WorldWideScience

Sample records for dose brachytherapy analise

  1. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  2. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  3. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  4. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  5. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  6. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  7. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  8. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  9. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  10. High dose rate endobronchial brachytherapy - treatment technique

    International Nuclear Information System (INIS)

    Carvalho, Heloisa de Andrade; Aisen, Salim; Haddad, Cecilia Maria Kalil; Nadalin, Wladimir; Pedreira Junior, Wilson Leite; Chavantes, Maria Cristina

    1998-01-01

    High dose rate endobronchial brachytherapy is efficient in symptom relief due to obstructive endobronchial malignancies. However, it's role in survival improvement for patients with lung cancer is not yet established. The use of this treatment in increasing, specially in the developing countries. The purpose of this paper is to present the treatment technique used in the Radiotherapy Department of the Hospital da Clinicas, University of Sao Paulo, based on an experience of 60 cases treated with 180 procedures. Some practical suggestions and rules adopted in the Department are described. The severe complications rate is 6.7%, demonstrating an adequate patient selection associated with the technique utilized. (author)

  11. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  12. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  13. Brachytherapy dose measurements in heterogeneous tissues

    International Nuclear Information System (INIS)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H.; Rubo, R.

    2014-08-01

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  14. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  15. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte

    2006-01-01

    patients,       treated for recurrent rectal and cervical cancer, flexible catheters were       sutured intra-operatively to the tumour bed in areas with compromised       surgical margin. Both non-optimised, geometrically and graphically       optimised CT -based dose plans were made. The overdose index...... on the       regularity of the implant, such that the benefit of optimisation was       larger for irregular implants. OI and HI correlated strongly with target       volume limiting the usability of these parameters for comparison of dose       plans between patients. CONCLUSIONS: Dwell time optimisation significantly......BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  16. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  17. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  18. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  19. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  20. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  1. Dose determination in breast tumor in brachytherapy using Iridium-192

    International Nuclear Information System (INIS)

    Okuno, S.F.

    1984-01-01

    Thermoluminescent dosimetry studies in vivo and in vitro aiming to determing radiation dose in the breast tumor, in brachytherapy using Iridium-192 was done. The correlation between radiation doses in tumor and external surface of the breast was investigated for correcting the time interval of radiation source implantation. (author) [pt

  2. Breast conserving treatment of breast carcinoma T2 ({<=} 4 cm) and T3 by neoadjuvant chemotherapy, quadrantectomy, high dose rate brachytherapy as a boost, external beam radiotherapy and adjuvant chemotherapy: local control and overall survival analysis; Tratamento conservador do cancer de mama T2 ({<=} 4 cm) e T3 por quimioterapia neoadjuvante, quadrantectomia, braquiterapia com alta taxa de dose como reforco de dose, teleterapia complementar e quimioterapia adjuvante: analise de controle local e sobrevida global

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Celia Regina; Miziara Filho, Miguel Abrao; Fogaroli, Ricardo Cesar; Baraldi, Helena Espindola; Pellizzon, Antonio Cassio Assis; Pelosi, Edilson Lopes [Instituto do Cancer Dr. Arnaldo Vieira de Carvalho (ICAVC), Sao Paulo, SP (Brazil). Servico de Radioterapia], e-mail: celiarsoares@terra.com.br; Fristachi, Carlos Elias [Instituto do Cancer Dr. Arnaldo Vieira de Carvalho (ICAVC), Sao Paulo, SP (Brazil). Servico de Onco-Ginecologia e Mastologia; Paes, Roberto Pinto [Instituto do Cancer Dr. Arnaldo Vieira de Carvalho (ICAVC), Sao Paulo, SP (Brazil)

    2008-12-15

    Objective: to assess the treatment of breast cancer T2 ({<=} 4 cm) and T3 through neoadjuvant chemotherapy, quadrantectomy and high dose rate brachytherapy as a boost, complementary radiotherapy and adjuvant chemotherapy, considering local control and overall survival. Material and method: this clinical prospective descriptive study was based on the evaluation of 88 patients ranging from 30 to 70 years old, with infiltrating ductal carcinoma, clinical stage IIb and IIIa, responsive to the neoadjuvant chemotherapy, treated from June/1995 to December/2006. Median follow-up was 58 months. Using clinical methods the tumor was evaluated before and after three or four cycles of chemotherapy based on anthracyclines. Overall survival and local control were assessed according to Kaplan-Meier methodology. Results: Local control and overall survival in five years were 90% and 73.5%, respectively. Conclusion: local control and overall survival were comparable to other forms of treatment. (author)

  3. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  4. Australian high-dose-rate brachytherapy protocols for gynaecological malignancy

    International Nuclear Information System (INIS)

    MacLeod, C.; Dally, M.; Stevens, M.; Thornton, D.; Carruthers, S.; Jeal, P.

    2001-01-01

    There is no consensus over the optimal dose fractionation schedules for high-dose-rate (HDR) brachytherapy used for gynaecological malignancy. In Australian public hospital departments of radiation oncology, HDR brachytherapy for gynaecological cancer is being more commonly used. A survey of public departments that are using this technology, or that plan to introduce this technology, was performed. Their current protocols are presented. In general, protocols are similar biologically; however, the practical aspects such as the number of fractions given do vary and may reflect resource restrictions or, alternatively, differences in interpretations of the literature and of the best protocols by clinicians. Copyright (2001) Blackwell Science Pty Ltd

  5. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High dose rate brachytherapy for the palliation of malignant dysphagia

    International Nuclear Information System (INIS)

    Homs, Marjolein Y.V.; Eijkenboom, Wilhelmina M.H.; Coen, Veronique L.M.A.; Haringsma, Jelle; Blankenstein, Mark van; Kuipers, Ernst J.; Siersema, Peter D.

    2003-01-01

    Background and purpose: High dose rate (HDR) brachytherapy is a commonly used palliative treatment for esophageal carcinoma. We evaluated the outcome of HDR brachytherapy in patients with malignant dysphagia. Material and methods: A retrospective analysis over a 10-year period was performed of 149 patients treated with HDR brachytherapy, administered in one or two sessions, at a median dose of 15 Gy. Patients were evaluated for functional outcome, complications, recurrent dysphagia, and survival. Results: At 6 weeks after HDR brachytherapy, dysphagia scores had improved from a median of 3 to 2 (n=104; P<0.001), however, dysphagia had not improved in 51 (49%) patients. Procedure-related complications occurred in seven (5%) patients. Late complications, including fistula formation or bleeding, occurred in 11 (7%) patients. Twelve (8%) patients experienced minor retrosternal pain. Median survival of the patients was 160 days with a 1-year survival rate of 15%. Procedure-related mortality was 2%. At follow-up, 55 (37%) patients experienced recurrent dysphagia. In 34 (23%) patients a metal stent was placed to relieve persistent or recurrent dysphagia. Conclusion: HDR brachytherapy is a moderately effective treatment for the palliation of malignant dysphagia. The incidence of early major complications is low, however, persistent and recurrent dysphagia occur frequently, and require often additional treatment

  7. Patient effective dose from endovascular brachytherapy with 192Ir Sources

    International Nuclear Information System (INIS)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L.

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 192 Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10 -2 mSv.GBq -1 .min -1 for lung, 0.9x10 -2 mSv.GBq -1 .min -1 for oesophagus and 0.48x10 -2 mSv.GBq -1 .min -1 for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10 -2 mSv.GBq -1 .min -1 for colon, 7.8x10 -2 mSv.GBq -1 .min -1 for stomach and 1.7x10 -2 mSv.GBq -1 .min -1 for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq -1 .min -1 , whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq -1 .min -1 ; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  8. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  9. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  10. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  11. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  12. Intravascular ultrasound based dose assessment in endovascular brachytherapy

    International Nuclear Information System (INIS)

    Catalano, Gianpiero; Tamburini, Vittorio; Colombo, Antonio; Nishida, Takahiro; Parisi, Giovanni; Mazzetta, Chiara; Orecchia, Roberto

    2003-01-01

    Background: the role of endovascular brachytherapy in restenosis prevention is well documented. Dose is usually prescribed at a fixed distance from the source axis by angiographic quantification of vessel diameter. Recently, intravascular ultrasound (IVUS) was introduced in dose prescription, allowing a better evaluation of the vessel anatomy. This study retrospectively explores the difference between prescription following angiographic vessel sizing and delivered dose calculated with IVUS. Methods and results: Seventeen lesions were studied with IVUS, identifying on irradiated segment, three sections on which measuring minimal and maximal distance from the centre of IVUS catheter to the adventitia; using dedicated software, corresponding doses were calculated. The dose ranged widely, with maximal and minimal values of 71.6 and 4.9 Gy; furthermore, heterogeneity in dose among different sections was observed. In the central section, the maximal dose was 206% of the one prescribed with the QCA model at 2 mm from the source axis, while the minimal dose was 96%. In proximal and distal sections, respective values were 182, 45, 243, and 122%. Conclusions: Our analysis confirmed the dose inhomogeneity delivered with an angiographic fixed-dose prescription strategy. A dose variation was found along the irradiated segment due to the differences in vessel thickness. IVUS emerged as an important tool in endovascular brachytherapy, especially for irregular-shaped vessels

  13. Routine quality control of high dose rate brachytherapy equipment

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S.; Almeida, Adelaide de; Rocha, Jose R. Oliveira

    2001-01-01

    A Quality Assurance program should be installed also for High Dose Rate brachytherapy, in the order to achieve a correct dose administration to the patient and for the safety to those involved directly with the treatment. The work presented here has the following purposes: Analyze the types of equipment tests presented by the official protocols (TG40, TG56 e ARCAL XXX), evaluate the brachytherapy routine tests of protocols from various national and international radiotherapy services and compare the latter with those presented in the official protocols. As a result, we conclude the following: TG56 presents a higher number of tests when compared to the other official protocols and most of the tests presented by the analyzed services are present in TG56. A suggestion for a basic protocol is presented, emphasizing the periodicity and tolerance level of each of the tests. (author)

  14. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  15. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  16. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  17. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  18. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  19. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  20. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  1. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  2. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  3. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  4. Braquiterapia de alta taxa de dose no Brasil High-dose rate brachytherapy in Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2004-10-01

    Full Text Available A braquiterapia de alta taxa de dose foi introduzida em nosso meio em janeiro de 1991. Desde então, houve uma mudança significativa na abordagem das neoplasias malignas em relação às vantagens do novo método, e também resolução da demanda reprimida de braquiterapia para as neoplasias ginecológicas. Nos primeiros dez anos de atividade, o Brasil tratou, em 31 serviços, 26.436 pacientes com braquiterapia, sendo mais de 50% das pacientes portadoras de neoplasias do colo uterino. Este estudo mostra o número e o perfil de pacientes tratados com esse método e a sua distribuição no território nacional, deixando explícito o benefício da braquiterapia de alta taxa de dose para o Brasil.High-dose rate brachytherapy was first introduced in Brazil in January 1991. Significant changes in the management of malignant neoplasms were observed since utilization of high-dose rate brachytherapy. The high number of gynecological patients awaiting for brachytherapy also decreased during this period. In the first ten years 26,436 patients were treated with high-dose rate brachytherapy. More than 50% of these patients presented neoplasms of the uterine cervix. In this study we present the number and profile of the patients treated with high-dose rate brachytherapy as well as the distribution of these patients in the Brazilian territory, proving the benefit of the use of high-dose rate brachytherapy in Brazil.

  5. Determining profile of dose distribution for PD-103 brachytherapy source

    International Nuclear Information System (INIS)

    Berkay, Camgoz; Mehmet, N. Kumru; Gultekin, Yegin

    2006-01-01

    Full text: Brachytherapy is a particular radiotherapy for cancer treatments. By destructing cancerous cells using radiation, the treatment proceeded. When alive tissues are subject it is hazardous to study experimental. For brachytherapy sources generally are studied as theoretical using computer simulation. General concept of the treatment is to locate the radioactive source into cancerous area of related tissue. In computer studies Monte Carlo mathematical method that is in principle based on random number generations, is used. Palladium radioisotope is LDR (Low radiation Dose Rate) source. Main radioactive material was coated with titanium cylinder with 3mm length, 0.25 mm radius. There are two parts of Pd-103 in the titanium cylinder. It is impossible to investigate differential effects come from two part as experimental. Because the source dimensions are small compared with measurement distances. So there is only simulation method. In dosimetric studies it is aimed to determine absorbed dose distribution in tissue as radial and angular. In nuclear physics it is obligation to use computer based methods for researchers. Radiation studies have hazards for scientist and people interacted with radiation. When hazard exceed over recommended limits or physical conditions are not suitable (long work time, non economical experiments, inadequate sensitivity of materials etc.) it is unavoidable to simulate works and experiments before practices of scientific methods in life. In medical area, usage of radiation is required computational work for cancer treatments. Some computational studies are routine in clinics and other studies have scientific development purposes. In brachytherapy studies there are significant differences between experimental measurements and theoretical (computer based) output data. Errors of data taken from experimental studies are larger than simulation values errors. In design of a new brachytherapy source it is important to consider detailed

  6. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  7. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  8. Manual method for dose calculation in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, Elizabeth A.; Almeida, Carlos E. de; Biaggio, Maria F. de

    1998-01-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author)

  9. Intravascular brachytherapy: a model for the calculation of the dose

    International Nuclear Information System (INIS)

    Pirchio, Rosana; Martin, Gabriela; Rivera, Elena; Cricco, Graciela; Cocca, Claudia; Gutierrez, Alicia; Nunez, Mariel; Bergoc, Rosa; Guzman, Luis; Belardi, Diego

    2002-01-01

    In this study we present the radiation dose distribution for a theoretical model with Montecarlo simulation, and based on an experimental model developed for the study of the prevention of restenosis post-angioplasty employing intravascular brachytherapy. In the experimental in vivo model, the atherosclerotic plaques were induced in femoral arteries of male New Zealand rabbits through surgical intervention and later administration of cholesterol enriched diet. For the intravascular irradiation we employed a 32P source contained within the balloon used for the angioplasty. The radiation dose distributions were calculated using the Monte Carlo code MCNP4B according to a segment of a simulated artery. We studied the radiation dose distribution in the axial and radial directions for different thickness of the atherosclerotic plaques. The results will be correlated with the biologic effects observed by means of histological analysis of the irradiated arteries (Au)

  10. High-dose-rate brachytherapy in uterine cervical carcinoma

    International Nuclear Information System (INIS)

    Patel, Firuza D.; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  11. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A

    1998-01-01

    PURPOSE: Pulsed dose rate (PDR) brachytherapy is a new treatment option permitting dose distribution optimization in interstitial implants. It possesses the advantage of equipment simplification and radiation protection to the staff, compared to the manually afterloading technique. This study pre...

  12. High dose rate brachytherapy in treatment of high grade astrocytomas

    International Nuclear Information System (INIS)

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  13. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer

    International Nuclear Information System (INIS)

    Oliveira, Jetro Pereira de; Batista, Delano Valdivino Santos; Bardella, Lucia Helena; Carvalho, Arnaldo Rangel

    2009-01-01

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  14. Phantom's construction for dose measurement in brachytherapy

    International Nuclear Information System (INIS)

    Tri Harjanto; Hidayat Joko Puspito; Joko Triyanto

    2009-01-01

    In nuclear medicine, dose rate validation is the key for a successful process in therapy and diagnose of any deases. Therefore, the brachytherapy equipment being designed and constructed is to be validated its dose rate received by the radiated object. A phantom for such validation purpose is designed and constructed as a correct as if on site geometrical position of sources. The design of phantom consists of seven layers of flexi glass plates: 10 mm thick, 105 mm wide, and 280 mm length. All the plates are to be holed according to the size of the applicator to be used. Every surface of the flexi glass layers is grooved 1 mm wide, 1 mm depth, and 10 mm distance between the groove. The applicator inside the phantom is positioned at a certain reference for measurement. Every TLD installed has a fix position toward the reference coordinate and has an index number. By this system of phantom, the isodose system can be plotted. (author)

  15. High and low dose-rate brachytherapy for cervical carcinoma

    International Nuclear Information System (INIS)

    Orton, C.G.

    1998-01-01

    For the brachytherapy component of the r[iation treatment of cervical carcinoma, high dose rate (HDR) is slowly replacing conventional low dose rate (LDR) due primarily to r[iation safety and other physical benefits attributed to the HDR modality. Many r[iation oncologists are reluctant to make this change because of perceived r[iobiological dis[vantages of HDR. However, in clinical practice HDR appears to be as effective as LDR but with a lower risk of late complications, as demonstrated by one randomized clinical trial and two comprehensive literature and practice surveys. The reason for this appears to be that the r[iobiological dis[vantages of HDR are outweighed by the physical [vantages. (orig.)

  16. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    Science.gov (United States)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  17. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  18. Spectroscopic characterization of low dose rate brachytherapy sources

    Science.gov (United States)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  19. Dose optimization in simulated permanent interstitial implant of prostate brachytherapy

    International Nuclear Information System (INIS)

    Faria, Fernando Pereira de

    2006-01-01

    Any treatment of cancer that uses some modality of radiotherapy is planned before being executed. In general the goal in radiotherapy is to irradiate the target to be treated minimizing the incidence of radiation in healthy surrounding tissues. The planning differ among themselves according to the modality of radiotherapy, the type of cancer and where it is located. This work approaches the problem of dose optimization for the planning of prostate cancer treatment through the modality of low dose-rate brachytherapy with Iodine 125 or Palladium 103 seeds. An algorithm for dose calculation and optimization was constructed to find the seeds configuration that better fits the relevant clinical criteria such as as the tolerated dose by the urethra and rectum and the desired dose for prostate. The algorithm automatically finds this configuration from the prostate geometry established in two or three dimensions by using images of ultrasound, magnetic resonance or tomography and from the establishment of minimum restrictions to the positions of the seeds in the prostate and needles in a template. Six patterns of seeds distribution based on clinical criteria were suggested and tested in this work. Each one of these patterns generated a space of possible seeds configurations for the prostate tested by the dose calculation and optimization algorithm. The configurations that satisfied the clinical criteria were submitted to a test according to an optimization function suggested in this work. The configuration that produced maximum value for this function was considered the optimized one. (author)

  20. Perioperative high dose rate (HDR brachytherapy in unresectable locally advanced pancreatic tumors

    Directory of Open Access Journals (Sweden)

    Brygida Białas

    2011-07-01

    Full Text Available Purpose: The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods: Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions: The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  1. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  2. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  3. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  4. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  5. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  6. Urethral stricture following high dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Sullivan, Lisa; Williams, Scott G.; Tai, Keen Hun; Foroudi, Farshad; Cleeve, L.; Duchesne, Gillian M.

    2009-01-01

    Purpose: To evaluate the incidence, timing, nature and outcome of urethral strictures following high dose rate brachytherapy (HDRB) for prostate carcinoma. Methods and materials: Data from 474 patients with clinically localised prostate cancer treated with HDRB were analysed. Ninety percent received HDRB as a boost to external beam radiotherapy (HDRBB) and the remainder as monotherapy (HDRBM). Urethral strictures were graded according to the Common Terminology Criteria for Adverse Events v3.0. Results: At a median follow-up of 41 months, 38 patients (8%) were diagnosed with a urethral stricture (6-year actuarial risk 12%). Stricture location was bulbo-membranous (BM) urethra in 92.1%. The overall actuarial rate of grade 2 or more BM urethral stricture was estimated at 10.8% (95% CI 7.0-14.9%), with a median time to diagnosis of 22 months (range 10-68 months). All strictures were initially managed with either dilatation (n = 15) or optical urethrotomy (n = 20). Second line therapy was required in 17 cases (49%), third line in three cases (9%) and 1 patient open urethroplasty (grade 3 toxicity). Predictive factors on multivariate analysis were prior trans-urethral resection of prostate (hazard ratio (HR) 2.81, 95% CI 1.15-6.85, p = 0.023); hypertension (HR 2.83, 95% CI 1.37-5.85, p = 0.005); and dose per fraction used in HDR (HR for 1 Gy increase per fraction 1.33, 95% CI 1.08-1.64, p = 0.008). Conclusions: BM urethral strictures are the most common late grade 2 or more urinary toxicity following HDR brachytherapy for prostate cancer. Most are manageable with minimally invasive procedures. Both clinical and dosimetric factors appear to influence the risk of stricture formation.

  7. Physics and quality assurance for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1995-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial as well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  8. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  9. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO)

    International Nuclear Information System (INIS)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-01-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  10. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  12. Calculations radiobiological using the quadratic lineal model in the use of the medium dose rate absorbed in brachytherapy. Pt. 3

    International Nuclear Information System (INIS)

    2002-01-01

    Calculations with the quadratic lineal model for medium rate using the equation dose-effect. Several calculations for system of low dose rate brachytherapy plus teletherapy, calculations for brachytherapy with medium dose rate together with teletherapy, dose for fraction and the one numbers of fractions in medium rate

  13. Results in patients treated with high-dose-rate interstitial brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Shirane, Makoto; Ueda, Tsutomu; Miyahara, Nobuyuki

    2006-01-01

    Eight patients were treated with high-dose-rate interstitial brachytherapy for oral tongue cancer between September 2000 and August 2004. The patient distribution was 1 T1, 5 T2, 1 T3, and 1 T4a. Patients received 50-60 Gy in 10 fractions over seven days with high-dose-rate brachytherapy. Six of the eight patients were treated with a combination of external beam radiotherapy (20-30 Gy) and interstitial brachytherapy. The two-year primary local control rate was 83% for initial case. High-dose-rate brachytherapy was performed safely even for an aged person, and was a useful treatment modality for oral tongue cancer. (author)

  14. Interstitial high-dose-rate brachytherapy in the treatment of base of tongue carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Takacsi-Nagy, Z.; Polgar, C.; Somogyi, A.; Major, T.; Fodor, J.; Nemeth, G. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Oberna, F. [Dept. of Maxillofacial Surgery, St. Rokus Hospital, Budapest (Hungary); Remenar, E.; Kasler, M. [Dept. of Head and Neck, Maxillofacial and Reconstructive Plastic Surgery, National Inst. of Oncology, Budapest (Hungary)

    2004-12-01

    Background and purpose: to date none of the studies examined the feasibility and efficacy of interstitial high-dose-rate (HDR) brachytherapy in the treatment of carcinoma of the tongue base. Therefore the aim of this study was to contribute to this issue. Patients and methods: between 1992 and 2000 37 patients (mean age 55 years) with T1-4 and NO-3 carcinoma of the base of tongue were presented. Neck dissection was carried out in twelve cases (32%). 30 patients with advanced stage received brachytherapy boost after 50-66.5 Gy (mean, 60 Gy) locoregional external beam irradiation (EBI) and 7 patients with early stage (T1-2, NO) were managed locally with wide tumor excision and sole brachytherapy. 4 of them underwent neck dissection and the others were subjected to 50 Gy regional EBI. The mean dose of boost and sole brachytherapy was 18 Gy and 28 Gy, respectively. Results: the median follow-up time for surviving patients was 51 months. The 7 sole brachytherapy patients are living with no evidence of disease. For patients treated with EBI and brachytherapy boost, the 5-year actuarial rate of local, locoregional recurrence-free and overall survival was 60%, 52% and 46%, respectively. For all patients in univariate analysis larger tumor size (T4 vs. T1-3) was significant negative predictor of local (RR: 7.23) and locoregional control (RR: 3.87), but nodal involvement was not. Delayed soft tissue ulceration and osteoradionecrosis occurred in 4 (13%) EBI and brachytherapy treated patients. None of the sole brachytherapy patients experienced severe late radiation toxicity. Conclusion: EBI combined with interstitial HDR brachytherapy boost result in acceptable local tumor control with low incidence of late side effects in patients with advanced disease. Fractionated sole HDR brachytherapy following tumor excision is a feasible treatment option for patients with early stage cancer and gives excellent local results. (orig.)

  15. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  16. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Directory of Open Access Journals (Sweden)

    Stefano Eduardo J

    2009-04-01

    Full Text Available Abstract Background The literature supporting high-dose rate brachytherapy (HDR in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52, local recurrence (p = 0.68, or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06 rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix

  17. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Science.gov (United States)

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  18. Medium-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Isohashi, Fumiaki; Oh, Ryoong-Jin

    2003-01-01

    The purpose of this study was to evaluate the results of medium-dose-rate (MDR) intracavitary brachytherapy (ICRT) for cervical cancer. Between May 1991 and March 2001, 80 patients with cervical cancer were treated with external radiotherapy combined with MDR-ICRT. Two patients were excluded from this study. The median age of patients was 61 years (range: 30-87 years). Seventy-five patients had pathologically proved squamous cell carcinoma, and 3 had adenocarcinoma. The patients were staged by Union Internationale Contre le Cancer (UICC) classification as follows: Stage IA (2), Stage IB (4), Stage IIA (5), Stage IIB (22), Stage IIIA (1), Stage IIIB (32), Stage IVA (5), Stage IVB (7). Median follow-up for survivor was 68 months (range: 12-131 months). The radiation therapy was based on a combination of ICRT and external pelvic irradiation. Patients with stages II, III and IVA were treated with whole-pelvic irradiation with respective total doses of 20, 30, and 40 Gy. Doses of 40, 30, 20, and 20 Gy parametrial irradiation were added with central shield pelvic irradiation for stages IB, II, III and IVA lesions respectively. For MDR-ICRT, from May 1991 to December 1995, point A dose were 40 Gy/4 fractions for stages I and II, 38 Gy/4 fractions for stage III, and 28.5 Gy/3 fractions for stage IVA. And from January 1996 to March 2001, point A dose of 36 Gy/4 fractions for stages I and II, 34 Gy/4 fractions for stage III, and 25.5 Gy/3 fractions for stage IVA. The median dose rate at point A was 1.7 Gy/hour (range: 1.3-2.2 Gy/hour). The 5-year cause-specific survival rates were 100%, 76%, 51% and 40% for stages I, II, III and IVA respectively. All patients with stage IVB died from the tumor with a median survival time of 12 months. The 5-year pelvic control rates were 100%, 88%, 69% and 40% for stages I, II, III and IVA respectively. Major late complications occurred in 2 patients (3%). One patient developed vesico- and recto-vaginal fistulae, and died of pelvic infection

  19. DuraSeal® as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H.

    2014-01-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal® polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal® was easy to use and, in spite of a clearance effect, useful in decreasing D 2cc rectal doses

  20. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  1. Efficacy of prophylactic single-dose therapy using fluoroquinolone for prostate brachytherapy

    International Nuclear Information System (INIS)

    Nomura, Takeo; Hirai, Kenichi; Yamasaki, Mutsushi; Inoue, Toru; Takahashi, Mika; Kawashima, Takayuki; Sato, Fuminori; Mimata, Hiromitsu

    2012-01-01

    There is little definitive evidence to guide the use of prophylactic antibiotics for prostate brachytherapy. The purpose of this study is to evaluate the incidence of postimplant infections in patients who receive antimicrobial prophylaxis with pazufloxacin (PZFX). A total of 84 patients who underwent prostate brachytherapy received a single intravenous dose of PZFX at 500 mg perioperatively for 1 day. No postimplant antibiotic medication was prescribed. Urinalysis, plasma white blood cell (WBC) count, and C reactive protein (CRP) levels were evaluated before the implantation, on the day after implantation, and on the 7th and 28th days after brachytherapy. None of the 84 patients (0.0%) developed a symptomatic urinary tract infection or had febrile infectious complications after brachytherapy. There were statistically significant elevations in the levels of erythrocytes, leukocytes, bacteria in urine, plasma WBC and CRP postoperatively, but these values did not exceed the normal range or were only slightly elevated on the day after brachytherapy (day 1) and on day 7. All laboratory examinations had returned to the normal range on day 28. Single-dose therapy with fluoroquinolone helps to prevent infections after prostate brachytherapy. (author)

  2. Determination of the dose of traffic in HDR brachytherapy with ALANINE/R PE technique

    International Nuclear Information System (INIS)

    Guzman Calcina, C. S.; Chen, F.; Almeida, A. de; Baffa, O.

