose examinations (54% correctly identified, 32/59, p = 0.60). Half-dose gadolinium enhancement of lesions could not be accurately distinguished from full-dose enhancement upon review of the same lesion imaged at both concentrations. (orig.)

  14. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  15. The dose-rate effect

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents calculations that illustrate two conclusions; for any particular cell type there will be a critical radius at which tumor control breaks down, and the radius at which this occurs is strongly dependent upon the low-dose-rate radiosensitivity of the cells

  16. Development and validation of Monte Carlo dose computations for contrast-enhanced stereotactic synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Vautrin, M.

    2011-01-01

    Contrast-enhanced stereotactic synchrotron radiation therapy (SSRT) is an innovative technique based on localized dose-enhancement effects obtained by reinforced photoelectric absorption in the tumor. Medium energy monochromatic X-rays (50 - 100 keV) are used for irradiating tumors previously loaded with a high-Z element. Clinical trials of SSRT are being prepared at the European Synchrotron Radiation Facility (ESRF), an iodinated contrast agent will be used. In order to compute the energy deposited in the patient (dose), a dedicated treatment planning system (TPS) has been developed for the clinical trials, based on the ISOgray TPS. This work focuses on the SSRT specific modifications of the TPS, especially to the PENELOPE-based Monte Carlo dose engine. The TPS uses a dedicated Monte Carlo simulation of medium energy polarized photons to compute the deposited energy in the patient. Simulations are performed considering the synchrotron source, the modeled beamline geometry and finally the patient. Specific materials were also implemented in the voxelized geometry of the patient, to consider iodine concentrations in the tumor. The computation process has been optimized and parallelized. Finally a specific computation of absolute doses and associated irradiation times (instead of monitor units) was implemented. The dedicated TPS was validated with depth dose curves, dose profiles and absolute dose measurements performed at the ESRF in a water tank and solid water phantoms with or without bone slabs. (author) [fr

  17. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    International Nuclear Information System (INIS)

    Hurwitz, M; Margalit, D; Williams, C; Tso, T; Lee, S; Rosen, E

    2016-01-01

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li 2 Si 2 O 5 ), zirconium dioxide (ZrO 2 ), and gold alloy. Small thin squares (2×2×0.15 cm 3 ) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO 2 , and 9% for Li 2 Si 2 O 5 . This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  18. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Margalit, D; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Tso, T; Lee, S; Rosen, E [Harvard School of Dental Medicine, Boston, MA (United States)

    2016-06-15

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  19. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  20. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  1. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    Science.gov (United States)

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  2. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  3. Enhanced natural radiation exposure enhanced by human activity: the largest contributor to the Chinese population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Liu Yanyang

    2011-01-01

    For the radiation exposure caused by human activities, the enhanced natural radiation exposure is the largest contributor to Chinese population dose. This problem has attracted social attention in recent years. Efforts have been made in several fields, such as radon indoors and in workplace, environmental problems associated with NORMs, occupational radiation hazards of non-uranium mine, and radiation dose evaluation for energy chain, but there are still many problems to be solved. In order to protect the health of workers and the public, while ensuring industrial production and economic development, it is also necessary to continue to strengthen research in all aspects above mentioned, and gradually promote the control of natural radiation exposure enhanced by human activities. (authors)

  4. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus

    Science.gov (United States)

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage, and environmental parameters. Glyphosate hormesis is well established, bu...

  5. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  6. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress

  7. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  8. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  9. Bile duct evaluation of potential living liver donors with Gd-EOB-DTPA enhanced MR cholangiography: Single-dose, double dose or half-dose contrast enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinner, Sonja, E-mail: Sonja.Kinner@uni-due.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Steinweg, Verena [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Maderwald, Stefan [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Radtke, Arnold; Sotiropoulos, Georgios [Department of General Surgery, University Hospital Essen (Germany); Forsting, Michael; Schroeder, Tobias [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany)

    2014-05-15

    Introduction: Detailed knowledge of the biliary anatomy is essential to avoid complications in living donor liver transplantation. The aim of this study was to determine the optimal dosage of Gd-EOB-DTPA for contrast-enhanced magnetic resonance cholangiography (ce-MRC) with reference to contrast-enhanced CT cholangiography (ce-CTC). Materials and methods: 30 potential living liver donors (PLLD) underwent both ce-CTC and ce-MRC. Ten candidates each received single, double or half-dose Gd-EOB-DTPA. Ce-MRC images with and without inversion recovery pulses (T1w ± IR) were acquired 20–30 min after intravenous contrast injection. Image data was quantitatively and qualitatively reviewed by two radiologists based on a on a 5-point scale. Data sets were compared using a Mann–Whitney-U-test or Wilcoxon-rank-sum-test. Kappa values were also calculated. Results: All image series provided sufficient diagnostic information both showing normal biliary anatomy and variant bile ducts. Ce-CTC showed statistically significant better results compared to all ce-MRC data sets. T1w MRC with single dose Gd-EOB-DTPA proved to be superior to half and double dose in subjective and objective evaluation without a statistically significant difference. Conclusions: Ce-MRC is at any dosage inferior to ce-CTC. As far as preoperative planning of bile duct surgery is focused on the central biliary anatomy, ce-MRC can replace harmful ce-CTC strategies, anyway. Best results were seen with single dose GD-EOB-DTPA on T1w MRC+IR.

  10. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  11. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    Science.gov (United States)

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  12. Measurement of dose enhancement close to high atomic number media using optical fibre thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Alalawi, Amani I.; Hugtenburg, R.P.; Abdul Rahman, A.T.; Barry, M.A.; Nisbet, A.; Alzimami, Khalid S.; Bradley, D.A.

    2014-01-01

    Present interest concerns development of a system to measure photoelectron-enhanced dose close to a tissue interface using analogue gold-coated doped silica-fibre thermoluminescence detectors and an X-ray set operating at 250 kVp. Study is made of the dose enhancement factor for various thicknesses of gold; measurements at a total gold thickness of 160 nm (accounting for incident and exiting photons) produces a mean measured dose enhancement factor of 1.33±0.01 To verify results, simulations of the experimental setup have been performed. - Highlights: • Dose enhancement • Thermoluminescence dosimeter • Monte Carlo simulation

  13. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  14. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  15. Anti-tumor effect of low dose radiation in mice

    International Nuclear Information System (INIS)

    Fan Zhengping; Lu Jiaben; Zhu Bingchai

    1997-01-01

    The author reports the effects of the total body irradiation of low dose radiation (LDR) and/or the local irradiation of large dose on average tumor weights and tumor inhibitory rates in 170 mice inoculated S 180 sarcoma cell, and the influence of LDR on average longevity in 40 tumor-bearing animals. Results show (1) LDR in the range of 75∼250 mGy can inhibit tumor growth to some extent; (2) fractionated irradiation of 75 mGy and local irradiation of 10 Gy may produce a synergism in tumor growth inhibition; and (3)LDR may enhance average longevity in ascitic tumor-bearing mice

  16. High-dose gadolinium-enhanced MRI for diagnosis of meningeal metastases

    International Nuclear Information System (INIS)

    Kallmes, D.F.; Gray, L.; Glass, J.P.

    1998-01-01

    We compared high-dose (0.3 mmol/kg) and standard-dose (0.1 mmol/kg) gadolinium-enhanced MRI for diagnosis of meningeal metastases in 12 patients with suspected meningeal metastases. They were imaged with both standard-dose and high-dose gadolinium. All patients with abnormal meningeal enhancement underwent at least one lumbar puncture for cerebrospinal fluid (CSF) cytology, while patients with normal meningeal enhancement were followed clinically. All patients with negative CSF cytology also were followed clinically. A single observer reviewed all the images, with specific attention to the enhancement pattern of the meninges. Abnormal leptomeningeal enhancement was present in three cases, and abnormal pachymeningeal enhancement in three other patients. All of these patients had abnormal CSF analyses. In two of the three cases of abnormal leptomeningeal enhancement the disease was more evident on high-dose than on standard-dose imaging; in one case the abnormal enhancement was visible only on high-dose imaging. In one of the three cases with abnormal pachymeningeal enhancement, the disease was evident prospectively only with high-dose imaging. (orig.)

  17. Photon activation therapy with 127I-deoxyuridine: measurement of dose enhancement in cultured mammalian cells

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Laster, B.H.; Commerford, S.L.; Furcinitti, P.S.; Sylvester, B.; Gabel, D.; Popenoe, E.; Foster, S.

    1985-01-01

    A technique for radiation enhancement of conventional photon radiotherapy is outlined which has been called photon activation therapy (PAT) (6). High linear energy transfer (LET) radiations in the form of Auger electron distributions are generated by photons of appropriate energies, through photon activation of stable iodine incorporated as an analog of thymidine (Tyd) in DNA. Of the several halogenated deoxyribonucleosides evaluated, iodinated deoxyuridine (IdUrd) has been chosen as the only Tyd analog providing effective photon activation. This mechanism is combined with radiation sensitization produced by IdUrd to produce an overall radiation enhancement. Calculations show that at 5% replacement (IdUrd for Tyd) therapeutic (TG) will vary from ∼2 (single acute dose) to ∼17 (low dose rates associated with permanent implant brachytherapy). Parameters used in the calculation of TG have been evaluated in cell culture; dose enhancements obtained with x-rays (including photon activation) were found to be significantly higher than values measured with γ-rays (no photon activation). Comparison is made between theoretical and measured values. Because of the evident lack of repair of damage produced by both sensitization and photon activation, significant gains are expected to be realized following protracted irradiations. Exchanges (IdUrd for Tyd) for 105 have been obtained in vivo (murine tumors). The authors believe that the application of PAT would be most advantageous in the treatment of brain tumors (grade IV astrocytomas) with implanted 145 Sm sources

  18. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  19. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    Science.gov (United States)

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  1. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  2. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  3. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  4. Estimation of effective dose during hysterosalpingography procedures

    International Nuclear Information System (INIS)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M.; Sulieman, A.; Alsafi, K.; Omer, H.

    2014-08-01

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  5. Response of rat spinal cord to very small doses per fraction: lack of enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Shun, Wong C.; Yong, Hao; Hill, Richard P.

    1995-01-01

    Our previous work with rat spinal cord demonstrated that the linear quadratic (LQ) model based on data for large fraction sizes ((α(β)) of 2.4 Gy) failed to predict isoeffective doses between 1 and 2 Gy per fraction, and under-estimated the sparing effect of small doses per fraction given once daily. In contrast, data from mouse skin and kidney, and recent in vitro results revealed a paradoxical increase in radiosensitivity at below 1 Gy per fraction. To assess whether enhanced radiosensitivity is present in the spinal cord below 1 Gy per fraction, the rat spinal cord (C2-T2) was irradiated initially with three daily doses of 10.25 Gy (top-up doses representing 90% of tolerance), followed by graded single doses or fractionated doses in 1.5, 1.0, 0.8, 0.6 or 0.4 Gy fractions given once daily. To limit the overall treatment time to ≤ 8 weeks, a small number of the 0.6- and 0.4-Gy fractions were given twice daily with an interfraction interval of 16 h. The end-point was forelimb paralysis secondary to white matter necrosis, confirmed histologically. The ED 50 values, excluding the top-up doses, were 5.8, 10.6, 14.8, 15.2, 15.9 and 19.1 Gy for a single dose and doses in 1.5-, 1.0-, 0.8-, 0.6- and 0.4-Gy fractions, respectively. The data gave an (α(β)) of 2.1 Gy (95% CI, 1.4, 2.7 Gy). Pooling the data separately, the (α(β)) value was 2.3 Gy (95% CI, 0.82, 3.7 Gy) for fraction sizes ≥ 1 Gy, and 1.2 Gy (95% CI, 0.16, 2.3 Gy) for the 0.8-, 0.6- and 0.4-Gy experiments. These results in which top-up doses were given initially are consistent with a large sparing effect of very small fraction sizes in rat spinal cord provided sufficient time is allowed for repair of sublethal damage between fractions, and provide no evidence for a paradoxical increase in radiosensitivity in the rat spinal cord below 1 Gy down to 0.4 Gy per fraction

  6. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  7. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  8. Committed effective dose from thoron daughters inhalation

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    2000-01-01

    Mankind's interest in natural radiation exposure levels has increased over the past fifty years and it is now recognized that the most significant contributors to human irradiation by natural sources are the short-lived decay products of radon ( 222 Rn) and thoron ( 220 Rn). Despite the thoron short half-life of 55 s, effective dose from inhalation of thoron an its progeny ( 212 Pb and 212 Bi) must be considered, owing to the high thorium background in countries like Brazil, China and India, for example. The indoor committed effective dose was assessed by air sampling at the thorium purification plant and the nuclear materials storage site of the Instituto de Pesquisas Energeticas e Nucleares; Sao Paulo, Brazil. A total of 21 glass fiber filter samples was analyzed by high resolution gamma ray spectrometry in order to obtain the 212 Pb and 212 Bi activities. The equilibrium equivalent concentration (EEC) varied from 0.3 Bq/m 3 to 6.8 Bq/m 3 for the storage site air samples and from 9.9 Bq/m 3 to 249.8 Bq/m 3 for the thorium purification plant air samples. As retention studies indicate a biological half-life of a few hours inhaled thoron progeny in the human lungs, the main fraction of the potential alpha energy (PAEC) deposited is absorbed in the lungs, meaning negligible to the effective dose the contribution of the dose in other times. The committed effective dose due thoron progeny was performed by compartimental analysis following the ICRP 66 lung compartimental model and ICRP 67 lead compartimental model. The values obtained varied from 0.03 mSv/a to 0.67 mSv/a for the storage site air samples and from 0.12 mSv/a to 6.00 mSv/a for the thorium purification plant air samples. (author)

  9. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  10. The Effect of Low‑Dose Ketamine (Preemptive Dose) on ...

    African Journals Online (AJOL)

    Average dosage of diclofenac suppository and mean time for taking the first dosage of opioids have not statistical difference too (respectively; P = 0.76, P = 0.87). Average dose of pethidine was lesser than placebo statistically. It means, the case group did not take pethidine but this amount was 6 (20%) in the control one (P ...

  11. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  12. A comparison of the angular dependence of effective dose and effective dose equivalent

    International Nuclear Information System (INIS)

    Sitek, M.A.; Gierga, D.P.; Xu, X.G.

    1996-01-01

    In ICRP (International Commission on Radiological Protection) Publication 60, the set of critical organs and their weighing factors were changed, defining the quantity effective dose, E. This quantity replaced the effective dose equivalent, H E , as defined by ICRP 26. Most notably, the esophagus was added to the list of critical organs. The Monte Carlo neutron/photon transport code MCNP was used to determine the effective dose to sex-specific anthropomorphic phantoms. The phantoms, developed in previous research, were modified to include the esophagus. Monte Carlo simulations were performed for monoenergetic photon beams of energies 0.08 MeV, 0.3 MeV, and 1.0 MeV for various azimuthal and polar angles. Separate organ equivalent doses were determined for male and female phantoms. The resulting organ equivalent doses were calculated from arithmetic mean averages. The angular dependence of effective dose was compared with that of effective dose equivalent reported in previous research. The differences between the two definitions and possible implications to regulatory agencies were summarized

  13. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  14. Modifying effect of low dose irradiation

    International Nuclear Information System (INIS)

    Kalendo, G.S.

    1989-01-01

    It is shown that irradiation of Hela cells with stimulating doses of 0,1 Gy changes the cells' response to the subsequent radiation effect of greater value: instead of DNA synthesis inhibition stimulation takes place. Modifying effect of preliminary irradiation with 0,1 Gy manifests it self only in case if there is a certain time interval not less than 3 minutes and not more than 10 minutes (3-5 minutes is optimal interval). Data on modifying effect with 0,1 Gy at subcellular and cellular-population levels are presented. 21 refs.; 6 figs

  15. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  16. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  17. Development of an enhanced health-economic model and cost-effectiveness analysis of tiotropium + olodaterol Respimat® fixed-dose combination for chronic obstructive pulmonary disease patients in Italy

    NARCIS (Netherlands)

    Selya-Hammer, C. (Carl); Gonzalez-Rojas Guix, N. (Nuria); M. Baldwin (Michael); Ternouth, A. (Andrew); M. Miravitlles; M.P.M.H. Rutten-van Mölken (Maureen); Goosens, L.M.A. (Lucas M.A.); N. Büyükkaramikli (Nasuh); Acciai, V. (Valentina)

    2016-01-01

    textabstractBackground: The objective of this study was to compare the cost-effectiveness of the fixed-dose combination (FDC) of tiotropium + olodaterol Respimat® FDC with tiotropium alone for patients with chronic obstructive pulmonary disease (COPD) in the Italian health care setting using a newly

  18. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  19. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  20. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements

    International Nuclear Information System (INIS)

    Boudou, C; Tropres, I; Rousseau, J; Lamalle, L; Adam, J F; Esteve, F; Elleaume, H

    2007-01-01

    Synchrotron stereotactic radiotherapy (SSR) is a radiotherapy technique that makes use of the interactions of monochromatic low energy x-rays with high atomic number (Z) elements. An important dose-enhancement can be obtained if the target volume has been loaded with a sufficient amount of a high-Z element, such as iodine. In this study, we compare experimental dose measurements, obtained with normoxic polymer gel (nPAG), with Monte Carlo computations. Gels were irradiated within an anthropomorphic head phantom and were read out by magnetic resonance imaging. The dose-enhancement due to the presence of iodine in the gel (iodine concentration: 5 and 10 mg ml -1 ) was measured at two radiation energies (35 and 80 keV) and was compared to the calculated factors. nPAG dosimetry was shown to be efficient for measuring the sharp dose gradients produced by SSR. The agreement between 3D gel dosimetry and calculated dose distributions was found to be within 4% of the dose difference criterion and a distance to agreement of 2.1 mm for 80% of the voxels. Polymer gel doped with iodine exhibited higher sensitivity, in good agreement with the calculated iodine-dose enhancement. We demonstrate in this preliminary study that iodine-doped nPAG could be used for measuring in situ dose distributions for iodine-enhanced SSR treatment

  1. Standard effective doses for proliferative tumours

    International Nuclear Information System (INIS)

    Jones, L.C.; Hoban, P.

    1999-01-01

    This study was undertaken to investigate the treatment schedules used clinically for highly proliferative tumours, particularly with reference to the effects of fraction size, fraction number and treatment duration. The linear quadratic model (with time component) is used here to compare non-standard treatment regimens (e.g. accelerated and hyperfractionated schedules), currently the focus of randomized trials, with each other and some common 'standard regimens'. To ensure easy interpretation of results, two parameters known as proliferative standard effective dose one (PSED 1 ) and proliferative standard effective dose two (PSED 2 ) have been calculated for each regimen. Graphs of PSED 1 and PSED 2 versus potential doubling time (T p ) have been generated for a range of fractionation regimens which are currently under trial in various randomized studies. From these graphs it can be seen that the highly accelerated schedules (such as CHART) only show advantages for tumours with very short potential doubling times. Calculations for most of the schedules considered showed at least equivalent tumour control expected for the trial schedule compared with the control arm used and these values agree quite well with clinical results. These calculations are in good agreement with clinical results available at present. The greater the PSED 1 or PSED 2 for the schedule considered the greater the tumour control, which can be expected. However, as has been seen with clinical trials, this higher cell kill also results in higher acute effects which have proved too great for some accelerated schedules to continue. (author)

  2. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Petersen, Asger Greval; Eiskjær, Søren Peter

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...... hypothesis is that organ dose and effective doses can be reduced 5-10 times compared to standard settings, without too high image-quality trade off, resulting in a theoretical reduction of radiation induced cancer. Methods: Patient dosimetry is performed on anthropomorphic child phantoms, representing a 5...