    2001-01-01

    It determines, experimentally, the dose of traffic in brachytherapy for High Dose Rate (HDR), using for the first-time the Electronic Paramagnetic Resonance (EPR) technique with alanine detectors. The value obtained is the published next to obtained using lithium fluoride thermoluminescent dosimeters [es

  3. Construction balance analysis of dose rate medium brachytherapy TDS

    International Nuclear Information System (INIS)

    Sandi Parapak

    2011-01-01

    One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient. (author)

  4. In vivo dosimetry with semiconductors in medium dose rate (MDR) brachytherapy for cervical cancer.

    Science.gov (United States)

    Allahverdi, Mahmoud; Jaberi, Ramin; Aghili, Mehdi; Ghahremani, Fatemeh; Geraily, Ghazale

    2013-03-01

    This study was performed to evaluate the role of in vivo dosimetry with semiconductor detectors in gynaecological medium dose rate brachytherapy, and to compare the actual doses delivered to organs at risk (as measured using in vivo dosimetry) with those calculated during treatment planning. Doses to the rectum and bladder were measured in a group of patients with cervical carcinoma using semiconductor detectors and compared to the doses calculated using a treatment planning system. 36 applications of brachytherapy at dose rates of 1.8-2.3 Gy/h were performed in the patients. The mean differences between the measured and calculated doses were 3 % for the rectum and 11 % for the bladder. The main reason for the differences between the measured and calculated doses was patient movement. To reduce the risk of large errors in the dose delivered, in vivo dosimetry should be performed in addition to treatment planning system computations.

  5. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  6. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions regarding clinical significance.

  7. Retrospective analysis of dose delivery in intra-operative high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Oh, M.; Avadhani, J.S.; Malhotra, H.K.; Cunningham, B.; Tripp, P.; Jaggernauth, W.; Podgorsak, M.B.

    2007-01-01

    Background. This study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in intra-operative high dose rate (IOHDR) brachytherapy. Methods. Treatment plans of 10 patients previously treated in our facility, which had irregular shapes of treated areas, were used. Treatment geometries reflecting each clinical case were simulated using a phantom assembly with no added build-up on top of the applicator. The treatment planning geometry (full scatter surrounding the applicator) was subsequently simulated for each case by adding bolus on top of the applicator. Results. For geometries representing the clinical IOHDR incomplete scatter environment, measured doses at the 5 mm and 10 mm prescription depths were lower than the corresponding prescribed doses by about 7.7% and 11.1%, respectively. Also, for the two prescription methods, an analysis of the measured dose distributions and their corresponding treatment plans showed average decreases of 1.2 mm and 2.2 mm in depth of prescription dose, respectively. Conclusions. Dosimetric calculations with the assumption of an infinite scatter environment around the applicator and target volume have shown to result in dose delivery errors that significantly decrease the prescription depth for IOHDR treatment.(author)

  8. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  9. Salvage high-dose-rate brachytherapy for local prostate cancer recurrence after radical radiotherapy

    Directory of Open Access Journals (Sweden)

    V. A. Solodkiy

    2016-01-01

    Full Text Available Studies salvage interstitial radiation therapy for recurrent prostate cancer, launched at the end of the XX century. In recent years, more and more attention is paid to high-dose-rate brachytherapy (HDR-BT as a method of treating local recurrence.The purpose of research – preliminary clinical results of salvage high-dose-rate brachytherapy applied in cases of suspected local recurrence or of residual tumour after radiotherapy.Preliminary findings indicate the possibility of using HDR-BT, achieving local tumor control with low genitourinary toxicity.

  10. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    International Nuclear Information System (INIS)

    Friedman, Lois C.; Abdallah, Rita; Schluchter, Mark; Panneerselvam, Ashok; Kunos, Charles A.

    2011-01-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  11. Curative high dose rate vaginal apex brachytherapy in stage I papillary serous carcinoma of the endometrium

    International Nuclear Information System (INIS)

    Turner, B.C.; Kacinski, B.M.; Gumbs, A.; Peschel, R.E.; Haffty, B.G.; Wilson, L.D.

    1996-01-01

    Introduction: Uterine papillary serous carcinoma (UPSC) is a morphologically distinct variant of endometrial carcinoma that is associated with a poor prognosis, high recurrence rate, clinical understaging, and poor response to salvage treatment. We describe the presentation, local and distant control, survival, salvage rate, and complications for patients undergoing whole abdominal radiation therapy (WART), low dose rate (LDR) intracavitary brachytherapy, or high dose rate (HDR) vaginal brachytherapy in patients with stage I UPSC. Methods: Between 1976 and 1994 more than 1700 patients with endometrial carcinoma were treated with radiation therapy, 30 patients with stage I UPSC (1.8%) were treated with radiation before or following TAH/BSO. All patients underwent either preoperative Simon's packing or tandem and plaque which delivered 30-40 Gy to the serosa, WART, or HDR Ir-192 vaginal apex brachytherapy to a total dose of 21 Gy in 3 fractions at 0.5 cm from the vaginal mucosa. A total of 14 patients received HDR vaginal brachytherapy and (5(14)) patients received systemic chemotherapy. All patients presented with vaginal bleeding at a median age of 67 years (range 34-88). The group of 30 patients underwent TAH/BSO, 17 patients were completely staged pathologically (pelvic and para-aortic lymph nodes, omentectomy, and pelvic washings), and 2 patients underwent omental biopsy and pelvic washings only. All specimens revealed UPSC, nuclear grade 3, and lymphovascular invasion (23%). The pathologic stage was IA: 23% (7), IB: 67% (20), and IC: 10% (3). The median follow-up for all patients was 49 months (range 13-187 months). For the patients receiving postoperative HDR vaginal brachytherapy the median time from surgery to radiation was 42 days (range 29-91). Results: The 5-year actuarial disease free survival for Figo stage I UPSC patients treated with postoperative HDR vaginal brachytherapy and systemic chemotherapy was 100% compared to 74% for stage I UPSC patient

  12. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold

    International Nuclear Information System (INIS)

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-01-01

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality

  13. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  14. Interstitial high-dose rate brachytherapy as boost for anal canal cancer

    International Nuclear Information System (INIS)

    Falk, Alexander Tuan; Claren, Audrey; Benezery, Karen; François, Eric; Gautier, Mathieu; Gerard, Jean-Pierre; Hannoun-Levi, Jean-Michel

    2014-01-01

    To assess clinical outcomes of patients treated with a high-dose rate brachytherapy boost for anal canal cancer (ACC). From August 2005 to February 2013, 28 patients presenting an ACC treated by split-course external beam radiotherapy (EBRT) and HDR brachytherapy with or without chemotherapy in a French regional cancer center in Nice were retrospectively analyzed. Median age was 60.6 years [34 – 83], 25 patients presented a squamous cell carcinoma and 3 an adenocarcinoma; 21 received chemotherapy. Median dose of EBRT was 45 Gy [43.2 – 52]. Median dose of HDR brachytherapy was 12 Gy [10 - 15] with a median duration of 2 days. Median overall treatment time was 63 days and median delay between EBRT and brachytherapy was 20 days. Two-year local relapse free, metastatic free, disease free and overall survivals were 83%, 81.9%, 71.8% and 87.7% respectively. Acute toxicities were frequent but not severe with mostly grade 1 toxicities: 37% of genito-urinary, 40.7% of gastro-intestinal and 3.7% of cutaneous toxicities. Late toxicities were mainly G1 (43.1%) and G2 (22%). Two-year colostomy-free survival was 75.1%, one patient had a definitive sphincter amputation. High-dose rate brachytherapy for anal canal carcinoma as boost represents a feasible technique compared to low or pulsed-dose rate brachytherapy. This technique remains an excellent approach to precisely boost the tumor in reducing the overall treatment time

  15. Quality control in pulsed dose rate brachytherapy; Controle de qualite en curietherapie de debit de dose pulse

    Energy Technology Data Exchange (ETDEWEB)

    Metayer, Y.; Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, Unite de Radiophysique, 54 - Vandoeuvre-les-Nancy (France); Meyer, P. [Centre Paul-Strauss, 67 - Strasbourg (France)

    2009-07-15

    A prospective multicenter study (P.D.R.) was leaded on pulsed dose rate brachytherapy over 2 years (2005/2006) in 20 French centres, as part of a programme entitled (Support for the innovative and expensive techniques) S.t.i.c.-P.D.R. and supported by the French ministry of health. Eight hundred and fifty patients were treated for cervix carcinoma with 2D classic or 3D innovative brachytherapy (425 in each arm). The main objectives of this study were to assess the cost of P.D.R. brachytherapy with dose optimization compared to traditional treatments, and to evaluate the complications and local control. A joint programme of quality control was established by the physicists of the different centres, concerning the software treatment planning, the source replacement, the projector and the technical parameters of the course of patient treatment. This technical note lists these controls, and their frequency. (authors)

  16. Focal low-dose rate brachytherapy for the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Tong WY

    2013-09-01

    Full Text Available William Y Tong, Gilad Cohen, Yoshiya Yamada Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY, USA Abstract: Whole-gland low-dose rate (LDR brachytherapy has been a well-established modality of treating low-risk prostate cancer. Treatment in a focal manner has the advantages of reduced toxicity to surrounding organs. Focal treatment using LDR brachytherapy has been relatively unexplored, but it may offer advantages over other modalities that have established experiences with a focal approach. This is particularly true as prostate cancer is being detected at an earlier and more localized stage with the advent of better detection methods and newer imaging modalities. Keywords: prostate cancer, focal, low dose rate, brachytherapy

  17. Application of Multiobjective Genetic Algorithms in Anatomy Based Dose Optimization in Brachytherapy and its Comparation with Deterministic Algorithms

    National Research Council Canada - National Science Library

    Milickovic, Natasa

    2001-01-01

    In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in the form of an aggregate function which combines individual objectives into a single utility value...

  18. Cost minimization analysis of high-dose-rate versus low-dose-rate brachytherapy in endometrial cancer

    International Nuclear Information System (INIS)

    Pinilla, James

    1998-01-01

    Purpose: Endometrial cancer is a common, usually curable malignancy whose treatment frequently involves low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. These treatments involve substantial resource commitments and this is increasingly important. This paper presents a cost minimization analysis of HDR versus LDR brachytherapy in the treatment of endometrial cancer. Methods and Materials: The perspective of the analysis is that of the payor, in this case the Ministry of Health. One course of LDR treatment is compared to two courses of HDR treatment. The two alternatives are considered to be comparable with respect to local control, survival, and toxicities. Labor, overhead, and capital costs are accounted for and carefully measured. A 5% inflation rate is used where applicable. A univariate sensitivity analysis is performed. Results: The HDR regime is 22% less expensive compared to the LDR regime. This is $991.66 per patient or, based on the current workload of this department (30 patients per year) over the useful lifetime of the after loader, $297,498 over 10 years in 1997 dollars. Conclusion: HDR brachytherapy minimizes costs in the treatment of endometrial cancer relative to LDR brachytherapy. These results may be used by other centers to make rational decisions regarding brachytherapy equipment replacement or acquisition

  19. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer.A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies.Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest.Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42.This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  20. Patient effective dose from endovascular brachytherapy with {sup 192}Ir Sources

    Energy Technology Data Exchange (ETDEWEB)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L

    2002-07-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with {sup 192}Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for lung, 0.9x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for oesophagus and 0.48x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for colon, 7.8x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for stomach and 1.7x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq{sup -1}.min{sup -1}, whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq{sup -1}.min{sup -1}; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  1. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    Science.gov (United States)

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy

    International Nuclear Information System (INIS)

    Wang Zhou; Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B.

    2010-01-01

    In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

  3. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    International Nuclear Information System (INIS)

    Sinha, Neeharika; Cifter, Gizem; Sajo, Erno; Kumar, Rajiv; Sridhar, Srinivas; Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike; Ngwa, Wilfred

    2015-01-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  4. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  5. Sci-Thur PM – Brachytherapy 04: Commissioning and Implementation of a Cobalt-60 High Dose Rate Brachytherapy Source

    Energy Technology Data Exchange (ETDEWEB)

    Dysart, Jonathan [Horizon Health Network (Canada)

    2016-08-15

    An Eckert & Ziegler Bebig Co0.A86 cobalt 60 high dose rate (HDR) brachytherapy source was commissioned for clinical use. Long-lived Co-60 HDR sources offer potential logistical and economic advantages over Ir-192 sources, and should be considered for low to medium workload brachytherapy departments where modest increases in treatment times are not a factor. In optimized plans, the Co-60 source provides a similar dose distribution to Ir-192 despite the difference in radiation energy. By switching to Co-60, source exchange frequency can be reduced by a factor of 20, resulting in overall financial savings of more than 50% compared to Ir-192 sources. In addition, a reduction in Physicist QA workload of roughly 200 hours over the 5 year life of the Co-60 source is also expected. These benefits should be considered against the modest increases in average treatment time compared to those of Ir-192 sources, as well as the centre-specific needs for operating room shielding modification.

  6. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Gestaut, Matthew M.; Cai, Wendi; Vyas, Shilpa; Patel, Belur J.; Hasan, Salman A.; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-01-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  7. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gestaut, Matthew M., E-mail: Matthew.Gestaut@BSWHealth.org [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Cai, Wendi [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Vyas, Shilpa [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington (United States); Patel, Belur J. [Department of Urology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Hasan, Salman A. [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); MunozMaldonado, Yolanda [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Deb, Niloyjyoti; Swanson, Gregory [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States)

    2017-05-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  8. Staff dose of hospitalization in the treatment of patients in ophthalmic brachytherapy with 125 I

    International Nuclear Information System (INIS)

    Terron Leon, J. A.; Gomez Palacios, M.; Moreno Reyes, J. C.; Perales Molina, A.

    2013-01-01

    The objective of this work, therefore, has been the evaluation of the dose levels which nursing staff can receive in care for ophthalmic brachytherapy patients treated with 125 I from measurements made on the same, evaluating, in an experimental way, job security following the PR rules laid down for these treatments. (Author)

  9. Surface membrane based bladder registration for evaluation of accumulated dose during brachytherapy in cervical cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Sørensen, Thomas Sangild

    2011-01-01

    of the fixed surface. Optional landmark based matches can be included in the suggested iterative solver. The technique is demonstrated for bladder registration in brachytherapy treatment evaluation of cervical cancer. It holds promise to better estimate the accumulated but unintentional dose delivered...

  10. High-dose-rate brachytherapy alone post-hysterectomy for endometrial cancer

    International Nuclear Information System (INIS)

    MacLeod, Craig; Fowler, Allan; Duval, Peter; D'Costa, Ieta; Dalrymple, Chris; Firth, Ian; Elliott, Peter; Atkinson, Ken; Carter, Jonathan

    1998-01-01

    Purpose: To evaluate the outcome of post-hysterectomy adjuvant vaginal high-dose-rate (HDR) brachytherapy. Methods and Materials: A retrospective analysis was performed on a series of 143 patients with endometrial cancer treated with HDR brachytherapy alone post-hysterectomy from 1985 to June 1993. Of these patients, 141 received 34 Gy in four fractions prescribed to the vaginal mucosa in a 2-week period. The median follow-up was 6.9 years. Patients were analyzed for treatment parameters, survival, local recurrence, distant relapse, and toxicity. Results: Five-year relapse free survival and overall survival was 100% and 88% for Stage 1A, 98% and 94% for Stage IB, 100% and 86% for Stage IC, and 92% and 92% for Stage IIA. The overall vaginal recurrence rate was 1.4%. The overall late-toxicity rate was low, and no RTOG grade 3, 4, or 5 complications were recorded. Conclusion: These results are similar to reported international series that have used either low-dose-rate or HDR brachytherapy. The biological effective dose was low for both acute and late responding tissues compared with some of the HDR brachytherapy series, and supports using this lower dose and possibly decreasing late side-effects with no apparent increased risk of vaginal recurrence

  11. Construction of a anthropomorphic phantom for dose measurement in hands in brachytherapy procedures

    International Nuclear Information System (INIS)

    Papp, Cinthia M.

    2013-01-01

    The main objective of this work was to show the differences between the dose value measured by dosimeter endpoint and the values measured in different points inside the hand during brachytherapy procedures. For this, the procedures involved in the handling of sources were analyzed and the simulated using an anthropomorphic phantom hand

  12. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids

    DEFF Research Database (Denmark)

    Jiang, Ping; Baumann, René; Dunst, Jürgen

    2016-01-01

    PURPOSE: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. METHODS AND MATERIALS: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immed...

  13. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-01-01

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses ≥70 Gy may compensate the effect of close margins ≥1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses ≤50 Gy with PHDRB alone.

  14. Independent verification of the delivered dose in High-Dose Rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Portillo, P.; Feld, D.; Kessler, J.

    2009-01-01

    An important aspect of a Quality Assurance program in Clinical Dosimetry is an independent verification of the dosimetric calculation done by the Treatment Planning System for each radiation treatment. The present paper is aimed at creating a spreadsheet for the verification of the dose recorded at a point of an implant with radioactive sources and HDR in gynecological injuries. An 192 Ir source automatic differed loading equipment, GammaMedplus model, Varian Medical System with HDR installed at the Angel H. Roffo Oncology Institute has been used. The planning system implemented for getting the dose distribution is the BraquiVision. The sources coordinates as well as those of the calculation point (Rectum) are entered into the Excel-devised verification program by assuming the existence of a point source in each one of the applicators' positions. Such calculation point has been selected as the rectum is an organ at risk, therefore determining the treatment planning. The dose verification is performed at points standing at a sources distance having at least twice the active length of such sources, so they may be regarded as point sources. Most of the sources used in HDR brachytherapy with 192 Ir have a 5 mm active length for all equipment brands. Consequently, the dose verification distance must be at least of 10 mm. (author)

  15. Independent technique of verifying high-dose rate (HDR) brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Korb, Leroy J.; Darnell, Brenda; Krishna, K. V.; Ulewicz, Dennis

    1998-01-01

    Purpose: An independent technique for verifying high-dose rate (HDR) brachytherapy treatment plans has been formulated and validated clinically. Methods and Materials: In HDR brachytherapy, dwell times at respective dwell positions are computed, using an optimization algorithm in a HDR treatment-planning system to deliver a specified dose to many target points simultaneously. Because of the variability of dwell times, concerns have been expressed regarding the ability of the algorithm to compute the correct dose. To address this concern, a commercially available low-dose rate (LDR) algorithm was used to compute the doses at defined distances, based on the dwell times obtained from the HDR treatment plans. The percent deviation between doses computed using the HDR and LDR algorithms were reviewed for HDR procedures performed over the last year. Results: In this retrospective study, the difference between computed doses using the HDR and LDR algorithms was found to be within 5% for about 80% of the HDR procedures. All of the reviewed procedures have dose differences of less than 10%. Conclusion: An independent technique for verifying HDR brachytherapy treatment plans has been validated based on clinical data. Provided both systems are available, this technique is universal in its applications and not limited to either a particular implant applicator, implant site, or implant type

  16. High dose-rate brachytherapy source position quality assurance using radiochromic film

    International Nuclear Information System (INIS)

    Evans, M.D.C.; Devic, S.; Podgorsak, E.B.

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance

  17. Single-dose brachytherapy versus metal stent placement for the palliation of dysphagia from oesophageal cancer: multicentre randomised trial

    NARCIS (Netherlands)

    Homs, Marjolein Y. V.; Steyerberg, Ewout W.; Eijkenboom, Wilhelmina M. H.; Tilanus, Hugo W.; Stalpers, Lukas J. A.; Bartelsman, Joep F. W. M.; van Lanschot, Jan J. B.; Wijrdeman, Harm K.; Mulder, Chris J. J.; Reinders, Janny G.; Boot, Henk; Aleman, Berthe M. P.; Kuipers, Ernst J.; Siersema, Peter D.

    2004-01-01

    Background Both single-dose brachytherapy and self-expanding metal stent placement are commonly used for palliation of oesophageal obstruction due to inoperable cancer, but their relative merits are unknown. We under-took a randomised trial to compare the outcomes of brachytherapy and stent

  18. Local vaginal anesthesia during high-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Chen, H.-C.; Wan Leung, Stephen; Wang, C.-J.; Sun, L.-M.; Fang, F.-M.; Huang, E.-Y.; Wang, S.-J.; Yang, C.-W.

    1998-01-01

    Purpose: To evaluate the clinical efficacy of local vaginal lidocaine application for pain relief during high-dose-rate (HDR) intracavitary brachytherapy for patients with cervical cancer, and to investigate sequential changes in serum levels of lidocaine during the procedures. Methods and Materials: This prospective study was designed to examine the analgesic effect, physical response, and side effects of local anesthesia during HDR intracavitary brachytherapy. Forty patients were enrolled. All patients received 10-15 MV X-rays to the pelvis with a total dose of 45-59.4 Gy 5-6 weeks before undergoing HDR intracavitary brachytherapy. All patients underwent first intracavitary brachytherapy under general anesthesia. These patients were randomly allocated to receive one of two different treatment protocols as follows: (1) treatment session - control session - treatment session - control session; or (2) control session - treatment session- control session - treatment session. In the treatment sessions, topical anesthesia was administered using 4 ml of 10% lidocaine solution sprayed liberally on the cervix and vagina during intracavitary brachytherapy. In the control sessions, a placebo was administered in the same manner during brachytherapy. The Hensche's applicators for brachytherapy were inserted into the cervix and vagina 5 min after lidocaine application. The visual analogue scale (VAS) was used to assess pain and discomfort during brachytherapy. Blood pressure and heart rates were measured to evaluate the physiological response. Another prospective study was then performed to investigate the sequential changes of serum lidocaine levels during the anesthetic procedure. Eleven additional patients with similar disease state and demographic characteristics were enrolled and blood samples were obtained before, and 5, 15, 30, and 45 min after the initiation of lidocaine application. Results: The mean VAS values recorded during the treatment sessions and control

  19. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa [University of Toronto, Carlo Fidani Peel Regional Cancer Center, Carlo Fidani Peel Regional Cancer Center, University of Toronto (Canada)

    2016-08-15

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  20. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa

    2016-01-01

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  1. The Meaning and Experience of Patients Undergoing Rectal High-Dose-Rate Brachytherapy.

    Science.gov (United States)

    Perez, Samara; Néron, Sylvain; Benc, Renata; Rosberger, Zeev; Vuong, Té

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a precise form of radiation therapy that targets cancerous tumors by directly applying the radiation source at the site or directly next to the tumor. Patients often experience but underreport pain and anxiety related to cancer treatments. At present, there is no research available concerning the pervasiveness and intensity of patients' pain and anxiety during rectal brachytherapy. The aim of this study was to examine patients' thoughts, emotions, coping strategies, physical sensations, and needs during rectal HDR brachytherapy treatment. Twenty-five patients with rectal cancer were interviewed using a semi-structured qualitative interview following the completion of their brachytherapy treatment delivered at a Montreal-based hospital in Quebec, Canada. The experiences of pain and discomfort varied greatly between patients and were linked to the meaning patients attributed to the treatment itself, sense of time, the body's lithotomic position, insertion of the treatment applicator, and the patients' sense of agency and empowerment during the procedure. Patients drew upon a variety of internal and external resources to help them cope with discomfort. Staff need to know about the variation in the physical and emotional experiences of patients undergoing this treatment. Clinical teams can tailor their procedural behavior (eg, using certain language, psychosocial interventions) according to patients' needs to increase patients' comfort and ultimately improve their experience of HDR rectal brachytherapy.

  2. Fractionated high dose rate intraluminal brachytherapy in palliation of advanced esophageal cancer

    International Nuclear Information System (INIS)

    Sur, Ranjan K.; Donde, Bernard; Levin, Victor C.; Mannell, Aylwyn

    1998-01-01

    Purpose: To optimize the dose of fractionated brachytherapy for palliation of advanced esophageal cancer. Methods and Materials: One hundred and seventy-two patients with advanced esophageal cancer were randomized to receive 12 Gy/2 fractions (group A); 16 Gy/2 fractions (group B), and 18 Gy/3 fractions (group C) by high dose rate intraluminal brachytherapy (HDRILBT). Treatment was given weekly and dose prescribed at 1 cm from the source axis. Patients were followed up monthly and assessed for dysphagia relief and development of complications. Results: Twenty-two patients died before completing treatment due to advanced disease and poor general condition. The overall survival was 19.4% at the end of 12 months for the whole group (A--9.8%, B--22.46%, C--35.32%; p > 0.05). The dysphagia-free survival was 28.9% at 12 months for the whole group (A--10.8%, B--25.43%, C--38.95%; p > 0.05). Forty-three patients developed fibrotic strictures needing dilatation (A--5 of 35, B--15 of 60, C--23 of 55; p = 0.032). Twenty-seven patients had persistent luminal disease (A--11, B--6, C--10), 15 of which progressed to fistulae (A--7, B--2, C--6; p = 0.032). There was no effect of age, sex, race, histology, performance status, previous dilation, presenting dysphagia score, presenting weight, grade, tumor length, and stage on overall survival, dysphagia-free, and complication-free survival (p > 0.05). On a multivariate analysis, brachytherapy dose (p = 0.002) and tumor length (p = 0.0209) were found to have a significant effect on overall survival; brachytherapy dose was the only factor that had an impact on local tumor control (p = 0.0005), while tumor length was the only factor that had an effect on dysphagia-free survival (p = 0.0475). When compared to other forms of palliation currently available (bypass surgery, laser, chemotherapy, intubation, external radiotherapy), fractionated brachytherapy gave the best results with a median survival of 6.2 months. Conclusions: Fractionated

  3. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    Science.gov (United States)

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  4. Novel Use of the Contura for High Dose Rate Cranial Brachytherapy

    International Nuclear Information System (INIS)

    Scanderbeg, Daniel J.; Alksne, John F.; Lawson, Joshua D.; Murphy, Kevin T.

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator.

  5. Novel use of the Contura for high dose rate cranial brachytherapy.

    Science.gov (United States)

    Scanderbeg, Daniel J; Alksne, John F; Lawson, Joshua D; Murphy, Kevin T

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Pulsed Dose Rate (PDR - BT) brachytherapy in treatment of breast cancer

    International Nuclear Information System (INIS)

    Skowronek, J.

    2007-01-01

    Breast conserving surgery (BCS) and radiotherapy (EBRT) of the conserved breast became widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of RT after breast conservation is to treat the whole breast up to a total dose of 45 to 50 Gy. Initially brachytherapy for breast cancer was used in addition of external radiation to boost a portion of the breast to higher doses. However, over the past 10 years, the application of brachytherapy in breast cancer has changed. In early stage breast cancer, research has shown that the area that requires radiation treatment to prevent the cancer from returning is the breast tissue that surrounds the area where the initial cancer was removed. Because this typically includes only a part of the breast, brachytherapy is now being used to treat the targeted portion of the breast and as a result allows accelerated delivery of the radiation dose so that treatment is completed in four to five days. Another indications for PDR - BT as a part of treatment in locally advanced breast cancer or as a palliative treatment are discussed in the paper, too. Preliminary results with PDR - BT boost technique are promising. However, more experience and longer follow-up are required to define whether these methods might improve local tumor control for breast cancer patients. In this article the current status, indications, technical aspects and published results of PDR brachytherapy (PDR - BT) in breast cancer treatment are reviewed. (author)

  7. Evaluation of functioning of high dose rate brachytherapy at the Instituto Nacional do Cancer

    International Nuclear Information System (INIS)

    Guedes, Laura M.A.; Barreto, Rodrigo V.; Silva, Penha M.; Macedo, Afranio A.; Borges, Solange C.; Martinez, Valeria P.O.

    2001-01-01

    Quality control tests are very useful tools to assure the quality of patient's treatment. A daily control of the high dose rate micro selectron was performed based on the security parameters of the equipment and on the quickness of performance. The purpose of this report is to evaluate and to discuss the errors found during the first three years with the high dose rate brachytherapy, at the Instituto Nacional de Cancer. (author)

  8. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, Antonio Cassio Assis, E-mail: acapellizzon@hcancer.org.br [A.C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Departamento de Radioterapia

    2016-05-15

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. (author)

  9. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer.

    Science.gov (United States)

    Gestaut, Matthew M; Cai, Wendi; Vyas, Shilpa; Patel, Belur J; Hasan, Salman A; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-05-01

    Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression-free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (Pcryotherapy for low- and intermediate-risk groups (Pcryotherapy patients was -35°C (range, -96°C to -6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with low- to intermediate-risk prostate cancer. Patient selection criteria for consideration of cryotherapy and brachytherapy are similar in terms of anesthesia candidacy. Therefore, cryotherapy would not be recommended as a first-line local therapy for this particular

  10. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Jung, Joo Young; Kang, Se Sik

    2010-01-01

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  11. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James [Dalhousie University, Nova Scotia Cancer Centre, Capital District Health Authority (Canada)

    2016-08-15

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  12. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    2016-01-01

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  13. Comparison of Dose When Prescribed to Point A and Point H for Brachytherapy in Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Ji Hyeong; Gim, Il Hwan; Hwang, Seon Boong; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Gim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seou (Korea, Republic of)

    2012-09-15

    The purpose of this study is to compare plans prescribed to point A with these prescribed to point H recommended by ABS (American Brachytherapy Society) in high dose rate intracavitary brachytherapy for cervical carcinoma. This study selected 103 patients who received HDR (High Dose Rate) brachytherapy using tandem and ovoids from March 2010 to January 2012. Point A, bladder point, and rectal point conform with Manchester System. Point H conforms with ABS recommendation. Also Sigmoid colon point, and vagina point were established arbitrarily. We examined distance between point A and point H. The percent dose at point A was calculated when 100% dose was prescribed to point H. Additionally, the percent dose at each reference points when dose is prescribed to point H and point A were calculated. The relative dose at point A was lower when point H was located inferior to point A. The relative doses at bladder, rectal, sigmoid colon, and vagina points were higher when point H was located superior to point A, and lower when point H was located inferior to point A. This study found out that as point H got located much superior to point A, the absorbed dose of surrounding normal organs became higher, and as point H got located much inferior to point A, the absorbed dose of surrounding normal organs became lower. This differences dose not seem to affect the treatment. However, we suggest this new point is worth being considered for the treatment of HDR if dose distribution and absorbed dose at normal organs have large differences between prescribed to point A and H.

  14. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  15. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma

    International Nuclear Information System (INIS)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O.; Remonnay, R.; Morelle, M.; Pommier, P.; Pommier, P.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Delannes, M.; Castelain, B.; Peignaux, K.; Kirova, Y.; Romestaing, P.; Williaume, D.; Krzisch, C.; Thomas, L.; Lang, P.; Baron, M.H.; Cussac, A.; Lesaunier, F.; Maillard, S.; Barillot, I.; Charra-Brunaud, C.; Peiffert, D.

    2010-01-01

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  16. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento, E-mail: rmv.fisica@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Pinezi, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUC-Goias), Goiania, GO (Brazil); Macedo, Luiz Eduardo Andrade [Hospital Chama, Arapiraca, AL (Brazil)

    2014-05-15

    To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and methods: in the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results: sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion: the authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. (author)

  17. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  18. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  19. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  20. Comparison of 60Cobalt and 192Iridium sources in high dose rate afterloading brachytherapy

    International Nuclear Information System (INIS)

    Richter, J.; Baier, K.; Flentje, M.

    2008-01-01

    Purpose: 60 Co sources with dimensions identical to those of 192 Ir have recently been made available in clinical brachytherapy. A longer half time reduces demands on logistics and quality assurance and perhaps costs. Material and Methods: Comparison of the physical properties of 60 Co and 192 Ir with regard to brachytherapy. Results: Required activities for the same air kerma rate are lower by a factor of 2.8 for 60 Co. Differential absorption in tissues of different densities can be neglected. Monte Carlo calculations demonstrate that integral dose due to radial dose fall off is higher for 192 Ir in comparison to 60 Co within the first 22 cm from the source (normalization at 1 cm). At larger distances this relationship is reversed. Conclusion: Clinical examples for intracavitary and interstitial applications however, show practically identical dose distributions in the treatment volume. (orig.)

  1. Custom-made micro applicators for high-dose-rate brachytherapy treatment of chronic psoriasis

    Directory of Open Access Journals (Sweden)

    Ivan M. Buzurovic

    2017-06-01

    Full Text Available Purpose: In this study, we present the treatment of the psoriatic nail beds of patients refractory to standard therapies using high-dose-rate (HDR brachytherapy. The custom-made micro applicators (CMMA were designed and constructed for radiation dose delivery to small curvy targets with complicated topology. The role of the HDR brachytherapy treatment was to stimulate the T cells for an increased immune response. Material and methods: The patient diagnosed with psoriatic nail beds refractory to standard therapies received monthly subunguinal injections that caused significant pain and discomfort in both hands. The clinical target was defined as the length from the fingertip to the distal interphalangeal joint. For the accurate and reproducible setup in the multi-fractional treatment delivery, the CMMAs were designed. Five needles were embedded into the dense plastic mesh and covered with 5 mm bolus material for each micro applicator. Five CMMAs were designed, resulting in the usage of 25 catheters in total. Results: The prescription dose was planned to the depth of the anterior surface of the distal phalanx, allowing for the sparing of the surrounding tissue. The total number of the active dwell positions was 145 with step size of 5 mm. The total treatment time was 115 seconds with a 7.36 Ci activity of the 192Ir source. The treatment resulted in good pain control. The patient did not require further injections to the nail bed. After this initial treatment, additional two patients with similar symptoms received HDR brachytherapy. The treatment outcome was favorable in all cases. Conclusions : The first HDR brachytherapy treatment of psoriasis of the nail bed is presented. The initial experience revealed that brachytherapy treatment was well-tolerated and resulted in adequate control of the disease. A larger cohort of patients will be required for additional conclusions related to the long-term clinical benefits.

  2. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  3. Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Sarabiasl, Akbar; Ayoobian, Navid; Jabbari, Iraj; Poorbaygi, Hossein; Javanshir, Mohammad Reza

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a common method for cancer treatment in clinical brachytherapy. Because of the different source designs, there is a need for specific dosimetry data set for each HDR model. The purpose of this study is to obtain detailed dose rate distributions in water phantom for a first prototype HDR 192 Ir brachytherapy source model, IRAsource, and compare with the other published works. In this study, Monte Carlo N-particle (MCNP version 4C) code was used to simulate the dose rate distributions around the HDR source. A full set of dosimetry parameters reported by the American Association of Physicists in Medicine Task Group No. 43U1 was evaluated. Also, the absorbed dose rate distributions in water, were obtained in an along-away look-up table. The dose rate constant, Λ, of the IRAsource was evaluated to be equal to 1.112 ± 0.005 cGy h −1 U −1 . The results of dosimetry parameters are presented in tabulated and graphical formats and compared with those reported from other commercially available HDR 192 Ir sources, which are in good agreement. This justifies the use of specific data sets for this new source. The results obtained in this study can be used as input data in the conventional treatment planning systems.

  4. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  5. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  6. Combination of high-dose rate brachytherapy and external beam radiotherapy for the treatment of advanced scalp angiosarcoma - case report

    International Nuclear Information System (INIS)

    Gentil, Andre Cavalcanti; Lima Junior, Carlos Genesio Bezerra; Soboll, Danyel Scheidegger; Novaes, Paulo Eduardo R.S.; Pereira, Adelino Jose; Pellizon, Antonio Carlos Assis

    2001-01-01

    The authors report a case of a patient with an extensive angiosarcoma of the scalp that was submitted only to radiotherapy with a combination of orthovoltage roentgentherapy and high-dose rate brachytherapy, using a mould. The clinical and technical features as well as the therapeutic outcome are presented, and the usefulness and peculiarities of high-dose rate brachytherapy for this particular indication is discussed. A comparative analysis of the difficulties and limitations of employing low-dose rate brachytherapy is also presented. The authors concluded that high-dose rate brachytherapy might be an useful, practical and safe option to treat neoplastic lesions of the scalp, and an alternative treatment to electrontherapy. (author)

  7. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  8. American brachytherapy society recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103

    International Nuclear Information System (INIS)

    Rivard, M.J.; Butler, W.M.; Merrick, G.S.; Devlin, P.M.; Hayes, J.K.; Hearn, R.A.; Lief, E.P.; Meigooni, A.S.; Williamson, J.F.

    2008-01-01

    Purpose - In 2004, the American Association of Physicists in Medicine (AAPM) issued a report outlining recommended 125 I and 103 Pd datasets for consistency in calculating brachytherapy dose distributions. In 2005, to aid evaluating the clinical impact of implementing these datasets, the AAPM assessed the historical dependence of how prescribed doses differed from administered doses for 125 I and 103 Pd for permanent implantation of the prostate. Consequently, the American Brachytherapy Society (ABS) considered the nature of these changes towards issuing recommended dose prescriptions for 125 I and 103 Pd interstitial brachytherapy implants for mono-therapy and standard boosts. Methods and materials - An investigation was performed of the 2005 AAPM analysis to determine changes in administered dose while affixing prescribed dose using 2004 AAPM 125 I and 103 Pd brachytherapy dosimetry datasets for prostate implants. For 125 I and 103 Pd, administered dose would change by +1.4% and +4.2%, respectively. The biological and societal impact of changing prescribed dose was considered. Results - Based on the need for clinical constancy and in recognition of overall uncertainties, the ABS recommends immediate implementation of the 2004 AAPM consensus brachytherapy dosimetry datasets and no changes to 125 I and 103 Pd dose prescriptions at this time. Conclusions - Radiation oncologists should continue to prescribe mono-therapy doses of 145 Gy and 125 Gy for 125 I and 105 Pd, respectively, and standard boost doses of 100-110 Gy and 90-100 Gy for 125 I and 103 Pd, respectively. (authors)

  9. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  10. Accurate assessment of the distortions produced by the transit dose in HDR brachytherapy

    International Nuclear Information System (INIS)

    Nani, E.K.; Kyere, A.W.K.; Tetteh, K.

    2001-01-01

    Current polynomial methods used in the modelling of the dose distributions in HDR brachytherapy have been reformulated to improve accuracy. An example is provided to show the effects of the transit dose on the output. The transit dose, which is neglected by current computer software for calculating doses, can result in significant dosimetric errors. These additional unrecognised doses imply over-dosing and distortions in the dose distributions within the irradiated volume. Assessment of dose to critical and radiosensitive organs is therefore inaccurate. These could increase late tissue complications as predicted by the Linear Quadratic Model. Our model works very well for straight catheters and is highly recommended for the evaluation of the transit dose around such catheters. (author)

  11. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1991-12-15

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient.

  12. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    International Nuclear Information System (INIS)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck

    1991-01-01

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient

  13. Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters

    International Nuclear Information System (INIS)

    Cartwright, L. E.; Suchowerska, N.; Yin, Y.; Lambert, J.; Haque, M.; McKenzie, D. R.

    2010-01-01

    Purpose: In pelvic brachytherapy treatments, the rectum is an organ at risk. The authors have developed an array of scintillation dosimeters suitable for in vivo use that enables quality assurance of the treatment delivery and provides an alert to potential radiation accidents. Ultimately, this will provide evidence to direct treatment planning and dose escalation and correlate dose with the rectal response. Methods: An array of 16 scintillation dosimeters in an insertable applicator has been developed. The dosimeters were calibrated simultaneously in a custom designed circular jig before use. Each dosimeter is optically interfaced to a set of pixels on a CCD camera located outside the treatment bunker. A customized software converts pixel values into dose rate and accumulates dose for presentation during treatment delivery. The performance of the array is tested by simulating brachytherapy treatments in a water phantom. The treatment plans were designed to deliver a known dose distribution on the surface of the rectal applicator, assumed to represent the dose to the rectal wall. Results: The measured doses were compared to those predicted by the treatment plan and found to be in agreement to within the uncertainty in measurement, usually within 3%. The array was also used to track the progression of the source as it moved along the catheter. The measured position was found to agree with the position reported by the afterloader to within the measurement uncertainty, usually within 2 mm. Conclusions: This array is capable of measuring the actual dose received by each region of the rectal wall during brachytherapy treatments. It will provide real time monitoring of treatment delivery and raise an alert to a potential radiation accident. Real time dose mapping in the clinical environment will give the clinician additional confidence to carry out dose escalation to the tumor volume while avoiding rectal side effects.

  14. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    International Nuclear Information System (INIS)

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K.; Powell, Matthew A.; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran; Grigsby, Perry W.

    2007-01-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group

  15. Low-dose-rate interstitial brachytherapy preserves good quality of life in buccal mucosa cancer patients

    International Nuclear Information System (INIS)

    Tayier, A.; Hayashi, Keiji; Yoshimura, Ryoichi

    2011-01-01

    The purpose of this study was to determine the results and long-term changes in radiation toxicity of stage I-II buccal mucosa cancer patients treated by low-dose-rate (LDR) brachytherapy with 198 Au grains. A total of 133 stage I-II buccal mucosa carcinomas patients received 198 Au grain implantation brachytherapy between January 1982 and July 2005: 75 of them were treated by 198 Au grain implantation alone and 58 were treated by 198 Au implantation in combination with external irradiation. The average 198 Au-grain dose was 70 Gy in 7 days. Gross tumor areas ranged from 2.4 cm 2 to 9 cm 2 , and the clinical target areas ranged from 6 cm 2 to 15 cm 2 . The follow-up periods ranged from 3 months to 20 years (mean: 5 years 11 months and median: 5 years 1 months). Failure at the site of the primary lesion occurred in 17 patients. Post-treatment mucosal ulceration developed in 15 patients, and all were cured within 25 months by conservative treatment. Osteoradionecrosis was diagnosed in 8 patients, but only one patient required surgical treatment. No severe complications or aggravation of complications developed more than 10 years after treatment. The results of low-dose-rate (LDR)-brachytherapy (BT) alone and LDR-BT in combination with external irradiation at a total dose of 25 Gy were acceptable from the standpoint of cure rate and quality of life (QOL). (author)

  16. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M; Van Hecke, H; Boterberg, T; De Neve, W

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  17. Impact of using linear optimization models in dose planning for HDR brachytherapy

    International Nuclear Information System (INIS)

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-01-01

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  18. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  19. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  20. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    Directory of Open Access Journals (Sweden)

    C. H. Wu

    2014-01-01

    Full Text Available This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer.

  1. Time, dose and volume factors in interstitial brachytherapy combined with external irradiation for oral tongue carcinoma

    International Nuclear Information System (INIS)

    Yorozu, Atsunori

    1996-01-01

    This is a retrospective analysis of 136 patients with squamous cell carcinoma of stages I and II of the oral tongue who were treated with interstitial brachytherapy alone or in combination with external irradiation between 1976 and 1991. Control of the primary lesion and the occurrence of late complications were analyzed with respect to dose, time and tumor size with the Cox hazard model. The 5-year survival rates for stages I and II were 84.5% and 75.6%. The 5-year primary control rate was 91.3% for stage I and 77.3% for stage II (p 50 Gy compared with a brachytherapy dose 30 mm. Late complications should be reduced by using a spacer, improvements in dental and oral hygiene, and a sophisticated implant method. (author)

  2. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  3. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kalavagunta, C; Lasio, G; Yi, B; Zhou, J; Lin, M [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquired for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.

  4. Radiation proctitis after the high dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Kitano, Masashi; Katsumata, Tomoe; Satoh, Takefumi

    2006-01-01

    We reviewed the medical records of 12 patients treated for rectal bleeding after high-dose rate brachytherapy for prostate cancer. All patients developed grade 2 proctitis according to the Common Terminology Criteria for Adverse Events (CTCAC) and no patients needed blood transfusion. The patients were treated with argon plasma coagulation (APC) and/or steroid suppositories. The bleeding stopped or improved in 11 patients. Although re-bleeding was noticed in 7 patients the same treatment was effective in 5 patients. (author)

  5. Medium dose rate brachytherapy for patients with cervical carcinoma; early result of a prospective study

    Directory of Open Access Journals (Sweden)

    Amouzegar Hashemi F

    2009-03-01

    Full Text Available "nBackground: Treatment of cervical carcinoma is routinely performed with Low Dose Rate (LDR brachytherapy, but Brachytherapy in our department is done with Medium Dose Rate (MDR due to the technical characteristics of the machine available here. Thus we decided to evaluate the results of this treatment in our department in a prospective study. "nMethods: Between March 2006 and July 2008, 140 patients with histologic diagnosis of cervical carcinoma referred to Tehran Cancer Institute; were treated with external beam radiotherapy (44-64 Gy to whole pelvis and MDR brachytherapy (8-30 Gy to Point A with a dose rate of 2.2±0.3 Gy/h. "nResults: 121 patients were followed up for a median time of 18 months (range: 9-39 m. There were 11%(6/54 local recurrence for surgery and adjuvant radiotherapy group; 25%(16/65 for radical radiotherapy group, and 19%(23/121 for all patients. Rectal and bladder complications incidence for all patients were 10%(12/121 and 13%(16/121 respectively. High grade complication was shown only in one patient in radical radiotherapy group. In this study 3-years disease free survival and overall survival were 73% and 92% respectively, and disease stage (p=0.007 and overall treatment time (p=0.05 were the significant factors affecting disease free survival. "nConclusions: Results of this series suggest that the use of external beam radiotherapy and MDR brachytherapy with about 20% dose reduction in comparison with LDR can be an acceptable technique with regard to local control and complications.

  6. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  7. Fitting and benchmarking of Monte Carlo output parameters for iridium-192 high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Acquah, F.G.

    2011-01-01

    Brachytherapy, the use of radioactive sources for the treatment of tumours is an important tool in radiation oncology. Accurate calculations of dose delivered to malignant and normal tissues are the main responsibility of the Medical Physics staff. With the use of Treatment Planning System (TPS) computers now becoming a standard practice in the Radiation Oncology Departments, Independent calculations to certify the results of these commercial TPSs are important part of a good quality management system for brachytherapy implants. There are inherent errors in the dose distributions produced by these TPSs due to its failure to account for heterogeneity in the calculation algorithms and Monte Carlo (MC) method seems to be the panacea for these corrections. In this study, a fit functional form using MC output parameters was performed to reduce dose calculation uncertainty using the Matlab software curve fitting applications. This includes the modification of the AAPM TG-43 parameters to accommodate the new developments for a rapid brachytherapy dose rate calculation. Analytical computations were performed to hybridize the anisotropy function, F(r,θ) and radial dose function, g(r) into a single new function f(r,θ) for the Nucletron microSelectron High Dose Rate 'new or v2' (mHDRv2) 192 Ir brachytherapy source. In order to minimize computation time and to improve the accuracy of manual calculations, the dosimetry function f(r,θ) used fewer parameters and formulas for the fit. Using MC outputs as the standard, the percentage errors for the fits were calculated and used to evaluate the average and maximum uncertainties. Dose rate deviation between the MC data and fit were also quantified as errors(E), which showed minimal values. These results showed that the dosimetry parameters from this study as compared to those of MC outputs parameters were in good agreement and better than the results obtained from literature. The work confirms a lot of promise in building robust

  8. High-dose-rate brachytherapy using molds for oral cavity cancer. The technique and its limitations

    International Nuclear Information System (INIS)

    Nishimura, Yasumasa; Yokoe, Yoshihiko; Nagata, Yasushi; Okajima, Kaoru; Nishida, Mitsuo; Hiraoka, Masahiro

    1998-01-01

    With the availability of a high-dose-rate (HDR) remote afterloading device, a Phase I/II protocol was initiated at our institution to assess the toxicity and efficacy of HDR intracavitary brachytherapy, using molds, in the treatment of squamous cell carcinomas of the oral cavity. Eight patients with squamous cell carcinoma of the oral cavity were treated by the technique. The primary sites of the tumors were the buccal mucosa, oral floor, and gingiva. Two of the buccal mucosal cancers were located in the retromolar trigon. For each patient, a customized mold was fabricated, in which two to four afterloading catheters were placed for an 192 Ir HDR source. Four to seven fractions of 3-4 Gy, 5 mm below the mold surface, were given following external radiation therapy of 40-60 Gy/ 2 Gy. The total dose of HDR brachytherapy ranged from 16 to 28Gy. Although a good initial complete response rate of 7/8 (88%) was achieved, there was local recurrence in four of these seven patients. Both of the retromolar trigon tumors showed marginal recurrence. No serious (e.g., ulcer or bone exposure) late radiation damage has been observed thus far in the follow up period of 15-57 months. High-dose-rate brachytherapy using the mold technique seems a safe and useful method for selected early and superficial oral cavity cancer. However, it is not indicated for thick tumors and/or tumors located in the retromolar trigon. (author)

  9. The Preliminary Prototype of Medium Dose Rate Brachytherapy Equipment

    Directory of Open Access Journals (Sweden)

    A. Satmoko

    2013-08-01

    Full Text Available A preliminary prototype of a brachytherapy equipment has been constructed. The work started by developing conceptual design, followed by basic design and detailed design. In the conceptual design, design requirements are stated. In the basic design, technical specifications for main components are determined. In detailed design, general drawings are discussed. The prototype consists of three main systems: a mechanical system, an instrumentation system, and a safety system. The mechanical system assures the movement mechanism of the isotope source position beginning from the standby position until the applicators. It consists of three main modules: a position handling module, a container module, and a channel distribution module. The position handling module serves to move the isotope source position. As shielding, the second module is to store the source when the equipment is in standby position. The prototype provides 12 output channels. The channel selection is performed by the third module. The instrumentation system controls the movement of source position by handling motor operations. It consists of several modules. A microcontroller module serves as a control center whose task includes both controlling motors and communicating with computer. A motor module serves to handle motors. 10 sensors, including their signal conditionings, are introduced to read the environment conditions of the equipment. LEDs are used to display these conditions. In order to facilitate the operators’ duty, communication via RS232 is provided. The brachytherapy equipment can therefore be operated by using computer. Interface software is developed using C# language. To complete both mechanical and instrumentation systems performance, a safety system is developed to make sure that the safety for operator and patients from receiving excessive radiation. An interlock system is introduced to guard against abnormal conditions. In the worst case, a manual intervention

  10. Implementation of three-dimensional planning in brachytherapy of high dose rate for gynecology therapies

    International Nuclear Information System (INIS)

    Sales, Camila Pessoa de

    2015-01-01

    This work aims to implement the three-dimensional (3D) planning for gynecological brachytherapy treatments. For this purpose, tests of acceptance and commissioning of brachytherapy equipment were performed to establish a quality and periodic assurance program. For this purpose, an important step was searching for a material to be used as a dummy source, since the applicators do not have any specific dummy. In addition, the validation of the use of applicators library was made for reconstruction in computed tomography (CT) and magnetic resonance imaging (MRI). In order to validate 3D planning, comparison of doses in dose assessment points used in bidimensional (2D) plans have been performed with volumetric doses to adjacent organs to the tumor. Finally, a protocol was established for 3D brachytherapy planning alternately using magnetic resonance image (MRI) and CT images, making evaluation of the dose in the tumor through the recording of MR and CT images. It was not possible to find a suitable material that could be used as dummy in MRI. However, the acquisition of the license's library for the applicators made possible the 3D planning based on MRI. No correlation was found between volumetric and specific doses analyzed, showing the importance of the implementation of 3D planning. The average ratio between D 2cc and ICRU Bladder dose was 1,74, 22% higher than the ratio found by others authors. For the rectum, D 2cc was less than dose point for 60% of fractions; the average difference was 12,5%. The average ratio between D 2cc and point dose rectum, 0,85, is equivalent to the value showed by Kim et al, 0,91. The D 2cc for sigmoid was 69% higher than point dose used, unless it was not possible compare this value, since the sigmoid point used in the 2D procedures is not used in others institutes. Relative dose in 2 cc of sigmoid was 57% of the prescription dose, the same value was found by in literature. This work enabled the implementation of a viable

  11. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Yuko, E-mail: kaneyasu@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kita, Midori [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Department of Clinical Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo (Japan); Okawa, Tomohiko [Evaluation and Promotion Center, Utsunomiya Memorial Hospital, Tochigi (Japan); Maebayashi, Katsuya [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kohno, Mari [Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Sonoda, Tatsuo; Hirabayashi, Hisae [Department of Radiology, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  12. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    International Nuclear Information System (INIS)

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-01-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women’s Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  13. Minimal percentage of dose received by 90% of the urethra (%UD90) is the most significant predictor of PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Fujimoto, Kiyohide; Anai, Satoshi; Hirayama, Akihide; Hasegawa, Masatoshi; Konishi, Noboru; Hirao, Yoshihiko

    2012-09-14

    To clarify the significant clinicopathological and postdosimetric parameters to predict PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer. We studied 200 consecutive patients who received LDR-brachytherapy between July 2004 and November 2008. Of them, 137 patients did not receive neoadjuvant or adjuvant androgen deprivation therapy. One hundred and forty-two patients were treated with LDR-brachytherapy alone, and 58 were treated with LDR-brachytherapy in combination with external beam radiation therapy. The cut-off value of PSA bounce was 0.1 ng/mL. The incidence, time, height, and duration of PSA bounce were investigated. Clinicopathological and postdosimetric parameters were evaluated to elucidate independent factors to predict PSA bounce in hormone-naïve patients who underwent LDR-brachytherapy alone. Fifty patients (25%) showed PSA bounce and 10 patients (5%) showed PSA failure. The median time, height, and duration of PSA bounce were 17 months, 0.29 ng/mL, and 7.0 months, respectively. In 103 hormone-naïve patients treated with LDR-brachytherapy alone, and univariate Cox proportional regression hazard model indicated that age and minimal percentage of the dose received by 30% and 90% of the urethra were independent predictors of PSA bounce. With a multivariate Cox proportional regression hazard model, minimal percentage of the dose received by 90% of the urethra was the most significant parameter of PSA bounce. Minimal percentage of the dose received by 90% of the urethra was the most significant predictor of PSA bounce in hormone-naïve patients treated with LDR-brachytherapy alone.