  3. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  4. Enhanced aflatoxin production by aspergillus parasiticus and aspergillus flavus after low dose gamma irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1992-01-01

    Spores of Aspergillus parasiticus IFO 30179 and A. flavus var. columnaris S46 were irradiated at 0.05, 0.2 and 0.4 kGy in the synthetic low salts (SL) broth, and the effect on aflatoxin production was examined after 10 days incubation at 30 or 25degC. In these two strains, irradiation of spores at 0.05 kGy resulted in higher B1 or G1 production than the non-irradiated controles. However, spores of the both strains irradiated at 0.2 or 0.4 kGy produced less aflatoxins than non-irradiated controles. In the SL broth, apparent stimulation by low dose irradiation was slight, and these enhanced effects were not observed after reinfection to fresh SL broth. In the case of food samples, the levels of aflatoxin B 1 and G 1 with A. parasiticus were increased from 15 to 90% by incubation of irradiated spores at 1 kGy in autoclaved polished rice, black pepper, white pepper and red pepper. These enhancement would be induced by change of composition in each substrates. Mutations of fungi induced by irradiation is not effective for enhancement of aflatoxin production. (author)

  5. Use of low-dose irradiation to enhance the safety and quality of chilled ready meals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E M [Department of Food Science, Queen' s University Belfast (QUB) (United Kingdom); Patterson, M F [Food Science Division, Department of Agriculture and Rural Development (DARD), Belfast (United Kingdom)

    2002-07-01

    The market for 'cook-chill' ready meals has expanded significantly during the past ten years. This specific category of food has been defined as a catering system based on the full cooking of food followed by fast chilling and storage in controlled temperature conditions (0-3 deg. C) and subsequent thorough re-heating before consumption. Such meals cover a wide range of commodities including meat, poultry, fish, vegetables, pasta and desserts and are used at home by consumers and by the catering industry for use, for example, as hospital meals or meals-on-wheels. These products have a relatively short shelf-life with a recommended maximum shelf-life of 5 days at 0-3 deg. C including the day of cooking. In addition, there are other concerns with regard to microbiological quality, reduced sensory quality and decreased nutritive value. It has been suggested that low-dose irradiation could be used to extend the shelf-life of these products while at the same time reducing the risk of food poisoning. Research carried out at QUB and DARD has readily demonstrated that the safety and shelf-life of chilled ready meals consisting of meat (chicken, beef or pork) and certain vegetables (e.g. broccoli, carrots and roast potatoes) can be enhanced by irradiation doses of 2 or 3 kGy without having a detrimental effect on sensory or nutritional quality. To date, investigations have been limited to such traditional meals with no research being carried out on the more popular ready meals such as lasagna, cottage pies, curries, etc. which have a relatively short shelf-life upon purchase. It is therefore the objective of this work program to investigate the effect of low-dose irradiation (1-5 kGy) on the microbiological, sensory and nutritional quality of these meals and to determine if their overall quality can be enhanced.

  6. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  7. Iterative methods for dose reduction and image enhancement in tomography

    Science.gov (United States)

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  8. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  9. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement

    International Nuclear Information System (INIS)

    Cho, Jongmin; Manohar, Nivedh; Kerr, Matthew; Cho, Sang Hyun; Gonzalez-Lepera, Carlos; Krishnan, Sunil

    2016-01-01

    Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the

  10. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Elizabeth; Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States)

    2014-11-15

    Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose. Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current-time product [milliamperes x seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps. Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4-6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR. Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs. (orig.)

  11. Effect of temporal distribution of dose on oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; Brenner, D.J.; Geard, C.R.; Marino, S.A.; Hall, E.J.

    1988-01-01

    Risk estimates for neutron hazards are of considerable social and economic importance. Effectiveness per unit dose of X or γ rays (low-LET radiations) has been consistently observed to be dependent on the temporal distribution of dose. In a series of comparisons, 0.5 Gy of single or fractionated (five fractions in 8 h), neutrons of 0.23, 0.35, 0.45, 5.9, or 13.7 MeV were delivered to a synchronous C3H 10T1/2 cells. Transformation frequencies per surviving cell are shown. Cells exposed to one energy (5.9 MeV) show a significant enhancement at the 95% level due to fractionated exposures, and at the 85% confidence level the 0.35- and 0.45-MeV fractionated exposures additionally result in significantly greater transformation frequencies. The frequencies of surviving cells per dish between a single or fractionated exposure vary by less than 10%. In three of five pairwise comparisons, fractionated exposures result in statistically greater frequencies of transformants per dish, and are in complete agreement with the results when induction is expressed as transformants per surviving cell. However, after 0.23-MeV neutron irradiation, the single dose resulted in a greater incidence of transformed foci than the fractionated dose

  12. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  13. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents

    International Nuclear Information System (INIS)

    Rinck, P.A.; Muller, R.N.

    1999-01-01

    The relaxivities r 1 and r 2 of magnetic resonance contrast agents and the T 1 relaxation time values of tissues are strongly field dependent. We present quantitative data and simulations of different gadolinium-based extracellular fluid contrast agents and the modulation of their contrast enhancement by the magnetic field to be able to answer the following questions: How are the dose and field dependences of their contrast enhancement? Is there an interrelationship between dose and field dependence? Should one increase or decrease doses at specific fields? Nuclear magnetic relaxation dispersion data were acquired for the following contrast agents: gadopentetate dimeglumine, gadoterate meglumine, gadodiamide injection, and gadoteridol injection, as well as for several normal and pathological human tissue samples. The magnetic field range stretched from 0.0002 to 4.7 T, including the entire clinical imaging range. The data acquired were then fitted with the appropriate theoretical models. The combination of the diamagnetic relaxation rates (R 1 = 1/T 1 and R 2 = 1/T 2 ) of tissues with the respective paramagnetic contributions of the contrast agents allowed the prediction of image contrast at any magnetic field. The results revealed a nearly identical field and dose-dependent increase of contrast enhancement induced by these contrast agents within a certain dose range. The target tissue concentration (TTC) was an important though nonlinear factor for enhancement. The currently recommended dose of 0.1 mmol/kg body weight seems to be a compromise close to the lower limits of diagnostically sufficient contrast enhancement for clinical imaging at all field strengths. At low field contrast enhancement might be insufficient. Adjustment of dose or concentration, or a new class of contrast agents with optimized relaxivity, would be a valuable contribution to a better diagnostic yield of contrast enhancement at all fields. (orig.)

  14. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  15. Effective dose in abdominal digital radiography: Patient factor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Sung; Koo, Hyun Jung; Park, Jung Hoon; Cho, Young Chul; Do, Kyung Hyun [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of); Yang, Hyung Jin [Dept. of Medical Physics, Korea University, Seoul (Korea, Republic of)

    2017-08-15

    To identify independent patient factors associated with an increased radiation dose, and to evaluate the effect of patient position on the effective dose in abdominal digital radiography. We retrospectively evaluated the effective dose for abdominal digital radiography in 222 patients. The patients were divided into two groups based on the cut-off dose value of 0.311 mSv (the upper third quartile of dose distribution): group A (n = 166) and group B (n = 56). Through logistic regression, independent factors associated with a larger effective dose were identified. The effect of patient position on the effective dose was evaluated using a paired t-test. High body mass index (BMI) (≥ 23 kg/m2), presence of ascites, and spinal metallic instrumentation were significantly associated with a larger effective dose. Multivariate logistic regression analysis revealed that high BMI [odds ratio (OR), 25.201; p < 0.001] and ascites (OR, 25.132; p < 0.001) were significantly associated with a larger effective dose. The effective dose was significantly lesser (22.6%) in the supine position than in the standing position (p < 0.001). High BMI and ascites were independent factors associated with a larger effective dose in abdominal digital radiography. Significant dose reduction in patients with these factors may be achieved by placing the patient in the supine position during abdominal digital radiography.

  16. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  17. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  18. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  19. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  20. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  1. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  2. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Li Jianhui; Kwok, Dixon T. K.; Chu, Paul K.; Wang Zhuo

    2009-01-01

    Based on the multiple-grid particle-in-cell code, an advanced simulation model is established to study the sheath physics and dose uniformity along the sample stage in order to provide the theoretical basis for further improvement of enhanced glow discharge plasma immersion ion implantation and deposition. At t=7.0 μs, the expansion of the sheath in the horizontal direction is hindered by the dielectric cage. The electron focusing effect is demonstrated by this model. Most of the ions at the inside wall of the cage are implanted into the edge of the sample stage and a relatively uniform ion fluence distribution with a large peak is observed at the end. Compared to the results obtained from the previous model, a higher implant fluence and larger area of uniformity are disclosed.

  3. Resonant creep enhancement in austenitic stainless steels due to pulsed irradiation at low doses

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Saito, T.

    1994-01-01

    Steady-state irradiation creep of austenitic stainless steels has been extensively studied as one of the most important design parameters in fusion reactors. The steady-state irradiation creep has been evaluated using in-pile and light-ion experiments. Those creep compliances of various austenitic steels range in the vicinity of ε/Gσ = 10 -6 ∼10 -5 (dpa sm-bullet MPa) -1 , depending on chemical composition etc. The mechanism of steady-state irradiation creep has been elucidated, essentially in terms of stress-induced preferential absorption of point defects into dislocations, and their climb motion. From this standpoint, low doses such as 10 -3 ∼10 -1 dpa would not give rise to any serious creep, and the irradiation creep may not be a critical issue for the low-dose fusion devices including ITER. It is, however, possible that pulsed irradiation causes different creep behaviors from the steady-state one due to dynamic unbalance of interstitials and vacancies. The authors have actually observed anomalous creep enhancement due to pulsed irradiation in austenitic stainless steels. The resonant behavior of creep indicates that pulsed irradiation may cause significant deformation in austenitic steels even at such low doses and slow pulsing rates, especially for the SA-materials. The first-wall materials in plasma operation of ∼10 2 s may suffer from unexpected transient creep, even in the near-term fusion deices, such as ITER. Though this effect might be a transient effect for a relatively short period, it should be taken into account that the pulsed irradiation makes influences on stress relaxation of the fusion components and on the irradiation fatigue. The mechanism and the relevant behaviors of pulse-induced creep will be discussed in terms of a point-defect model based on the resonant interstitial enrichment

  4. Evaluation of effective dose and excess lifetime cancer risk from ...

    African Journals Online (AJOL)

    Evaluation of effective dose and excess lifetime cancer risk from indoor and outdoor gamma dose rate of university of Port Harcourt Teaching Hospital, Rivers State. ... Therefore, the management of University of Port Harcourt teaching hospital ...

  5. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  6. SU-G-TeP3-15: Radiation Dose Enhancement by Anatase TiO2NPs

    Energy Technology Data Exchange (ETDEWEB)

    Youkhana, E; Geso, M; Feltis, B [RMIT University, Melbourne, VIC (Australia)

    2016-06-15

    Purpose: This work investigates radiation dose enhancement caused by TiO2 nanoparticles covering entire X-ray energy ranges used in radiation therapy. Methods: Anatase TiO2NPs crystal were synthesised and modified as hydrophilic and hydrophobic to disperse in culture-medium and halocarbons (PRESAGE chemical composition) respectively. TiO2NPs were characterised using TEM, XPS, XRD, TGA and FTIR. Various Concentrations have been utilised for determination of radiation-dose enhancement. This investigation is carried out in two ways; one using PRESAGE dosimeter/phantom and the other is radiobiological and based on in vitro study using two types of cell lines, Human Keratinocyte (HaCaT) and prostate cancer cell lines. The x-ray used are both kilovoltage and megavoltage separately. The prepared PRESAGE dosimeters were scanned using optical CT scanner. Clonogenic and MTS assays were employed for cell cytotoxicity and viability measurements for determination of the levels of dose enhancement. Results: Significant about (50%, 45%) dose enhancement by TiO2-NPs for kV x-rays is measured in both ways (Presage and Cells study). Slightly more is detected with the cells. However, the dose enhancement with megavoltage beams was insignificant using Presage and under same conditions the cells survival curves indicates around 20% which is relatively high. This difference can only be attributed to some biochemical effects. Such as generation of reactive oxygen species (ROS), this can affect the cells while it can’t be detected by Presage. Elevation of hydroxyl radicals (•OH) of many orders is observed with the inclusion of TiO2-NPs in cells-medium. Conclusion: Dose enhancement inflicted by TiO2-NPs is proven to be significant with megavoltage beams and minimal with kV. The high dose enhancements obtained can be attributed to higher levels of ROS generated. Since MV beams are most commonly used, this research proves potential value for more efficient beam delivery. This has

  7. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  8. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    International Nuclear Information System (INIS)

    Wenzl, Tatiana; Wilkens, Jan J

    2011-01-01

    The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes. Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations in vivo. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose. The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose in vivo for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36

  9. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    Science.gov (United States)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  10. Topics on study of low dose-effect relationship

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1999-01-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  11. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  12. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  13. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  14. Low-dose effects in the sputtering of evaporated films

    International Nuclear Information System (INIS)

    Florio, A.R.O.; Alonso, E.V.; Baragiola, R.A.; Ferron, J.

    1983-01-01

    We report measurements of the dose dependence of the sputtering of evaporated films by 30 keV ions under UHV. An initial (sub-monolayer) enhanced sputtering is attributed to the removal of weakly bound atoms; this enhancement does not depend on the incidence angle of the projectile. (author)

  15. Low-dose effects in the sputtering of evaporated films

    Energy Technology Data Exchange (ETDEWEB)

    Florio, A.R.O.; Alonso, E.V.; Baragiola, R.A.; Ferron, J. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche)

    1983-05-01

    We report measurements of the dose dependence of the sputtering of evaporated films by 30 keV ions under UHV. An initial (sub-monolayer) enhanced sputtering is attributed to the removal of weakly bound atoms; this enhancement does not depend on the incidence angle of the projectile.

  16. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  17. Radiomodifying effect of hyperglycemia: correlation between a glucose dose and a tumor size

    International Nuclear Information System (INIS)

    Ul'yanenko, S.E.; Polityukova, N.A.

    1991-01-01

    Experiments were made on rats with trasplantable sarcoma-45 and sarcoma M-1. Dose correlation was established during a study of hyperglycemic radiomodifying action. Glucose injection at a dose of 6-17.5 g/kg was shown to enhance irradiation action. Glucose injection below or above these doses might cause worse radiotherapy results or even the death of animals. The best effect was obtained with small-size tumors. Large tumors(over 2 cm 3 ) were less sensitive to hyperglycemia combined with irradiation. Skin radioprotective action of hyperglycemia before irradiation increased with an increase in a dose

  18. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Wei, A.; DeLaus, M.; Combs, W.E.; Pease, R.L.

    1994-01-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of ∼25 C, the net trapped-positive-charge density (N ox ) inferred from midgap C-V shifts is ∼25--40% greater for low-dose-rate ( 2 )/s) than for high-dose-rate (> 100 rad(SiO 2 )/s) exposure. Device modeling shows that such a difference in screen-oxide N ox is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the ∼ exp(N ox 2 ) dependence of the excess base current. At the higher rates, TSC measurements reveal a ∼10% decrease in trapped-hole density over low rates. Also, at high rates, up to ∼2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in Eδ' centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO 2 )/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications

  19. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  20. Determination of effective dose of antimalarial from Cassia ...

    African Journals Online (AJOL)

    However, further investigation is required to determine an effective dose of the administered extract for a higher inhibitory effect and increasing effectiveness of the extract. Material and Methods: To determine the effective dose of ethanol extract of C. spectabilis leaves, a "4-day suppressive test"of Peter was performed with ...

  1. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  2. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    Science.gov (United States)

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  3. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  4. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  5. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  6. Enhancing managerial effectiveness in dietetics.

    Science.gov (United States)

    Hoover, L W

    1983-01-01

    Environmental pressures from such sources as economic conditions, the government, third-party payers, and inter-institutional competition create managerial challenges. Although cost-containment has received considerable attention, long-term cost-effectiveness is probably the significant issue. Dietitians must become more cost-conscious and effective in resource management to attain desired performance outcomes. Some of the skills and characteristics essential to managerial effectiveness are a marketing orientation, systems design skill, quantitative operations management techniques, financial expertise, and leadership. These abilities facilitate decision-making and achievement of long-term cost-effectiveness. Curriculum enhancement and continuing education are two strategies for improving managerial competency in the dietetics profession. In dietetics education, study of management topics should be enhanced to provide more advanced coverage of management theories and quantitative models so that managerial performance can be at a higher level of sophistication and competency. To assure the viability of the dietetics profession, the emphasis on management must be more comprehensive and rigorous.

  7. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  8. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    Science.gov (United States)

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P 5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  10. Juvenile Hormone Analogues, Methoprene and Fenoxycarb Dose-Dependently Enhance Certain Enzyme Activities in the Silkworm Bombyx Mori (L

    Directory of Open Access Journals (Sweden)

    M. Rajeswara Rao

    2008-06-01

    Full Text Available Use of Juvenile Hormone Analogues (JHA in sericulture practices has been shown to boost good cocoon yield; their effect has been determined to be dose-dependent. We studied the impact of low doses of JHA compounds such as methoprene and fenoxycarb on selected key enzymatic activities of the silkworm Bombyx mori. Methoprene and fenoxycarb at doses of 1.0 μg and 3.0fg/larvae/48 hours showed enhancement of the 5th instar B. mori larval muscle and silkgland protease, aspartate aminotransaminase (AAT and alanine aminotransaminase (ALAT, adenosine triphosphate synthase (ATPase and cytochrome-c-oxidase (CCO activity levels, indicating an upsurge in the overall oxidative metabolism of the B.mori larval tissues.

  11. Maintainability effectiveness evaluations and enhancement

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    In the mid-seventies EPRI initiated a research project to review the human factors aspects of nuclear power plant control rooms. In the course of investigating operator-control room interfaces in five operational control rooms, it became evident that many plant outages had either been caused or prolonged by human factors problems associated with maintenance activities. Consequently, as one of several follow-on projects, EPRI sponsored a review of nine power plants (five nuclear and four fossil) to examine the human factors aspects of plant maintainability. This survey revealed a wide variety of generic human factors problems that could negatively impact the effectiveness of plant maintenance personnel. It was clear that plant maintainability features deserved no less attention to human factors concerns than the operational features of the control room. This paper describes subsequent EPRI-initiated efforts to assist the utilities in conducting self-reviews of maintainability effectiveness and effect needed enhancements

  12. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  13. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  15. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA.

    Science.gov (United States)

    Kim, Seong-Min; Lim, So-Mang; Yoo, Jeong-Ah; Woo, Moon-Jea; Cho, Kyung-Hyun

    2015-11-01

    Background Although the health effects of vitamin C are well known, its physiological effect on serum lipoproteins and microRNA still remain to be investigated, especially daily consumption of a high dosage. Objectives To investigate the physiological effect of vitamin C on serum lipoprotein metabolism in terms of its anti-oxidant and anti-glycation activities, and gene expression via microRNA regulation. Methods We analyzed blood parameters and lipoprotein parameters in young subjects (n = 46, 22 ± 2 years old) including smokers who consumed a high dose of vitamin C (1250 mg) daily for 8 weeks. Results Antioxidant activity of serum was enhanced with the elevation of Vit C content in plasma during 8 weeks consumption. In the LDL fraction, the apo-B48 band disappeared at 8 weeks post-consumption in all subjects. In the HDL fraction, apoA-I expression was enhanced by 20% at 8 weeks, especially in male smokers. In the lipoprotein fraction, all subjects showed significantly reduced contents of advanced glycated end products and reactive oxygen species (ROS). Triglyceride (TG) contents in each LDL and HDL fraction were significantly reduced in all groups following the Vit C consumption, suggesting that the lipoprotein was changed to be more anti-inflammatory and atherogenic properties. Phagocytosis of LDL, which was purified from each individual, into macrophages was significantly reduced at 8-weeks post-consumption of vitamin C. Anti-inflammatory and anti-senescence effects of HDL from all subjects were enhanced after the 8-weeks consumption. The expression level of microRNA 155 in HDL3 was reduced by 49% and 75% in non-smokers and smokers, respectively. Conclusion The daily consumption of a high dose of vitamin C for 8 weeks resulted in enhanced anti-senescence and anti-atherosclerotic effects via an improvement of lipoprotein parameters and microRNA expression through anti-oxidation and anti-glycation, especially in smokers.

  16. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  17. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    Science.gov (United States)

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  18. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  19. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  20. TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J; Sutherland, K [Department of Medical Physics, Hokkaido University Graduate School of Medicine (Japan); Hashimoto, T [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Peng, H; Xing, L [Department of Radiation Oncology, Stanford University and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Shirato, H [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, H [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-06-15

    Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to the peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.

  1. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic

  2. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  3. The fitting parameters extraction of conversion model of the low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Bakerenkov, Alexander

    2011-01-01

    The Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar devices consists of in base current degradation of NPN and PNP transistors increase as the dose rate is decreased. As a result of almost 20-year studying, the some physical models of effect are developed, being described in detail. Accelerated test methods, based on these models use in standards. The conversion model of the effect, that allows to describe the inverse S-shaped excess base current dependence versus dose rate, was proposed. This paper presents the problem of conversion model fitting parameters extraction.

  4. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  5. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  6. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  7. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  8. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  9. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  11. uv keratoconjunctivitis vs. established dose effect relationships

    International Nuclear Information System (INIS)

    Gulvady, N.U.

    1976-01-01

    A patient who received a uv dose to his eyes 11 times greater than the photokeratitic threshold of Pitts and 4 1 / 2 times the photokeratitic threshold as found by Leach. The patient had severe keratoconjunctivitis for 3 days and did not develop any keratitis

  12. Page 1 ~'----------------------------- Dose-dependent effects ...

    African Journals Online (AJOL)

    Abstract We cOInpared the serwn levels of oestrogen and progesterone and the endoInetrial Inorphology of. nOrInal pregnant rats at 5,5 days' gestation ~th those of pregnant rats given either low (10 IU) or high (20 IU) doses of two gonadotrophins: follicle-. stiInulating hOrInone (FSH) and hwnan chorionic gonadotrophin ...