  14. The brachytherapy with low dose-rate iridium for prostate cancer

    International Nuclear Information System (INIS)

    Momma, Tetsuo; Saito, Shiro; Ohki, Takahiro; Satoh, Hiroyuki; Toya, Kazuhito; Dokiya, Takushi; Murai, Masaru

    2000-01-01

    Brachytherapy as an option for the treatment of prostate cancer has been commonly performed in USA. As the permanent seeding of the radioactive materials is strictly restricted by the law in Japan, brachytherapy must be performed by the temporary implant. This treatment has been performed at a few facilities in Japan mostly using high dose-rate iridium. Only our facility has been using low dose-rate iridium (LDR-Ir) for prostate cancer. This study evaluates the clinical results of the treatment. Since December 1997 to December 1999, 26 patients with histologically diagnosed as prostate cancer (Stage B, 92%; Stage C, 8%) underwent brachytherapy. Twenty-two patients received brachytherapy alone, three were treated with a combination of brachytherapy and external beam radiotherapy (ERT) and one was treated with a combination of brachytherapy and neoadjuvant endocrine therapy. Patients ranged in age from 61 to 84 (median 76) years old. Treatment was initiated with perineal needle placement. From 10 to 14 needles were placed through the holes on the template which was fixed to the stabilizer of the transrectal ultrasound probe. After the needle placement, CT scan was performed to draw distribution curves for the treatment planning. LDR-Ir wires were introduced to the sheath and indwelled during the time calculated from dosimetry. Peripheral dose was 70 Gy for the monotherapy of brachytherapy. For the combination therapy, 40 Gy was given by brachytherapy and 36 Gy with ERT afterwards. LDR-Ir wires were removed after completion of the radiation and patients were followed with serum PSA level and annual biopsy. During 2 to 26 (median 12) months follow-up, 8 out of 9 patients with initial PSA level above 20 ng/ml showed PSA failure. All 13 patients with initial PSA level lower than 20 ng/ml were free from PSA failure. Eight out of 11 patients with Gleason's score 7 or higher showed PSA failure, and all 14 patients (including three patients with combined therapy) with

  15. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  16. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  17. A quality indicator to evaluate high-dose-rate intracavitary brachytherapy for cancer of the cervix

    International Nuclear Information System (INIS)

    Morales, Francisco Contreras; Soboll, Daniel Scheidegger

    2000-01-01

    The aim of this report is to prevent a simple quality indicator (QI) that can be promptly used to evaluate the high-dose-rate (HDR) intracavitary brachytherapy for the treatment of cancer of the cervix, and if necessary, to correct applicators' geometry before starting the treatment. We selected 51 HDR intracavitary applications of brachytherapy of patients with carcinoma of the cervix treated with 60 mm uterine tandem and small Fletcher colpostat, according to the Manchester method (dose prescription on point A). A QI was defined as the ratio between the volume of 100% isodose curve of the study insertion and the volume of the 100% isodose curve of an insertion considered to be ideal. The data obtained were distributed in three groups: the group with tandem placement slippage (67,5%), a group with colpostat placement slippage (21,9%), and a third group, considered normal (10,6%). Each group showed particular characteristics (p < 0.0001). QI can be the best auxiliary method to establish the error tolerance (%) allowed for HDR intracavitary brachytherapy. (author)

  18. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young

    2014-01-01

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  19. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  20. Non-uniform dwell times in line source high dose rate brachytherapy: physical and radiobiological considerations

    International Nuclear Information System (INIS)

    Jones, B.; Tan, L.T.; Freestone, G.; Bleasdale, C.; Myint, S.; Littler, J.

    1994-01-01

    The ability to vary source dwell times in high dose rate (HDR) brachytherapy allows for the use of non-uniform dwell times along a line source. This may have advantages in the radical treatment of tumours depending on individual tumour geometry. This study investigates the potential improvements in local tumour control relative to adjacent normal tissue isoeffects when intratumour source dwell times are increased along the central portion of a line source (technique A) in radiotherapy schedules which include a relatively small component of HDR brachytherapy. Such a technique is predicted to increase the local control for tumours of diameters ranging between 2 cm and 4 cm by up to 11% compared with a technique in which there are uniform dwell times along the line source (technique B). There is no difference in the local control rates for the two techniques when used to treat smaller tumours. Normal tissue doses are also modified by the technique used. Technique A produces higher normal tissue doses at points perpendicular to the centre of the line source and lower dose at points nearer the ends of the line source if the prescription point is not in the central plane of the line source. Alternatively, if the dose is prescribed at a point in the central plane of the line source, the dose at all the normal tissue points are lower when technique A is used. (author)

  1. Fractionation in medium dose rate brachytherapy of cancer of the cervix

    International Nuclear Information System (INIS)

    Leborgne, Felix; Fowler, Jack F.; Leborgne, Jose H.; Zubizarreta, Eduardo; Chappell, Rick

    1996-01-01

    Purpose: To establish an optimum fractionation for medium dose rate (MDR) brachytherapy from retrospective data of patients treated with different MDR schedules in comparison with a low dose rate (LDR) schedule. Methods and Materials: The study population consists of consecutive Stage IB-IIA-IIB patients who received radiotherapy alone with full dose brachytherapy plus external beam pelvic and parametrial irradiation from 1986-1993. Patients also receiving surgery or chemotherapy were excluded. The LDR group (n = 102, median follow-up: 80 months) received a median dose to Point A of two 32.5 Gy fractions at 0.44 Gy/h plus 18 Gy of external whole pelvic irradiation. The MDR1 group (n = 30, median follow-up: 45 months) received a mean dose of two 32 Gy fractions at 1.68 Gy/h. An individual dose reduction of 12.5% was planned for this group according to the Manchester experience, but only a 4.8% dose reduction was achieved. The MDR2 group (n = 10, median follow-up: 36 months) received a dose of two 24 Gy fractions at 1.65 Gy/h. The MDR3 group (n = 10, median follow-up 33 months) received a mean dose of three 15.3 Gy fractions at 1.64 Gy/h. And finally, the MDR4 group (n = 38, median follow-up: 24 months) received six 7.7 Gy fractions from two pulses 6 h apart in each of three insertions at 1.61 Gy/h. The median external pelvic dose to MDR schedules was between 12 and 20 Gy. The linear quadratic (LQ) formula was used to calculate the biologically effective dose (BED) to tumor (Gy 10 ) and rectum (Gy 3 ), assuming T(1(2)) for repair = 1.5 h. Results: The crude central recurrence rate was 6% for LDR (mean BED = 95.4 Gy 10 ) and 10% for MDR4 (mean BED = 77.0 Gy 10 ) (p = NS). The remaining MDR groups had no recurrences. Grade 2 and 3 rectal or bladder complications were 0% for LDR (rectal BED = 109 Gy 3 ), 83% for MDR1 (BED = 206 Gy 3 ), and 30% for MDR3 (BED = 127 Gy 3 ). The MDR2 and MDR4 groups presented no complications (BED, 123 Gy 3 , and 105 Gy 3 , respectively

  2. MRI dosimetry using an echo-quotient technique for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Ansbacher, W.

    1996-01-01

    MRI gel dosimetry is a relatively new technique that has many advantages over conventional methods, and is particularly suited to High Dose Rate (HDR) Brachytherapy. The dosimeter has high spatial resolution and a water-equivalent response over a wide range of photon energies. Because it is an integrating dosimeter, it allows for efficient mapping of the dynamically-produced distributions from an HDR source. As an example of this technique, the dose response, which is calibrated in terms of the change in spin-spin relaxation time, has been used to investigate the anisotropy of an HDR source. (author). 1 fig

  3. High dose rate versus medium dose rate intraluminal brachytherapy in inoperable esophageal carcinoma

    International Nuclear Information System (INIS)

    Langendijk, J.; Jager, J.; Jong, J. de; Rijken, J.; Pannebakker, M.

    1996-01-01

    Introduction: The purpose of this study was to compare the results of medium dose rate (MDR) intraluminal brachytherapy (ILBT) and high dose rate (HDR) ILBT in patients with inoperable esophageal carcinoma, with regard to dysphagia, complication rate and survival. Material and methods: Included were 114 patients with inoperable esophageal cancer who were treated with a single session of ILBT. In all cases a single dose of 15 Gy was administered, calculated at a 1 cm radius. Forty-eight patients were treated with MDR ( 137 Cs)ILBT. In June 1990 MDR was replaced by HDR and from then 66 patients were treated with HDR ( 192 Ir). Dysphagia was prospectively scored using a 5-point scale at 6 weeks, 3, 6, 9 and 12 months. Results: No significant differences were noted between the two groups with regard to pretreatment variables. In patients treated with MDR-ILBT improvement of swallowing ability was noted in 30 out of 42 evaluable patients (71%), no change in 9 (21%) and progression of dysphagia in 3 patients (8%), as compared to 34 out of 59 evaluable patients (58%), 16 (27%) and 6 (15%) resp. in de HDR-ILBT group. In the latter category, progression of dysphagia was caused by fistulae in 2 patients. The differences were not significant (ns). Additional treatment in case of recurrent or persistent dysphagia was needed in 50% of the cases in the MDR-ILBT group as compared to 41% in the HDR-ILBT group (ns). The median survival of the MDR-ILBT group was 3.9 months as compared to 4.3 months in the HDR-ILBT group (ns). In 2 patients (4%) treated with MDR-ILBT bronchio-oesphageal fistulae developed at 6 weeks and 2 months. In the HDR-ILBT group fistulae were noted in 7 cases (11%) at 2 weeks, 4 weeks, 2, 3, 3, 4 and 9 months (ns). In all of these cases persistent of recurrent tumour was present. Conclusions: No significant differences were noted with regard to palliation of dysphagia, survival and complication rate between MDR-ILBT and HDR-ILBT in the management of esophageal

  4. Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Kestin, Larry L.; Edmundson, Gregory K.; Jaffray, David A.; Wong, John W.; Kini, Vijay R.; Chen, Peter Y.; Martinez, Alvaro A.

    1999-01-01

    Purpose/Objective: The use of brachytherapy in the management of breast cancer has increased significantly over the past several years. Unfortunately, few techniques have been developed to compare dosimetric quality and target volume coverage concurrently. We present a new method of implant evaluation that incorporates computed tomography-based three-dimensional (3D) dose-volume analysis with traditional measures of brachytherapy quality. Analyses performed in this fashion will be needed to ultimately assist in determining the efficacy of breast implants. Methods and Materials: Since March of 1993, brachytherapy has been used as the sole radiation modality after lumpectomy in selected protocol patients with early-stage breast cancer treated with breast-conserving therapy. Eight patients treated with high-dose-rate (HDR) brachytherapy who had surgical clips outlining the lumpectomy cavity and underwent computed tomography (CT) scanning after implant placement were selected for this study. For each patient, the postimplant CT dataset was transferred to a 3D treatment planning system. The lumpectomy cavity, target volume (lumpectomy cavity plus a 1-cm margin), and entire breast were outlined on each axial slice. Once all volumes were entered, the programmed HDR brachytherapy source positions and dwell times were imported into the 3D planning system. Using the tools provided by the 3D planning system, the implant dataset was then registered to the visible implant template in the CT dataset. The distribution of the implant dose was analyzed with respect to defined volumes via dose-volume histograms (DVH). Isodose surfaces, the dose homogeneity index, and dosimetric coverage of the defined volumes were calculated and contrasted. All patients received 32 Gy to the entire implanted volume in 8 fractions of 4 Gy over 4 days. Results: Three-plane implants were used for 7 patients and a two-plane implant for 1 patient. The median number of needles per implant was 16.5 (range

  5. A comparative study of Manchester system and ABS system in intracavitary brachytherapy dose calculations

    International Nuclear Information System (INIS)

    Surendran, N.; Uma Maheswari, P.; Meenakshi, P.S.; Mallika, A.; Gandhimathi, S.

    2008-01-01

    The success of brachytherapy in the treatment of cancer of cervix depends on the delivery of high radiation dose to the tumour in the cervix, sparing the critical organs rectum and bladder. Ideally, the dose should be prescribed to the individual patient's target volume. But almost all the institutions follow the dose prescription at a point instead of target volume, since tumour localization is not possible in radiograph. There are different systems of dose specifications for Ca. cervix treatment: -Manchester system and American Brachytherapy Society system. In Manchester system, Point A and Point B were defined. Point A was defined to be 2 cm superior to the external cervical os (or cervical end of the tandem) and 2 cm lateral to the cervical canal, which represents the location where the uterine vessels cross the ureter. Point B was defined 3 cm lateral to point A, which represents the lymph nodes. The American Board of Brachytherapy (ABs) recommends prescribing the dose to the new point called point H and pelvic wall points. Point H is based on the mid-dwell position of the vaginal ovoids. Finding Point H begins with drawing a line connecting the mid-dwell positions of the ovoids. From the intersection of this line with the tandem, move superiorly along the tandem 2 cm plus the radius of the ovoids, and then 2 cm perpendicular to the tandem in the lateral direction. In selectron LDR machine, instead of the mid-dwell position, the center of the ovoid source is taken. The pelvic wall points are located at the intersection of a horizontal tangent to superior aspect of the acetabulum on the AP radiograph

  6. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Landry, Guillaume; White, Shane; Reniers, Brigitte; Verhaegen, Frank; D’Amours, Michel; Beaulieu, Luc

    2014-01-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192 Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. (paper)

  7. Mucosal dose prescription in endobronchial brachytherapy: a study based on CT-dosimetry

    International Nuclear Information System (INIS)

    Lagerwaard, Frank J.; Murrer, Lars H.P.; Pan, Connie de; Roos, Martin; Senan, Suresh

    2000-01-01

    Purpose: To investigate the consequences of using different dose prescription methods for endobronchial brachytherapy (EB), both with and without the use of a centered applicator. Materials and Methods: A CT scan was performed during EB procedures in 13 patients after insertion of the lung applicator. A dosimetric analysis was subsequently performed in five of these patients using a 3D-brachytherapy treatment planning system (PLATO v13.3, Nucletron). Results: Dose prescription to the mucosa yields uniform dose distributions to the bronchial mucosa when a centrally positioned applicator is used. When non-centrally positioned applicators are used, mucosal dosing results in a significant underdosage to parts of the target volume. Due to the rapid dose fall-off in EB, dose prescription to the mucosa resulted in inadequate coverage of the outer portion of the bronchial wall and adjacent peribronchial space. When compared to mucosal dose prescription, prescription to the outer aspect of the bronchial wall appears to improve target coverage while limiting the hyperdose (i.e., 200%) volume. The diameters of the different bronchial segments, as determined by CT measurements in 13 patients, correlated well with calculated values based upon the tracheal diameter. Conclusions: Mucosal dose prescription should only be used in combination with centered EB applicators. Given the rapid dose fall-off in EB mucosal dose prescription should be used with caution in curative treatments where EB, without additional external radiotherapy, is used as the sole treatment modality. In curative EB, both improved target coverage and a limited hyperdose volume can be achieved by dose prescription to the outer aspect of the bronchial wall

  8. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-01-01

    In surface and interstitial high-dose-rate brachytherapy with either 60 Co, 192 Ir, or 169 Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for 60 Co and 1 mm for both 192 Ir and 169 Yb. Transmission data for 60 Co and 192 Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898–4906) for brachytherapy facility shielding; for 169 Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified. (paper)

  9. High dose rate brachytherapy for medically inoperable stage I endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Petereit, Daniel G; Sarkaria, Jann N; Schink, Julian; Springman, Scott R; Kinsella, Timothy J; Buchler, Dolores A

    1995-07-01

    Purpose/Objective: To determine the efficacy of high dose rate (HDR) brachytherapy in patients with medically inoperable endometrial cancer clinically confined to the corpus. Materials and Methods: Forty-two patients with endometrial cancer and an intact uterus have been treated since 1989 with HDR brachytherapy. Twenty-six patients with medically inoperable Stage I disease were treated with radiation alone and form the basis of this study. Obesity was assessed using the body mass index (BMI kg/m{sup 2}) scale. Patients with a BMI above 28 were considered obese and those above 35 morbidly obese, per standard anesthesia guidelines. Brachytherapy was delivered in 5 HDR insertions, 1 week apart, without any external beam radiation. The following doses were delivered per insertion: 5.7 Gy to point S, 7.0 Gy to point W, 8.2 Gy to the vaginal surface and 9.2 Gy to point M. Point M represents the conventional point A dose, while points S and W are myometrial points. A single tandem with either ovoids or cylinders was placed, unless the uterine cavity would accommodate 2 tandems. All treatments were outpatient using intravenous fentanyl and midazolam for sedation. Pelvic ultrasound was commonly used at the time of brachytherapy to verify tandem placement. Three year clinical endpoints were calculated using the Kaplan Meier method. Results: The median follow-up for the study cohort was 21 months with follow-up greater than 36 months in 11 patients. Seventeen of the 26 patients were inoperable due to morbid obesity (median weight and BMI; 316 lbs and 55 kg/m{sup 2}, respectively); the other patients had poor cardiopulmonary reserve {+-} obesity. The median age, KPS (Karnofsky Performance Status), weight, ASA (American Society of Anesthesiologists' Physical Class System) and BMI were 63 yrs, 80%, 285 lbs, 3 and 49 kg/m{sup 2}, respectively. Two patients with an ASA of 3 and 4 died from acute cardio-pulmonary events within 30 days of the last insertion, emphasizing the need

  10. High dose rate brachytherapy for medically inoperable stage I endometrial cancer

    International Nuclear Information System (INIS)

    Petereit, Daniel G.; Sarkaria, Jann N.; Schink, Julian; Springman, Scott R.; Kinsella, Timothy J.; Buchler, Dolores A.

    1995-01-01

    Purpose/Objective: To determine the efficacy of high dose rate (HDR) brachytherapy in patients with medically inoperable endometrial cancer clinically confined to the corpus. Materials and Methods: Forty-two patients with endometrial cancer and an intact uterus have been treated since 1989 with HDR brachytherapy. Twenty-six patients with medically inoperable Stage I disease were treated with radiation alone and form the basis of this study. Obesity was assessed using the body mass index (BMI kg/m 2 ) scale. Patients with a BMI above 28 were considered obese and those above 35 morbidly obese, per standard anesthesia guidelines. Brachytherapy was delivered in 5 HDR insertions, 1 week apart, without any external beam radiation. The following doses were delivered per insertion: 5.7 Gy to point S, 7.0 Gy to point W, 8.2 Gy to the vaginal surface and 9.2 Gy to point M. Point M represents the conventional point A dose, while points S and W are myometrial points. A single tandem with either ovoids or cylinders was placed, unless the uterine cavity would accommodate 2 tandems. All treatments were outpatient using intravenous fentanyl and midazolam for sedation. Pelvic ultrasound was commonly used at the time of brachytherapy to verify tandem placement. Three year clinical endpoints were calculated using the Kaplan Meier method. Results: The median follow-up for the study cohort was 21 months with follow-up greater than 36 months in 11 patients. Seventeen of the 26 patients were inoperable due to morbid obesity (median weight and BMI; 316 lbs and 55 kg/m 2 , respectively); the other patients had poor cardiopulmonary reserve ± obesity. The median age, KPS (Karnofsky Performance Status), weight, ASA (American Society of Anesthesiologists' Physical Class System) and BMI were 63 yrs, 80%, 285 lbs, 3 and 49 kg/m 2 , respectively. Two patients with an ASA of 3 and 4 died from acute cardio-pulmonary events within 30 days of the last insertion, emphasizing the need for accurate pre

  11. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    International Nuclear Information System (INIS)

    Mourtada, Firas; Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ( 192 Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ( 137 Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the 137 Cs and 192 Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% ± 1% and 6% ± 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% ± 3% lower than the LDR dose, mainly because of the 192 Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% ± 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers

  12. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  13. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  14. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  15. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  16. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  17. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  18. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  19. Endobronchial and endoesophageal high dose rate brachytherapy for malignant airway and digestive tract obstructions

    International Nuclear Information System (INIS)

    Mehta, Minesh P.

    1996-01-01

    With an annual incidence of more than 160,000 cases and a local failure rate between 30-50%, endobronchial occlusion seen with lung cancer is a common and potentially life-threatening complication. Several methods of managing this exist and recently endobronchial brachytherapy has been used extensively as a consequence of the development of fiberoptic bronchoscopy and high dose rate remote afterloading technology. Procedurally, one or more afterloading catheters are inserted in the involved portions of the tracheobronchial tree through fiberoptic guidance. Treatment techniques range from 1-4 applications fractionated over several weeks or given over 2 days with a single insertion procedure. Almost all procedures are currently performed in the outpatient setting. The major application of this technology is in the palliation of occlusive symptomatology. Clinical improvement ranges from 50-100%, radiographic reaeration ranges from 46-88% and bronchoscopic responses ranges from 59-100%. Symptomatic relief is usually quite durable with more than 70% of the patients' remaining life-time rendered symptom-free and symptom-improved. Recently, this modality has been explored for its curative potential as a boost following external beam radiotherapy. It is clear from these series, that in selected patients, endobronchial boost produces significant reaeration and sparing of lung volume from subsequent external radiation, and a few cases may even become resectable. Demonstration of the survival advantage will, however, require larger clinical trials with adequate controls. Some reports have suggested an unacceptably high rate of fatal hemoptysis following HDR endobronchial brachytherapy. Review of the world literature suggests that fatal hemoptysis rates range from 0-50% with an average of about 8%, comparable to an average of 5% with low dose rate brachytherapy. Other recognized complications include fistulae and radiation bronchitis. Because the majority of patients with

  20. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  1. Reduction of rectal doses by removal of gas in the rectum during vaginal cuff brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sabater, S.; Sevillano, M.M.; Andres, I.; Berenguer, R. [Complejo Hospitalario Univ. de Albacete (CHUA) (Spain). Dept. of Radiation Oncology; Machin-Hamalainen, S. [C.S. General Ricardos, Madrid (Spain); Mueller, K.; Arenas, M. [Hospital Univ. Sant Joan, Reus (Spain). Dept. of Radiation Oncology

    2013-11-15

    Objective: The goal of this work was to evaluate whether the volume reduction related to removal of gas in the rectum could be translated in lower doses to organs at risk (OAR) during vaginal cuff brachytherapy (VBT). Material and methods: Fourteen pairs of brachytherapy planning CT scans derived from 11 patients were re-segmented and re-planned using the same parameters. The only difference between pairs of CTs was the presence or lack of gas in the rectum. The first CT showed the basal status and the second was carried out after gas removal with a tube. A set of values derived from bladder and rectum dose-volume histograms (DVH) and dose-surface histograms (DSH) were extracted. Moreover the cylinder position related to the patient craniocaudal axis was recorded. Results: Rectum volume decreased significantly from 77.8 {+-} 45 to 55.43 {+-} 17.6 ml (p = 0.0052) after gas removal. Such volume diminution represented a significant reduction on all rectal DVH parameters analyzed except D{sub 25%} and D{sub 50%}. DSH parameter results were similar to previous ones. A nonsignificant increase of the bladder volume was observed and was associated with an increase of the DVH metrics analyzed. Conclusion: Removal of gas pockets is a simple and inexpensive maneuver that decreases rectal dose parameters on VBT, which can be translated as a better therapeutic ratio. It also suggests that other actions directed to empty the rectum could have a similar effect. (orig.)

  2. Cosmetic results in early stage breast cancer patients with high-dose brachytherapy after conservative surgery

    International Nuclear Information System (INIS)

    Torres, Felipe; Pineda, Beatriz E

    2004-01-01

    Purpose: to reveal cosmetic results in patients at early stages of low risk breast cancer treated with partial accelerated radiotherapy using high dose rate brachytherapy. Methods and materials: from March 2001 to July 2003,14 stages l and ll breast cancer patients were treated at the Colombian national cancer institute in Bogota with conservative surgery and radiotherapy upon the tumor bed (partial accelerated radiotherapy), using interstitial implants with iridium 192 (high dose rate brachytherapy) with a dose of 32 Gys, over 4 days, at 8 fractions twice a day. Results: with an average follow up of 17.7 months, good cosmetic results were found among 71.4 % of patients and excellent results among 14.3% of patients, furthermore none of the patients neither local nor regional or distant relapses. Conclusion: among patients who suffer from breast cancer at early stages, it showed is possible to apply partial accelerated radiotherapy upon the tumor bed with high doses over 4 days with good to excellent cosmetic results

  3. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    International Nuclear Information System (INIS)

    Gay, H A; Allison, R R; Downie, G H; Mota, H C; Austerlitz, C; Jenkins, T; Sibata, C H

    2007-01-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed

  4. Analysis of records of external occupational dose records in Brazil; Analise dos registros de dose ocupacional externa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Silva, Herica L.R. da, E-mail: claudia@ird.gov.br, E-mail: herica@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Silva, Claudio Ribeiro da, E-mail: claudio@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Brazil, a continental country, with actually more than 150,000 workers under individual monitoring for ionizing radiation, has implemented in 1987 a centralized system for storage of external occupational dose. This database has been improved over the years and is now a web-based information system called Brazilian External Occupational Dose Management Database System - GDOSE. This paper presents an overview of the Brazilian external occupational dose over the years. The estimated annual average effective dose shows a decrease from 2.4 mSv in 1987 to about 0.6 mSv, having been a marked reduction from 1987 to 1990. Analyzing by type of controlled practice, one sees that the medical and dental radiology is the area with the largest number of users of individual monitors (70%); followed by education practices (8%) and the industrial radiography (7%). Additionally to photon whole body monitoring; neutron monitors are used in maintenance (36%), reactor (30%) and education (27%); and extremity monitors, in education (27%), nuclear medicine (22%) and radiology (19%). In terms of collective dose, the highest values are also found in conventional radiology, but the highest average dose values are those of interventional radiology. Nuclear medicine, R and D and radiotherapy also have average annual effective dose higher than 1 mSv. However, there is some very high dose values registered in GDOSE that give false information. This should be better analyzed in the future. Annual doses above 500 are certainly not realistic. (author)

  5. High dose rate versus low dose rate brachytherapy in the treatment of stage IIIB cervical cancer, and the importance of brachytherapy timing

    International Nuclear Information System (INIS)

    Petereit, Daniel G.; Sarkaria, Jann N.; Czyzewski, Ann; Buchler, Dolores A.

    1996-01-01

    Purpose/Objective: To determine the efficacy of HDR versus LDR brachytherapy for Stage IIIB cervical cancer patients. Material and Methods: Forty-four HDR patients were retrospectively compared to 51 LDR patients treated at the same institution from 1977 to 1988 (LDR) and from 1989 to 1995 (HDR). A tumor burden score (TBS) of 2-9 was calculated for both groups of patients to assess volume of disease (2-4 low tumor burden, 5-9 high tumor burden). LDR and HDR patients received 60 Gy to the whole pelvis at 1.7 Gy/Fx. The majority of LDR patients were treated after completion of external beam radiation (EBR) with one 25 Gy implant to Point A (55 cGy/h). The HDR patients were treated with 4-5 HDR fractions of 3.7 Gy to 5.8 Gy/Fx for an LDR equivalence of 20-25 Gy (median dose/Fx 4.3 Gy, median insertion number 5). Clinical endpoints were calculated actuarially with significance determined by the log rank test and the relative risk (RR). Results: The median follow-up for the HDR and LDR groups was 1.8 and 5 years, respectively. Pelvic control and survival was better in the LDR group than the HDR group, 51%, 73%, 32%, 44% (p = 0.004, RR = 0.4), with grade III and above RTOG complications of 19% and 15%, respectively. The median age and performance status were similar between the two groups; however, a TBS score ≥7 was present in 23% of the HDR patients and in 9% of the LDR patients. Pelvic control in the HDR group was 58% with a TBS ≤4, and 17% with a TBS >4 (p = 0.01, RR = 0.4). The median EBR dose at the first HDR insertion was 31 Gy while all the LDR patients received 60 Gy before the insertion. Pelvic control rates in Table 1 indicate a trend towards improved outcome within the HDR group and same TBS if more external beam radiation was given prior to the first HDR insertion. Pelvic control was also higher within the HDR group when Point A received a BED Gy 10≥100 versus <100: 62%, 40%, respectively (RR 0.6). Conclusion: These retrospective results of HDR versus

  6. The relations between the quantity of milligram hours and doses to points A and B in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Martins, H.L.; Albuquerque, L.F.

    1987-01-01

    This paper shows that the mathematic relation used in doses prescription systems of gynecologic brachytherapy is precarious and it only be used in isolated cases, with the owing restrictions. The material, methods and the results are cited, analysing the dose ratio in function of some variables as: ovoid load, uterine probe curvature, etc. (C.G.C.) [pt

  7. Quality assurance of Vari-source high dose rate (HDR) brachytherapy- remote after loader and cost effectiveness of Vari-source HDR- brachytherapy: NORI, Islamabad experience

    International Nuclear Information System (INIS)

    Ahmad, N.; Mahmood, H.; Jafri, S.R.A.

    2004-01-01

    A quality control of Vari-Source high dose rate (HDR) remote after loading brachytherapy machine was carried out and the cost effectiveness of HDR brachytherapy machine was also evaluated considering the cost of ten Iridium-192 wire sources at Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan. A total number of 253 intracavitary insertions were done in 98 patients from October 1996 to May 2001. The results of the quality control tests performed during 1996 to 2001 were within the acceptable limits. The cost effectiveness of Vari-Source HDR brachytherapy machine was also evaluated. The average cost per patient was calculated as US$ 491. Small number of patients was treated as the machine was used for gynecologic malignancies only. The objective was to assess the quality control status of HDR brachytherapy machine on patient treatment day, source exchange day and periodic day (monthly basis). It was found that the cost per patient can be minimized if other type of cancer patients are also treated on Vari-Source HDR machine. (author)

  8. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  9. Assessment of dose homogeneity in conformal interstitial breast brachytherapy with special respect to ICRU recommendations

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2011-09-01

    Full Text Available Purpose: To present the results of dose homogeneity analysis for breast cancer patients treated with image-basedconformal interstitial brachytherapy, and to investigate the usefulness of the ICRU recommendations. Material and methods: Treatment plans of forty-nine patients who underwent partial breast irradiation with interstitialbrachytherapy were analyzed. Quantitative parameters were used to characterize dose homogeneity. Dose nonuniformityratio (DNR, dose homogeneity index (DHI, uniformity index (UI and quality index (QI were calculated.Furthermore, parameters recommended by the ICRU 58 such as minimum target dose (MTD, mean central dose (MCD,high dose volume, low dose volume and the spread between local minimum doses were determined. Correlationsbetween the calculated homogeneity parameters and usefulness of the ICRU parameters in image-based brachytherapywere investigated. Results: Catheters with mean number of 15 (range: 6-25 were implanted in median 4 (range: 3-6 planes. The volu -me of the PTV ranged from 15.5 cm3 to 176 cm3. The mean DNR was 0.32, the DHI 0.66, the UI 1.49 and the QI 1.94. Relatedto the prescribed dose, the MTD was 69% and the MCD 135%. The mean high dose volume was 8.1 cm3 (10%, whilethe low dose volume was 63.8 cm3 (96%. The spread between minimum doses in central plane ranged from –14% to+20%. Good correlation was found between the DNR and the DHI (R2 = 0.7874, and the DNR correlated well with theUI (R2 = 0.7615 also. No correlation was found between the ICRU parameters and any other volumetric parameters. Conclusions: To characterize the dose uniformity in high-dose rate breast implants, DVH-related homogeneityparameters representing the full 3D dose distributions are mandatory to be used. In many respects the current re commendationsof the ICRU Report 58 are already outdated, and it is well-timed to set up new recommendations, whichare more feasible for image-guided conformal interstitial brachytherapy.

  10. On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.

  11. Comparison between calculation methods of dose rates in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Biaggio, M.F.; D R, M.F.; Almeida, C.E. de

    1998-01-01

    In treatments with radiations for gynecologic tumors is necessary to evaluate the quality of the results obtained by different calculation methods for the dose rates on the points of clinical interest (A, rectal, vesicle). The present work compares the results obtained by two methods. The Manual Calibration Method (MCM) tri dimensional (Vianello E., et.al. 1998), using orthogonal radiographs for each patient in treatment, and the Theraplan/T P-11 planning system (Thratonics International Limited 1990) this last one verified experimentally (Vianello et.al. 1996). The results show that MCM can be used in the physical-clinical practice with a percentile difference comparable at the computerized programs. (Author)

  12. Post-operative high dose rate brachytherapy in patients with low to intermediate risk endometrial cancer

    International Nuclear Information System (INIS)

    Pearcey, R.G.; Petereit, D.G.

    2000-01-01

    This paper investigates the outcome using different dose/fractionation schedules in high dose rate (HDR) post-operative vaginal vault radiotherapy in patients with low to intermediate risk endometrial cancer. The world literature was reviewed and thirteen series were analyzed representing 1800 cases. A total of 12 vaginal vault recurrences were identified representing an overall vaginal control rate of 99.3%. A wide range of dose fractionation schedules and techniques have been reported. In order to analyze a dose response relationship for tumor control and complications, the biologically effective doses to the tumor and late responding tissues were calculated using the linear quadratic model. A threshold was identified for complications, but not vaginal control. While dose fractionation schedules that delivered a biologically effective dose to the late responding tissues in excess of 100 Gy 3 (LQED = 60 Gy) predicted for late complications, dose fractionation schedules that delivered a modest dose to the vaginal surface (50 Gy 10 or LQED = 30 Gy) appeared tumoricidal with vaginal control rates of at least 98%. By using convenient, modest dose fractionation schedules, HDR vaginal vault - brachytherapy yields very high local control and extremely low morbidity rates. (author)

  13. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  14. SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J

    2014-01-01

    Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows

  15. Manual method for dose calculation in gynecologic brachytherapy; Metodo manual para o calculo de doses em braquiterapia ginecologica

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, Elizabeth A.; Almeida, Carlos E. de [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Biaggio, Maria F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    1998-09-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author) 10 refs., 5 figs.

  16. Evaluation of radiation doses on critical organs in the treatment of cancer of the cervix using HDR-brachytherapy

    International Nuclear Information System (INIS)

    Soares, Taciana; Jansem, Teresa

    2000-01-01

    High dose-rate (HDR) brachytherapy is one type of treatment of the cervix carcinoma. During the planning for this therapy, especial attention is given to proximal normal organs such as bladder and rectum. In fact, due to their radiosensibility and localization, bladder and rectum are considered as critical organs. In this work we have studied the influence of the positioning of patient legs in the dose delivered to these critical organs in the treatment of cancer of the cervix using HDR-brachytherapy. (author)

  17. High-dose-rate brachytherapy in the treatment of uterine cervix cancer. Analysis of dose effectiveness and late complications

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Novaes, Paulo Eduardo Ribeiro dos Santos; Pellizzon, Antonio Cassio Assis; Maia, Maria Aparecida Conte; Fogarolli, Ricardo Cesar; Gentil, Andre Cavalcanti; Salvajoli, Joao Victor

    2001-01-01

    Purpose: This retrospective analysis aims to report results of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy. Methods and Materials: From September 1992 to December 1996, 138 patients with FIGO Stages II and III and mean age of 56 years were treated. Median EBR to the whole pelvis was 45 Gy in 25 fractions. Parametrial boost was performed in 93% of patients, with a median dose of 14.4 Gy. Brachytherapy with HDR was performed during EBR or following its completion with a dose of 24 Gy in four weekly fractions of 6 Gy to point A. Median overall treatment time was of 60 days. Patient age, tumor stage, and overall treatment time were variables analyzed for survival and local control. Cumulative biologic effective dose (BED) at rectal and bladder reference points were correlated with late complications in these organs and dose of EBR at parametrium was correlated with small bowel complications. Results: Median follow-up time was 38 months. Overall survival, disease-free survival, and local control at 5 years was 53.7%, 52.7%, and 62%, respectively. By multivariate and univariate analysis, overall treatment time up to 50 days was the only statistically significant adverse variable for overall survival (p=0.003) and actuarial local control (p=0.008). The 5-year actuarial incidence of rectal, bladder, and small bowel late complications was 16%, 11%, and 14%, respectively. Patients treated with cumulative BED at rectum points above 110 Gy 3 and at bladder point above 125 Gy 3 had a higher but not statistically significant 5-year actuarial rate of complications at these organs (18% vs. 12%, p=0.49 and 17% vs. 9%, p=0.20, respectively). Patients who received parametrial doses larger than 59 Gy had a higher 5-year actuarial rate of complications in the small bowel; however, this was not statistically significant (19% vs. 10%, p=0.260). Conclusion: This series suggests that 45 Gy to the whole pelvis combined with

  18. Dose verification in HDR brachytherapy and IMRT with Fricke gel-layer dosimeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Bartesaghi, G.; Pirola, L.; Carrara, M.; Gambini, I.; Tomatis, S.; Fallai, C.; Zonca, G.; Stokucova, J.

    2009-10-01

    At the Department of Physics of the Universita degli Studi di Milano in collaboration with the Medical Physics Unit and the Radiotherapy Unit of the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano the research of a dosimetric technique based on Fricke gel layers and optical analysis in under study. In fact, Fricke gel layer dosimeters (FGLD) have various advantages such as the tissue-equivalence for photons in the clinical energy interval, the possibility to obtain the spatial information about continuous dose distribution and not only a point dose distribution as it is for example in the case of ionization chambers, TLD or diodes and the possibility to obtain the information about 3D dose distributions. In this work, specific applications of FGLD to absolute dosimetry in radiotherapy have been studied, i.e. in-phantom measurements of complex intensity modulated radiation therapy fields (IMRT) and complex brachytherapy fields. (Author)

  19. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy; Lindegaard, Jacob Christian; de Leeuw, Astrid A C

    2016-01-01

    Purpose Vaginal stenosis is a major problem following radiotherapy in cervical cancer. We investigated a new dose planning strategy for vaginal dose de-escalation (VDD). Materials and methods Fifty consecutive locally advanced cervical cancer patients without lower or middle vaginal involvement...... at diagnosis from 3 institutions were analysed. External beam radiotherapy was combined with MRI-guided brachytherapy. VDD was obtained by decreasing dwell times in ovoid/ring and increasing dwell times in tandem/needles. The aim was to maintain the target dose (D90 of HR-CTV ⩾ 85 Gy EQD2) while reducing...... bladder and rectum (D2cm3) were reduced by 2 ± 2 Gy and 3 ± 2 Gy, respectively (p

  20. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  1. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Larissa J. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adverse Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure

  2. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  3. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  4. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  5. High dose rate afterloading intraluminal brachytherapy for advanced inoperable rectal carcinoma

    International Nuclear Information System (INIS)

    Hoskin, Peter J.; Canha, Sandra M. de; Bownes, Peter; Bryant, Linda; Jones, Rob Glynne

    2004-01-01

    Background and purpose: High dose rate intraluminal brachytherapy for tumours of the rectal and anal canal which were inoperable either because of the age and frailty of the patient or because of advanced disease has been evaluated. Patients and methods: In a retrospective review of 50 consecutive patients the two main indications for brachytherapy were as part of a radical radiation programme in those unfit for major surgery (26 patients) or as palliation for advanced or metastatic disease (22 patients). Radical treatment was either sole treatment delivering 6 Gy fraction 2 to 3 times weekly up to 36 Gy or as a boost of 12 Gy after 45 Gy in 25 fractions external beam chemoradiation. Palliative treatments were given predominantly as a single dose of 10 Gy. Results: This was predominantly a group of frail elderly patients with a median age of 82 years (range 35-91). Local tumour response was seen in 21/25 assessable patients with 14 complete responses. Median survival for the entire population was 6 months (range 1-54 months); in patients treated with 'radical' intent this was 25 months (range 1.5-54) and in the palliative group 7.2 months (range 1-37). The most common presenting symptom was bleeding per rectum for which a 64% response rate was obtained with 57% complete responses. Mucous discharge responded in 64% with 28% complete responses. The median duration of response was 7 months. Conclusion: Intraluminal HDR brachytherapy is an effective local treatment for patients otherwise unfit for radical surgery both as a component of radical treatment, or as a simple single palliative procedure

  6. Tumour alpha/beta ratios and dose-rate selection in brachytherapy

    International Nuclear Information System (INIS)

    Duchesne, G.M.

    2003-01-01

    Traditionally brachytherapy employed low dose rate (LDR) techniques. Recent adoption of high dose rate (HDR) applications, addressing radiation protection concerns, has sparked debate over possible reductions in therapeutic ratio. The radiobiological characteristics of two contrasting examples, prostate cancer and cervical cancer, are examined. Both in-vitro and clinical observations of prostate cancer suggest a low α/β ratio. Labelling indices are below 2.5%, translating into long potential doubling times (Tpot ) of 16 to 61 days or more. Clinical PSA doubling times are in the order of years. Analysis of clinical endpoints in prostate cancer treated with either LDR or HDR techniques indicates that its α/β ratio may lie between 1 - 4 Gy, similar to slowly proliferating late reacting tissues. As such, therapeutic gain may arise from the use of hypofractionated HDR treatments, exploiting the sensitivity to large fraction sizes, effectively escalating dose. The slow proliferative rate also gives credence to the use of LDR, although several tumour doublings may occur during the effective treatment time, and analysis of the clinical data using a low α/β ratio suggests that LDR doses are only equivalent to 70 Gy with conventional fractionation. Cervical carcinoma is a rapidly proliferating tumour with Tpot values of 3-6 days. LDR implants were delivered over relatively short treatment times, negating repopulation effects, and the 'hyperfractionation' effect of LDR was suited to the high α/β ratio. HDR, although also preventing significant repopulation, has the potential to decrease the therapeutic ratio if low α/β , late-reacting tissues are not protected. Clinical data however show improved outcomes and reduced morbidity with HDR through reduced doses to normal tissues. Choosing the optimal dose rate in brachytherapy depends on tumour behaviour and achievable accuracy. HDR offers some advantages even for high α/β ratio tumours, and may be the technique of

  7. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    Science.gov (United States)

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Exposure dose estimation of nursing personnel and visitors following "1"2"5I brachytherapy

    International Nuclear Information System (INIS)

    Nakazato, Kazuhisa; Kikuchi, Hirosumi; Hotta, Harumi; Nishizawa, Kunihide

    2007-01-01

    An automated access management system to the controlled sickrooms for "1"2"5I brachytherapy was developed. The system consists of access control and video surveillance units. The patients implanted "1"2"5I seeds were isolated for about 20 h after surgery in the controlled sickrooms. The maximum doses and dose rates of the nurses and visitors were estimated by using the legal upper limit activity of 1,300 MBq, the measured longest staying time, and the shortest distance between the patients and individuals. Video analysis revealed activities of the nurses, patients, and visitors in the controlled sickroom, and relationships between the access frequency and staying time. The nurses' measured doses ranged from 1 to 3 μSv, and averaged 1.6 μSv. The nurses' maximum dose and dose rate were 16 μSv and 5.6 nSv·h"-"1·MBq"-"1. The visitors' maximum dose and dose rate were 6 μSv and 2.6 nSv·h"-"1·MBq"-"1. The nurses and visitors' exposure doses per patient were estimated to be negligible compared with the annual limit of the public. (author)

  9. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  10. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  11. Pilot Quality Control Program for Brachytherapy of Low Dose Rate at the General Hospital of Mexico

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Tovar M, V.; Salinas, B.; Hernandez O, O.; Santillan B, L.; Molero M, C.; Montoya M, J.

    2004-01-01

    We describe the pilot quality control program for brachytherapy of low dose rate proposed to be used in the Radiotherapy Department at the General Hospital of Mexico. The program consists of three parts: a) development of calibration procedures, performed in terms of air-kerma strength for calibration of 137Cs and 192Ir brachytherapy sources, and for the calibration of well-type ionization chambers for 137Cs, b) performance of localisation and reconstruction techniques for radioactive sources with a Baltas' phantom. The results obtained for the media deviation , are in the optimum level, ± 0.5 mm < ± 1.0 mm; the confidence limit Δ, is in the emergency level, Δ=3.2 mm. c) verification of absorbed dose to water DW, given by the hospital. It consists on the characterisation of a TLD-100 powder dosimetry system at SSDL: The calibration curves for powder response (nC or nC/ mg) vs Dw and the control charts for the Harshaw 3500 reader were obtained. The statistical validation of the calibration curve by normality of the residuals and the lack of fit tests were realised. In the other hand, TLD's were irradiated in the hospital to a nominal Dw = 2 Gy with sources of 137Cs. The percent deviations Δ%, between the Dw imparted by the Hospital and the determined by SSDL, are 1.2% Δ≤ 6.5 % which are consistent with the expanded uncertainty U% for DW, 5.6 U% 10%

  12. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  13. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  14. Adjuvant high dose rate vaginal cuff brachytherapy for early stage endometrial cancer

    International Nuclear Information System (INIS)

    Tannehill, S.P.; Petereit, D.G.; Schink, J.C.; Grosen, E.A.; Hartenbach, E.M.; Thomadsen, B.R.; Buchler, D.A.

    1997-01-01

    Objective: To determine the efficacy and complications of adjuvant high dose rate (HDR) vaginal cuff brachytherapy (VCB) in patients (pts) with low risk endometrial carcinoma. Materials and Methods: Since 1989, 154 patients were treated with outpatient adjuvant VCB for low risk endometrial cancer (Stage IA-14%, Stage IB-82%). Four percent of patients with stage IC disease were treated with VCB only because of medical contraindications to pelvic radiation. Patients had the following histologic grades: 53% grade 1, 40% grade 2, 5% grade 3 and 3% unknown (99%-adenocarcinoma, <1% papillary serous histology). Seventy-three percent of patients had their surgery (TAH-BSO) performed at an outside institution with minimal surgical assessment of the lymph nodes. At a median of 6 weeks after surgery, patients were treated with 2 HDR VCB insertions delivered 1 week apart. Ovoids were placed at the vaginal apex to deliver 16.2 Gy per fraction to the vaginal surface (LDR equivalent of 60 Gy at 100 cGy/h) under conscious outpatient sedation. All clinical endpoints were calculated using the Kaplan Meier method. Complications were scored using the RTOG 5-tiered system. Results: The median time in the brachytherapy suite was 60 minutes with no acute complications observed. With a median follow-up of 33 months (3-79 months), the 4-year overall and disease-free survival were 93% and 96% respectively. Five patients (3%) recurred: 2 intra-abdominally, 1 with lung metastases, and 2 in the pelvic lymph nodes. There were no vaginal cuff recurrences. The single patient with an isolated pelvic sidewall recurrence was salvaged with pelvic RT. Six patients developed a small area of asymptomatic necrosis at the vaginal cuff, which spontaneously healed at a median time of 4 months. There were no grade 3 or greater late tissue toxicities. No patient experienced significant vaginal stenosis, with 20% of the patients experiencing mild fibrosis of the vaginal apex. Conclusions: Adjuvant HDR VCB in 2

  15. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids: Feasibility and Early Results

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping, E-mail: ping.jiang@uksh.de [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Baumann, René [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Dunst, Juergen [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, University of Copenhagen, Copenhagen (Denmark); Geenen, Matthias [Department of Reconstructive Surgery, Lubinus Clinic Kiel, Kiel (Germany); Siebert, Frank-André [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Niehoff, Peter [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, Community Clinic Köln, Köln (Germany); Department of Radiation Oncology, University Witten/Herdecke, Witten (Germany); Bertolini, Julia; Druecke, Daniel [Department of Reconstructive Surgery, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany)

    2016-03-01

    Purpose: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. Methods and Materials: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immediate perioperative high-dose-rate brachytherapy; 3 patients had been previously treated with adjuvant external beam radiation therapy and presented with recurrences in the pretreated areas. Two or more different treatment modalities had been tried in all patients and had failed to achieve remission. After (re-)excision of the keloids, a single brachytherapy tube was placed subcutaneously before closing the wound. The target volume covered the scar in total length. Brachytherapy was given in 3 fractions with a single dose of 6 Gy in 5 mm tissue depth. The first fraction was given within 6 hours after surgery, the other 2 fractions on the first postoperative day. Thus, a total dose of 18 Gy in 3 fractions was administered within 36 hours after the resection. Results: The treatment was feasible in all patients. No procedure-related complications (eg, secondary infections) occurred. Nineteen patients had keloid-related symptoms before treatment like pain and pruritus; disappearance of symptoms was noticed in all patients after treatment. After a median follow-up of 29.4 months (range, 7.9-72.4 months), 2 keloid recurrences and 2 mildly hypertrophied scars were observed. The local control rate was 94%. Pigmentary abnormalities were detected in 3 patients, and an additional 6 patients had a mild delay in the wound-healing process. Conclusions: The early results of this study prove the feasibility and the efficacy of brachytherapy for the prevention of keloids. The results also suggest that brachytherapy may be advantageous in the management of high-risk keloids or as salvage treatment for failure after external beam therapy.