  13. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    Science.gov (United States)

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  14. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    Selected Molecular Mechanisms of Metal Toxicity and Carcinogenicity General Considerations of Dose-Effect and Dose-Response Relationships Interactions in Metal Toxicology Epidemiological Methods for Assessing Dose-Response and Dose-Effect Relationships Essential Metals: Assessing Risks from Deficiency......Description Handbook of the Toxicology of Metals is the standard reference work for physicians, toxicologists and engineers in the field of environmental and occupational health. This new edition is a comprehensive review of the effects on biological systems from metallic elements...... access to a broad range of basic toxicological data and also gives a general introduction to the toxicology of metallic compounds. Audience Toxicologists, physicians, and engineers in the fields of environmental and occupational health as well as libraries in these disciplines. Will also be a useful...

  15. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control

    International Nuclear Information System (INIS)

    Shiau, C.-Y.; Sneed, Penny K.; Shu, H.-K.G.; Lamborn, Kathleen R.; McDermott, Michael W.; Chang, Susan; Nowak, Peter; Petti, Paula L.; Smith, Vernon; Verhey, Lynn J.; Ho, Maria; Park, Elaine; Wara, William M.; Gutin, Philip H.; Larson, David A.

    1997-01-01

    Purpose: This study aimed to analyze dose, initial pattern of enhancement, and other factors associated with freedom from progression (FFP) of brain metastases after radiosurgery (RS). Methods and Materials: All brain metastases treated with gamma-knife RS at the University of California, San Francisco, from 1991 to 1994 were reviewed. Evaluable lesions were those with follow-up magnetic resonance or computed tomographic imaging. Actuarial FFP was calculated using the Kaplan-Meier method, measuring FFP from the date of RS to the first imaging study showing tumor progression. Controlled lesions were censored at the time of the last imaging study. Multivariate analyses were performed using a stepwise Cox proportional hazards model. Results: Of 261 lesions treated in 119 patients, 219 lesions in 100 patients were evaluable. Major histologies included adenocarcinoma (86 lesions), melanoma (77), renal cell carcinoma (21), and carcinoma not otherwise specified (17). The median prescribed RS dose was 18.5 Gy (range, 10-22) and the median tumor volume was 1.3 ml (range, 0.02-30.9). The initial pattern of contrast enhancement was homogeneous in 68% of lesions, heterogeneous in 12%, and ring-enhancing in 19%. The actuarial FFP was 82% at 6 months and 77% at 1 year for all lesions, and 93 and 90%, respectively, for 145 lesions receiving ≥ 18 Gy. Multivariate analysis showed that longer FFP was significantly associated with higher prescribed RS dose, a homogeneous pattern of contrast enhancement, and a longer interval between primary diagnosis and RS. Adjusted for these factors, adenocarcinomas had longer FFP than melanomas. No significant differences in FFP were noted among lesions undergoing RS for recurrence after prior radiotherapy (119 lesions), RS alone as initial treatment (45), or RS boost (55). Conclusion: A minimum prescribed radiosurgical dose ≥ 18 Gy yields excellent local control of brain metastases. The influence of pattern of enhancement on local control, a

  16. Development of an enhanced health-economic model and cost-effectiveness analysis of tiotropium + olodaterol Respimat® fixed-dose combination for chronic obstructive pulmonary disease patients in Italy.

    Science.gov (United States)

    Selya-Hammer, Carl; Gonzalez-Rojas Guix, Nuria; Baldwin, Michael; Ternouth, Andrew; Miravitlles, Marc; Rutten-van Mölken, Maureen; Goosens, Lucas M A; Buyukkaramikli, Nasuh; Acciai, Valentina

    2016-10-01

    The objective of this study was to compare the cost-effectiveness of the fixed-dose combination (FDC) of tiotropium + olodaterol Respimat(®) FDC with tiotropium alone for patients with chronic obstructive pulmonary disease (COPD) in the Italian health care setting using a newly developed patient-level Markov model that reflects the current understanding of the disease. While previously published models have largely been based around a cohort approach using a Markov structure and GOLD stage stratification, an individual-level Markov approach was selected for the new model. Using patient-level data from the twin TOnado trials assessing Tiotropium + olodaterol Respimat(®) FDC versus tiotropium, outcomes were modelled based on the trough forced expiratory volume (tFEV1) of over 1000 patients in each treatment arm, tracked individually at trial visits through the 52-week trial period, and after the trial period it was assumed to decline at a constant rate based on disease stage. Exacerbation risk was estimated based on a random-effects logistic regression analysis of exacerbations in UPLIFT. Mortality by age and disease stage was estimated from an analysis of TIOSPIR trial data. Cost of bronchodilators and other medications, routine management, and costs of treatment for moderate and severe exacerbations for the Italian setting were included. A cost-effectiveness analysis was conducted over a 15-year time horizon from the perspective of the Italian National Health Service. Aggregating total costs and quality-adjusted life years (QALYs) for each treatment cohort over 15 years and comparing tiotropium + olodaterol Respimat(®) FDC with tiotropium alone, resulted in mean incremental costs per patient of €1167 and an incremental cost-effectiveness ratio (ICER) of €7518 per additional QALY with tiotropium + olodaterol Respimat(®) FDC. The lung function outcomes observed for tiotropium + olodaterol Respimat(®) FDC in TOnado drove the results in terms of slightly

  17. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  18. Determining effective radiation mutagen dose for garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    Taner, Y.; Kunter, B.

    2004-01-01

    This study was carried out to get database for future garlic mutation breeding studies. For this aim, 0, 5, 10, 15, 20, 25 and 30 Gy doses of Cs 137 (gamma-ray) were applied on garlic cloves as a physical mutagen. 50 cloves were used for each dose. Sixty days after treatment, germination rate and shoot development of cloves were determined. The Effective Mutagen Dose (ED 50 ) was calculated by regression analyses. According to the results, 4.455 Gy dose was found to be effective as ED 50 . (author)

  19. Effective dose from direct and indirect digital panoramic units

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Sun; Kim, Jin Soo; Seo, Yo Seob; Kim, Jae Duk [School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2013-06-15

    This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. The effective doses of the 4 digital panoramic units ranged between 8.9 {mu}Sv and 37.8 {mu}Sv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 {mu}Sv, 27.6 {mu}Sv) were higher than those from the indirect units (8.9 {mu}Sv, 15.9 {mu}Sv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

  20. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  1. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  3. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  4. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  5. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  6. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  7. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  8. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  9. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  10. Radon effective dose from TENORM waste associated with petroleum industries

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Soliman, H. A.; Daif, M. M.

    2009-01-01

    Technically enhanced naturally occurring radioactive material (TENORM) associated with petroleum industries can be accumulated with elevated quantities and therefore can threat the workers through external and internal exposure. Measurements of radon-related parameters give information about the radioactivity levels in the TENORM waste using the well-established correlation. Also, it is useful to calculate the internal exposure due to radon inhalation in terms of effective radon dose. Among radon-related parameters, areal exhalation rate is the most suitable for characterising land and objects with only upper surface contamination in the case of petroleum waste. The TENORM in this study is collected from waste storage areas located near oil fields at south Sinai governorate (Egypt). The average values of exhalation rates as measured by Lucas cell based on delay count method are 273 ± 144 and 38 ± 8 Bq m -2 h -1 for scale and sludge, respectively. Whereas, two count method gives results with 18 and 20 % lower values for scale and sludge, respectively with good correlation coefficient of 0.999 and 0.852, respectively. Sealed cup fitted with CR-39 gives results compatible with Lucas cell with minor deviation in case of scale due to its thoron content. The results of CR-39 are qualified by taking into consideration the correction for back diffusion effect. The effective radon dose was calculated for different simulated radioactive waste storage areas with different contaminated areas and air ventilation rate. Minimising the contaminated areas and building up efficient ventilation systems can reduce the internal exposure even in the case of RWSA-containing TENORM with elevated radioactivity. (authors)

  11. Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media

    International Nuclear Information System (INIS)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2013-01-01

    In the present study, a number of brachytherapy sources and activation media were simulated using MCNPX code and the results were analyzed based on the dose enhancement factor values. Furthermore, two new brachytherapy sources ( 131 Cs and a hypothetical 170 Tm) were evaluated for their application in photon activation therapy (PAT). 125 I, 103 Pd, 131 Cs and hypothetical 170 Tm brachytherapy sources were simulated in water and their dose rate constant and the radial dose functions were compared with previously published data. The sources were then simulated in a soft tissue phantom which was composed of Ag, I, Pt or Au as activation media uniformly distributed in the tumour volume. These simulations were performed using the MCNPX code, and dose enhancement factor (DEF) was obtained for 7, 18 and 30 mg/ml concentrations of the activation media. Each source, activation medium and concentration was evaluated separately in a separate simulation. The calculated dose rate constant and radial dose functions were in agreement with the published data for the aforementioned sources. The maximum DEF was found to be 5.58 for a combination of the 170 Tm source with 30 mg/ml concentration of I. The DEFs for 131 Cs and 170 Tm sources for all the four activation media were higher than those for other sources and activation media. From this point of view, these two sources can be more useful in photon activation therapy with photon emitter sources. Furthermore, 131 Cs and 170 Tm brachytherapy sources can be proposed as new options for use in the field of PAT.

  12. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  13. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  14. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  15. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  16. TU-H-CAMPUS-TeP3-05: Evaluation of the Microscopic Dose Enhancement in the Nanoparticle-Enhanced Auger Therapy

    International Nuclear Information System (INIS)

    Sung, W; Jung, S; Ye, S

    2016-01-01

    Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF) is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au- 125 I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au- 125 I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

  17. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  18. Committed effective doses at various times after intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed effective doses at nine times after intake from intakes by ingestion and inhalation of 1 mu 1 AMAD particles by adults. Data are given for various chemical forms of 359 nuclides. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on committed equivalent doses to organs is given in NRPB-M288. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  19. Organ doses and effective doses in some medical and industrial applications

    International Nuclear Information System (INIS)

    Keshavkumar, Biju

    2000-01-01

    The ICRP recommends radiation protection standards for the safe use of radiation and also prescribes the radiation protection quantities and periodically reviews them. In this context, the quantities like organ doses and effective doses are defined by ICRP. In this work we calculate these quantities and hence the conversion functions for the industrial radiation sources and those for CT and diagnostic X-ray exposures. Workers who are occupationally exposed to radiation are regularly monitored to evaluate the radiation dose received by them. It is quite possible that in an accident situation, the worker involved in the accident might not have worn a personal monitor, popularly known as the monitoring badge. In addition, even some non radiation workers (who are obviously not monitored) may also have received exposure. Under these circumstances, the persons involved are interviewed, the accident site inspected, and on the basis of realistic assumptions, the likely doses received by the exposed persons are estimated

  20. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    Science.gov (United States)

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  1. Minimising activity and dose with enhanced image quality by radiopharmaceutical administrations

    International Nuclear Information System (INIS)

    Hoeschen, C.; Mattsson, S.; Cantone, M. C.; Mikuz, M.; Lacasta, C.; Ebel, G.; Clinthorne, N.; Giussani, A.

    2010-01-01

    Owing to the introduction of new diagnostic procedures, such as computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT), the individual dose caused by medical exposures has grown rapidly in the last years. This is especially a subject to radiation protection for nuclear medical diagnosis, since in this case radiopharmaceuticals are administered to the patient, meaning not only a radiation exposure to the diseased tissue but also to the healthy tissues of large parts of the body. 'Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations' (MADEIRA) is a project co-funded by the European Commission within the Seventh Euratom Framework Programme that aims to improve three-dimensional (3D) nuclear medical imaging technologies significantly. MADEIRA is aiming to improve the efficacy and safety of 3D PET and SPECT functional imaging by optimising the spatial resolution and the signal-to-noise ratio, improving the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumorous and healthy tissues, and evaluation of the corresponding patient dose. Using an optimised imaging procedure that improves the information gained per unit administered dose, MADEIRA aims especially to reduce the dose to healthy tissues of the patient. In this paper, an overall summary of the current achievements will be presented. (authors)

  2. SU-E-T-235: Monte Carlo Analysis of the Dose Enhancement in the Scalp of Patients Due to Titanium Plate Backscatter During Post-Operative Radiotherapy

    International Nuclear Information System (INIS)

    Hardin, M; Elson, H; Lamba, M; Wolf, E; Warnick, R

    2014-01-01

    Purpose: To quantify the clinically observed dose enhancement adjacent to cranial titanium fixation plates during post-operative radiotherapy. Methods: Irradiation of a titanium burr hole cover was simulated using Monte Carlo code MCNPX for a 6 MV photon spectrum to investigate backscatter dose enhancement due to increased production of secondary electrons within the titanium plate. The simulated plate was placed 3 mm deep in a water phantom, and dose deposition was tallied for 0.2 mm thick cells adjacent to the entrance and exit sides of the plate. These results were compared to a simulation excluding the presence of the titanium to calculate relative dose enhancement on the entrance and exit sides of the plate. To verify simulated results, two titanium burr hole covers (Synthes, Inc. and Biomet, Inc.) were irradiated with 6 MV photons in a solid water phantom containing GafChromic MD-55 film. The phantom was irradiated on a Varian 21EX linear accelerator at multiple gantry angles (0–180 degrees) to analyze the angular dependence of the backscattered radiation. Relative dose enhancement was quantified using computer software. Results: Monte Carlo simulations indicate a relative difference of 26.4% and 7.1% on the entrance and exit sides of the plate respectively. Film dosimetry results using a similar geometry indicate a relative difference of 13% and -10% on the entrance and exit sides of the plate respectively. Relative dose enhancement on the entrance side of the plate decreased with increasing gantry angle from 0 to 180 degrees. Conclusion: Film and simulation results demonstrate an increase in dose to structures immediately adjacent to cranial titanium fixation plates. Increased beam obliquity has shown to alleviate dose enhancement to some extent. These results are consistent with clinically observed effects

  3. The Effect of NPP's Stack Height to Radiation Dose

    International Nuclear Information System (INIS)

    Pandi, Liliana Yetta; Rohman, Budi

    2003-01-01

    The purpose of dose calculation for accidents is to analyze the capability of NPP to maintain the safety of public and workers in case an accident occurs on the Plant in a site. This paper calculates the Loss of Coolant Accident in PWR plant. The calculation results shows that no risks of serious radiation exposure are given to the neighboring public even if such a large accident occurred, and the effect of stack height can be predicted by analysis of the calculation results. The whole dose is calculated for some location (100 m, 300 m, 500 m, 700 m, 900 m, 1500 m, and 2000 m) with three difference stack height i.e. 0 m, 40 m and 100 m. The result of the whole dose calculation is under permitted criteria for whole dose : 0.25 Sv and thyroid dose : 3.0 Sv. The calculation of radiation dose in this paper use EEDCDQ code

  4. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  5. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  6. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  7. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  8. Building shielding effects on radiation doses from routine radionuclide releases

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1977-01-01

    In calculating population doses from the release of radionuclides to the atmosphere, it is usually assumed that man spends all of his time outdoors standing on a smooth infinite plane. Realistically, however, man spends most of the time indoors, so that substantial reductions in radiation doses may result compared with the usual estimates. Calculational models were developed to study the effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere. Both internal dose from inhaled radionuclides and external photon dose from airborne and surface-deposited radionuclides are considered. The effect of building structures is described quantitatively by a dose reduction factor, which is the ratio of the dose inside a structure to the corresponding dose with no structure present. The internal dose from inhaled radionuclides is proportional to the radionuclide concentration in the air. Assuming that the outdoor airborne concentration is constant with time, the time-dependence of the indoor airborne concentration in terms of the structure air ventilation rate, the deposition velocities for radionuclides on the inside floor, walls, and ceiling, and the radioactive decay constant, were calculated

  9. Ranitidine Can Potentiate The Prokinetic Effect Of Itopride At Low Doses- An In Vitro Study.

    Science.gov (United States)

    Butt, Aroosa Ishtiaq; Khan, Bushra Tayyaba; Khan, Asma; Khan, Qamar-Uz-Zaman

    2017-01-01

    Gastroparesis and GERD occur concomitantly in 40 percent of the cases. Prokinetic drugs and acid blockers are employed as the main treatment modality. Ranitidine is an acid blocker with additional prokinetic activity and Itopride is a known prokinetic drug. This study was designed to observe the synergistic potentiating prokinetic effect of Ranitidine on itopride on isolated duodenum of rabbits. Ranitidine (10-5-10-3) and itopride (10-6-10-5) were added in increasing concentrations to isolated duodenum of rabbits and contractions were recorded on PowerLab Data acquisition unit AHK/214. Cumulative dose response curves were constructed. The potentiating prokinetic effect of Ranitidine on itopride was seen by using a fixed dose of ranitidine and cumulatively enhancing doses of itopride on iWorx. Ranitidine and itopride produced a dose dependent reversible contraction of the isolated tissue of rabbits with ranitidine showing a max response of 0.124mV and itopride showing a maximum response of 0.131mV. Ranitidine was able to potentiate the prokinetic effect of itopride at low doses but at high dose the effect began to wane off. Ranitidine and itopride produce a statistically significant synergistic potentiating prokinetic effect at low doses in vitro.

  10. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  11. Effective dose estimation to patients and staff during urethrography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Alkhorayef, M.; Babikir, E.; Dalton, A.; Bradley, D.

    2015-10-01

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  12. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  13. Topics on study of low dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takeshi [Toho Univ., School of Medicine, Tokyo (Japan); Ohyama, Harumi

    1999-09-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  14. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  15. Estimation of effective dose equivalente from external irradiations

    International Nuclear Information System (INIS)

    Wakabayashi, T.

    1985-07-01

    A methodology for computing effective dose equivalent, derived from the computer code ALGAM: Monte Carlo Estimation of Internal Dose from Gamma-ray Sources in a Phantom Man, developed at Oak Ridge National Laboratory, is presented. The modified code was run for 12 different photon energy levels, from 0,010 Mev to 4.0 Mev, which provides computing the absorved dose, for these energy levels, in each one of the 97 organs of the original code. The code also was run for the principal energy levels used in the calibration of the dosimetric films. The results of the absorved doses per photon obtained for these levels of energy have been transformed in effective dose equivalents. (M.A.C.) [pt

  16. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  17. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  18. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  19. Dose dependent effect of progesterone on hypoxic ventilatory response in newborn rats.

    Science.gov (United States)

    Hichri, Oubeidallah; Laurin, Jean-C; Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2012-01-01

    The effect of progesterone as a respiratory stimulant in newborn subjects is less known than that in adults. This study investigated the dose-response curve (0, 2, 4, and 8 mg/kg, ip) of progesterone on ventilation in non-anesthetized newborn rats at 4- and 12-days old using plethysmography. Progesterone had no effects in the regulation of normoxic ventilation. However, it enhanced the response to moderate hypoxia (FiO(2) 12%, 20 min) in 4- but not in 12-days old pups. This response was similar between the dose of 4 and 8 mg/kg. These observations suggested that progesterone enhances in age- and dose-dependent manner the hypoxic ventilatory response in newborn rats.

  20. Enhanced low dose rate sensitivity (ELDRS) in a voltage comparator which only utilizes complementary vertical NPN and PNP transistors

    International Nuclear Information System (INIS)

    Krieg, J.F.; Titus, J.L.; Emily, D.; Gehlhausen, M.; Swonger, J.; Platteter, D.

    1999-01-01

    For the first time, enhanced low dose rate sensitivity (ELDRS) is reported in a vertical bipolar process. A radiation hardness assurance (RHA) test method was successfully demonstrated on a linear circuit, the HS139RH quad comparator, and its discrete transistor elements. This circuit only uses vertical NPN and PNP transistors. Radiation tests on the HS139RH were performed at 25 C using dose rates of 50 rd(Si)/s, 100 mrd(Si)/s and 10 mrd(Si)/s, and at 100 C using a dose rate of 10 rd(Si)/s. Tests at dose rates of 50 rd(Si)/s at 25 C and 10 rd(Si)/s at 100 C were performed on discrete vertical NPN and PNP transistor elements which comprise the HS139RH. Transistor and circuit responses were evaluated. The die's passivation overcoat layers were varied to examine the effect of removing a nitride layer and thinning a deposited SiO 2 (silox) layer

  1. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  2. Effect of a therapeutic dose of pseudoephedrine on swimmers ...

    African Journals Online (AJOL)

    is thought to result from direct stimulation of post-synaptic receptors and inhibition ..... optimal effect could be extensive with the use of nutritional supplements; therefore ... These studies support the theory that higher doses of PSE may result in.