  16. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Bhavana [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Patel, Firuza D., E-mail: firuzapatel@gmail.com [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Aprem, Abi Santhosh [Corporate R and D Division, HLL Lifecare Limited, Karamana, Trivandrum (India)

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  17. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, F [Ruprecht Karl University of Heidelberg, Heidelberg (Germany); Chofor, N [Carl von Ossietzky University of Oldenburg, Oldenburg (Germany); Schoenfeld, A [University of Oldenburg, Oldenburg (Germany); Harder, D [Georg-August University of Goettingen, Goettingen (Germany)

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, the energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be

  18. Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2011-06-01

    Full Text Available Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sources, measuring the homogeneity of delivered dose to treatment volume and also comparing mandible dose and dose of tongue in the regions near the mandible with and without using shield. Material and Method: The Monte Carlo code MCNP4C was used for simulation. The accuracy of simulation was verified by comparing the results with experimental data. The sources like Ir-192, Cs-137, Ra-226, Au-198, In-111 and Ba-131 were simulated and the position of sources was determined by Paris system. Results: The percentage of mandible dose reduction with use of 2 mm Pb shield for the sources mentioned above were: 35.4%, 20.1%, 86.6%, 32.24%, 75.6%, and 36.8%. The tongue dose near the mandible with use of shied did not change significantly. The dose homogeneity from the most to least was obtained from these sources: Cs-137, Au-198, Ir-192, Ba-131, In-111 and Ra-226. Discussion and Conclusion: Ir-192 and Cs-137 were the best sources for tongue brachytherapy treatment but In-111 and Ra-226 were not suitable choices for tongue brachytherapy. The sources like Au-198 and Ba-131 had rather the same performance as Ir-192

  19. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer.

    Science.gov (United States)

    Ko, Huaising C; Huang, Jessie Y; Miller, Jessica R; Das, Rupak K; Wallace, Charles R; De Costa, Anna-Maria A; Francis, David M; Straub, Margaret R; Anderson, Bethany M; Bradley, Kristin A

    To characterize image quality and feasibility of using ViewRay MRI (VR)-guided brachytherapy planning for cervical cancer. Cervical cancer patients receiving intracavitary brachytherapy with tandem and ovoids, planned using 0.35T VR MRI at our institution, were included in this series. The high-risk clinical target volume (HR-CTV), visible gross tumor volume, bladder, sigmoid, bowel, and rectum contours for each fraction of brachytherapy were evaluated for dosimetric parameters. Typically, five brachytherapy treatments were planned using the T2 sequence on diagnostic MRI for the first and third fractions, and a noncontrast true fast imaging with steady-state precession sequence on VR or CT scan for the remaining fractions. Most patients received 5.5 Gy × 5 fractions using high-dose-rate Ir-192 following 45 Gy of whole-pelvis radiotherapy. The plan was initiated at 5.5 Gy to point A and subsequently optimized and prescribed to the HR-CTV. The goal equivalent dose in 2 Gy fractions for the combined external beam and brachytherapy dose was 85 Gy. Soft-tissue visualization using contrast-to-noise ratios to distinguish normal tissues from tumor at their interface was compared between diagnostic MRI, CT, and VR. One hundred and forty-two fractions of intracavitary brachytherapy were performed from April 2015 to January 2017 on 29 cervical cancer patients, ranging from stages IB1 to IVA. The median HR-CTV was 27.78 cc, with median D 90 HR-CTV of 6.1 Gy. The median time from instrument placement to start of treatment using VR was 65 min (scan time 2 min), compared to 105 min using diagnostic MRI (scan time 11 min) (t-test, p < 0.01). The contrast-to-noise ratio of tumor to cervix in both diagnostic MRI and VR had significantly higher values compared to CT (ANOVA and t-tests, p < 0.01). We report the first clinical use of VR-guided brachytherapy. Time to treatment using this approach was shorter compared to diagnostic MRI. VR also provided significant

  20. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    Science.gov (United States)

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  1. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  2. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C. D.; Kron, T.; Leahy, M.; Duchesne, G.; Williams, S.; Tai, K. H.; Haworth, A.; Herschtal, A.; Foroudi, F. [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Nursing Service, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Radiation Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria 3002 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Insititute of Technology, Melbourne, Victoria 3000 (Australia); Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Radiation Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2011-11-15

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set was assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.

  3. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Fox, C. D.; Kron, T.; Leahy, M.; Duchesne, G.; Williams, S.; Tai, K. H.; Haworth, A.; Herschtal, A.; Foroudi, F.

    2011-01-01

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set was assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.

  4. Perioperative fractionated high-dose rate brachytherapy for malignant bone and soft tissue tumors

    International Nuclear Information System (INIS)

    Koizumi, Masahiko; Inoue, Takehiro; Yamazaki, Hideya; Teshima, Teruki; Tanaka, Eiichi; Yoshida, Ken; Imai, Atsushi; Shiomi, Hiroya; Kagawa, Kazufumi; Araki, Nobuto; Kuratsu, Shigeyuki; Uchida, Atsumasa; Inoue, Toshihiko

    1999-01-01

    Purpose: To investigate the viability of perioperative fractionated HDR brachytherapy for malignant bone and soft tissue tumors, analyzing the influence of surgical margin. Methods and Materials: From July 1992 through May 1996, 16 lesions of 14 patients with malignant bone and soft tissue tumors (3 liposarcomas, 3 MFHs, 2 malignant schwannomas, 2 chordomas, 1 osteosarcoma, 1 leiomyosarcoma, 1 epithelioid sarcoma, and 1 synovial sarcoma) were treated at the Osaka University Hospital. The patients' ages ranged from 14 to 72 years (median: 39 years). Treatment sites were the pelvis in 6 lesions, the upper limbs in 5, the neck in 4, and a lower limb in 1. The resection margins were classified as intracapsular in 5 lesions, marginal in 5, and wide in 6. Postoperative fractionated HDR brachytherapy was started on the 4th-13th day after surgery (median: 6th day). The total dose was 40-50 Gy/7-10 fr/ 4-7 day (bid) at 5 or 10 mm from the source. Follow-up periods were between 19 and 46 months (median: 30 months). Results: Local control rates were 75% at 1 year and 48% in 2 years, and ultimate local control was achieved in 8 (50%) of 16 lesions. Of the 8 uncontrolled lesions, 5 (63%) had intracapsular (macroscopically positive) resection margins, and all the 8 controlled lesions (100%) had marginal (microscopically positive) or wide (negative) margins. Of the total, 3 patients died of both tumor and metastasis, 3 of metastasis alone, 1 of tumor alone, and 7 showed no evidence of disease. Peripheral nerve palsy was seen in one case after this procedure, but no infection or delayed wound healing caused by tubing or irradiation has occurred. Conclusion: Perioperative fractionated HDR brachytherapy is safe, well tolerated, and applicable to marginal or wide surgical margin cases

  5. Reirradiation for recurrent head and neck cancer with salvage interstitial pulsed-dose-rate brachytherapy. Long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Strnad, Vratislav; Lotter, Michael; Kreppner, Stephan; Fietkau, Rainer [University Hospital Erlangen, Dept. of Radiation Oncology, Erlangen (Germany)

    2015-01-10

    To assess the long-term results of protocol-based interstitial pulsed-dose-rate (PDR) brachytherapy as reirradiation combined with simultaneous chemotherapy and interstitial hyperthermia in selected patients with recurrent head and neck tumors. A total of 104 patients with biopsy-proven recurrent head and neck cancer were treated with interstitial PDR brachytherapy. Salvage surgery had also been undergone by 53/104 (51 %) patients (R1 or R2 resection in > 80 % of patients). Salvage brachytherapy alone was administered in 81 patients (78 %), with a median total dose of 56.7 Gy. Salvage brachytherapy in combination with external beam radiotherapy (EBRT) was performed in 23/104 patients (32 %), using a median total dose of D{sub REF} = 24 Gy. Simultaneously to PDR brachytherapy, concomitant chemotherapy was administered in 58/104 (55.8 %) patients. A single session of interstitial hyperthermia was also used to treat 33/104 (31.7 %) patients. The analysis was performed after a median follow-up of 60 months. Calculated according to Kaplan-Meier, local tumor control rates after 2, 5, and 10 years were 92.5, 82.4, and 58.9 %, respectively. Comparing results of salvage PDR brachytherapy with or without simultaneous chemotherapy, the 10-year local control rates were 76 vs. 39 % (p= 0014), respectively. No other patient- or treatment-related parameters had a significant influence on treatment results. Soft tissue necrosis or bone necrosis developed in 18/104 (17.3 %) and 11/104 (9.6 %) patients, respectively, but only 3 % of patients required surgical treatment. PDR interstitial brachytherapy with simultaneous chemotherapy is a very effective and, in experienced hands, also a safe treatment modality in selected patients with head and neck cancer in previously irradiated areas. (orig.) [German] Es erfolgte die Analyse der Langzeitergebnisse einer protokollbasierten interstitiellen Brachytherapie (Re-Bestrahlung) mit simultaner Chemotherapie und interstitieller Hyperthermie

  6. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom.

    Science.gov (United States)

    Lesperance, Marielle; Inglis-Whalen, M; Thomson, R M

    2014-02-01

    To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with(125)I, (103)Pd, or (131)Cs seeds, and to investigate doses to ocular structures. An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20-30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%-10% and 13%-14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%-17% and 29%-34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model

  7. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  8. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Tedgren, Åsa Carlsson; Nilsson, Josef; Persson, Maria; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Dose calculation in high dose rate brachytherapy with 192 Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (D m,m ) and dose-to-water-in-medium (D w,m ). The relation between D m,m and D w,m for 192 Ir is the main goal of this study, in particular the dependence of D w,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: D m,m, D w,m (LCT), mean photon energy and photon fluence. D w,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between D m,m and D w,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between D w,m (SCT) and D w,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between D m,m and D w,m (SCT) mainly depend on tissue type, differences between D m,m and D w,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources. (paper)

  9. Late complications after high-dose-rate interstitial brachytherapy for tongue cancer

    International Nuclear Information System (INIS)

    Shimizutani, Kimishige; Inoue, Takehiro; Inoue, Toshihiko; Yoshioka, Yasuo; Teshima, Teruki; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei; Fuchihata, Hajime

    2005-01-01

    The objectives of this study was to analyze the treatment results and late complications of high-dose-rate (HDR) interstitial brachytherapy (ISBT) for early (T1N0, T2N0) mobile tongue cancer using the microSelectron-HDR. From January 1993 through April 2001, a total of 72 patients with early squamous cell carcinomas of the mobile tongue were treated with microSelectron-HDR interstitial brachytherapy at the Department of Radiology, Osaka University Hospital. Of the patients, 18% were treated with a combination of prior external radiation and HDR-ISBT, and 82% were treated with HDR-ISBT alone. For HDR-ISBT alone, all cases were treated with a total dose of 54 Gy/9 fractions every 5 days or 60 Gy/10 fractions every 8 days. In combined therapy with an external dose of 30 to 40 Gy, HDR-ISBT was given at a total dose of 42-50 Gy. The Brinkman and alcohol indexes were used to analyze the incidence of late complications after HDR-ISBT. The 2- and 5-year local control rates were 85% and 82%, respectively. Fifteen of 72 patients (21%) treated with HDR-ISBT had late complications. Ten of 15 patients (67%) with late complications had a Brinkman index exceeding 600. HDR-ISBT is useful and easily applied under local anesthesia to early or superficial lesions of the mobile tongue. However, we found an increase in late complications, such as soft-tissue ulcers and bone exposure, after irradiation of tongue cancer with 60 Gy HDR-ISBT in patients with a Brinkman index greater than 600. (author)

  10. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Torres, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J.; Andres, U.; Mendez, G.

    2003-01-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137 Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  11. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.

    2017-10-01

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  12. Study of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2010-09-01

    Full Text Available Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but this difference is not clear in measurements. Therefore, we applied the MCNP code to evaluate the effect of density on the dose distribution. 103Pd brachytherapy sources are used to treat prostate, breast and other cancers. Results: Absorbed dose has been calculated and presented around a source placed in the center of the phantom for different tissue densities. Also, we derived anisotropy and radial dose functions and compared our Monte Carlo results with experimental results of Rivard and Li et al. for F(1, θ and g(r in 1.040 g/cm3 tissue. Conclusion: The results of this study show that relative dose variations around the source center are very considerable at different densities, because of the presence of a photoabsorber (Au-Cu alloy in the source core. Dose variation exceeds 80% at the point (Z = 2.4 mm, Y = 0 mm. Computed values of anisotropy and radial dose functions are in good agreement with the experimental results of Rivard and Li et al.

  13. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin--Madison, Madison, Wisconsin 53705 (United States); Global Physics Solutions, St. Joseph, Michigan 49085 (United States); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  14. Pilot Quality Control Program for Brachytherapy of Low Dose Rate at the General Hospital of Mexico

    Science.gov (United States)

    Álvarez R., J. T.; Tovar M., V.; Salinas, B.; Hernández O., O.; Santillán B., L.; Molero M., C.; Montoya M., J.

    2004-09-01

    We describe the pilot quality control program for brachytherapy of low dose rate proposed to be used in the Radiotherapy Department at the General Hospital of Mexico. The program consists of three parts: a) development of calibration procedures, performed in terms of air-kerma strength for calibration of 137Cs and 192Ir brachytherapy sources, and for the calibration of well-type ionization chambers for 137Cs, b) performance of localisation and reconstruction techniques for radioactive sources with a Baltas' phantom. The results obtained for the media deviation , are in the optimum level, ± 0.5 mm hospital. It consists on the characterisation of a TLD-100 powder dosimetry system at SSDL: The calibration curves for powder response (nC or nC/ mg) vs Dw and the control charts for the Harshaw 3500 reader were obtained. The statistical validation of the calibration curve by normality of the residuals and the lack of fit tests were realised. In the other hand, TLD's were irradiated in the hospital to a nominal Dw = 2 Gy with sources of 137Cs. The percent deviations Δ%, between the Dw imparted by the Hospital and the determined by SSDL, are 1.2% Δ⩽ 6.5 % which are consistent with the expanded uncertainty U% for DW, 5.6 U% 10%.

  15. Re-distribution of brachytherapy dose using a differential dose prescription adapted to risk of local failure in low-risk prostate cancer patients

    DEFF Research Database (Denmark)

    Rylander, Susanne; Polders, Daniel; Steggerda, Marcel J

    2015-01-01

    BACKGROUND AND PURPOSE: We investigated the application of a differential target- and dose prescription concept for low-dose-rate prostate brachytherapy (LDR-BT), involving a re-distribution of dose according to risk of local failure and treatment-related morbidity. MATERIAL AND METHODS: Our study......- and dose prescription concept of prescribing a lower dose to the whole gland and an escalated dose to the GTV using LDR-BT seed planning was technically feasible and resulted in a significant dose-reduction to urethra and bladder neck....

  16. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    Science.gov (United States)

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  17. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  18. Genitourinary Toxicity After High-Dose-Rate (HDR) Brachytherapy Combined With Hypofractionated External Beam Radiotherapy for Localized Prostate Cancer: An Analysis to Determine the Correlation Between Dose-Volume Histogram Parameters in HDR Brachytherapy and Severity of Toxicity

    International Nuclear Information System (INIS)

    Ishiyama, Hiromichi; Kitano, Masashi; Satoh, Takefumi; Kotani, Shouko; Uemae, Mineko; Matsumoto, Kazumasa; Okusa, Hiroshi; Tabata, Ken-ichi; Baba, Shiro; Hayakawa, Kazushige

    2009-01-01

    Purpose: To evaluate the severity of genitourinary (GU) toxicity in high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy (EBRT) for prostate cancer and to explore factors that might affect the severity of GU toxicity. Methods and Materials: A total of 100 Japanese men with prostate cancer underwent 192 Ir HDR brachytherapy combined with hypofractionated EBRT. Mean (SD) dose to 90% of the planning target volume was 6.3 (0.7) Gy per fraction of HDR. After 5 fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administrated. The urethral volume receiving 1-15 Gy per fraction in HDR brachytherapy (V1-V15) and the dose to at least 5-100% of urethral volume in HDR brachytherapy (D5-D100) were compared between patients with Grade 3 toxicity and those with Grade 0-2 toxicity. Prostate volume, patient age, and International Prostate Symptom Score were also compared between the two groups. Results: Of the 100 patients, 6 displayed Grade 3 acute GU toxicity, and 12 displayed Grade 3 late GU toxicity. Regarding acute GU toxicity, values of V1, V2, V3, and V4 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Regarding late GU toxicity, values of D70, D80, V12, and V13 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Conclusions: The severity of GU toxicity in HDR brachytherapy combined with hypofractionated EBRT for prostate cancer was relatively high. The volume of prostatic urethra was associated with grade of acute GU toxicity, and urethral dose was associated with grade of late GU toxicity.

  19. The usefulness of metal markers for CTV-based dose prescription in high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Yoshida, Ken; Mitomo, Masanori; Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji; Yoshida, Mineo

    2002-01-01

    We employ a clinical target volume (CTV)-based dose prescription for high-dose-rate (HDR) interstitial brachytherapy. However, it is not easy to define CTV and organs at risk (OAR) from X-ray film or CT scanning. To solve this problem, we have utilized metal markers since October 1999. Moreover, metal markers can help modify dose prescription. By regulating the doses to the metal markers, refining the dose prescription can easily be achieved. In this research, we investigated the usefulness of the metal markers. Between October 1999 and May 2001, 51 patients were implanted with metal markers at Osaka Medical Center for Cancer and Cardiovascular Diseases (OMCC), Osaka National Hospital (ONH) and Sanda City Hospital (SCH). Forty-nine patients (head and neck: 32; pelvis: 11; soft tissue: 3; breast: 3) using metal markers were analyzed. During operation, we implanted 179 metal markers (49 patients) to CTV and 151 markers (26 patients) to OAR. At treatment planning, CTV was reconstructed judging from the metal markers, applicator position and operation records. Generally, we prescribed the tumoricidal dose to an isodose surface that covers CTV. We also planned to limit the doses to OAR lower than certain levels. The maximum normal tissue doses were decided 80%, 150%, 100%, 50% and 200% of the prescribed doses for the rectum, the urethra, the mandible, the skin and the large vessel, respectively. The doses to the metal markers using CTV-based dose prescription were generated. These were compared with the doses theoretically calculated with the Paris system. Treatment results were also investigated. The doses to the 158 metal markers (42 patients) for CTV were higher than ''tumoricidal dose''. In 7 patients, as a result of compromised dose prescription, 9 markers were lower than the tumoricidal dose. The other 12 markers (7%) were excluded from dose evaluation because they were judged as miss-implanted. The doses to the 142 metal markers (24 patients) for OAR were lower

  20. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy

    International Nuclear Information System (INIS)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo

    2016-01-01

    Purpose: To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. Methods and Materials: In this institutional review board–approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance–guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. Results: A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15

  1. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo, E-mail: junzo.chino@duke.edu

    2016-04-01

    Purpose: To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. Methods and Materials: In this institutional review board–approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance–guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. Results: A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15

  2. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy.

    Science.gov (United States)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo

    2016-04-01

    To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. In this institutional review board-approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance-guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15.8%-56.6%) below 108 Gy and 70.7% (95% CI 45

  3. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  4. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Jiang, S; Yang, Z [Tianjin University, Tianjin (China); Bai, H; Zhang, X [Seeds biological Pharmacy Ltd, Tianjin (China)

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing

  5. The use of Fricke dosimeter to determine the absorbed dose from brachytherapy equipment in the Northeastern Brazil

    International Nuclear Information System (INIS)

    Souza, Vivianne Lucia B.; Cunha, Manuela S.; Figueiredo, Marcela D.C.; Santos, Carla D.A.; Rodrigues, Kelia R.G.; Lira, Gabriela B.S.; Silva, Danubia B.; Melo, Roberto T.

    2011-01-01

    This paper describes the practical results of an assessment of the situation of brachytherapy services throughout the Northeast. A Fricke dosimetry system capable of verifying the dose absorbed in water, prepared by researchers from the Regional Center of Nuclear Sciences was brought to public hospitals in the Northeast. The system not only evaluates if the applied (measured) dose is close to the calculated (prescribed) dose, but is also capable of verifying human errors and/or mechanical or the International Atomic Energy Agency (IAEA) standards regarding the percentage of allowed difference between the prescribed dose and dose measurement. (author)

  6. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    International Nuclear Information System (INIS)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D 90 of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD 2 ) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D mean (EQD 2 ) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D mean (EQD 2 ) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD 2 ) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  7. COMP report: CPQR technical quality control guidelines for low-dose-rate permanent seed brachytherapy.

    Science.gov (United States)

    Beaulieu, Luc; Radford, Dee-Ann; Eduardo Villarreal-Barajas, J

    2018-03-14

    The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This article contains detailed performance objectives and safety criteria for low-dose-rate (LDR) permanent seed brachytherapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. High dose-rate brachytherapy source localization: positional resolution using a diamond detector

    International Nuclear Information System (INIS)

    Nakano, T; Suchowerska, N; Bilek, M M; McKenzie, D R; Ng, N; Kron, T

    2003-01-01

    A potential real-time source position verification process for high dose-rate (HDR) brachytherapy treatment is described. This process is intended to provide immediate confirmation that a treatment is proceeding according to plan, so that corrective action can be taken if necessary. We show that three dosimeters are in principle sufficient and demonstrate the feasibility of the process using a diamond detector and an Ir-192 source. An error analysis including all identified sources of error shows that this detector is capable of locating the distance to the source to within 2 mm for distances up to 12 cm. This positional accuracy is less than the diameter of typical HDR catheters indicating that a diamond detector can be used to accurately determine the distance to the source. The uncertainty in the distance is found to increase with distance

  9. High-dose rate brachytherapy (HDRB) for primary or recurrent cancer in the vagina

    International Nuclear Information System (INIS)

    Beriwal, Sushil; Heron, Dwight E; Mogus, Robert; Edwards, Robert P; Kelley, Joseph L; Sukumvanich, Paniti

    2008-01-01

    The purpose of this study was to evaluate the efficacy of HDR brachytherapy for primary or recurrent vaginal cancer. Between the years 2000 to 2006, 18 patients with primary or recurrent vaginal cancer were treated with brachytherapy (HDRB). Six patients had primary vaginal cancer (stage II to IVA) while 12 were treated for isolated vaginal recurrence (primary cervix = 4, vulva = 1 and endometrium = 7). Five patients had previous pelvic radiation therapy. All except one patient received external beam radiation therapy to a median dose of 45 Gy (range 31.2–55.8 Gy). The HDRB was intracavitary using a vaginal cylinder in 5 patients and interstitial using a modified Syed-Nesblett template in 13 patients. The dose of interstitial brachytherapy was 18.75 Gy in 5 fractions delivered twice daily. The median follow-up was 18 months (range 6–66 months). Complete response (CR) was achieved in all but one patient (94%). Of these 17 patients achieving a CR, 1 had local recurrence and 3 had systemic recurrence at a median time of 6 months (range 6–22 months). The 2-year actuarial local control and cause-specific survival for the entire group were 88% and 82.5%, respectively. In subset analysis, the crude local control was 100% for primary vaginal cancer, 100% for the group with recurrence without any prior radiation and 67% for group with recurrence and prior radiation therapy. Two patients had late grade 3 or higher morbidity (rectovaginal fistula in one patient and chronic vaginal ulcer resulting in bleeding in one patient). Both these patients had prior radiation therapy. Our small series suggests that HDRB is efficacious for primary or recurrent vaginal cancer. Patients treated with primary disease and those with recurrent disease without prior irradiation have the greatest benefit from HDRB in this setting. The salvage rate for patients with prior radiation therapy is lower with a higher risk of significant complications. Additional patients and follow-up are ongoing

  10. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons.