  3. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  4. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  5. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  6. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  7. Correlation between effective dose and radiological risk: general concepts

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-05-15

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose magnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. (author)

  8. Beneficial effects of low dose Musa paradisiaca on the semen quality of male Wistar rats.

    Science.gov (United States)

    Alabi, A S; Omotoso, Gabriel O; Enaibe, B U; Akinola, O B; Tagoe, C N B

    2013-03-01

    This study aimed at determining the effects of administration of mature green fruits of Musa paradisiaca on the semen quality of adult male Wistar rats. THE ANIMALS USED FOR THE STUDY WERE GROUPED INTO THREE: the control group, given 2 ml of double distilled water, a low dose group given 500 mg/kg/day and a high dose group given 1000 mg/kg/day of the plantain fruits, which was made into flour, and dissolved in 2 ml of double distilled water for easy oral administration. Significant increment in the semen parameters was noticed in animals that received a lower dose of the plantain flour, but those animals who received the high dose had marked and very significant reduction in sperm cell concentration and percentage of morphologically normal spermatozoa. Musa paradisiaca should be consumed in moderate quantities in order to derive its beneficial effects of enhancing male reproductive functions.

  9. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Beinsberger, Jilke; Collaert, Bruno; Theodorakou, Chrysoula; Rogers, Jessica; Walker, Anne; Cockmartin, Lesley; Bosmans, Hilde; Jacobs, Reinhilde; Bogaerts, Ria; Horner, Keith

    2012-01-01

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  10. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Suzuki, Kayo [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Nakamoto, Yuji [Kyoto University Hospital, Department of Diagnostic Radiology, Kyoto (Japan); Onishi, Yumiko; Sakamoto, Setsu; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Senda, Michio [Institute of Biomedical Research and Innovation, Department of Molecular Imaging, Kobe (Japan); Kita, Masato [Kobe City Medical Center General Hospital, Department of Obstetrics and Gynecology, Kobe (Japan)

    2010-08-15

    To evaluate low-dose non-enhanced CT (ldCT) and full-dose contrast-enhanced CT (ceCT) in integrated {sup 18}F-fluorodeoxyglucose (FDG) PET/CT studies for restaging of uterine cancer. A group of 100 women who had undergone treatment for uterine cervical (n=55) or endometrial cancer (n=45) underwent a conventional PET/CT scans with ldCT, and then a ceCT scan. Two observers retrospectively reviewed and interpreted the PET/ldCT and PET/ceCT images in consensus using a three-point grading scale (negative, equivocal, or positive) per patient and per lesion. Final diagnoses were obtained by histopathological examination, or clinical follow-up for at least 6 months. Patient-based analysis showed that the sensitivity, specificity and accuracy of PET/ceCT were 90% (27/30), 97% (68/70) and 95% (95/100), respectively, whereas those of PET/ldCT were 83% (25/30), 94% (66/70) and 91% (91/100), respectively. Sensitivity, specificity and accuracy did not significantly differ between two methods (McNemar test, p=0.48, p=0.48, and p=0.13, respectively). There were 52 sites of lesion recurrence: 12 pelvic lymph node (LN), 11 local recurrence, 8 peritoneum, 7 abdominal LN, 5 lung, 3 supraclavicular LN, 3 liver, 2 mediastinal LN, and 1 muscle and bone. The grading results for the 52 sites of recurrence were: negative 5, equivocal 0 and positive 47 for PET/ceCT, and negative 5, equivocal 4 and positive 43 for PET/ldCT, respectively. Four equivocal regions by PET/ldCT (local recurrence, pelvic LN metastasis, liver metastasis and muscle metastasis) were correctly interpreted as positive by PET/ceCT. PET/ceCT is an accurate imaging modality for the assessment of uterine cancer recurrence. Its use reduces the frequency of equivocal interpretations. (orig.)

  11. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    International Nuclear Information System (INIS)

    Jansen, A; Schoenfeld, A; Poppinga, D; Chofor, N; Poppe, B

    2014-01-01

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm 3 were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat

  12. An effective dose of ketamine for eliminating pain during injection of propofol: a dose response study.

    Science.gov (United States)

    Wang, M; Wang, Q; Yu, Y Y; Wang, W S

    2013-09-01

    Ketamine can completely eliminate pain associated with propofol injection. However, the effective dose of ketamine to eliminate propofol injection pain has not been determined. The purpose of this study was to determine the effective dose of ketamine needed to eliminate pain in 50% and 95% of patients (ED50 and ED95, respectively) during propofol injections. This study was conducted in a double-blinded fashion and included 50 patients scheduled for elective gynecological laparoscopy under general anesthesia. The initial dose of ketamine used in the first patient was 0.25mg/kg. The dosing modifications were in increments or decrements of 0.025 mg/kg. Ketamine was administered 15 seconds before injecting propofol (2.5mg/kg), which was injected at a rate of 1mL/s. Patients were asked to rate their pain during propofol injection every 5s econds using a 0-3 pain scale. The highest pain score was recorded. The ED50, ED95 and 95% confidence intervals (CI) were determined by probit analyses. The dose of ketamine ranged from 0.175 to 0.275 mg/kg. The ED50 and ED95 of ketamine for eliminating pain during propofol injection were 0.227 mg/kg and 0.283 mg/kg, respectively (95%CI: 0.211-0.243 mg/kg and 0.26-0.364 mg/kg, respectively). Ketamine at an approximate dose of 0.3mg/kg was effective in eliminating pain during propofol injection. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  13. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  14. An efficient dose-compensation method for proximity effect correction

    International Nuclear Information System (INIS)

    Wang Ying; Han Weihua; Yang Xiang; Zhang Yang; Yang Fuhua; Zhang Renping

    2010-01-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved. (semiconductor technology)

  15. Behaviour of polymers in radioactive environments: Effects of dose speed

    International Nuclear Information System (INIS)

    Docters, A.S.; Gonzalez, M.E.

    1993-01-01

    The scope of this research is to determine the degradation of mechanical properties of cable insulating PVC after irradiation in air at a Cobalt-60 (γ-ray) facility. Amongst the mechanical properties elongation at break and tensile strength were chosen as they are the most sensible to radiation. The samples were exposed to combined radiation-thermal environments with constant airflow in order to obtain accelerated aging data a doses up to 50-300 kGy, with dose rates ranging between 1.3 and 5.6 kGy/h at temperatures from 60 degrees C to 100 degrees C. At lower dose rates the degradation of mechanical properties increased after the same total dose: elongation at break decreases sharply while tensile strength decreases to a less extent, showing dose rate effects. A strong synergy between irradiation and thermal processes was also observed. (author)

  16. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Bartenstein, Peter; Belka, Claus; Ganswindt, Ute

    2010-01-01

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the

  17. Effects of low dose rate irradiation on life span prolongation of human premature-aging syndrome model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2006-01-01

    We previously showed that Type II diabetes model mice prolonged of their life span by life long low dose rate irradiation. We also found that antioxidant function in variety tissues of some strain of mice were enhancement after low dose/low dose rate irradiation. The prolongation of life span might depend on certain damaged level of reactive oxygen species. We thought the effect of the prolongation was due to the enhancement of the antioxidant activities after irradiation. We investigated whether the enhancement of antioxidant activities after low dose rate irradiation had an effect on life span prolongation. Four-week-old female human premature-aging syndrome model mice, kl/kl (klotho) mice, which the life span of this model mouse is about 65 days, were irradiated with gamma rays at 0.35, 0.70 or 1.2 mGy/hr. The 0.70 mGy/hr-irradiated group remarkably effected on the prolongation of their life span. Some mice of the group were extremely survived for about and more 100 days. Antioxidant activities in the irradiated groups were enhancement by low dose rate irradiation, however the dependence of the dose rates were not clearly difference. These results suggest that the antioxidant activities in this model mouse were enhanced by the low dose rate irradiation, and may make it possible to prolong the life span of this mouse. (author)

  18. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  19. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  20. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose- effect curve)

    International Nuclear Information System (INIS)

    Al Achkar, W.

    2002-01-01

    In order to draw a dose-effect curve, blood from eight healthy people were studied. Samples were irradiated in tubes with 0.15-2.5 gray of gamma ray.Irradiated and control samples were incubated for cell cultures. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics+ rings and total numbers of breaks were drawn. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  1. The researches on the effects of low doses irradiation

    International Nuclear Information System (INIS)

    2009-02-01

    All research conducted as part of 'Risc-Rad' and those conducted by actors in international programs on low doses allow progress in understanding mechanisms of carcinogenesis associated with irradiation. The data do not question the use in radiation protection, risk estimation models based on a linear increase of the risk with the dose of radiation. Nevertheless, they show that the nature of biological responses induced by low doses of radiation has differences with the responses induced by high doses of radiation. They also show the diversity of effects/dose relationships as the mechanism observed and the importance of genetic predisposition in the individual sensitivity to low doses of radiation. It is therefore essential to continue to bring new data to better understand the complex biological effects and their impact on the establishment of radiation protection standards. In addition, the results have often been at the cellular level. The diversity of responses induced by radiations is also a function of cell types observed, the aging of cells and tissue organization. It is essential to strengthen researches at the tissue and body level, involving in vitro and in vivo approaches while testing the hypothesis in epidemiology with a global approach to systems biology. Over the past four years, the collaboration between partners of 'Risc-Rad' using experimental biology approaches and those using mathematical modeling techniques aimed at developing a new model describing the carcinogenesis induced by low radiation doses. On an other hand, The High level expert group on European low dose risk research (H.L.E.G.) develop programmes in the area of low dose irradiation (Germany, Finland, France, Italy and United Kingdom). It proposed a structure of trans national government called M.E.L.O.D.I. ( multidisciplinary european low dose initiative). Its objective is to structure and integrate European research by gathering around a common programme of multidisciplinary

  2. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  3. Subeffective doses of dexketoprofen trometamol enhance the potency and duration of fentanyl antinociception

    Science.gov (United States)

    Gaitán, Gema; Herrero, Juan F

    2002-01-01

    The combination of classic non-steroidal antiinflammatory drugs (NSAIDs) with opiates induces more analgesia than the summed effect of each drug given separately. No studies have been performed using new generation NSAIDs and fentanyl nor on the duration of this effect. We have studied the analgesic effect of fentanyl alone and after the administration of subeffective doses of dexketoprofen trometamol in rat nociceptive responses. The responses were evoked by noxious mechanical stimulation and were recorded as single motor units in male Wistar rats anaesthetized with α-chloralose. The effective dose 50 (ED50) observed with fentanyl was 22.4±1.5 μg kg−1 and full recovery was apparent 20 min later. The administration of a total dose of 40 μg kg−1 of dexketoprofen trometamol did not induce any significant effect on the nociceptive responses. In the presence of dexketoprofen trometamol, the ED50 for fentanyl was 5 fold lower than before: 3.8±1.1 μg kg−1 and no significant recovery was observed 45 min later. The opioid antagonist naloxone (200 μg kg−1) did not reverse the effect, although in control experiments the same dose was able to prevent any action of fentanyl given alone. We conclude that the combination of fentanyl and subeffective doses of dexketoprofen trometamol induces a more potent and longer lasting analgesic effect than that observed with fentanyl alone, and that this is not an opioid mediated action. PMID:11815374

  4. Pediatric Obesity: Pharmacokinetic Alterations and Effects on Antimicrobial Dosing.

    Science.gov (United States)

    Natale, Stephanie; Bradley, John; Nguyen, William Huy; Tran, Tri; Ny, Pamela; La, Kirsten; Vivian, Eva; Le, Jennifer

    2017-03-01

    Limited data exist for appropriate drug dosing in obese children. This comprehensive review summarizes pharmacokinetic (PK) alterations that occur with age and obesity, and these effects on antimicrobial dosing. A thorough comparison of different measures of body weight and specific antimicrobial agents including cefazolin, cefepime, ceftazidime, daptomycin, doripenem, gentamicin, linezolid, meropenem, piperacillin-tazobactam, tobramycin, vancomycin, and voriconazole is presented. PubMed (1966-July 2015) and Cochrane Library searches were performed using these key terms: children, pharmacokinetic, obesity, overweight, body mass index, ideal body weight, lean body weight, body composition, and specific antimicrobial drugs. PK studies in obese children and, if necessary, data from adult studies were summarized. Knowledge of PK alterations stemming from physiologic changes that occur with age from the neonate to adolescent, as well as those that result from increased body fat, become an essential first step toward optimizing drug dosing in obese children. Excessive amounts of adipose tissue contribute significantly to body size, total body water content, and organ size and function that may modify drug distribution and clearance. PK studies that evaluated antimicrobial dosing primarily used total (or actual) body weight (TBW) for loading doses and TBW or adjusted body weight for maintenance doses, depending on the drugs' properties and dosing units. PK studies in obese children are imperative to elucidate drug distribution, clearance, and, consequently, the dose required for effective therapy in these children. Future studies should evaluate the effects of both age and obesity on drug dosing because the incidence of obesity is increasing in pediatric patients. © 2017 Pharmacotherapy Publications, Inc.

  5. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  6. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  7. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  8. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  9. Dose-response effects in an outbreak of Salmonella enteritidis.

    OpenAIRE

    Mintz, E. D.; Cartter, M. L.; Hadler, J. L.; Wassell, J. T.; Zingeser, J. A.; Tauxe, R. V.

    1994-01-01

    The effects of ingested Salmonella enteritidis (SE) dose on incubation period and on the severity and duration of illness were estimated in a cohort of 169 persons who developed gastroenteritis after eating hollandaise sauce made from grade-A shell eggs. The cohort was divided into three groups based on self-reported dose of sauce ingested. As dose increased, median incubation period decreased (37 h in the low exposure group v. 21 h in the medium exposure group v. 17.5 h in the high exposure ...

  10. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  11. The dose effect of irradiated rice pollen on double fertilization

    International Nuclear Information System (INIS)

    Wang Houcong; Chen Zhengming; Chen Ruming; Qiu Simi; Yang Juemin; Yang Huijie

    1995-01-01

    The mature panicles of rice were treated with 60 Co γ-rays in the range of 0∼0.372 kGy. The male sterile line used as the female plants were fertilized with γ-irradiated pollen manually. The dose effect of the irradiated pollen on double fertilization was investigated. It was found that double fertilization of the irradiated pollen was suppressed to different degrees as compared with the control. The effect was noticeable as that the fusion time of the male nucleolus with the female one was delayed with the increasing of γ-radiation dose. The delayed time was less than 13 hours when the dose was below 0.186 kGy and it was more than 15 hours when the dose was above 0.279 kGy. Furthermore, several types of deformed embryonic cells and endosperm nuclei were observed

  12. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Marks, Guy B.; Morawska, Lidia

    2013-01-01

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 10 3 mm 2 . The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  13. Low-dose effects hypothesis and observations on NPP personal

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, R.; Acheva, A.; Boteva, R.; Chobanova, N.; Djounova, J.; Gyuleva, I.; Ivanova, K.; Kurchatova, G.; Milchev, A.; Negoicheva, K.; Nikolov, V.; Panova, D.; Pejankov, I.; Rupova, I.; Stankova, K.; Zacharieva, E. [Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    In the modern world the use of various sources of ionizing radiation is nearly ubiquitous. They have numerous applications in industry, medicine, science, agriculture, etc. Radiation doses to workers nevertheless are commensurable to the natural background exposure. Published data on the health effects of occupational radiation exposure are often contradictory. Addressing the issue of „negative” (bystander effects, genomic instability) and „positive” (adaptive response, radiation hormesis) effects of low doses is important and has a significant social and economic impact. In this paper we summarize the results of our extensive monitoring of nuclear power plant (NPP) staff. We believe it is a cohort suitable for analysis of health effects at low doses, because of their good medical and dosimetric control. Our results rather support the idea of absence of adverse health effects in NPP workers. (author)

  14. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  15. A review of in vitro dose-effect relationships

    International Nuclear Information System (INIS)

    Dolphin, G.W.

    1978-01-01

    One of the principal reasons for investigating the relationship between absorbed dose and the number of chromosome aberrations per cell in lymphocytes taken from samples of human peripheral blood is to obtain a calibration curve for biological dosimetry. Factors affecting the radiation-induced aberration yield in vitro of T lymphocytes are reviewed under the following heads: temperature, oxygen effect, inter-mitotic death, mitotic delay, dose rate background of aberrations in normal humans, mathematical representation. (U.K.)

  16. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  17. The effects of various doses of ovaprim on reproductive performance ...

    African Journals Online (AJOL)

    Artificial spawning of two African Catfish species viz: C. gariepinus and H. longifilis of 0.18 – 0.64kg and 0.53 – 1.63 kg respectively were carried out using various doses of Ovaprim with carp pituitary extract (C.P.E.) as the control. Oocyte maturation and ovulation were successfully effected with Ovaprim doses of 0.2, 0.25, ...

  18. X-ray therapy with enhanced effectiveness

    International Nuclear Information System (INIS)

    Silberbauer, F.

    1989-01-01

    The introduction of iodine atoms into a malignant tumor by intravenous injection of a contrast medium that is excreted by way of the kidneys selectively increases the tumor's capacity for the absorption of X-ray photons. This effect is exploited in CCT, but in high-voltage X-ray therapy it leads to an elevated focal dose while the incident dose remains the same. (orig.) [de

  19. The effect of dosing regimen on the pharmacokinetics of risedronate

    Science.gov (United States)

    Mitchell, David Y; Heise, Mark A; Pallone, Karen A; Clay, Marian E; Nesbitt, John D; Russell, Darrell A; Melson, Chad W

    1999-01-01

    Aims To examine the effect of timing of a risedronate dose relative to food intake on the rate and extent of risedronate absorption following single-dose, oral administration to healthy male and female volunteers. Methods A single-dose, randomized, parallel study design was conducted with volunteers assigned to four treatment groups (31 or 32 subjects per group, 127 subjects total). Each subject was orally administered 30 mg risedronate. Group 1 was fasted for 10 h prior to and 4 h after dosing (fasted group); Groups 2 and 3 were fasted for 10 h and were dosed 1 and 0.5 h, respectively, before a high-fat breakfast; and Group 4 was dosed 2 h after a standard dinner. Blood and urine samples were collected for 168 h after dosing. Pharmacokinetic parameters were estimated by simultaneous analysis of risedronate serum concentration and urinary excretion rate-time data. Results Extent of risedronate absorption (AUC and Ae) was comparable (P = 0.4) in subjects dosed 2 h after dinner and 0.5 h before breakfast; however, a significantly greater extent of absorption occurred when risedronate was given 1 or 4 h prior to a meal (1.4- to 2.3-fold greater). Administration 0.5, 1, or 4 h prior to a meal resulted in a significantly greater rate of absorption (Cmax 2.8-, 3.5-, and 4.1-fold greater, respectively) when compared with 2 h after dinner. Conclusions The comparable extent of risedronate absorption when administered either 0.5–1 h before breakfast or 2 h after an evening meal support previous clinical studies where risedronate was found to have similar effectiveness using these dosing regimens. This flexibility in the timing of risedronate administration may provide patients an alternative means to achieve the desired efficacy while maintaining their normal daily routine. PMID:10583024

  20. Estimation of dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiothearpy - A phantom dosimetric study with radiochromic film

    Directory of Open Access Journals (Sweden)

    Rajesh Ashok Kinhikar

    2014-01-01

    Full Text Available The objective of this study was to investigate the dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiotherapy. The influence of titanium-mandibular plate with the screws on radiation dose was tested on four real bones from mandible with the metal and screws fixed. Radiochromic films were used for dosimetry. The bone and metal were inserted through the film at the center symmetrically. This was then placed in a small jig (7 cm × 7 cm × 10 cm to hold the film vertically straight. The polymer granules (tissue-equivalent were placed around the film for homogeneous scatter medium. The film was irradiated with 6 MV X-rays for 200 monitor units in Trilogy linear accelerator for 10 cm × 10 cm field size with source to axis distance of 100 cm at 5 cm. A single film was also irradiated without any bone and metal interface for reference data. The absolute dose and the vertical dose profile were measured from the film. There was 10% dose enhancement due to the backscatter radiation just adjacent to the metal-bone interface for all the materials. The extent of the backscatter effect was up to 4 mm. There is significant higher dose enhancement in the soft tissue/skin due to the backscatter radiation from the metallic components in the treatment region.