    Science.gov (United States)

    Ballester, Facundo; Granero, Domingo; Pérez-Calatayud, José; Melhus, Christopher S; Rivard, Mark J

    2009-09-01

    The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides (60Co, 137CS, 192Ir, and 169Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source beta-, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the 192Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Electronic equilibrium within 1% is reached for 60Co, 137CS, 192Ir, and 169Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for 60Co and 192Ir, respectively. Electron emissions become important (i.e., > 0.5%) within 3.3 mm of 60Co and 1.7 mm of 192Ir sources, yet are negligible over all distances for 137Cs and 169Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  11. Surface applicators for high dose rate brachytherapy in AIDS-related kaposi's sarcoma

    International Nuclear Information System (INIS)

    Evans, Michael D.C.; Yassa, Mariam; Podgorsak, Ervin B.; Roman, Ted N.; Schreiner, L. John; Souhami, Luis

    1997-01-01

    Purpose: The development of commercially available surface applicators using high dose rate remote afterloading devices has enabled radiotherapy centers to treat selected superficial lesions using a remote afterloading brachytherapy unit. The dosimetric parameters of these applicators, the clinical implementation of this technique, and a review of the initial patient treatment regimes are presented. Methods and Materials: A set of six fixed-diameter (1, 2, and 3 cm), tungsten/steel surface applicators is available for use with a single stepping-source (Ir-192, 370 GBq) high dose rate afterloader. The source can be positioned either in a parallel or perpendicular orientation to the treatment plane at the center of a conical aperture that sits at an SSD of approximately 15 mm and is used with a 1-mm thick removable plastic cap. The surface dose rates, percent depth dose, and off-axis ratios were measured. A custom-built, ceiling-mounted immobilization device secures the applicator on the surface of the patient's lesion during treatment. Results: Between November 1994, and September 1996, 16 AIDS-related Kaposi's sarcoma patients having a total of 120 lesions have been treated with palliative intent. Treatment sites were distributed between the head and neck, extremity, and torso. Doses ranged from 8 to 20 Gy, with a median dose of 10 Gy delivered in a single fraction. Treatments were well tolerated with minimal skin reaction, except for patients with lesions treated to 20 Gy who developed moderate/severe desquamation. Conclusion: Radiotherapy centers equipped with a high dose rate remote afterloading unit may treat small selected surface lesions with commercially available surface applicators. These surface applicators must be used with a protective cap to eliminate electron contamination. The optimal surface dose appears to be either 10 or 15 Gy depending upon the height of the lesion

  12. Physics and quality assurance for brachytherapy - Part I: High dose rates

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1997-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial, well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  13. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    Science.gov (United States)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  14. The impact of body mass index on dosimetric quality in low-dose-rate prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Michelle I. Echevarria

    2016-11-01

    Full Text Available Purpose : Low-dose-rate (LDR brachytherapy has been established as an effective and safe treatment option for men with low and intermediate risk prostate cancer. In this retrospective analysis, we sought to study the effect of body mass index (BMI on post-implant dosimetric quality. Material and methods : After institutional approval, records of patients with non-metastatic prostate cancer treated in Puerto Rico with LDR brachytherapy during 2008-2013 were reviewed. All patients were implanted with 125I seeds to a prescription dose of 145 Gy. Computed tomography (CT based dosimetry was performed 1 month after implant. Patients with at least 1 year of prostate-specific antigen (PSA follow-up were included. Factors predictive of adequate D90 coverage (≥ 140 Gy were compared via the Pearson χ2 or Wilcoxon rank-sum test as appropriate. Results : One-hundred and four patients were included in this study, with 53 (51% patients having a D90 ≥ 140 Gy. The only factor associated with a dosimetric coverage detriment (D90 < 140 Gy was BMI ≥ 25 kg/m2 (p = 0.03. Prostate volume (p = 0.26, initial PSA (p = 0.236, age (p = 0.49, hormone use (p = 0.93, percent of cores positive (p = 0.95, risk group (p = 0.24, tumor stage (p = 0.66, and Gleason score (p = 0.61 did not predict D90. Conclusions : In this study we show that BMI is a significant pre-implant predictor of D90 (< 140 Gy vs. ≥ 140 Gy. Although other studies have reported that prostate volume also affects D90, our study did not find this correlation to be statistically significant, likely because all of our patients had a prostate volume 140 Gy.

  15. High-Dose-Rate Brachytherapy Boost for Prostate Cancer: Comparison of Two Different Fractionation Schemes

    International Nuclear Information System (INIS)

    Kaprealian, Tania; Weinberg, Vivian; Speight, Joycelyn L.; Gottschalk, Alexander R.; Roach, Mack; Shinohara, Katsuto; Hsu, I.-Chow

    2012-01-01

    Purpose: This is a retrospective study comparing our experience with high-dose-rate (HDR) brachytherapy boost for prostate cancer, using two different fractionation schemes, 600 cGy × 3 fractions (patient group 1) and 950 cGy × 2 fractions (patient group 2). Methods and Materials: A total of 165 patients were treated for prostate cancer using external beam radiation therapy up to a dose of 45 Gy, followed by an HDR brachytherapy prostate radiation boost. Between July 1997 and Nov 1999, 64 patients were treated with an HDR boost of 600 cGy × 3 fractions; and between June 2000 and Nov 2005, 101 patients were treated with an HDR boost of 950 cGy × 2 fractions. All but 9 patients had at least one of the following risk features: pretreatment prostate-specific antigen (PSA) level >10, a Gleason score ≥7, and/or clinical stage T3 disease. Results: Median follow-up was 105 months for group 1 and 43 months for group 2. Patients in group 2 had a greater number of high-risk features than group 1 (p = 0.02). Adjusted for comparable follow-up, there was no difference in biochemical no-evidence-of-disease (bNED) rate between the two fractionation scheme approaches, with 5-year Kaplan-Meier estimates of 93.5% in group 1 and 87.3% in group 2 (p = 0.19). The 5-year estimates of progression-free survival were 86% for group 1 and 83% for group 2 (p = 0.53). Among high-risk patients, there were no differences in bNED or PFS rate due to fractionation. Conclusions: Results were excellent for both groups. Adjusted for comparable follow-up, no differences were found between groups.

  16. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Speight, J.L.; Streeter, O.E.; Chawla, S.; Menendez, L.E.

    1996-01-01

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitron tm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was

  17. Intestinal morphological effect of brachytherapy of low rate of dose, administrated in therapeutic form and its clinical manifestations in uterine cervix tumors

    International Nuclear Information System (INIS)

    Mendoza, Carmen; Contreras, Manuel

    2005-01-01

    Brachytherapy is effective to eradicate cancer in the cervix, in order to obtain the control of disease we use high dose with vesical and rectum toxicity. The objective is to investigate if brachytherapy by itself is the cause of intestinal damage, to know in addition if the intensity of the clinic manifestations is in direct relation to the given radiation dose and this gets worse when it is received in several applications. Hypothesis: The intensity of the radiation with brachytherapy of low rate of dose is proportional to the degree of clinical manifestations and morphologic damage of the intestine. A prospective analysis was made inpatients with cancer of cervix from september 2000 to june 2004. Each patient who enters to the department of brachytherapy of the hospital must be done laboratory examination that includes plaque and coagulation test before being accepted. We use the clinical card and a table in order to register data concerning teletherapy, implants of brachytherapy of low rate of dose, symptoms of intestinal toxicity and details of colonoscopia. Subsequent to the hospitable discharge the patient is sent to gastroenterology for clinical evaluation and to realize colonoscopia. From september 2000 to june 2004, 540 patients entered, 80 patients (15%) displayed intestinal manifestations, all received teletherapy and brachytherapy, nobody else received brachytherapy in exclusive form and only one patient (0.1%) received the total of the dose in 2 applications. The equipment of teletherapy Primus with energy of 6 and 18 Mv and implants of brachytherapy Manchester were used (70/55 patients). 79 (98%) patients received dose between 85-75 Gy in one single application, 58 (72%) received the total of the dose to the tumor, 21 (26%) in vaginal mucosa. Discussion: Brachytherapy is the cause of the damages in the intestinal mucosa. (The author)

  18. Comparison of high dose rate (HDR) and low dose rate (LDR) brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone. The preliminary results

    International Nuclear Information System (INIS)

    Trippe, Nivaldo; Novaes, P.E.; Ferrigno, R.; Pellizzon, A.C.; Salvajoli, J.V.; Fogaroli, R.C.; Maia, M.A.C.; Baraldi, H.E.

    1996-01-01

    Purpose/Objective: To compare the results between HDR and LDR brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone through a prospective and randomized trial. Materials and Methods: From September 1992 to December 1993, 65 patients with stage IIIB cervical cancer were randomized to one of the following treatment schedule according to the brachytherapy used to complement the dose of external beam radiotherapy (EBRT): 1 - High dose rate (HDR) - 36 patients - 4 weekly insertions of 6,0 Gy at point A 2 - Low dose rate (LDR) - 29 patients - 2 insertions two weeks apart of 17,5 Gy at point A The External Beam radiotherapy was performed through a Linac 4MV, in box arrangement for whole pelvis and in AP-PA fields for parametrial complementation of dose. The dose at the whole pelvis was 45 Gy in 25 fractions of 1,8 Gy and the parametrial dose was 16 Gy. The brachytherapy was realized with Fletcher colpostats and intrauterine tandem, in both arms. The HDR brachytherapy was realized through a Micro-Selectron device, working with Iridium-192 with initial activity of 10 Ci and started ten days after the beginning of EBRT. The total treatment time was shortened in two weeks for this group. The LDR brachytherapy started only after the end of EBRT. Results: With the minimum follow up of 24 months and medium of 31 months, the disease free survival was 50% among the 36 patients in HDR group and 47,8% among the 29 patients in LDR group. Local failures occurred in 50% and 52,8% respectively. Grade I and II complications were restricted to rectites and cistites and the incidence of them was 8,3% for HDR group and 13% for LDR group. Until the time of evaluation there were no grade III complications in any group. Conclusions: Although the number of patients is small and the time of follow up still short, these preliminary results suggest that the HDR brachytherapy has an equivalent efficiency in local control as the LDR in the treatment of stage IIIB

  19. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  20. Radioablation of adrenal gland malignomas with interstitial high-dose-rate brachytherapy. Efficacy and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Mohnike, K. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Radiologie und Nuklearmedizin, Magdeburg (Germany); DTZ am Frankfurter Tor, Berlin (Germany); Neumann, K.; Seidensticker, M.; Seidensticker, R.; Pech, M.; Streitparth, T.; Ricke, J. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Radiologie und Nuklearmedizin, Magdeburg (Germany); Hass, P.; Gademann, G. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Strahlentherapie, Magdeburg (Germany); Klose, S. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Nieren- und Hochdruckkrankheiten, Diabetologie und Endokrinologie, Magdeburg (Germany); Garlipp, B.; Benckert, C. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Allgemein-, Viszeral- und Gefaesschirurgie, Magdeburg (Germany); Wendler, J.J.; Liehr, U.B.; Schostak, M. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Urologie und Kinderurologie, Magdeburg (Germany); Goeppner, D. [Universitaetsklinikum Magdeburg A.oe.R., Otto-von-Guericke-Universitaet, Klinik fuer Dermatologie, Magdeburg (Germany)

    2017-08-15

    To assess the efficacy, safety, and outcome of image-guided high-dose-rate (HDR) brachytherapy in patients with adrenal gland metastases (AGM). From January 2007 to April 2014, 37 patients (7 female, 30 male; mean age 66.8 years, range 41.5-82.5 years) with AGM from different primary tumors were treated with CT-guided HDR interstitial brachytherapy (iBT). Primary endpoint was local tumor control (LTC). Secondary endpoints were time to untreatable progression (TTUP), time to progression (TTP), overall survival (OS), and safety. In a secondary analysis, risk factors with an influence on survival were identified. The median biological equivalent dose (BED) was 37.4 Gy. Mean LTC after 12 months was 88%; after 24 months this was 74%. According to CTCAE criteria, one grade 3 adverse event occurred. Median OS after first diagnosis of AGM was 18.3 months. Median OS, TTUP, and TTP after iBT treatment were 11.4, 6.6, and 3.5 months, respectively. Uni- and multivariate Cox regression analyses revealed significant influences of synchronous disease, tumor diameter, and the total number of lesions on OS or TTUP or both. Image-guided HDR-iBT is safe and effective. Treatment- and primary tumor-independent features influenced survival of patients with AGM after HDR-iBR treatment. (orig.) [German] Beurteilung der Effektivitaet, Sicherheit und Ergebnisse nach bildgefuehrter High-dose-rate-(HDR-)Brachytherapie bei Patienten mit Nebennierenmetastasen. Von Januar 2007 bis April 2014 wurden 37 Patienten (7 weiblich, 30 maennlich; mittleres Alter 66,8 Jahre, Spanne 41,5-82,5 Jahre) mit Nebennierenmetastasen verschiedener Primarien mit CT-gesteuerter interstitieller HDR-Brachytherapie (iBT) behandelt. Der primaere Endpunkt war die lokale Tumorkontrolle (LTC). Sekundaere Endpunkte umfassten die Zeit bis zum nicht mehr behandelbaren Progress (TTUP), die Zeit bis zum Progress (TTP), das Gesamtueberleben (OS) und die Sicherheit der Methode. In einer sekundaeren Analyse wurden Risikofaktoren

  1. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-01-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  2. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  3. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    Science.gov (United States)

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. High dose rate brachytherapy for carcinoma of the cervix: risk factors for late rectal complications

    International Nuclear Information System (INIS)

    Uno, Takashi; Itami, Jun; Aruga, Moriyo; Kotaka, Kikuo; Fujimoto, Hajime; Minoura, Shigeki

    1996-01-01

    Purpose/Objective: To determine the incidence of late rectal complications in patients treated with high dose rate brachytherapy for FIGO stage IIB, IIIB carcinoma of the uterine cervix, and to evaluate the treatment factors associated with an increased probability of treatment complications. Materials and Methods: Records of 100 patients with FIGO IIB or IIIB cervical carcinoma treated with definitive irradiation using high dose rate intracavitary brachytherapy (HDR-ICR) between 1977 and 1994 were retrospectively reviewed. For each HDR-ICR session, 6 Gy isodose volume was reconstructed three dimensionally and the following three parameters were determined to represent this isodose volume, length (L); maximum longitudinal distance of 6 Gy isodose area in an oblique frontal plane containing the intrauterine applicator, width (W); maximum width of 6 Gy isodose area in the same plane, height (H); maximum dimension of 6 Gy isodose area perpendicular to the intrauterine applicator determined in the oblique sagittal plane. Point P/Q (2 cm ventral/dorsal from the proximal retention point of the intrauterine source) and point R/S (2 cm ventral/dorsal from the midpoint of the ovoid sources) were also defined retrospectively and HDR-ICR dose at these points were calculated. Statistical analyses were performed to determine the treatment factors predictive of late rectal complications. Results: The 5-year cumulative cause-specific disease-free survival rate was 50% for all, 74% for Stage IIB, and 38% for Stage IIIB, with a significant difference between two FIGO Stages (p=0.0004). Of patients treated for both stages, 30% and 36% had experienced moderate to severe (Grade 2-4) complications at 3 and 5 years, respectively. Average H value (p=0.013) and cumulative point S dose by HDR-ICR (p=0.020) were significantly correlated with the incidence of late rectal complications (Student's t-test), whereas these factors did not significantly affect the probability of pelvic control. No

  5. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  6. Inverse Planned High-Dose-Rate Brachytherapy for Locoregionally Advanced Cervical Cancer: 4-Year Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Tinkle, Christopher L.; Weinberg, Vivian [Department of Radiation Oncology, University of California, San Francisco, California (United States); Chen, Lee-May [Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California (United States); Littell, Ramey [Gynecologic Oncology, The Permanente Medical Group, San Francisco, California (United States); Cunha, J. Adam M.; Sethi, Rajni A. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Chan, John K. [Gynecologic Oncology, California Pacific Medical Center, San Francisco, California (United States); Hsu, I-Chow, E-mail: ichow.hsu@ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, California (United States)

    2015-08-01

    Purpose: Evaluate the efficacy and toxicity of image guided brachytherapy using inverse planning simulated annealing (IPSA) high-dose-rate brachytherapy (HDRB) boost for locoregionally advanced cervical cancer. Methods and Materials: From December 2003 through September 2009, 111 patients with primary cervical cancer were treated definitively with IPSA-planned HDRB boost (28 Gy in 4 fractions) after external radiation at our institution. We performed a retrospective review of our experience using image guided brachytherapy. Of the patients, 70% had a tumor size >4 cm, 38% had regional nodal disease, and 15% had clinically evident distant metastasis, including nonregional nodal disease, at the time of diagnosis. Surgical staging involving pelvic lymph node dissection was performed in 15% of patients, and 93% received concurrent cisplatin-based chemotherapy. Toxicities are reported according to the Common Terminology Criteria for Adverse Events version 4.0 guidelines. Results: With a median follow-up time of 42 months (range, 3-84 months), no acute or late toxicities of grade 4 or higher were observed, and grade 3 toxicities (both acute and late) developed in 8 patients (1 constitutional, 1 hematologic, 2 genitourinary, 4 gastrointestinal). The 4-year Kaplan-Meier estimate of late grade 3 toxicity was 8%. Local recurrence developed in 5 patients (4 to 9 months after HDRB), regional recurrence in 3 (6, 16, and 72 months after HDRB), and locoregional recurrence in 1 (4 months after HDR boost). The 4-year estimates of local, locoregional, and distant control of disease were 94.0%, 91.9%, and 69.1%, respectively. The overall and disease-free survival rates at 4 years were 64.3% (95% confidence interval [CI] of 54%-73%) and 61.0% (95% CI, 51%-70%), respectively. Conclusions: Definitive radiation by use of inverse planned HDRB boost for locoregionally advanced cervical cancer is well tolerated and achieves excellent local control of disease. However, overall

  7. High-dose-rate afterloading brachytherapy in carcinoma of the cervix: an experience of 1992 patients

    International Nuclear Information System (INIS)

    Lorvidhaya, Vicharn; Tonusin, Anun; Changwiwit, Witit; Chitapanarux, Imjai; Srisomboon, Jatupol; Wanwilairat, Somsak; Chawapun, Nisa; Sukthomya, Vimol

    2000-01-01

    Purpose: To report the results of radiation therapy in carcinoma of the cervix treated by external irradiation and high-dose-rate (HDR) intracavitary brachytherapy. Methods and Materials: This is a retrospective analysis of 2063 patients with histologically proven carcinoma of the cervix treated by external irradiation and HDR intracavitary brachytherapy between March 1985-December 1991. The Kaplan-Meier method was used for survival and disease-free survival analysis. Late complications in the bowel and bladder were calculated actuarially. Results: There were 71 patients who did not complete the course of irradiation so only 1992 patients were retrospectively analyzed for survival. There were 2 patients (0.1%) in Stage IA, 211 (10.2%) Stage IB, 225 (10.9%) in Stage IIA, 902 (43.7%) in Stage IIB, 14 (0.7%) in Stage IIIA, 675 (32.7%) in Stage IIIB, 16 (0.8%) in Stage IVA, and 16 (0.8%) in Stage IVB. The median follow-up time was 96 months. The actuarial 5-year disease-free survival rate was 79.5%, 70.0%, 59.4%, 46.1%, 32.3%, 7.8%, and 23.1% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. The actuarial 5-year disease-free survival rate for Stage IB 1 and IB 2 squamous cell carcinoma was 88.7% and 67.0%. The actuarial 5-year overall survival rate was 86.3%, 81.1%, 73.0%, 50.3%, 47.8%, 7.8%, and 30.8% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. Pattern of failure revealed 20.8% local recurrence, 18.7% distant metastases, and 4% in both. The late complication rate Grade 3 and 4 (RTOG) for bowel and bladder combined was 7.0% with 1.9% Grade 4. Conclusion: HDR brachytherapy used in this series produced pelvic control and survival rates comparable to other LDR series

  8. A study on the variation of bladder and rectal doses with respiration in intracavitary brachytherapy for cervix cancer

    Directory of Open Access Journals (Sweden)

    Singh Karuna

    2010-04-01

    Full Text Available Purpose: In cervical intracavitary brachytherapy, it is mandatory to evaluate if the doses to bladder and rectum are within tolerance limits. In this study, an effort has been made to evaluate the effect of respiration on the doses to bladder and rectum in patients undergoing brachytherapy.Material and methods: Fifteen patients with cervix cancer treated with concurrent chemoradiation followed by intracavitary brachytherapy were included in this study. At the time of brachytherapy, all patients underwent 4D computed tomography (CT imaging. Five out of fifteen patients were scanned with empty bladder while the rest had full bladder during sectional imaging. Four sets of pelvic CT image datasets with applicators in place were acquired at equal interval in a complete respiratory cycle. Treatment plans were generated for all the CT datasets on a PlatoTM Sunrise planning system. A dose of 7 Gy was prescribed to Point A. Doses to ICRU (Report No.38 bladder (IBRP and rectal (IRRP reference points were calculated in all the CT datasets.Results: The mean of maximum dose to IBRP at four different respiratory phases for full and empty bladder were 53.38 ± 19.20%, 55.75 ± 16.71%, 56.13 ± 17.70%, 57.50 ± 17.48% and 60.93 ± 15.18%, 60.29 ± 16.28%, 60.86 ± 15.90%, 60.82 ± 15.42% of the prescribed dose respectively. Similarly, maximum dose to IRRP for full and empty bladder were 55.50 ± 18.66%, 57.38 ± 14.81%, 58.00 ± 14.97%, 58.38 ± 17.28% and 71.96 ± 6.90%, 71.58 ± 7.52%, 68.92 ± 6.21%, 71.45 ± 7.16% respectively.Conclusions: Our study shows that respiration affects the dose distribution to the bladder and rectum in intracavitary brachytherapy of cervix cancer. It is advisable to reduce the critical organ dose to account for the dose variation introduced by respiratory motion.

  9. A comparison of radiation dose to the neurovascular bundles in men with and without prostate brachytherapy-induced erectile dysfunction

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Dorsey, Anthony T.; Lief, Jonathan H.; Donzella, Joseph G.

    2000-01-01

    Purpose: The etiology of erectile dysfunction after definitive local therapy for carcinoma of the prostate gland represents a multifactorial phenomenon including neurogenic compromise, venous insufficiency, local trauma, and psychogenic causes. It has been suggested that impotence after prostate brachytherapy is a consequence of excessive radiation dose to the neurovascular bundles (NVB). Herein we evaluate the potential relationship between radiation dose to the NVB and the development of erectile dysfunction following prostate brachytherapy. Methods and Materials: The radiation dose to the NVB was evaluated for 33 patients who developed erectile dysfunction (ED) following brachytherapy plus 21 additional patients who were potent before and subsequent to brachytherapy. Of the 54 patient study group, the median follow up was 37 months, and 25 patients were managed with 125 I as a monotherapeutic approach and 29 received 103 Pd as a boost following 45 Gy of external beam radiation therapy. Radiographic localization of the NVB was performed via a two-dimensional geometric model that placed 3-NVB calculation points on the left and right posterolateral side of each 5-mm CT slice. Parameters evaluated included dose-surface histograms, dose parameters via point doses on each slice, the magnitude of the dose in relationship to the distance from the base, and the relationship between NVB radiation dose in patients with and without ED, patient response to sildenafil and case sequence number. Results: In terms of percent prescribed minimum peripheral dose (% mPD), there was no significant difference in mean neurovascular bundle dose between potent and impotent patients, between the isotopes ( 125 I or 103 Pd), mono- or boost therapy, or side of the prostate for which the overall average was 217% ± 55% of mPD. There was also no significant dosimetric difference in terms of response to sildenafil based on a multivariate analysis which included % mPD and various dose

  10. Proposal of a high dose rate brachytherapy model for in vitro radiobiology studies

    International Nuclear Information System (INIS)

    Geraldo, Jony M.; Nogueira, Luciana B.; Andrade, Lidia M.; Trindade, Cassia; Furtado, Clascidia A.; Ladeira, Luiz Orlando

    2016-01-01

    The aim of this research was to develop an easy and reproducible approach for experimental HDR brachytherapy allowing in vitro irradiation studies based on clinical parameters. An acrylic platform was designed to attach T25 tissue culture flasks and multi-well tissue culture plates as well as kept the catheters in a fixed position during irradiation. CT images were taken and the irradiation was planned for 550cGy dose applied on adherent tumor cells. Dosimetric measurements were done and all relevant uncertainties were taken into account in order to figure out the correct dose range received by the cells. Tumor cells were irradiated two times over an interval of 24h between irradiations. Proof of concepts of this approach was carried out by biological effects analysis using a radioresistant human epidermoid carcinoma A431 cell line. Cellular proliferation and cell cycle phase were assessed by Trypan blue exclusion assay and DNA content analysis by flow cytometry, respectively. This approach allowed uniform dose distribution around the arrangement in all types of tissue culture plastics evaluated. Corrections due to uncertainties were managed. Regarding in vitro assays there was a significant (p<0.05) decreasing of cellular proliferation rate in irradiated cells. Moreover, increased percentage of cells arrested in G2/M phase (32.3 ± 1.5%) were observed for treated group compared with untreated cells. (author)

  11. Comparison of urethral diameters for calculating the urethral dose after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Nakano, Masahiro; Kubota, Yasuaki; Maeda, Sunaho; Ohtakara, Kazuhiro; Deguchi, Takashi; Hoshi, Hiroaki

    2007-01-01

    No studies have yet evaluated the effects of a dosimetric analysis for different urethral volumes. We therefore evaluated the effects of a dosimetric analysis to determine the different urethral volumes. This study was based on computed tomography/magnetic resonance imaging (CT/MRI) combined findings in 30 patients who had undergone prostate brachytherapy. Postimplant CT/MRI scans were performed 30 days after the implant. The urethra was contoured based on its diameter (8, 6, 4, 2, and 0 mm). The total urethral volume-in cubic centimeters [UrV150/200 (cc)] and percent (UrV150%/200%), of the urethra receiving 150% or 200% of the prescribed dose-and the doses (UrD90/30/5) in Grays to 90%, 30%, and 5% of the urethral volume were measured based on the urethral diameters. The UrV150 (cc) and UrD30 were statistically different between the of 8-, 6-, 4-, 2-, and 0-mm diameters, whereas the UrD5 was statistically different only between the 8-, 6-, and 4-mm diameters. Especially for UrD5, there was an approximately 40-Gy difference between the mean values for the 8- and 0-mm diameters. We recommend that the urethra should be contoured as a 4- to 6-mm diameter circle or one side of a triangle of 5-7 mm. By standardizing the urethral diameter, the urethral dose will be less affected by the total urethral volume. (author)

  12. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms

    International Nuclear Information System (INIS)

    Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.