  1. Radiation Therapy for Bone Metastases from Hepatocellular Carcinoma: Effect of Radiation Dose Escalation

    International Nuclear Information System (INIS)

    Kim, Tae Gyu; Park, Hee Chul; Lim, Do Hoon

    2011-01-01

    To evaluate the extent of pain response and objective response to palliative radiotherapy (RT) for bone metastases from hepatocellular carcinoma according to RT dose. From January 2007 to June 2010, palliative RT was conducted for 103 patients (223 sites) with bone metastases from hepatocellular carcinoma. Treatment sites were divided into the high RT dose and low RT dose groups by biologically effective dose (BED) of 39 Gy10. Pain responses were evaluated using the numeric rating scale. Pain scores before and after RT were compared and categorized into 'Decreased', 'No change' and 'increased'. Radiological objective responses were categorized into complete response, partial response, stable disease and progression using modified RECIST (Response Evaluation Criteria In Solid Tumors) criteria; the factors predicting patients' survival were analyzed. The median follow-up period was 6 months (range, 0 to 46 months), and the radiologic responses existed in 67 RT sites (66.3%) and 44 sites (89.8%) in the high and low RT dose group, respectively. A dose-response relationship was found in relation to RT dose (p=0.02). Pain responses were 75% and 65% in the high and low RT dose groups, respectively. However, no statistical difference in pain response was found between the two groups (p=0.24). There were no differences in the toxicity profiles between the high and low RT dose groups. Median survival from the time of bone metastases diagnosis was 11 months (range, 0 to 46 months). The Child-Pugh classification at the time of palliative RT was the only significant predictive factor for patient survival after RT. Median survival time was 14 months under Child-Pugh A and 2 months under Child-Pugh B and C. The rate of radiologic objective response was higher in the high RT dose group. Palliative RT with a high dose would provide an improvement in patient quality of life through enhanced tumor response, especially in patients with proper liver function.

  2. SU-F-T-648: Sharpening Dose Fall-Off Via Beam Number Enhancements For Stereotactic Brain Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, J; Braunstein, S; McDermott, M; Sneed, P; Ma, L [University of California San Francisco, San Francisco, CA (United States); Pierce, M [Indiana University, Bloomington, IN (United States)

    2016-06-15

    Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). To study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.

  3. Radiation exposure during paediatric CT in Sudan: CT dose, organ and effective doses

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khamis, H.M.; Ombada, T.H.; Alzimami, K.; Alkhorayef, M.; Sulieman, A.

    2015-01-01

    The purpose of this study was to assess the magnitude of radiation exposure during paediatric CT in Sudanese hospitals. Doses were determined from CT acquisition parameters using CT-Expo 2.1 dosimetry software. Doses were evaluated for three patient ages (0-1, 1-5 and 5-10 y) and two common procedures (head and abdomen). For children aged 0-1 y, volume CT air kerma index (C vol ), air Kerma-length product and effective dose (E) values were 19.1 mGy, 265 mGy.cm and 3.1 mSv, respectively, at head CT and those at abdominal CT were 8.8 mGy, 242 mGy.cm and 7.7 mSv, respectively. Those for children aged 1-5 y were 22.5 mGy, 305 mGy.cm and 1.1 mSv, respectively, at head CT and 12.6 mGy, 317 mGy.cm, and 5.1 mSv, respectively, at abdominal CT. Dose values and variations were comparable with those reported in the literature. Organ equivalent doses vary from 7.5 to 11.6 mSv for testes, from 9.0 to 10.0 mSv for ovaries and from 11.1 to 14.3 mSv for uterus in abdominal CT. The results are useful for dose optimisation and derivation of national diagnostic reference levels. (authors)

  4. Oesteosarcomagenic doses of radium (224Ra) and infectious endogenous retroviruses enhance proliferation and osteogenic differentiation of skeletal tissue dofferentiating in vitro

    International Nuclear Information System (INIS)

    Schmidt, J.; Heermeier, K.; Linzner, U.; Luz, A.; Silbermann, M.; Livne, E.; Erfle, V.

    1994-01-01

    Cartilage tissue from embryonic mice which undergoes osteogenic differentiation during in vitro cultivation was used to study the effect of osteosarcomagenic doses of α-irradiation and bone-tumor-inducing retroviruses on proliferation and phenotypic differentiation of skeletal cells in a defined tissue culture model. Irradiated mandibular condyles showed dose-dependent enhancement of cell proliferation at day 7 of the culture and increased osteogenic differentiation at day 14. Maximal effects were found with 7.4 Bq/ml of 224 Ra-labeled medium. Doses of 740 and 7400 Bq/ml of 224 Ra-labeled medium induced increasing cell death. Retrovirus infection enhanced osteogenic differentiation and extended the viability of irradiated cells. After transplantation none of the treated tissues developed tumors in syngeneic mice. (orig.)

  5. Low dose effects detected by micronucleus assay in lymphocytes

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bojtor, I.; Kubasova, T.; Horvath, G.

    1997-01-01

    The effects of low doses of X-rays between 0.01 and 1 Gy were studied on whole blood samples of various individuals using the cytokinesis-blocked lymphocyte micronucleus assay as an endpoint. The adaptive response could be induced in G 0 cells by 0.01 Gy followed by 1 Gy challenging dose within a time period of 8 hours, in vitro. The probability distribution of micronucleus increments in those samples which had received very low doses in the range 0.01-0.05 Gy proved to be of asymmetrical type (i.e. lognormal) -very likely to the same shape which has been verified for unirradiated (control) population - while the variable turned to be normally distributed at or above 1 Gy. Profound changes have been experienced in the main characteristics of the linear dose - response relationship and in regression parameters, as well, when successively lessened dose ranges were studied toward 0.01 Gy. In the range below ∼ 0.2 Gy the response were found to be unrelated to the absorbed dose. These findings suggest that in (very) low dose range a higher attention should be needed to biological parameters like repair, protective mechanisms and antioxidant capacities, rather than to the absorbed radiation energy only. (author)

  6. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  7. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  8. Dose-effect relationships for the US radium dial painters

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1995-01-01

    Dose-response data are presented from a large percentage of the US workers who were exposed to radium through the painting of luminous dials. The data in this paper are only from females, because very few males worked in this occupation. Log-normal analyses were done for radium-induced bone sarcomas and head carcinomas after the populations of the respective doses were first determined to be log-normally distributed. These populations included luminisers who expressed no radium-related cancerous condition. In this study of the female radium luminisers, the most important data concerning radiation protection are probably from workers who were exposed to radium but showed no cancer incidence. A total of 1391 subjects with average measured skeletal doses below 10 Gy are in this category. A primary purpose is to illustrate the strong case that 226,228 Ra is representative of those radionuclides that exemplify in humans a 'threshold' dose, a dose below which there has been no observed health effects on the exposed individual. Application of a threshold dose for radium deposited in the skeleton does not mean to imply that any other source of skeletal irradiation should be considered to follow a similar pattern. Second, a policy issue that begs for attention is the economic consequence of forcing radiation to appear as a highly toxic insult. It is time to evaluate the data objectively instead of formatting the extrapolation scheme beforehand and forcing the data to fit a preconceived pattern such as linearity through the dose-effect origin. In addition, it is time to re-evaluate (again) variations in background radiation levels throughout the world and to cease being concerned with, and regulating against, miniscule doses for which no biomedical effects on humans have ever been satisfactorily identified or quantified. (author)

  9. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  10. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    A method has been devised to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats, and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, some quantitative problems connected with estimating low-dose effects from other disciplines have been reviewed, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to human is discussed

  11. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    We have devised a method to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, researchers have reviewed some quantitative problems connected with estimating low-dose effects from other disciplines, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to humans is discussed

  12. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  13. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  14. Review of time-dose effects in radiation therapy

    International Nuclear Information System (INIS)

    Peschel, R.E.; Fischer, J.J.

    1980-01-01

    A historical review of conventional fractionation offers little confidence that such treatment is optimal for all tumors. Thus manipulation of time-dose schedules may provide a relatively inexpensive yet potentially useful technique for improving therapeutic results in radiation therapy. Consideration of basic radiobiological principles and animal model data illustrates the complex and heterogeneous nature of normal tissue and tumor response to time-dose effects and supports the hypothesis that better time-dose prescriptions can be found in clinical practice. The number of possible time-dose prescriptions is very large, and a review of the clinical trials using nonconventional fractionation demonstrates that the sampled portion of the total three-dimensional space of time, fraction number, and dose has been very small. Only carefully designed clinical trials can establish the therapeutic advantage of a new treatment schedule, and methods for selecting the most promising schedules are discussed. The use of simple data reduction formulas for time-dose effects should be discarded since they ignore the very complexity and heterogeneity of tissues and tumors which may form the basis of improved clinical results

  15. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  16. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  17. Dose rate effects during damage accumulation in silicon

    International Nuclear Information System (INIS)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates

  18. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  19. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  20. Epidemiology and effects on health of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Rodriguez Artalejo, F.; Andres Manzano, B. de; Rel Calero, J. del

    1997-01-01

    This article describes the concept and aims of epidemiology, its methods and contribution to the knowledge of the effects of low ionizing radiation doses on health. The advantages of epidemiological studies for knowing the consequences of living near nuclear facilities and the effects of occupational exposure to radiations are also described. (Author) 43 refs

  1. EFFECT OF DIFFERENT DOSES OF NPK FERTILIZER ON THE ...

    African Journals Online (AJOL)

    EFFECT OF DIFFERENT DOSES OF NPK FERTILIZER ON THE. INFECTION COEFFICIENT OF RICE (Orysa sativa L.) .... 2014) and the effect of plants extracts on rice seed fungi (Nguefack et al., 2013). Several authors work on ... separated by border rows of 1m wide. Four varieties of rice were used for this study. (NERICA ...

  2. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  3. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    International Nuclear Information System (INIS)

    Jiang Erkang; Wu Lijun

    2009-01-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)- 4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE). (ion beam bioengineering)

  4. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  5. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    McGrath, J.J.; Macphee, R.; Arbeau, N.; Miskin, J.; Scott, C.K.; Winters, E.

    1988-03-01

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  6. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  7. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectu...

  8. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  9. Radiation dose reduction in paediatric coronary computed tomography: assessment of effective dose and image quality

    International Nuclear Information System (INIS)

    Habib Geryes, Bouchra; Calmon, Raphael; Boddaert, Nathalie; Khraiche, Diala; Bonnet, Damien; Raimondi, Francesca

    2016-01-01

    To assess the impact of different protocols on radiation dose and image quality for paediatric coronary computed tomography (cCT). From January-2012 to June-2014, 140 children who underwent cCT on a 64-slice scanner were included. Two consecutive changes in imaging protocols were performed: 1) the use of adaptive statistical iterative reconstruction (ASIR); 2) the optimization of acquisition parameters. Effective dose (ED) was calculated by conversion of the dose-length product. Image quality was assessed as excellent, good or with significant artefacts. Patients were divided in three age groups: 0-4, 5-7 and 8-18 years. The use of ASIR combined to the adjustment of scan settings allowed a reduction in the median ED of 58 %, 82 % and 85 % in 0-4, 5-7 and 8-18 years group, respectively (7.3 ± 1.4 vs 3.1 ± 0.7 mSv, 5.5 ± 1.6 vs 1 ± 1.9 mSv and 5.3 ± 5.0 vs 0.8 ± 2.0 mSv, all p < 0,05). Prospective protocol was used in 51 % of children. The reduction in radiation dose was not associated with reduction in diagnostic image quality as assessed by the frequency of coronary segments with excellent or good image quality (88 %). cCT can be obtained at very low radiation doses in children using ASIR, and prospective acquisition with optimized imaging parameters. (orig.)

  10. Predicted effects of countermeasures on radiation doses from contaminated food

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Nielsen, S.P.; Nielsen, F.

    1993-02-01

    Quantitative assessments of the effects on radiation-dose reductions from nine typical countermeasures against accidental fod contamination have been carried out with dynamic radioecological models. The foodstuffs are assumed to be contaminated with iodine-131, caesium-134 and caesium-137 after a release of radioactive materials from the Ringhals nuclear power station in Sweden resulting from a hypothetical core melt accident. The release of activity of these radionuclides is assumed at 0.07% of the core inventory of the unit 1 reactor (1600 TBq of I-131, 220 TBq of Cs-134 and 190 TBq of Cs-137). Radiation doses are estimated for the 55,000 affected inhabitants along the south-eastern coast of Sweden eating locally produced foodstuffs. The average effective dose equivalent to an individual in the critical group is predicted to be 2.9 mSv from food consumption contaminated with I-131. An accident occurring during winter is estimated to cause average individual doses of 0.32 mSv from Cs-134 and 0.47 mSv from Cs-137, and 9.4 mSv and 6.8 mSv from Cs-134 and Cs-137, respectively, for an accident occurring during summer. Doses from the intake of radioiodine may be reduced by up to a factor of 60 by rejecting contaminated food for 30 days. For the doses from radiocaesium, the largest effect is found form deep ploughing which may reduce the dose by up to a factor of 80. (au) (12 tabs., 6 ills., 19 refs.)

  11. Effect of low dose ionizing radiation upon concentration of

    International Nuclear Information System (INIS)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-01-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  12. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  13. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  14. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  15. Effective dose to patient during cardiac interventional procedures (Prague workplaces)

    International Nuclear Information System (INIS)

    Stisova, V.

    2004-01-01

    The aim of this study was to assess effective dose to a patient during cardiac procedures, such as coronary angiography (CA) and percutaneous transluminal angioplasty (PTCA). Measurements were performed on 185 patients in four catheterisation laboratories in three hospitals in Prague using the dose area product (DAP) meter. Calculations of surface and effective dose were performed with Monte-Carlo-based program PCXMC. The mean DAP value per procedure determined in all workplaces ranged between 25.0 and 54.5 Gy cm 2 for CA and 43.0-104.5 Gy cm 2 for PTCA. In three cases, the surface dose exceeded the 2 Gy level for occurrence of transient erythema. The mean effective dose per procedure in an workplaces was determined to be in the range of 2.7-8.8 mSv for CA and 5.7-15.3 mSv for CA + PTCA combined. The results presented are comparable with those published by other authors. (authors)

  16. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil)

    2014-03-15

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  17. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-01-01

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  18. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  19. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1992-01-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modelling techniques and a knowledge of the incident radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron doses and dose equivalents were measured in a RANDO phantom at specific locations using thermoluminescence dosemeters, etched track dosemeters, and a 1.27 cm (1/2 in) tissue-equivalent proportional counter. The phantom was exposed to a bare and a D 2 O-moderated 252 Cf neutron source at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and to calculate the organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared with the calculations. (author)

  20. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  1. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  2. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  3. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  4. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  5. Patient effective dose from endovascular brachytherapy with 192Ir Sources

    International Nuclear Information System (INIS)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L.

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 192 Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10 -2 mSv.GBq -1 .min -1 for lung, 0.9x10 -2 mSv.GBq -1 .min -1 for oesophagus and 0.48x10 -2 mSv.GBq -1 .min -1 for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10 -2 mSv.GBq -1 .min -1 for colon, 7.8x10 -2 mSv.GBq -1 .min -1 for stomach and 1.7x10 -2 mSv.GBq -1 .min -1 for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq -1 .min -1 , whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq -1 .min -1 ; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  6. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  7. Radioprotective effect of low doses of 2-(1-naphthylmethyl)-2-imidazoline alone or associated with phosphorothioates

    International Nuclear Information System (INIS)

    Laval, J.D.; Roman, V.; Fatome, M.; Laduranty, J.; Miginiac, L.; Lion, C.; Sentenac-Roumanou, H.

    1993-01-01

    In the mouse, the intraperitoneal injection of 2-(1-naphthylmethyl)-2-imidazoline has a radioprotective effect even at low doses. Its association with S-[2-(3-aminopropyl)aminoethyl] phosphorothioate (WR 2721) or S-[3-(3-methylaminopropyl)-aminopropyl]phosphorothioate (WR 151327) at low doses led to an enhancement of their respective radioprotective activities without any apparent side effects. These results strengthen the interest of this non-sulphur compound as a radioprotector

  8. The Primary Origin of Dose Rate Effects on Microstructural Evolution of Austenitic Alloys During Neutron Irradiation

    International Nuclear Information System (INIS)

    Okita, Taira; Sato, Toshihiko; Sekimura, Naoto; Garner, Francis A.; Greenwood, Lawrence R.

    2002-01-01

    The effect of dose rate on neutron-induced microstructural evolution was experimentally estimated. Solution-annealed austenitic model alloys were irradiated at approximately 400 degrees C with fast neutrons at seven different dose rates that vary more than two orders difference in magnitude, and two different doses were achieved at each dose rate. Both cavity nucleation and growth were found to be enhanced at lower dose rate. The net vacancy flux is calculated from the growth rate of cavities that had already nucleated during the first cycle of irradiation and grown during the second cycle. The net vacancy flux was found to be proportional to (dpa/sec) exp (1/2) up to 28.8 dpa and 8.4 x 10 exp (-7) dpa/sec. This implies that mutual recombination dominates point defect annihilation, in this experiment even though point defect sinks such as cavities and dislocations were well developed. Thus, mutual recombination is thought to be the primary origin of the effect of dose rate on microstructural evolution

  9. The Effect of Aquaplast on Surface Dose of Photon Beam

    International Nuclear Information System (INIS)

    Oh, Do Hoon; Bae, Hoon Sik

    1995-01-01

    Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy. Materials and Methods : To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in 25 X 25 X 3 cm 3 acrylic phantom and set on 25 X 25 X 5 cm 3 , polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 10 cm SSD for 5 X 5 cm 2 , 10 X 10 cm 2 , and 15 X 15 cm 2 field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types o Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and khan to correct over response of the Markus chamber. Results : The surface doses for open fields of 5 X 5 cm 2 , 10 X 10 cm 2 , 15 X 15 cm 2 were 7.9%, 13.6%, and 18.7% respectively. He original Aquaplast increased the surface doses upto 38.4%, 43.6% and 47.4% respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by 0.2%, 1.7%, 3.0% without Aquaplast, 0.2%, 1.9%, 3.7% with transformed Aquaplast, respectively. Conclusion : The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax

  10. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors.

    Science.gov (United States)

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-04-05

    Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.

  11. Estimation of the collective effective dose to the population from medical X-ray examinations in Finland

    International Nuclear Information System (INIS)

    Tenkanen-Rautakoskia, Petra; Jaervinen, Hannu; Bly, Ritva

    2008-01-01

    The collective effective dose to the population from all X-ray examinations in Finland in 2005 was estimated. The numbers of X-ray examinations were collected by a questionnaire to the health care units (response rate 100 %). The effective doses in plain radiography were calculated using a Monte Carlo based program (PCXMC), as average values for selected health care units. For computed tomography (CT), weighted dose length product (DLP w ) in a standard phantom was measured for routine CT protocols of four body regions, for 80 % of CT scanners including all types. The effective doses were calculated from DPL w values using published conversion factors. For contrast-enhanced radiology and interventional radiology, the effective dose was estimated mainly by using published DAP values and conversion factors for given body regions. About 733 examinations per 1000 inhabitants (excluding dental) were made in 2005, slightly less than in 2000. The proportions of plain radiography, computed tomography, contrast-enhanced radiography and interventional procedures were about 92, 7, 1 and 1 %, respectively. From 2000, the frequencies (number of examinations per 1000 inhabitants) of plain radiography and contrast-enhanced radiography have decreased about 8 and 33 %, respectively, while the frequencies of CT and interventional radiology have increased about 28 and 38 %, respectively. The population dose from all X-ray examinations is about 0.43 mSv per person (in 1997 0.5 mSv). About half of this is caused by CT (in 1997 only 20 %) although the relative number of CT examinations is only 7 %. The contribution by plain radiography is 19 %, interventional radiology 17 %, and contrast-enhanced radiology 14 %. It is concluded that CT examinations are the major source of the population dose, while interventional radiology gives about the same population dose as plain radiography. For plain radiography, body examinations cause the highest effective dose. (author)

  12. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  13. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  14. Effective doses to patients undergoing thoracic computed tomography examinations.

    Science.gov (United States)

    Huda, W; Scalzetti, E M; Roskopf, M

    2000-05-01

    The purpose of this study was to investigate how x-ray technique factors and effective doses vary with patient size in chest CT examinations. Technique factors (kVp, mAs, section thickness, and number of sections) were recorded for 44 patients who underwent a routine chest CT examination. Patient weights were recorded together with dimensions and mean Hounsfield unit values obtained from representative axial CT images. The total mass of directly irradiated patient was modeled as a cylinder of water to permit the computation of the mean patient dose and total energy imparted for each chest CT examination. Computed values of energy imparted during the chest CT examination were converted into effective doses taking into account the patient weight. Patient weights ranged from 4.5 to 127 kg, and half the patients in this study were children under 18 years of age. All scans were performed at 120 kVp with a 1 s scan time. The selected tube current showed no correlation with patient weight (r2=0.06), indicating that chest CT examination protocols do not take into account for the size of the patient. Energy imparted increased with increasing patient weight, with values of energy imparted for 10 and 70 kg patients being 85 and 310 mJ, respectively. The effective dose showed an inverse correlation with increasing patient weight, however, with values of effective dose for 10 and 70 kg patients being 9.6 and 5.4 mSv, respectively. Current CT technique factors (kVp/mAs) used to perform chest CT examinations result in relatively high patient doses, which could be reduced by adjusting technique factors based on patient size.

  15. The estimation of occupational effective dose in diagnostic radiology with two dosimeters

    International Nuclear Information System (INIS)

    Niklason, L.T.; Marx, M.V.; Chan, Heang-Ping

    1994-01-01

    Annual effective dose limits have been proposed by national and international radiation protection committees. Radiation protection agencies must decide upon a method of converting the radiation dose measured from dosimeters to an estimate of effective dose. A proposed method for the estimation of effective dose from the radiation dose to two dosimeters is presented. Correction factors are applied to an over-apron collar dose and an under-apron dose to estimate the effective dose. Correction factors are suggested for two cases, both with and without a thyroid shield. Effective dose may be estimated by the under-apron dose plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-collar dose if a thyroid shield is worn. This method provides a reasonable estimate of effective dose that is independent of lead apron thickness and accounts for the use of a thyroid shield. 17 refs., 3 tabs

  16. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects

    DEFF Research Database (Denmark)

    Carlsen, J E; Køber, L; Torp-Pedersen, C

    1990-01-01

    OBJECTIVE--To determine the relevant dose of bendrofluazide for treating mild to moderate hypertension. DESIGN--Double blind parallel group trial of patients who were given placebo for six weeks and then randomly allocated to various doses of bendrofluazide (1.25, 2.5, 5, or 10 mg daily) or place...... of bendrofluazide to treat mild to moderate hypertension is 1.25-2.5 mg a day. Higher doses caused more pronounced adverse biochemical effects including adverse lipid effects. Previous trials with bendrofluazide have used too high doses....... relations between dose and effect were shown for potassium, urate, glucose, total cholesterol, and apolipoprotein B concentrations. The 1.25 mg dose increased only urate concentrations, whereas the 10 mg dose affected all the above biochemical variables. CONCLUSION--The relevant range of doses...

  17. Late effects of various dose-fractionation regimens

    International Nuclear Information System (INIS)

    Turesson, I.; Notter, G.

    1983-01-01

    These clinical investigations of various dose-fractionation regimens on human skin show that: The late reactions cannot be predicted from the early reactions; The dose-response curves for late reactions are much steeper than for early reactions; Equivalent doses for various fractionation schedules concerning late effects can be calculated by means of a corrected CRE (NSD) formula; the correction must be considered preliminary because further follow-up is needed. A clinical fractionation study of this type requires: Extremely careful dosimetry; Study of the same anatomical region; Very long follow-up; Studies at different effect levels; Skin reaction is the only end point we have studied systematically for different fractionation regimens. Experience with the CRE formula as a model for calculating isoeffect doses for different fractionation schedules in routine clinical use can be summarized as follows: The CRE formula has been used prospectively since 1972 in all patients; CRE-equivalent weekly doses to 5 x 2.0 Gy per week has been used. (Although the fractionation schedule is changed, the overall treatment time is still the same); The CRE range was 18 to 21 for curative radiotherapy on carcinomas; No irradiation was applied during pronounced acute reactions. No unexpected complications have been observed under these conditions

  18. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  19. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  20. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  1. Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity.

    Science.gov (United States)

    Das, Arabinda; McDonald, Daniel; Lowe, Stephen; Bredlau, Amy-Lee; Vanek, Kenneth; Patel, Sunil J; Cheshier, Samuel; Eskandari, Ramin

    2017-03-01

    Immunotherapy can be an effective treatment for pediatric medulloblastoma (MB) patients. However, major subpopulations do not respond to immunotherapy, due to the lack of antigenic mutations or the immune-evasive properties of MB cells. Clinical observations suggest that radiation therapy (RT) may expand the therapeutic reach of immunotherapy. The aim of the present investigation is to study the effect of low-dose X-ray radiation (LDXR, 1 Gy) on the functional immunological responses of MB cells (DAOY, D283, and D341). Induction of MB cell death was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Production of reactive oxygen species (ROS) was measured by fluorescent probes. Changes in the expression of  human leukocyte antigen (HLA) molecules and caspase-3 activities during treatment were analyzed using Western blotting and caspase-3 assay. Western blot analysis demonstrated that LDXR upregulated the expression of HLA class I and HLA II molecules by more than 20% compared with control and high-dose (12 Gy) groups in vitro. Several of these HLA subtypes, such as MAGE C1, CD137, and ICAM-1, have demonstrated upregulation. In addition, LDXR increases ROS production in association with phosphorylation of NF-κB and cell surface expression of mAb target molecules (HER2 and VEGF). These data suggest that a combined LDXR and mAb therapy can create a synergistic effect in vitro. These results suggest that LDXR modulates HLA molecules, leading to alterations in T-cell/tumor-cell interaction and enhancement of T-cell-mediated MB cell death. Also, low-dose radiotherapy combined with monoclonal antibody therapy may one day augment the standard treatment for MB, but more investigation is needed to prove its utility as a new therapeutic combination for MB patients.

  2. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    Energy Technology Data Exchange (ETDEWEB)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Zeller, W. Jens [Pharmacology of Cancer Treatment, German Cancer Research Center, Heidelberg (Germany)

    2010-02-15

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  3. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    International Nuclear Information System (INIS)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten; Zeller, W. Jens

    2010-01-01

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  4. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    International Nuclear Information System (INIS)

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Stalpers, Lukas J.A.; Barendsen, Gerrit W.; Bel, Arjan

    2014-01-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy −1 ) and β (Gy −2 ) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment

  5. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  6. Dose enhancement by synchrotron radiation and heavy atoms for the treatment of gliomas

    International Nuclear Information System (INIS)

    Bobyk, L.

    2010-11-01

    High grade gliomas are brain tumors of bad prognosis. The standard therapeutic treatment combines surgery, radiotherapy and sometimes use of temozolomide (chemotherapy agent). Healthy tissues radio-sensitivity is a major limitation for radiotherapy treatment. The stereotactic radiotherapy by synchrotron radiation is an innovative technique which combines a low energy radiation (lower 100 keV) with the presence of heavy atoms in the tumoral zone. Such an approach is used to increase the differential of dose deposited in the tumor compared to surrounding healthy tissues. In this study, several compounds containing heavy atoms such as chemotherapy agents: cisplatin/carbo-platin, a DNA base analog: 5-iodo-2'-deoxyuridine (IUdR) and gold nano-particles were considered. The dose enhancement factor induced by the presence of these compounds located for some of them in the extracellular medium or inside the cells for others, was determined using in vitro studies. Thereafter, in vivo studies on rats bearing gliomas, were performed to study the toxicity, the kinetic of distribution and the localization of these compounds together with their potential efficacy of treatment combining intracerebral injection with low energy radiation. (author)

  7. Antithrombotic effect of repeated doses of the ethanolic extract of ...

    African Journals Online (AJOL)

    Antithrombotic effect of repeated doses of the ethanolic extract of local olive ( Olea europaea L.) leaves in rabbits. ... The incidence of thromboembolic diseases is increasing, and they are a major cause of mortality and morbidity worldwide. Mediterranean diet is known for its high content of olive products, especially olive oil, ...

  8. interactive effect of cowpea variety, dose and exposure time

    African Journals Online (AJOL)

    ACSS

    variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect ... laboratories and institutions of higher education in several West .... Each value is the mean±S.E of 20 cowpea seeds. Means ...

  9. effect of population density and dose of nitrogen and potassium ...

    African Journals Online (AJOL)

    A. Hussein

    2018-01-01

    Jan 1, 2018 ... while, nitrogen consumption increased dry weight resulting in increased plant yield (Hatami et al., 2009). Vorob (2000) ... of this study was to investigate the effect of plant density and dose of nitrogen and potassium on Green bean Cv. ..... biogeochem. cycle., 2008, 22(1), 1022-1041. [11] Moniruzzaman M ...

  10. Effects of sublethal doses of chlorfluazuron on the ovarian ...

    African Journals Online (AJOL)

    AJB_YOMI

    2011-10-12

    Oct 12, 2011 ... eggs (Perveen, 2000a). The objectives of this research were to determine the effects of sublethal doses of chlorfluazuron (LD10or LD30) on the amounts of ovarianprotein, lipid, carbohydrates, DNA, and RNA, and ecdysteroid titres in different developmental stages of S. litura, a major crop pest around the ...

  11. interactive effect of cowpea variety, dose and exposure time

    African Journals Online (AJOL)

    ACSS

    Callosobruchus maculatus has for years remained a serious menace in cowpea in Sub-Sahara Africa. The objective of this study was to investigate the effect of genotypic cowpea (Vigna unguiculata (L.) Walp) varieties, time and dose on C. maculatus exposed to powders of Piper guineense and Eugenia aromatica.

  12. Effects of a Single Dose of Caffeine on Resting Cardiovascular ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effect of 5mg/kg body weight dose of caffeine on cardiovascular system of normal young adult males of Black African Origin. Twenty normal young adult male volunteers participated. A repeated measures 2 randomized Crosse over (counter balanced) double blind design was ...

  13. The effect of radiation dose on mouse skeletal muscle remodeling

    International Nuclear Information System (INIS)

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

  14. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  15. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  16. COCAINE AND PAVLOVIAN FEAR CONDITIONING: DOSE-EFFECT ANALYSIS

    OpenAIRE

    Wood, Suzanne C.; Fay, Jonathon; Sage, Jennifer R.; Anagnostaras, Stephan G.

    2006-01-01

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1 – 15 mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15 mg/kg) displayed significantly less cont...

  17. Dose-response effects in an outbreak of Salmonella enteritidis.

    Science.gov (United States)

    Mintz, E D; Cartter, M L; Hadler, J L; Wassell, J T; Zingeser, J A; Tauxe, R V

    1994-02-01

    The effects of ingested Salmonella enteritidis (SE) dose on incubation period and on the severity and duration of illness were estimated in a cohort of 169 persons who developed gastroenteritis after eating hollandaise sauce made from grade-A shell eggs. The cohort was divided into three groups based on self-reported dose of sauce ingested. As dose increased, median incubation period decreased (37 h in the low exposure group v. 21 h in the medium exposure group v. 17.5 h in the high exposure group, P = 0.006) and greater proportions reported body aches (71 v. 85 v. 94%, P = 0.0009) and vomiting (21 v. 56 v. 57%, P = 0.002). Among 118 case-persons who completed a follow-up questionnaire, increased dose was associated with increases in median weight loss in kilograms (3.2 v. 4.5 v. 5.0, P = 0.0001), maximum daily number of stools (12.5 v. 15.0 v. 20.0, P = 0.02), subjective rating of illness severity (P = 0.0007), and the number of days of confinement to bed (3.0 v. 6.5 v. 6.5, P = 0.04). In this outbreak, ingested dose was an important determinant of the incubation period, symptoms and severity of acute salmonellosis.

  18. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  19. Effect of low gamma ray doses on sugar beet

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1993-01-01

    We studied the effect of presowing irradiation simulation on sugar beet seeds in two regions (Deir Elzour and Damascus) and for three successive cropping seasons (1986-1989). Those seeds were irradiated with gamma radiation doses varying from 0.005 to 0.050 kGy in the first region, and from 0.005 to 0.025 kGy in the second region. Results showed that doses varying from 0.005 to 0.05 kGy in Deir Elzour gave a mean yield increase varying from 17.4% to 22.6%. However, doses varying from 0.005 to 0.025 in Damascus gave an increase of the same parameter between 19.5% and 23.8%. The best results for pure sugar yield increase obtained for a dose of 0.015 kGy (27.1% in Deir Elzour and 31.9% in Damascus). Yields on the farm level obtained from presowing irradiated seeds showed an increase in sugar beets when using 0.015 kGy gamma radiation dose. (author)

  20. Methods of determining the effective dose in dental radiology

    International Nuclear Information System (INIS)

    Thilander-Klang, A.; Helmrot, E.

    2010-01-01

    A wide variety of X-ray equipment is used today in dental radiology, including intra-oral, ortho-pan-tomographic, cephalo-metric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose. However, it is difficult to determine its reliability, and it is difficult to make comparisons, especially when different modalities are used. The classification of the new CBCT units is also problematic as they are sometimes classified as CT units. This will lead to problems in choosing the best dosimetric method, especially when the examination geometry resembles more on an ordinary ortho-pan-tomographic examination, as the axis of rotation is not at the centre of the patient, and small radiation field sizes are used. The purpose of this study was to present different methods for the estimation of the effective dose from the equipment currently used in dental radiology, and to discuss their limitations. The methods are compared based on commonly used measurable and computable dose quantities, and their reliability in the estimation of the effective dose. (authors)

  1. Committed effective dose determination in southern Brazilian cereal flours.

    Science.gov (United States)

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.

  2. Committed effective dose determination in southern Brazilian cereal flours

    International Nuclear Information System (INIS)

    Scheibel, V.; Appoloni, C. R.

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of 228 Th, 228 Ra, 226 Ra, 40 K, 7 Be and 137 Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of 228 Th and 40 K were 3.5±0.4 and 1469±17 Bq kg -1 for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for 137 Cs ranged from 0.04 to 0.4 Bq kg -1 . The highest committed effective dose was 0.36 μSv.y -1 for 228 Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y -1 , to the public exposure. (authors)

  3. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model.

    Science.gov (United States)

    Jit, Mark; Brisson, Marc; Laprise, Jean-François; Choi, Yoon Hong

    2015-01-06

    To investigate the incremental cost effectiveness of two dose human papillomavirus vaccination and of additionally giving a third dose. Cost effectiveness study based on a transmission dynamic model of human papillomavirus vaccination. Two dose schedules for bivalent or quadrivalent human papillomavirus vaccines were assumed to provide 10, 20, or 30 years' vaccine type protection and cross protection or lifelong vaccine type protection without cross protection. Three dose schedules were assumed to give lifelong vaccine type and cross protection. United Kingdom. Males and females aged 12-74 years. No, two, or three doses of human papillomavirus vaccine given routinely to 12 year old girls, with an initial catch-up campaign to 18 years. Costs (from the healthcare provider's perspective), health related utilities, and incremental cost effectiveness ratios. Giving at least two doses of vaccine seems to be highly cost effective across the entire range of scenarios considered at the quadrivalent vaccine list price of £86.50 (€109.23; $136.00) per dose. If two doses give only 10 years' protection but adding a third dose extends this to lifetime protection, then the third dose also seems to be cost effective at £86.50 per dose (median incremental cost effectiveness ratio £17,000, interquartile range £11,700-£25,800). If two doses protect for more than 20 years, then the third dose will have to be priced substantially lower (median threshold price £31, interquartile range £28-£35) to be cost effective. Results are similar for a bivalent vaccine priced at £80.50 per dose and when the same scenarios are explored by parameterising a Canadian model (HPV-ADVISE) with economic data from the United Kingdom. Two dose human papillomavirus vaccine schedules are likely to be the most cost effective option provided protection lasts for at least 20 years. As the precise duration of two dose schedules may not be known for decades, cohorts given two doses should be closely

  4. Local dose enhancement in radiation therapy: Monte Carlo simulation study; Reforco local de dose em radioterapia utilizando nanoparticulas: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laura E. da; Nicolucci, Patricia, E-mail: laura.emilia.fm@gmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    2014-04-15

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  5. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S; Kushima, N; Katsura, K; Tanabe, S; Hayakawa, T; Sakai, H; Yamada, T; Takahashi, H; Abe, E; Wada, S; Aoyama, H [Niigata University, Niigata (Japan)

    2016-06-15

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cm × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.

  6. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  7. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  8. Basic study on low dose radiation effect: SOD activity of immune organs and hemogram in rats

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Kaneko, Ichiro; Mizutani, Takeo; Nakano, Kazushiro; Edamatsu, Rei; Mori, Akitane.

    1989-01-01

    We examined the effect of low dose radiation on SOD activities of immune organs such as thymus, spleen, bone marrow in rats and hematological findings changes. Animals were exposed to radiation in a wholebody fashion, 4 hours before sacrifice. SOD activities in thymus and bone marrow cells from the rats X-ray irradiated at doses of 0.25∼0.50 Gy/10 min were enhanced in comparison with those of non-irradiated rats. The enhancement was also observed in spleen cells obtained from group of rats irradiated at 0.05 Gy/10 min. Radiation exposure with over 0.50 Gy/10 min gave rats inhibitory responses in those immune organs. The changes in homogram were not observed with γ-ray exposure of less than 0.10 Gy/10 min. (author)

  9. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  10. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  11. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  12. Effect of age and sex on warfarin dosing

    Directory of Open Access Journals (Sweden)

    Khoury G

    2014-07-01

    Full Text Available Ghada Khoury,1 Marwan Sheikh-Taha2 1School of Pharmacy, 2Department of Pharmacy Practice, Lebanese American University, Byblos, Lebanon Objective: We examined the potential effect of sex and age on warfarin dosing in ambulatory adult patients. Methods: We conducted a retrospective chart review of patients attending an anticoagulation clinic. We included patients anticoagulated with warfarin for atrial fibrillation or venous thromboembolism who had a therapeutic international normalized ratio of 2–3 for 2 consecutive months. We excluded patients who had been on any drug that is known to have a major interaction with warfarin, smokers, and heavy alcohol consumers. Out of 340 screened medical records, 96 met the predetermined inclusion criteria. The primary outcome assessed was warfarin total weekly dose (TWD. Results: There was a statistically significant difference in the TWD among the ages (P<0.01; older patients required lower doses. However there was no statistically significant difference in the TWD between sexes (P=0.281. Conclusion: Age was found to have a significant effect on warfarin dosing. Even though women did require a lower TWD than men, this observation was not statistically significant. Keywords: warfarin, INR, anticoagulation, vitamin K antagonists, age

  13. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    Directory of Open Access Journals (Sweden)

    Firoozabadi M. M.

    2017-03-01

    Full Text Available Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source.

  14. adverse effects of low dose methotrexate in rheumatoid arthritis patients

    International Nuclear Information System (INIS)

    Gilani, S.T.; Khan, D.A.; Khan, F.A.; Ahmed, M.

    2012-01-01

    To determine the frequency of adverse effects attributed to Methotrexate (MTX) toxicity and serum minimum toxic concentration with low dose MTX in Rheumatoid Arthritis (RA) patients. Study Design: Cross-sectional observational study. Place and Duration of Study: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology, Rawalpindi, from March 2010 to March 2011. Methodology: One hundred and forty adult patients of RA receiving low dose MTX (10 mg/week) for at least 3 months, ere included by consecutive sampling. Blood samples were collected 2 hours after the oral dose of MTX. Serum alanine transaminase and creatinine were analyzed on Hitachi and blood counts on Sysmex analyzer. Serum MTX concentration was measured on TDX analyzer. Results: Out of one hundred and forty patients; 68 males (49%) and 72 females (51%), 38 developed MTX toxicity (27%), comprising of hepatotoxicity in 12 (8.6%), nephrotoxicity in 3 (2.1%), anaemia in 8 (5.7%), leucopenia in 2 (1.4%), thrombocytopenia in 3 (2.1%), pancytopenia in 2 (1.4%), gastrointestinal adverse effects in 5 (3.6%) and mucocutaneous problems in 3 (2.1%). Receiver operating characteristic curve revealed serum minimum toxic concentration of MTX at cutoff value of 0.71 mu mol/l with a sensitivity of 71% and specificity of 76%. Conclusion: Adverse effects of low dose MTX were found in 27% of RA patients, mainly comprising of hepatotoxicity and haematological problems. MTX toxicity can be detected by therapeutic drug monitoring of serum concentration of 0.71 mu mol/l with sensitivity of 71% and specificity of 76% in the patients on low dose MTX maintenance therapy. (author)

  15. Visual distinctiveness can enhance recency effects.

    Science.gov (United States)

    Bornstein, B H; Neely, C B; LeCompte, D C

    1995-05-01

    Experimental efforts to meliorate the modality effect have included attempts to make the visual stimulus more distinctive. McDowd and Madigan (1991) failed to find an enhanced recency effect in serial recall when the last item was made more distinct in terms of its color. In an attempt to extend this finding, three experiments were conducted in which visual distinctiveness was manipulated in a different manner, by combining the dimensions of physical size and coloration (i.e., whether the stimuli were solid or outlined in relief). Contrary to previous findings, recency was enhanced when the size and coloration of the last item differed from the other items in the list, regardless of whether the "distinctive" item was larger or smaller than the remaining items. The findings are considered in light of other research that has failed to obtain a similar enhanced recency effect, and their implications for current theories of the modality effect are discussed.

  16. Enhancing Placebo Effects: Insights From Social Psychology

    Science.gov (United States)

    SLIWINSKI, JIM; ELKINS, GARY R.

    2012-01-01

    Placebo effects are widely recognized as having a potent impact upon treatment outcomes in both medical and psychological interventions, including hypnosis. In research utilizing randomized clinical trials, there is usually an effort to minimize or control placebo effects. However, in clinical practice there may be significant benefits in enhancing placebo effects. Prior research from the field of social psychology has identified three factors that may enhance placebo effects, namely: priming, client perceptions, and the theory of planned behavior. These factors are reviewed and illustrated via a case example. The consideration of social-psychological factors to enhance positive expectancies and beliefs has implications for clinical practice as well as future research into hypnotic interventions. PMID:23488251

  17. Cooperative binding mitigates the high-dose hook effect.

    Science.gov (United States)

    Roy, Ranjita Dutta; Rosenmund, Christian; Stefan, Melanie I

    2017-08-14

    The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. We use a combinatorial model of a "perfect linker protein" (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+ /calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of

  18. SU-G-TeP3-05: In Vitro Demonstration of Endothelial Dose Enhancement Due to Gold Nanoparticles During Low-Voltage Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin-Karim, S; Makrigiorgos, GM [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Moreau, M; Ngwa, W [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Kumar, R [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Hanlon, J; Arnoldussen, M [Oraya Therapeutics Inc., Newark, CA (United States); Hempstead, J; Celli, J [University of Massachusetts Boston, Boston, MA (United States)

    2016-06-15

    Purpose: Oraya Therapy uses low-voltage, stereotactic, highly targeted X-rays for the treatment of wet age-related macular degeneration (AMD) — offering a new option for patients worldwide. Neovascular endothelial cells play a crucial role in the pathogenesis of this disease. This in-vitro study investigates the potential of gold nanoparticles (GNP) to enhance endothelial cell damage during low-voltage radiotherapy towards potential applications in the treatment of wet-AMD. Methods: Primary human umbilical cord vein endothelium cells (HUVEC) were treated with 1.4 nm sized GNPs for 24 hrs and then irradiated with variable X-ray doses using an Oraya therapy system (100 kVp) or a Small Animal Radiation and Research platform (SARRP) at other beam qualities (up to 220 kVp). Radio-sensitization was assessed by clonogenic assays. Variable concentrations of GNPs (0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml, and 1 mg/ml) where employed. The dose enhancement factor (DEF) was calculated as the ratio of radiation doses required to give the same biological effect (survival factor, SF) with and without GNPs. Results: Preliminary results show DEFs of up to 2.62 for the different combinations of x-ray doses and GNP concentrations and beam qualities. In general the DEF increased with increase in GNP concentration. However, for high doses the effect of GNP becomes less apparent likely due to already high cell kill by the radiation alone. Conclusion: The findings suggest that targeted GNPs can play a significant synergistic role in enhancing stereotactic radiosurgery for wet AMD. The results also provide impetus for ongoing studies to find the optimal synergy between the doses or beam energies and GNPs concentration. This will benefit in-vivo studies towards development of nanoparticle-aided radiotherapy for treatment of wet-AMD and potentially ocular cancers.

  19. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  20. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  1. Comments on 'Standard effective doses for proliferative tumours'

    International Nuclear Information System (INIS)

    Dasu, Iuliana Livia; Dasu, Alexandru; Denekamp, Juliana; Fowler, Jack F.

    2000-01-01

    We should like to make some comments on the paper published by Jones et al (1999). The paper presents some interesting and useful contributions on the theoretical evaluation of different fractionated schedules used now. The use of the linear quadratic equation has been very useful in focusing attention on the differences in fractionation responses of fast and slow proliferating normal tissues and tumours. Unfortunately the BED 10 or BED 3 units for (α/β ratios of 10 Gy and 3 Gy respectively) do not directly relate to anything used in routine clinical practice. The purpose of the paper by Jones et al (1999) is to covert any new schedule into the equivalent total dose as if it was given in the same size fractions as are in common use in that department. They illustrate that, if proliferation is taken into account for the altered schedule, it can be compared in two ways with the standard conventional schedule: (a) the proliferative standard effective dose one (PSED 1 ) in which the proliferation correction is applied in the altered schedule, but not in the standard schedule; (b) the proliferative standard effective dose two (PSED 2 ) in which the proliferation correction is applied to both schedules using the same proliferation parameters. This is expected to provide a better evaluation of the response of a 'real' tumour (i.e. a tumour that also proliferates during the standard treatment). However, there seem to be two errors in the paper. First, the authors quoted a wrong equation for calculating the proliferative standard effective dose two (PSED 2 ) (equations (2) and (A6) in their paper). There are also some special cases with respect to the time available for proliferation and the duration of the treatment that have been neglected in their paper and which require further specification. Therefore, we should like to give the full mathematical derivation of the correct equations for calculating the proliferative standard effective doses. We would also like to make

  2. The relationships between radiation doses and their effects

    International Nuclear Information System (INIS)

    Beau, P.G.; Nenot, J.C.

    1982-01-01

    Dose-effect relationships have been developed both for the biological effects studied by Radiobiology and the long-term pathological effects (malignant diseases) studied by Radiation Protection. The former approach chiefly considers the primary biological injuries at the cellular level, and the relationship between the dependent variable characteristic of the effect and the dose -an independent variable- has an explanatory meaning. The parameters associated to the independent variable have a biophysical signification and fit into a model of the action of ionizing radiations. In the latter approach, the relationship is pragmatic and the previous parameters are just the results of a curve-fitting procedure realized on experimental or human data. The biophysical models have led to a general formulation associating a linear term to a quadratic term both of them weighted by an exponential term describing cellular killing at the highest doses. To a certain extent the curves obtained for leukemias, bronchopulmonary and breast cancers prove the validity of the pragmatic model [fr

  3. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  4. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  5. Effect of dose rate on radical and property of gelatin

    International Nuclear Information System (INIS)

    Geng Shengrong; Chen Yuxia; Zu Xiaoyan; Li Xin; Jiang Hongyou

    2015-01-01

    The gelatin was irradiated respectively in the range of 0-32 kGy by dose rates of 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator, and the relationships of the radical character and gelatin property with dose rate were investigated through electron spin resonance (ESR) and gelatin permeation chromatogram. The results show that there is weak ESR signal from unirradiated gelatin, but irradiated one presents typical double peak. The order of ESR signal intensity of gelatin with the same absorbed dosage from high to low is 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator. The linear relationship between ESR signal intensity from 60 Co irradiated gelatin and absorbed dose is y= 26.983x 2 +1 641.8x-205.69. The intrinsic viscosity, average relative molecular weight, gelatin strength and breaking elongation of irradiated gelatin from high to low are 480 Gy/min 60 Co, 12000 Gy/min accelerator and 60 Gy/min 60 Co. The protection mechanism of high dose rate radiation on gelatin degradation is that the production of effective long life free radicals reduces. (authors)

  6. Total dose and dose-rate effects on start-up current in anti-fuse FPGA

    International Nuclear Information System (INIS)

    Wang, J.; Wong, W.; McCollum, J.; Cronquist, B.; Katz, R.; Kleyner, I.; Kleyner, F.

    1999-01-01

    Radiation enhanced start-up current (RESC) in an anti-fuse FPGA, A1280A, is thoroughly investigated and a comprehensive transistor-level mechanism is proposed. Low dose-rate testing, appropriate for civilian space applications, and annealing at room temperature shows RESC to be negligible for the lot of parts tested with a fixed power supply slew rate. (authors)

  7. Dose-effect studies with inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Data are presented for all dogs employed in current life-span dose effect studies with inhaled 239 PuO 2 , and 239 Pu nitrate. Information is presented on the estimated initial alveolar deposition, based on external thorax counts and on estimated lung weights at time of exposure. Information is also provided on the current interpretation of the most prominent clinical-pathological features associated with the death of animals

  8. Effective dose efficiency: an application-specific metric of quality and dose for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan; Ranger, Nicole T; Dobbins, James T III; Ravin, Carl E, E-mail: samei@duke.edu [Carl E Ravin Advanced Imaging Laboratories, Department of Radiology (United States)

    2011-08-21

    The detective quantum efficiency (DQE) and the effective DQE (eDQE) are relevant metrics of image quality for digital radiography detectors and systems, respectively. The current study further extends the eDQE methodology to technique optimization using a new metric of the effective dose efficiency (eDE), reflecting both the image quality as well as the effective dose (ED) attributes of the imaging system. Using phantoms representing pediatric, adult and large adult body habitus, image quality measurements were made at 80, 100, 120 and 140 kVp using the standard eDQE protocol and exposures. ED was computed using Monte Carlo methods. The eDE was then computed as a ratio of image quality to ED for each of the phantom/spectral conditions. The eDQE and eDE results showed the same trends across tube potential with 80 kVp yielding the highest values and 120 kVp yielding the lowest. The eDE results for the pediatric phantom were markedly lower than the results for the adult phantom at spatial frequencies lower than 1.2-1.7 mm{sup -1}, primarily due to a correspondingly higher value of ED per entrance exposure. The relative performance for the adult and large adult phantoms was generally comparable but affected by kVps. The eDE results for the large adult configuration were lower than the eDE results for the adult phantom, across all spatial frequencies (120 and 140 kVp) and at spatial frequencies greater than 1.0 mm{sup -1} (80 and 100 kVp). Demonstrated for chest radiography, the eDE shows promise as an application-specific metric of imaging performance, reflective of body habitus and radiographic technique, with utility for radiography protocol assessment and optimization.

  9. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  10. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  11. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  12. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose.

    Science.gov (United States)

    Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J

    2017-03-01

    The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.

  13. Effect of two doses of carbamylated allergoid extract of dust mite on nasal reactivity.

    Science.gov (United States)

    Scalone, G; Compalati, E; Bruno, M E; Mistrello, G

    2013-11-01

    Background and Objective. Single SLIT studies with native allergen extracts support a dose-response effect for clinical and immunological outcomes. Conversely for carbamylated allergoids this dose-response effects is less evident, likely because the threshold for efficacy is more easily reached through the enhanced bioavailability of the extract consequent to the selective chemical modification. Thus this pilot study investigates the dose-response effect on nasal specific reactivity and safety of two unusual doses of carbamylated allergoid in patients mono-sensitized to house dust mites. Methods. A prospective open randomized study involved 6-65 year-old Italian patients with clinically relevant sensitization to house dust mites and positive response to nasal provocation challenge. Monomeric carbamylated allergoid was delivered once daily at the dose of 1000 AU or 2000 AU from June to September 2009, during the lowest level of mites exposure. Primary outcomes were the change of the threshold of allergen concentration for a positive nasal provocation test (NPT) before and after the treatment and the product safety. Secondary outcome was the change  in the mean percentage fall of peak nasal inspiratory flow (PNIF) following nasal challenge. Results. Thirty-four patients were enrolled. Fifteen in group 1 and 14 in group 2 concluded the study. After 12 weeks all patients treated in group 1 and all but one in group 2 showed an increase in the threshold dose provoking a positive NPT. Those with no symptoms onset with the highest dose delivered were 80% in group 1 and 78.6% in group 2 (p=0.92). From first to second challenge, the mean percentage fall of PNIF  was reduced with no statistical difference between groups (p=0.95), and with no difference between the final mean percentage falls (p=0.65). No serious adverse reactions occurred and the frequency of events, all mild, was similar in the two groups. Conclusions. Twelve weeks of carbamylated sublingual allergoid

  14. Effects of an acute therapeutic or rewarding dose of amphetamine on acquisition of Pavlovian autoshaping and ventral striatal dopamine signaling.

    Science.gov (United States)

    Schuweiler, D R; Athens, J M; Thompson, J M; Vazhayil, S T; Garris, P A

    2018-01-15

    Rewarding doses of amphetamine increase the amplitude, duration, and frequency of dopamine transients in the ventral striatum. Debate continues at the behavioral level about which component of reward, learning or incentive salience, is signaled by these dopamine transients and thus altered in addiction. The learning hypothesis proposes that rewarding drugs result in pathological overlearning of drug-predictive cues, while the incentive sensitization hypothesis suggests that rewarding drugs result in sensitized attribution of incentive salience to drug-predictive cues. Therapeutic doses of amphetamine, such as those used to treat attention-deficit hyperactivity disorder, are hypothesized to enhance the ventral striatal dopamine transients that are critical for reward-related learning and to enhance Pavlovian learning. However, the effects of therapeutic doses of amphetamine on Pavlovian learning are poorly understood, and the effects on dopamine transients are completely unknown. We determined the effects of an acute pre-training therapeutic or rewarding amphetamine injection on the acquisition of Pavlovian autoshaping in the intact rat. We also determined the effects of these doses on electrically evoked transient-like dopamine signals using fast-scan cyclic voltammetry in the anesthetized rat. The rewarding dose enhanced the amplitude and duration of DA signals, caused acute task disengagement, impaired learning for several days, and triggered incentive sensitization. The therapeutic dose produced smaller enhancements in DA signals but did not have similar behavioral effects. These results underscore the necessity of more studies using therapeutic doses, and suggest a hybrid learning/incentive sensitization model may be required to explain the development of addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling low-dose-rate effects in irradiated bipolar-base oxides

    International Nuclear Information System (INIS)

    Graves, R.J.; Cirba, C.R.; Schrimpf, R.D.; Milanowski, R.J.; Saigne, F.; Michez, A.; Fleetwood, D.M.; Witczak, S.C.

    1997-02-01

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in BJTs. Simulations show that space charge limited transport is partially responsible for the low-dose-rate enhancement

  16. Individually dosed omalizumab: an effective treatment for severe peanut allergy.

    Science.gov (United States)

    Brandström, J; Vetander, M; Lilja, G; Johansson, S G O; Sundqvist, A-C; Kalm, F; Nilsson, C; Nopp, A

    2017-04-01

    Treatment with omalizumab has shown a positive effect on food allergies, but no dosages are established. Basophil allergen threshold sensitivity (CD-sens) can be used to objectively measure omalizumab treatment efficacy and correlates with the outcome of double-blind placebo-controlled food challenge to peanut. To evaluate whether individualized omalizumab treatment monitored by CD-sens could be an effective intervention for suppression of allergic reactions to peanut. Severely peanut allergic adolescents (n = 23) were treated with omalizumab for 8 weeks, and CD-sens was analysed before and after. Based on whether CD-sens was suppressed after 8 weeks, the patients either were subject to a peanut challenge or received eight more weeks with increased dose of omalizumab, followed by peanut challenge or another 8-week cycle of omalizumab. IgE and IgE-antibodies to peanut and its components were analysed before treatment. After individualized omalizumab treatment (8-24 weeks), all patients continued with an open peanut challenge with no (n = 18) or mild (n = 5) objective allergic symptoms. Patients (n = 15) needing an elevated omalizumab dose (ED) to suppress CD-sens had significantly higher CD-sens values at baseline 1.49 (0.44-20.5) compared to those (n = 8) who managed with normal dose (ND) 0.32 (0.24-5.5) (P omalizumab, monitored by CD-sens, is an effective and safe treatment for severe peanut allergy. The ratio of IgE-ab to storage protein Ara h 2/IgE as well as CD-sens to peanut may predict the need of a higher omalizumab dose. Clinical trials numbers: EudraCT; 2012-005625-78, ClinicalTrials.gov; NCT02402231. © 2016 John Wiley & Sons Ltd.

  17. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  18. PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT

    International Nuclear Information System (INIS)

    Pfluger, Thomas; Schneider, Vera; Fougere, Christian la; Bartenstein, Peter; Weiss, Mayo; Melzer, Henriette Ingrid; Coppenrath, Eva; Berking, Carola

    2011-01-01

    The aim of this study was to evaluate the diagnostic value of contrast-enhanced CT (CECT) versus non-enhanced low-dose CT (NECT) in the staging of advanced malignant melanoma with 18 F-fluordeoxyglucose (FDG) positron emission tomography (PET)/CT. In total, 50 18 F-FDG PET/CT examinations were performed in 50 patients with metastasized melanoma. For attenuation correction, whole-body NECT was performed followed by diagnostic CECT with contrast agent. For the whole-body PET, 18 F-FDG was applied. Criteria for evaluation were signs of vital tumour tissue (extent of lesions, contrast enhancement, maximum standardized uptake value >2.5). Findings suspicious for melanoma were considered lesions. NECT, CECT and 18 F-FDG PET were evaluated separately, followed by combined analysis of PET/NECT and PET/CECT. Findings were verified histologically and/or by follow-up (>6 months). Overall, 232 lesions were analysed, and 151 proved to be metastases. The sensitivity of NECT, CECT, PET, PET/NECT and PET/CECT was 62, 85, 90, 97 and 100%, and specificity was 52, 63, 88, 93 and 93%, respectively. Compared to CECT, NECT obtained additional false-negative results: lymph node (n = 19) and liver/spleen metastases (n = 9). Misinterpreted physiological structures mainly caused additional false-positive findings (n = 17). In combined analysis of PET/NECT, six false-positive [other tumours (n = 2), inflammatory lymph nodes (n = 2), inflammatory lung lesion (n = 1), blood vessel (n = 1)] and five false-negative findings [liver (n = 3), spleen (n = 1), lymph node metastases (n = 1)] remained. On PET/CECT, six false-positive [inflammatory lymph nodes (n = 3), other tumours (n = 2), inflammatory lung lesion (n = 1)] and no false-negative findings occurred. However, additional false findings on PET/NECT (6 of 232) did not change staging compared to PET/CECT. Our results indicate that it is justified to perform PET/NECT instead of PET/CECT for melanoma staging. (orig.)

  19. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  20. Plastic packaging and burn-in effects on ionizing dose response in CMOS microcircuits

    International Nuclear Information System (INIS)

    Clark, S.D.; Bings, J.P.; Maher, M.C.; Williams, M.K.; Alexander, D.R.; Pease, R.L.

    1995-01-01

    Results are reported from an investigation of the effects of packaging and burn-in on the post-irradiation performance of National Semiconductor 54AC02 Quad 2-input NOR gates. The test population was drawn from a single wafer fabricated in the National process qualified under Mil-Prf-38535 to an ionizing radiation hardness of 100 krads(Si). The test sample was divided between plastic and ceramic packages. Additionally, half of the plastic samples and half of the two ceramic samples received a 168 hour/125 C burn-in. Two irradiation schemes were used. The first followed Mil-Std-883 Method 1019.4 (dose rate = 50 rads(Si)/s). The second used a low dose rate (0.1 rads(Si)/s). AC, DC, transfer function and functional behavior were monitored throughout the tests. Significant differences among the package types and burn-in variations were noted with the plastic, burned-in components demonstrating enhanced degradation. They show the worst post-irradiation parameter values as well as very broad post-irradiation parameter distributions. Degradation is highly dependent upon dose rate and anneal conditions. Two different radiation induced leakage paths have been identified, and their characteristics have been correlated to variations in high dose rate and low dose rate circuit performance. Caution is recommended for system developers to ensure that radiation hardness characterization is performed for the same package/burn-in configuration to be used in the system

  1. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2009-01-01

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  2. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2009-09-15

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  3. Effect of low doses of ionizing radiation on human health

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1990-01-01

    Data are reported on the possible mechanism of biological effects of low doses of ionizing radiation on the human body. The lesioning effect of this radiation resulted in some of the persons in the development of disorders of the function of information and vegetative-regulatory systems determined as a desintegration syndrome. This syndrome is manifested in unspecific neuro-vegetative disorders of the function of most important physiological and homeostatic system of the body leading to weakening of the processes of compensation and adaptation. This condition is characterized by an unspecific radiation syndrome as distinct from acute or chronic radiation disease which is a specific radiation syndrome

  4. UV dose-effect relationships and current protection exposure standards

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-04-01

    In this paper we have attempted to quantify the health effects in man of uv-radiation exposure of wavelengths from 240 nm to 320 nm. Exposure to uv in this region could result in the formation of skin cancer or premature aging in man. The induction of cancer by uv radiation results from changes in genetic material. We have used the DNA action spectrum coupled with the uv skin cancer data available in the literature to derive the dose-effect relationships. The results are compared against the current uv protection standards

  5. The effect of gamma dose on the PADC detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    The effect of irradiation by 6 0C O gamma rays in the range 0-60 K gray has been examined on CR-39 SSNTDs. The fission fragment tracks diameter were measured using an optical microscope, the bulk etching rate was calculated using the equation V B = D/2 t. The results indicate that, the track diameter is seen increase slowly in the range 0-60 K gray. The bulk etching rate increases almost linearly as the given gamma dose increases up to (22.5 K Gray), at higher doses the bulk etching rate increases exponentially. The exposure of the CR-39 to gamma rays could sensitize the CR-39 plastic and thus improve the Z/P threshold for track registration

  6. The biological bases of the dose-effect relationship

    International Nuclear Information System (INIS)

    Lafuma, J.

    2001-01-01

    In radiation protection, the recent data in epidemiology, in animal experimentation and on the base researches are no more compatible with a linear dose-effect relationship without threshold and do not account for the radiological risks at low doses. The cancers should be accelerated by radiations as any pathology linked to the ageing and for which threshold exit. Relative to the genetic risk it is known today that the natural exposure that lasts for several generations has not lead excess of hereditary illness as it was to be feared in 1959 for several countries. Considering that for populations the exposure levels induced by human activities have already been, under these ones of average natural exposures the genetic risk can be negligible and it is the somatic risk alone, with its thresholds that has to be into account. (N.C.)

  7. The effects of chronic low dose irradiation on drosophila melanogaster

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Moskalev, A.A.; Shaposhnikov, M.V.; Yuraneva, I.N.; Taskaev, A.I.

    2001-01-01

    It was investigated the influence of the chronic gamma-irradiation in the dose rate of 0.17 cGy/h on the rate of genetic variability and on the life-span in the laboratory strains of Drosophila melanogaster with genotypic distinguishes in mobile genetic elements and defects in the DNA repair processes. It is shown that the radiation-induced alteration of the traits under study depends from genotype of investigated strains. In the different strains we have observed an increase as well as a decrease of the mutation rate and life-span. Also it was established that irradiation leads to the frequencies of the GD-sterility and mutability of the snw and h(w+) in the P-M and H-E dysgenic crosses. The obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation. (author)

  8. Genetic effects of low-dose irradiation in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Zajnulin, V.G.; Shaposhnikov, M.V.; Yuraneva, I.N.

    2000-01-01

    Influence of chronic γ-irradiation at the dose rate of 0.17 cGy/h on the rate of genetic variability in the laboratory strains of Drosophila Melanogaster with genotypic distinguishes by families of mobile genetic elements and of systems of hybrid disgenesis and also violations in reparation processes control mechanisms. It was shown that the rates of induction of recessive lethal mutations depended on genotype of investigated strains. In the different strains an increase as well as a decrease of the mutation rate were observed. Also in was established that irradiation leads to the increase in frequencies of the gonads sterility and mutability of the sn w and h(w + ) in the P-M and H-E dysgenic crosses. Obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation [ru

  9. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark...... approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  10. Pulse and integral optically stimulated luminescence (OSL). Similarities and dissimilarities to thermoluminescence (TL) dose dependence and dose-rate effects

    International Nuclear Information System (INIS)

    Chen, R.; Leung, P.L.

    2000-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (Tl) are two possible methods to monitor the absorbed radiation in solid samples, and therefore are utilized for dosimetry. For this application, two properties are desirable, namely, linear dose dependence of the measured quantity and dose-rate independence. For Tl, different kinds of super linear dose dependence have been reported in the literature in different materials, and in some cases, dose-rate dependence has also been found. These have been explained as being the result of competition. In OSL, some recent works reported on super linear dose dependence in annealed samples. In the present work, we explain the possible occurrence of these phenomena in OSL by solving numerically the relevant rate equations governing the process during irradiation, relaxation and read-out (heating or light stimulation). The results show that for short pulse OSL, quadratic dose dependence can be expected when only one trapping state and one kind of recombination center are involved and when the excitation starts with empty traps and centers. With the short pulse OSL, the calculation also reveals a possible dose-rate effect. Under the same circumstances, the area under the OSL curve depends linearly on the dose. The dependence of the whole area under the OSL curve on the dose is shown to be super linear when a disconnected trapping state or radiationless center take part in the process. Also, dose-rate effect can be expected in these cases, although no experimental effect of this sort has been reported so far. In pulse OSL, the analogy is made between the measured intensity and the initial rise range of non-first order Tl, whereas for the total area OSL, there is a nearly full analogy with the dose behavior of the Tl maximum. (Author)

  11. Enhancement effect of irradiation by methotrexate

    International Nuclear Information System (INIS)

    Shehata, W.M.; Meyer, R.L.

    1980-01-01

    Three cases are described in which complications developed which were believed to be due to the enhancement effect of irradiation by methotrexate during the course of therapy for lung, kidney, and bladder cancer. These included esophageal and large bowel complications. In two of these cases, the patients improved with conservative therapy

  12. A new study on the effects of low doses

    International Nuclear Information System (INIS)

    Dousset, M.; Jammet, H.

    1986-01-01

    A study conducted by prof. Rose has investigated mortality among 39540 employees of the UKAEA, from 1946 to 1978. The three main points are: 1. General mortality and mortality from malignant diseases are lower than in the population of England and Wales (74 and 79 per cent respectively), thus showing no major difference between workers monitored for exposure to radiation and other workers. 2. For monitored workers, the only death cause for which there is a statistically significant correlation with radiation exposure is prostate cancer; there are many cases especially in workers with doses exceeding 0.05 Sv (5 rem) and monitored for tritium. Such a correlation has never been found in any other epidemiologic survey of workers exposed to low-level doses, Hanford (USA) workers especially; conversely, mortality from either multiple myeloma or pancreas cancer is not found here. These facts plead for a cautious interpretation of the results as a whole. 3. A linear representation of the variations of leukemia and cancer mortality vs exposure results in lines, the slopes of which are 3 times higher than those of the lines adopted by ICRP; however, the 95% confidence intervals (-2.7 + 12.4 and -22 + 52.5) are such that the results are compatible with a null effect (slope 0) and even with a benefic effect (negative slope). They are therefore compatible with ICRP estimations. A recent attempt to evaluate the two main investigations on low-dose occupational exposures (UKAEA and Hanford) suggests a dose-response relationship very near that of ICRP [fr

  13. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  14. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  15. Evaluation of radiation dose in chest scan with enhanced dual-source computed tomography in children with congenital heart disease

    International Nuclear Information System (INIS)

    Hou Zhihui; Lu Bin; Tang Xiang; Han Lei

    2011-01-01

    Objective: To evaluate the radiation dose from enhanced dual-source computed Tomography (DSCT) scan on children with congenital heart disease (CHD). Methods: Seventy children with CHD, age from 1 month to 8 years old, were scanned with enhanced DSCT. Children were divided by age into 5 years old group. The differences among three groups were tested by F test. Then, the SNK test was used to compare the difference between each group. Multiple linear regression analysis was used to test the relationship of dose length product (DLP) with the age, weight, voltage, current, pitch and scan sheet. Results: The average value of DLP was (144.46± 74.07) mGy·cm for all the 70 cases, and that of effective does (ED) was (4.68±2.34) mSv. There were significant differences of DLP among the 3 groups [ 5 years (208.00±73.87) mGy · cm, F=8.26, P=0.0009]. The SNK test showed statistical differences of DLP between 5 years old group (q=5.21, 6.52, P=0.009, 0.004). The difference of DLP between 1-5 years old group and > 5 years old group did not reach significant (q=0.28, P=0.48). The differences of ED was not statistically significant among the three groups [ 5 years (3.74±1.33) mSv, F=0.54, P=0.59]. DLP was positively correlated with age (4.3 years, r=0.54186, P=0.0008), weight (12.1 kg, r=0.56371, P=0.0004), voltage [(95.48±6.99) kV, r=0.63269, P<0.01], current [(138.55±40.67) mA, r=0.79608, P< 0.0001] and scan sheet (236.10±46.51, r=0.72192, P<0.01). DLP was negative correlated with pitch (0.48±0.03, r=-0.46693, P=0.0047). Conclusion: Higher DLP was observed in children over 1 year old under enhanced DSCT scan, but ED was not statistically significant among the three groups due to the higher K value in the children under 1 year old. (authors)

  16. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  17. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  18. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  19. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  20. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  1. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  2. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS)

    Bly, R.; Jaervinen, H.; Jahnen, A.; Olerud, H.; Vassileva, J.; Vogiatzi, S.

    2015-01-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547 500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605 000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30 700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31 100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. (authors)

  3. Aortic and hepatic enhancement at multidetector CT: Evaluation of optimal iodine dose determined by lean body weight

    International Nuclear Information System (INIS)

    Kondo, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Watanabe, Haruo; Onozuka, Minoru; Moriyama, Noriyuki; Bae, Kyongtae T.

    2011-01-01

    Purpose: To determine the optimal iodine dose for aortic and hepatic enhancement at MDCT by comparing lean body weight (LBW) with total body weight (TBW). Materials and methods: This study was approved by our institutional review committee. One hundred and thirty-six patients were randomized into four groups: 550, 650, 750 mg iodine/(kg of LBW) and 600 mgI/(kg of TBW). The aortic and hepatic contrast enhancements (ΔHUs) during the portal venous-phase and variances of ΔHUs were compared. Results: Mean ΔHUs for 550, 650, 750 mgI/kg LBW and 600 mgI/kg TBW were: 95.1, 109.9, 122.4, and 131.2 HU, respectively, for the aorta. For the liver, 43.1, 55.4, 60.8, and 63.5 HU. Mean ΔHUs increased with iodine dose per kg LBW (p < 0.01), but no significant difference between 750 mgI/kg LBW and 600 mgI/kg TBW groups. Hepatic enhancement increased by ≥50 HU in 94% of patients with 750 mg/kg LBW. Variance of hepatic enhancement was marginally greater in the 600 mgI/kg TBW than in the 550 and 750 mgI/kg LBW. Conclusion: Hepatic enhancement variation was reduced with iodine doses based on LBW. Iodine dose of 750 mg iodine/kg LBW was appropriate to achieve hepatic enhancement ≥50 HU in 94% of patients.

  4. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  5. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  6. Studies on chronic effects of lower dose level irradiation

    International Nuclear Information System (INIS)

    Yun, T.G.; Yun, Y.S.; Yun, M.S.

    1980-01-01

    This experiment is being carried out to elucidate the chronic effects of Co 60 (γ-ray) - low doses irradiation on JCR mice at 3rd week, 6th week, and 5th month after their birth. Experimental mice at 3rd week of age have been irradiated with Co 60 - 60mR weekly, Co 60 - 500mR weekly and Co 60 - 61R biweekly at the dose rate of 60mR per second for 23 weeks until now. Co 60 - 61R irradiated mice were subdivided into Co 60 - alone group and Co 60 combined with red ginseng extracts group. In their survivor's rate and their body weight etc., no significant differences between control groups and test groups in these experimental mice. Experimented mice at 6 weeks and 5 months of age are also being irradiated with Co 60 in the same doses as the above for 14 weeks and 8 weeks until present. In these experimental groups, there are also no significant differences between control groups and experimental groups in their survivor's rate and their body weight

  7. Use of nonlinear dose-effect models to predict consequences

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models

  8. Health effects and radiation dose from exposure to radon indoors

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1998-01-01

    Radon exposure has been declared a health hazard by several organisations, for example the International Commission on Radiological Protection (ICRP) and the World Health Organisation (WHO). The basis for the risk estimate has been the results from epidemiological studies on miners exposed to radon, supported by the results of residential epidemiology. Only few of the many residential epidemiological studies carried out hitherto have a design applicable for a risk estimate. The largest is the Swedish national study but several large well designed studies are ongoing. An excess risk has also been found in animal research. The model describes smoking and radon exposure as between additive and multiplicative, found in both miners and residential studies. The relatively few non-smokers among the miners and also among the residents give a problem at estimating the radon risk for these groups. It would also be desirable to know more about the importance of the age and the time period at exposure. Lung dose calculations from radon exposure are not recommended by ICRP in their publication 66. For comparison with other radiation sources the ICRP recommends the concept 'dose conversion convention' obtained as the risk estimate divided by the detriment. Other effects of radon exposure than lung cancer have not been shown epidemiologically, but dose calculations indicate an excess risk of about 5% of the excess lung cancer risk. (author)

  9. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  10. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  11. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  12. Interface effects on dose distributions in irradiated media

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1980-01-01

    It has long been recognized that nonuniformities in dose distributions may occur in the immediate vicinity of a boundary between two different media. Considerable work has been done to determine interface effects in media irradiated by photons or in media containing β- or α-particle emitters. More recently interface effects have become of interest in additional problems, including pion radiotherapy and radiation effects in electronic microcircuits in space vehicles. These problems arise when pion capture stars or proton-nucleus interactions produce a spectrum of charged nuclear fragments near an interface. The purpose of this paper is to examine interface effects in detail as to their specific origin. We have made Monte Carlo calculations of dose distributions near an interface in a systematic way for a number of idealized cases in order to indicate the separate influences of several factors including different stopping powers of the two media, nonconstancy (e.g., Bragg peak) in the energy loss curve for the particles, different particle spectra in the two media, and curvature of the boundary between the two media

  13. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  14. ESTIMATION OF THE CONVERSION COEFFICIENTS FROM DOSE-AREA PRODUCT TO EFFECTIVE DOSE FOR BARIUM MEAL EXAMINATIONS FOR ADULT PATIENTS

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2018-01-01

    Full Text Available Fluoroscopic examinations of the upper gastro-intestinal tract and, especially, barium meal examinations, are commonly performed in a majority of hospitals. These examinations are associated both with substantial individual patient doses and contribution to the collective dose from medical exposure. Effective dose estimation for this type of examinations is complicated due to: 1 the necessity to simulate the moving X-ray irradiation field; 2 differences in study structure for the individual patients; 3 subjectivity of the operators; and 4 differences in the X-ray equipment. The aim of the current study was to estimate conversion coefficients from dose-area product to effective dose for barium meal examinations for the over couch and under couch exposure conditions. The study was based on data collected in the X-ray unit of the surgical department of the St-Petersburg Mariinsky hospital. A model of patient exposure during barium meal examination was developed based on the collected data on fluoroscopy protocols and adult patient irradiation geometry. Conversion coefficients were calculated using PCXMC 2.0 software. Complete examinations were converted into a set of typical fluoroscopy phases and X-ray images, specified by the examined anatomical region and the projection of patient exposure. Conversion coefficients from dose-area product to effective dose were calculated for each phase of the examination and for the complete examination. The resulting values of the conversion coefficients are comparable with published data. Variations in the absolute values of the conversion coefficients can be explained by differences in clinical protocols, models for the estimation of the effective dose and parameters of barium meal examinations. The proposed approach for estimation of effective dose considers such important features of fluoroscopic examinations as: 1 non-uniform structure of examination, 2 significant movement of the X-ray tube within a single

  15. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  16. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Metivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Moeller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h -1 ) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h -1 ), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-transformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. (authors)

  17. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dos...

  18. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2009-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  19. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2008-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  20. Effects of nilotinib on regulatory T cells: the dose matters

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Background Nilotinib is a tyrosine kinase inhibitor with high target specificity. Here, we characterized the effects of nilotinib for the first time on CD4+CD25+ regulatory T cells (Tregs which regulate anti-tumor/leukemia immune responses. Design and Methods Carboxyfluorescein diacetate succinimidyl ester (CFSE and 5-bromo-2-deoxy -uridine (BrdU were used to assess the proliferation and cell cycle distribution of Tregs. The expression of the transcription factor forkhead box P3 (FoxP3 and the glucocorticoid-induced tumor necrosis factor receptor (GITR were measured by flow cytometry. Western blotting analysis was used to detect the effects of nilotinib on the signal transduction cascade of T-cell receptor (TCR in Tregs. Results Nilotinib inhibited the proliferation and suppressive capacity of Tregs in a dose-dependent manner. However, the production of cytokines secreted by Tregs and CD4+CD25- T cells was only inhibited at high concentrations of nilotinib exceeding the mean therapeutic serum concentrations of the drug in patients. Only high doses of nilotinib arrested both Tregs and CD4+CD25- T cells in the G0/G1 phase and down-regulated the expression of FoxP3 and GITR. In western blotting analysis, nilotinib did not show significant inhibitory effects on TCR signaling events in Tregs and CD4+CD25- T cells. Conclusions These findings indicate that nilotinib does not hamper the function of Tregs at clinical relevant doses, while long-term administration of nilotinib still needs to be investigated.

  1. Dose, time and volume effects in interstitial radiation therapy

    International Nuclear Information System (INIS)

    Burgers, J.M.V.

    1982-01-01

    This study presents the main features and uncertainties of interstitial therapy and was undertaken to examine whether differences could be found in different clinical situations treated by interstitial implants with removable sources, that were not simply related to dose. In chapter 2, dating from 1978, continuous low dose rate irradiation is discussed from the radiobiological point of view together with some points related to variation in dose rate. A benefit of continuous low dose rate irradiation could be surmised in a few situations with special cell-kinetic properties. The problem of dose specification, the sharp dose gradient and other volume characteristics are discussed in chapter 3. Possible adjustments to variations in dose rate are discussed in chapter 4. The clinical material is reviewed in chapter 5, including aspects of dose specification, dose fall-off and variation in dose rate. The general discussion and conclusions are given in chapter 6. (Auth.)

  2. High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Tahereh Safari

    2015-01-01

    Full Text Available Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R- mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by 45.7±1.9% in estradiol-treated rats but only by 27.3±5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen.

  3. A consideration of low dose radiation effects on human health

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Imaoka, Tatsuhiko; Kakinuma, Shizuko

    2011-01-01

    On March 11, 2011, an earthquake categorized as 9 Mw occurred off the northeast coast of Japan. The subsequent destructive tsunami disabled emergency units of Fukushima Dai'ichi Nuclear Power Plant and caused partial meltdown of reactors and explosions. Resulting radiation releases forced large evacuations, bore concerns about food and water and fears against human health. In this manuscript, we described the effect of radiation, especially low dose radiation below 100 mSv, on cancer risk, focusing on fetuses and children. (author)

  4. Effect of source term composition on offsite doses

    International Nuclear Information System (INIS)

    Karahalios, P.; Gardner, R.

    1985-01-01

    The development of new realistic accident source terms has identified the need to establish a basis for comparing the impact of such source terms. This paper attempts to develop a generalized basis of comparison by investigating contributions to offsite acute whole body doses from each group of radionuclides being released to the atmosphere, using CRAC2. The paper also investigates the effect of important parameters such as regional meteorology, sheltering, and duration of release. Finally, the paper focuses on significant changes in the relative importance of individual radionuclide groups in PWR2, SST1, and a revision of the Stone and Webster proposed interim source term

  5. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  6. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  7. Efforts towards enhancing the quality of radiological services in Malaysia: review of patient dose surveys 1993-2007

    International Nuclear Information System (INIS)

    Hairuman, H.; Sapiin, B.; Muthuvelu, P.; Hatta, N.; Hambali, A.S.

    2008-01-01

    Full text: The Ministry of Health (MoH) Malaysia is continuously taking steps to improve the quality of radiological services provided by the public and private medical institutions. This is to ensure that optimum diagnostic information is obtained with the least exposure to patients as well as staff. Over the years, MOH has taken both administrative and legislative measures to enforce the various requirements under the Atomic Energy Licensing Act 1984. In order to further upgrade and enhance the quality, safety and efficacy of radiological services, implementation of the Quality Assurance Programme (QAP) has been made mandatory. Implementation of the QAP comprises certification of irradiating equipment, training of personnel (continuous professional education), film reject rate analysis and film auditing and assessment. All these particulars must be documented and submitted annually to the MoH in order to comply with licensing requirements. It is envisaged that with the implementation of QAP, the medical institutions will be able to institutionalise and internalise the culture of quality and safety in the applications of radiation in medicine. This implementation will indirectly result in reduction of dose to the patient and importantly in optimization the use of ionizing radiation in medicine. With the QAP in place a survey of doses to patient in 7 routine X-ray examinations was initiated in 1993 to provide a reference dose baseline in Malaysia. This was then followed by further dose surveys involving other modalities namely interventional radiology, mammography, adult chest and abdominal X-rays and computer tomography dose index (CTDI) for head and body phantom in CT scanner. The results of these dose surveys will be reviewed in this paper. The results of the mean entrance surface dose (ESD) (mGy) to patients in 7 routine X-ray examination done (1993 - 1995), the mean values of dose area product (DAP) (Gycm 2 ) for patient undergoing interventional radiology

  8. Dose enhancement in the neighborhood of foreign bodies of the skin due to electron irradiation. A Monte-Carlo study using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Bernd [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. of Radiation Research (ISF)

    2011-07-01

    Foreign bodies penetrate into the skin in the region of the hand very frequently. If they are amicrobic, they can get stuck in the skin and do no harm to the body in normal case. However, when handling with a radioactive material, like an Sr-90/Y-90 syringe for example, a stuck foreign body in a finger can lead to an enhanced absorbed dose in the neighbourhood of a few hundredths of millimetre of a foreign body, which just is in magnitude of a body cell. In the following, we shall investigate the dose enhancement effect of graphite, lead, and gold when embedded in soft tissue and irradiated with electrons. This case study focusses on the region close to the piece of metal (foreign body) without consideration for the depth in which the foreign body is located. It holds some other idealised assumptions (concerning vacuum, shape and size of foreign bodies, tissue composition, and direction of the radiation field) but still is near to real situations. Among others, this case study served to estimate the dose enhancement in the neighbourhood of a pike of lead located at the right forefinger of a member of our Institute of Radiation Research after an Sr-90/Y-90 irradiation. (orig.)

  9. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    Science.gov (United States)

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detecto