    2002-01-01

    In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)

  13. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  14. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel

    Science.gov (United States)

    Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank

    2017-07-01

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  15. MRI-based preplanning in low-dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Nakano, Masahiro; Kubota, Yasuaki; Maeda, Sunaho; Ohtakara, Kazuhiro; Deguchi, Takashi; Hoshi, Hiroaki

    2008-01-01

    Purpose: To compare the dosimetric results between MRI-based and TRUS-based preplanning in permanent prostate brachytherapy, and to estimate the accuracy of MRI-based preplanning by comparing with CT/MRI fusion-based postimplant dosimetry. Methods and materials: Twenty-one patients were entered in this prospective study with written informed consent. MRI-based and TRUS-based preplanning were performed. The seed and needle locations were identical according to MRI-based and TRUS-based preplanning. MRI-based and TRUS-based preplanning were compared using DVH-related parameters. Following brachytherapy, the accuracy of the MRI-based preplanning was evaluated by comparing it with CT/MRI fusion-based postimplant dosimetry. Results: Mean MRI-based prostate volume was slightly underestimated (0.73 cc in mean volume) in comparison to TRUS-based volume. There were no significant differences in the mean DVH-related parameters except with rectal V 100 (cc) between TRUS-based and MRI-based preplanning. Mean rectal V 100 (cc) was 0.74 cc in TRUS-based and 0.29 cc in MRI-based preplanning, respectively, and the values demonstrated a statistical difference. There was no statistical difference in mean rectal V 150 (cc), and rectal V 100 (cc) between MRI-based preplanning and CT/MRI fusion-based postimplant dosimetry. Conclusion: Prostate volume estimation and DVH-related parameters in MRI-based preplanning were almost identical to TRUS-based preplanning. From the results of CT/MRI fusion-based postimplant dosimetry, MRI-based preplanning was therefore found to be a reliable and useful modality, as well as being helpful for TRUS-based preplanning. MRI-based preplanning can more accurately predict postimplant rectal dose than TRUS-based preplanning

  16. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study

    Directory of Open Access Journals (Sweden)

    Umesh Mahantshetty

    2017-04-01

    Full Text Available Purpose: The aim of this study is to compare 3D dose volume histogram (DVH parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT in cervical cancer, and to find optimized bladder volume. Material and methods : This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1, after 50 ml (series 2, and 100 ml (series 3 bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results : The mean (± SD bladder volume was 64.5 (± 25 cc, 116.2 (± 28 cc, and 172.9 (± 29 cc, for series 1, 2, and 3, respectively. The 0.1 cm 3 ,1 cm 3 , 2 cm 3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm 3 , 1 cm 3 , and 2 cm 3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1 compared to full bladder (series 3 (p = 0.03 was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions : Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume

  17. Early quality of life outcomes in patients with prostate cancer managed by high-dose-rate brachytherapy as monotherapy

    International Nuclear Information System (INIS)

    Komiya, Akira; Fujiuchi, Yasuyoshi; Ito, Takatoshi

    2013-01-01

    The purpose of this study was to evaluate the early quality of life outcomes in prostate cancer patients managed by high-dose-rate brachytherapy as monotherapy. A total of 51 patients with cT1c-T3aN0M0 prostate cancer treated between July 2007 and January 2010 were included in this study. The average age was 69?years, and the average initial serum prostate-specific antigen was 10.98?ng/mL. A total of 25, 18 and eight patients were considered to be low, intermediate and high risk, respectively. All patients received one implant of Ir-192 and seven fractions of 6.5?Gy within 3.5?days for a total prescribed dose of 45.5?Gy. For high-risk prostate cancer, neoadjuvant androgen deprivation therapy was carried out for at least 6?months, and continued after high-dose-rate brachytherapy. Quality of life outcomes were measured by using the International Prostate Symptom Score, the Functional Assessment of Cancer Therapy-Prostate and the International Index of Erectile Function Questionnaire. The oncological outcome was assessed by serum prostate-specific antigen and diagnostic imaging. Adverse events were also recorded. The Functional Assessment of Cancer Therapy-Prostate scores decreased for a few months after high-dose-rate brachytherapy, and recovered to pretreatment condition thereafter. The International Prostate Symptom Score significantly increased 2?weeks after treatment for each of its items and their sum, and it returned to baseline after 12?weeks. Sexual function decreased at 2 and 4?weeks, and recovered after 12?weeks. Severe complications were rare. Within a median follow up of 17.2?months, two patients showed a prostate-specific antigen recurrence. High-dose-rate brachytherapy for prostate cancer is a feasible treatment modality with acceptable toxicity and only a limited impact on the quality of life. (author)

  18. Impact of point A asymmetry on local control and survival for low dose-rate (LDR) brachytherapy in cervical cancer.

    Science.gov (United States)

    Opfermann, Krisha J; Wahlquist, Amy; Watkins, John; Kohler, Matthew; Jenrette, Joseph

    2012-03-01

    To evaluate whether Point A asymmetry in low dose-rate (LDR) brachytherapy is associated with local control (LC), disease-free survival (DFS) and/or overall survival (OS). A retrospective analysis of disease control and survival outcomes was conducted for patients who underwent LDR brachytherapy for advanced cervical cancer. Institutional protocol entailed concurrent chemotherapy and whole pelvis radiotherapy (WPRT) over 5 weeks, followed by placement of Fletcher-Suit tandem and colpostat applicators at weeks 6 and 8. Objective Point A doses, 80-85 Gy, were accomplished by placement of Cesium-137 (Cs-137) sources. Cox proportional hazards regression models were used to assess associations between disease control and survival endpoints with variables of interest. The records of 50 patients with FIGO stage IB1-IVA cervical cancer undergoing LDR brachytherapy at our institution were identified. Thirty of these patients had asymmetry > 2.5%, and 11 patients had asymmetry > 5%. At a median survivor follow-up of 20.25 months, 15 patients had experienced disease failure (including 5 cervical/vaginal apex only failures and 2 failures encompassing the local site). Right/left dose asymmetry at Point A was associated with statistically significantly inferior LC (p = 0.035) and inferior DFS (p = 0.011) for patients with mean Point A dose of > 80 Gy. Insufficient evidence existed to conclude an association with OS. LDR brachytherapy may be associated with clinically significant dose asymmetry. The present study demonstrates that patients with Point A asymmetry have a higher risk of failure for DFS and LC.

  19. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  20. Prostate-specific antigen bounce after high-dose rate brachytherapy with external beam radiation therapy for prostate cancer patients

    International Nuclear Information System (INIS)

    Sakamoto, Naotaka; Kakinoki, Hiroaki; Tsutsui, Akio; Yoshikawa, Masahiro; Iguchi, Atsushi; Matsunobu, Toru; Uehara, Satoru

    2008-01-01

    Prostate-specific antigen (PSA) bounce after high-dose rate (HDR) brachytherapy with external beam radiation therapy (EBRT) for prostate cancer patients was evaluated. Sixty-one patients treated with HDR-brachytherapy followed by EBRT had a minimum follow-up of 12 months (median, 24 months) in our institute. A PSA bounce was defined as a rise of at least 0.1 ng/ml greater than a previous PSA level, with a subsequent decline equal to, or less than, the initial nadir. A PSA bounce was noted in 16 (26.2%) of 61 patients (one patient had a PSA bounce twice). Median time to develop a PSA bounce was 18 months, but 23.5% developed a PSA bounce after 24 months. Median duration of PSA bounce was 6 months and 11.8% had increased PSA within a period of 12 months. Median bounce height was 0.2 ng/ml (range, 0.1 to 3.39 ng/ml). A bounce height of gerater than 2 ng/ml was seen in 11.8%. Clinical characteristics (age, prostate volume, neoadjuvant endocrine therapy, risk classification, stage, pretreatment PSA, Gleason score) do not predict whether or not there will be a PSA bounce. In patients treated with HDR-brachytherapy followed by EBRT, the incidence and characteristics of PSA bounce were similar to those in patients treated with low-dose rate brachytherapy. Physicians should be aware of the possibility of PSA bounce following HDR-brachytherapy with EBRT. (author)

  1. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.; Hayes, John K.; Hsu, I-Chow J.; Morris, David E.; Rabinovitch, Rachel A.; Tward, Jonathan D.; Rosenthal, Seth A.

    2011-01-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  2. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-01-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography–defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis–free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  3. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy.

    Science.gov (United States)

    Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H

    2006-09-01

    To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.

  4. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy

    International Nuclear Information System (INIS)

    Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.

    2006-01-01

    Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate

  5. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhang, Geoffrey G.; Finkelstein, Steven E.; Biagioli, Matthew C.

    2011-01-01

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken with each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 ± 0.002 for contrast/saline solution and 0.808 ± 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 ± 0.010 and 0.781 ± 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.

  6. High dose rate interstitial brachytherapy with external beam irradiation for localized prostate cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi; Jo, Yoshimasa; Yoden, Eisaku; Tanaka, Hiroyoshi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan); Nagase, Naomi; Narihiro, Naomasa; Kubota, Juichi

    2000-12-01

    This study was undertaken to assess the biochemical and pathological results of combined external beam radiotherapy and high dose rate Ir-192 brachytherapy (HDR-Ir192) for clinically localized prostate cancer. Between October 1997 and August 1999, 39 evaluable patients with adenocarcinoma of prostate diagnosed by biopsy were treated with interstitial and external beam irradiation. Patients ranged in age from 58-82 years, with a mean of 69.7 years. T1c, T2 and T3 tumors, according to the UICC classification system (1997), were found in 7, 21 and 11 cases respectively. The mean initial pre-treatment PSA was 35.9 ng/ml (median 13.2), with 77% of the patients having had a pre-treatment PSA greater than 10 ng/ml. Of all patients, 17 had received pre-treatment hormonal therapy. Hormonal pretreatment was stopped at the beginning of radiotherapy in all cases. External beam four-field box irradiation was given to the small pelvis to a dose of 45 Gy/25 fractions. Three HDR-Ir192 treatments were given over a 30-h period, with 5.5 Gy per fraction at the circumference of the prostate gland over the course of this study. Biochemical failure was defined as a PSA level >1.5 ng/ml and rising on three consecutive values. If serial post-treatment PSA levels showed a continuous downward trend, failure was not scored. The patient with clinical evidence of progression was classified as a clinical failure. The median follow-up at the time of evaluation was 19.6 months. A post-treatment PSA level {<=}1.0 ng/ml was seen in 26 (67%) patients, and values from >1.0 to {<=}2.0 ng/ml were seen in 10 (26%) patients. Biochemical failure was not seen in 38 patients except for one patient who developed a distant bone metastasis with negative prostatic biopsy 15 months after treatment. Biochemical control rate was 100% (38/38) except for the patient with bone metastasis classified as clinical failure. Negative biopsies 18 months after treatment were found in 93% (14/15) of patients. Only one patient

  7. Direction-Modulated Brachytherapy for High-Dose-Rate Treatment of Cervical Cancer. I: Theoretical Design

    International Nuclear Information System (INIS)

    Han, Dae Yup; Webster, Matthew J.; Scanderbeg, Daniel J.; Yashar, Catheryn; Choi, Dongju; Song, Bongyong; Devic, Slobodan; Ravi, Ananth; Song, William Y.

    2014-01-01

    Purpose: To demonstrate that utilization of the direction-modulated brachytherapy (DMBT) concept can significantly improve treatment plan quality in the setting of high-dose-rate (HDR) brachytherapy for cervical cancer. Methods and Materials: The new, MRI-compatible, tandem design has 6 peripheral holes of 1.3-mm diameter, grooved along a nonmagnetic tungsten-alloy rod (ρ = 18.0 g/cm 3 ), enclosed in Delrin tubing (polyoxymethylene, ρ = 1.41 g/cm 3 ), with a total thickness of 6.4 mm. The Monte Carlo N-Particle code was used to calculate the anisotropic 192 Ir dose distributions. An in-house-developed inverse planning platform, geared with simulated annealing and constrained-gradient optimization algorithms, was used to replan 15 patient cases (total 75 plans) treated with a conventional tandem and ovoids (T and O) applicator. Prescription dose was 6 Gy. For replanning, we replaced the conventional tandem with that of the new DMBT tandem for optimization but left the ovoids in place and kept the dwell positions as originally planned. All DMBT plans were normalized to match the high-risk clinical target volume V100 coverage of the T and O plans. Results: In general there were marked improvements in plan quality for the DMBT plans. On average, D2cc for the bladder, rectum, and sigmoid were reduced by 0.59 ± 0.87 Gy (8.5% ± 28.7%), 0.48 ± 0.55 Gy (21.1% ± 27.2%), and 0.10 ± 0.38 Gy (40.6% ± 214.9%) among the 75 plans, with best single-plan reductions of 3.20 Gy (40.8%), 2.38 Gy (40.07%), and 1.26 Gy (27.5%), respectively. The high-risk clinical target volume D90 was similar, with 6.55 ± 0.96 Gy and 6.59 ± 1.06 Gy for T and O and DMBT, respectively. Conclusions: Application of the DMBT concept to cervical cancer allowed for improved organ at risk sparing while achieving similar target coverage on a sizeable patient population, as intended, by maximally utilizing the anatomic information contained in 3-dimensional imaging. A

  8. Low-dose-rate brachytherapy for patients with transurethral resection before implantation in prostate cancer: long-term results

    International Nuclear Information System (INIS)

    Prada, Pedro J.; Anchuelo, Javier; Blanco, Ana Garcia; Paya, Gema; Cardenal, Juan; Acuña, Enrique; Ferri, Maria; Vazquez, Andres; Pacheco, Maite; Sanchez, Jesica

    2016-01-01

    Objectives: We analyzed the long-term oncologic outcome for patients with prostate cancer and transurethral resection who were treated using low-dose-rate (LDR) prostate brachytherapy. Methods and Materials: From January 2001 to December 2005, 57 consecutive patients were treated with clinically localized prostate cancer. No patients received external beam radiation. All of them underwent LDR prostate brachytherapy. Biochemical failure was defined according to the 'Phoenix consensus'. Patients were stratified as low and intermediate risk based on The Memorial Sloan Kettering group definition. Results: The median follow-up time for these 57 patients was 104 months. The overall survival according to Kaplan-Meier estimates was 88% (±6%) at 5 years and 77% (±6%) at 12 years. The 5 and 10 years for failure in tumour-free survival (TFS) was 96% and respectively (±2%), whereas for biochemical control was 94% and respectively (±3%) at 5 and 10 years, 98% (±1%) of patients being free of local recurrence. A patient reported incontinence after treatment (1.7%). The chronic genitourinary complains grade I were 7% and grade II, 10%. At six months 94% of patients reported no change in bowel function. Conclusions: The excellent long-term results and low morbidity presented, as well as the many advantages of prostate brachytherapy over other treatments, demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and clinical organ-confined prostate cancer. (author)

  9. Low-dose-rate brachytherapy for patients with transurethral resection before implantation in prostate cancer: long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Pedro J.; Anchuelo, Javier; Blanco, Ana Garcia; Paya, Gema; Cardenal, Juan; Acuña, Enrique; Ferri, Maria [Department of Radiation Oncology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain); Vazquez, Andres; Pacheco, Maite; Sanchez, Jesica [Department of Radiation Physics, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain)

    2016-01-15

    Objectives: We analyzed the long-term oncologic outcome for patients with prostate cancer and transurethral resection who were treated using low-dose-rate (LDR) prostate brachytherapy. Methods and Materials: From January 2001 to December 2005, 57 consecutive patients were treated with clinically localized prostate cancer. No patients received external beam radiation. All of them underwent LDR prostate brachytherapy. Biochemical failure was defined according to the 'Phoenix consensus'. Patients were stratified as low and intermediate risk based on The Memorial Sloan Kettering group definition. Results: The median follow-up time for these 57 patients was 104 months. The overall survival according to Kaplan-Meier estimates was 88% (±6%) at 5 years and 77% (±6%) at 12 years. The 5 and 10 years for failure in tumour-free survival (TFS) was 96% and respectively (±2%), whereas for biochemical control was 94% and respectively (±3%) at 5 and 10 years, 98% (±1%) of patients being free of local recurrence. A patient reported incontinence after treatment (1.7%). The chronic genitourinary complains grade I were 7% and grade II, 10%. At six months 94% of patients reported no change in bowel function. Conclusions: The excellent long-term results and low morbidity presented, as well as the many advantages of prostate brachytherapy over other treatments, demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and clinical organ-confined prostate cancer. (author)

  10. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  11. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer; Avaliacao da dose no reto em pacientes submetidas a braquiterapia de alta taxa de dose para o tratamento do cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jetro Pereira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina; Rosa, Luiz Antonio Ribeiro da [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: lrosa@ird.gov.br; Batista, Delano Valdivino Santos; Bardella, Lucia Helena [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil). Unit of Medical Physics; Carvalho, Arnaldo Rangel [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. of Thermoluminescent Dosimetry

    2009-03-15

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  12. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    Science.gov (United States)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  13. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Palmer, Antony L; Bradley, David; Nisbet, Andrew; Lee, Chris; Ratcliffe, Ailsa J

    2013-01-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit. (paper)

  14. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  15. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ito, Kazuto; Saitoh, Jun-ichi; Noda, Shin-ei; Harashima, Koichi; Sakurai, Hideyuki; Nakayama, Yuko; Yamamoto, Takumi; Suzuki, Kazuhiro; Nakano, Takashi; Niibe, Hideo

    2005-01-01

    Purpose: Several investigations have revealed that the α/β ratio for prostate cancer is atypically low, and that hypofractionation or high-dose-rate (HDR) brachytherapy regimens using appropriate radiation doses may be expected to yield tumor control and late sequelae rates that are better or at least as favorable as those achieved with conventional radiation therapy. In this setting, we attempted treating localized prostate cancer patients with HDR brachytherapy combined with hypofractionated external beam radiation therapy (EBRT). The purpose of this study was to evaluate the feasibility of using this approach, with special emphasis on the relationship between the severity of acute genitourinary (GU) toxicity and the urethral dose calculated from the dose-volume histogram (DVH) of HDR brachytherapy. Methods and Materials: Between September 2000 and December 2003, 70 patients with localized prostate cancer were treated by iridium-192 HDR brachytherapy combined with hypofractionated EBRT at the Gunma University Hospital. Hypofractionated EBRT was administered in fraction doses of 3 Gy, three times per week; a total dose of 51 Gy was delivered to the prostate gland and the seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography (TRUS)-guided HDR brachytherapy. The fraction size and the number of fractions in HDR brachytherapy were prospectively changed, whereas the total radiation dose for EBRT was fixed at 51 Gy. The fractionation in HDR brachytherapy was as follows: 5 Gy x 5, 7 Gy x 3, 9 Gy x 2, administered twice per day, although the biologic effective dose (BED) for HDR brachytherapy combined with EBRT, assuming that the α/β ratio is 3, was almost equal to 138 in each fractionation group. The planning target volume was defined as the prostate gland with 5-mm margin all around, and the planning was conducted based on

  16. MO-AB-BRA-02: Modeling Nanoparticle-Eluting Spacer Degradation During Brachytherapy Application with in Situ Dose-Painting

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, F [University of Massachusetts Lowell, Lowell, Massachusetts (United States); Ngwa, W [University of Massachusetts Lowell, Lowell, Massachusetts (United States); Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was used for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes like Pd-103

  17. Low-dose-rate intraoperative brachytherapy combined with external beam irradiation in the conservative treatment of soft tissue sarcoma

    International Nuclear Information System (INIS)

    Delannes, M.; Thomas, L.; Martel, P.; Bonnevialle, P.; Stoeckle, E.; Chevreau, Ch.; Bui, B.N.; Daly-Schveitzer, N.; Pigneux, J.; Kantor, G.

    2000-01-01

    Purpose: Conservative treatment of soft tissue sarcomas most often implies combination of surgical resection and irradiation. The aim of this study was to evaluate low-dose-rate intraoperative brachytherapy, delivered as a boost, in the local control of primary tumors, with special concern about treatment complications. Methods and Materials: Between 1986 and 1995, 112 patients underwent intraoperative implant. This report focuses on the group of 58 patients with primary sarcomas treated by combination of conservative surgery, intraoperative brachytherapy, and external irradiation. Most of the tumors were located in the lower limbs (46/58--79%). Median size of the tumor was 10 cm, most of the lesions being T2-T3 (51/58--88%), Grade 2 or 3 (48/58--83%). The mean brachytherapy dose was 20 Gy and external beam irradiation dose 45 Gy. In 36/58 cases, iridium wires had to be placed on contact with neurovascular structures. Results: With a median follow-up of 54 months, the 5-year actuarial survival was 64.9%, with a 5-year actuarial local control of 89%. Of the 6 patients with local relapse, 3 were salvaged. Acute side effects, essentially wound healing problems, occurred in 20/58 patients, late side effects in 16/58 patients (7 neuropathies G2 to G4). No amputation was required. The only significant factor correlated with early side effects was the location of the tumor in the lower limb (p = 0.003), and with late side effects the vicinity of the tumor with neurovascular structures (p = 0.009). Conclusion: Brachytherapy allows early delivery of a boost dose in a reduced volume of tissue, precisely mapped by the intraoperative procedure. Combined with external beam irradiation, it is a safe and efficient treatment technique leading to high local control rates and limited functional impairment

  18. The relationship between milligram-hours quantity and doses at points A and B in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Martins, H.L.; Albuquerque, L.F.

    1987-01-01

    A comparison of mghr prescrition (Fletcher's system) to doses at points A and B (Manchester's system) in gynecologic brachytherapy is presented. The dose rate at points A and B from computerized isodose curves is studied. The f ratio = (dose rates)/(mgRaeq) is measured by: the ovoid charge, the curvature of uterine probe, the shifting charge of uterine probes, the lateral shifting of extern orifice in relationship of extern orifice in relationship to the pelve, the separation between the ovoids and the angulation of uterine probe. (M.A.C.) [pt

  19. MRI-Guided High–Dose-Rate Intracavitary Brachytherapy for Treatment of Cervical Cancer: The University of Pittsburgh Experience

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Beant S.; Kim, Hayeon; Houser, Christopher J. [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Sukumvanich, Paniti; Edwards, Robert P.; Comerci, John T.; Olawaiye, Alexander B.; Huang, Marilyn; Courtney-Brooks, Madeleine [Department of Gynecologic Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2015-03-01

    Purpose: Image-based brachytherapy is increasingly used for gynecologic malignancies. We report early outcomes of magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Consecutive patient cases with FIGO stage IB1 to IVA cervical cancer treated at a single institution were retrospectively reviewed. All patients received concurrent cisplatin with external beam radiation therapy along with interdigitated high–dose-rate intracavitary brachytherapy. Computed tomography or MRI was completed after each application, the latter acquired for at least 1 fraction. High-risk clinical target volume (HRCTV) and organs at risk were identified by Groupe Européen de Curiethérapie and European SocieTy for Radiotherapy and Oncology guidelines. Doses were converted to equivalent 2-Gy doses (EQD{sub 2}) with planned HRCTV doses of 75 to 85 Gy. Results: From 2007 to 2013, 128 patients, median 52 years of age, were treated. Predominant characteristics included stage IIB disease (58.6%) with a median tumor size of 5 cm, squamous histology (82.8%), and no radiographic nodal involvement (53.1%). Most patients (67.2%) received intensity modulated radiation therapy (IMRT) at a median dose of 45 Gy, followed by a median brachytherapy dose of 27.5 Gy (range, 25-30 Gy) in 5 fractions. At a median follow up of 24.4 months (range, 2.1-77.2 months), estimated 2-year local control, disease-free survival, and cancer-specific survival rates were 91.6%, 81.8%, and 87.6%, respectively. Predictors of local failure included adenocarcinoma histology (P<.01) and clinical response at 3 months (P<.01). Among the adenocarcinoma subset, receiving HRCTV D{sub 90} EQD{sub 2} ≥84 Gy was associated with improved local control (2-year local control rate 100% vs 54.5%, P=.03). Grade 3 or greater gastrointestinal or genitourinary late toxicity occurred at a 2-year actuarial rate of 0.9%. Conclusions: This study constitutes one of the largest reported series of MRI

  20. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  1. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    Science.gov (United States)

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  2. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  3. Treatment of Recurrent Bronchial Carcinoma: The Role of High-Dose-Rate Endoluminal Brachytherapy

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Stoiber, Eva; Rochet, Nathalie; Lindel, Katja; Grehn, Christian; Becker, Heinrich D.; Debus, Juergen; Harms, Wolfgang

    2010-01-01

    Purpose: This study's aim was to assess outcome and toxicity of high-dose-rate endoluminal brachytherapy (HDREB) for recurrent bronchial carcinoma. Methods and Materials: From 1987 to 2005, 41 patients were treated with HDREB for symptomatic recurrent bronchial carcinoma. All patients had previously undergone external beam radiotherapy (EBRT) with a median dose of 56 Gy (range, 30-70 Gy). The median HDREB dose applied was 15 Gy (range, 5-29 Gy). The median time interval between primary EBRT and reirradiation was 9 months (range, 2-54 months). Results: After a median follow-up of 6.7 months, the 6-, 12-, and 24-month overall survival rates were 58%, 18%, and 7%, respectively. The median overall survival time was 6.7 months. Local remission was achieved in 73% of patients (n = 30). A total of 24% of patients (n = 10) showed no response or progressive disease within 8 weeks after treatment. In 1 patient, treatment response was not documented. The 6-, 12-, and 24-month local control rates were 38%, 17%, and 3%, respectively. The median local progression-free survival time was 4 months (range, 1-23 months). Prognostic factors were a total dose of ≥15 Gy of HDREB (p = 0.029) and a Karnofsky performance score of ≥80% (p = 0.0012). The cause of death was locoregional progression in 27% of patients (n = 11), distant metastases in 24% of patients (n = 10), fatal hemorrhage in 15% of patients (n = 6), and other causes in 29% of patients (n = 12). None of the patients with locally controlled disease showed grade 3 or 4 late effects. Conclusions: Palliative treatment of symptomatic, locally recurrent bronchial carcinoma with HDREB can effectively relieve symptoms in the majority of patients while causing only few complications. Still, time to progression is short.

  4. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    International Nuclear Information System (INIS)

    Deufel, Christopher L; Furutani, Keith M

    2014-01-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions. (paper)

  5. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  7. The Effect of Dose and Quality Assurance in Early Prostate Cancer Treated with Low Dose Rate Brachytherapy as Monotherapy.

    Science.gov (United States)

    Henry, A M; Rodda, S L; Mason, M; Musunuru, H; Al-Qaisieh, B; Bownes, P; Smith, J; Franks, K; Carey, B; Bottomley, D

    2015-07-01

    To examine the relationship between post-implant computed tomography dosimetry and long-term prostate-specific antigen relapse-free survival in patients treated with iodine 125 (I-125) low dose rate prostate brachytherapy as monotherapy and, second, to audit recent practice against Royal College of Radiologists' (RCR) guidelines after the re-introduction of post-implant dosimetry for all patients in our centre. Between March 1995 and September 2007, 2157 consecutive patients with localised prostate cancer underwent I-125 permanent prostate brachytherapy as monotherapy in a single UK centre. All patients were transrectal ultrasound planned delivering a 145 Gy (TG 43) minimum peripheral dose. None received supplemental external beam radiotherapy. Post-implant computed tomography-based dosimetry was undertaken between 4 and 6 weeks after treatment and was available for 711 (33%). Outcomes were analysed in terms of the relationship of D90 to prostate-specific antigen relapse-free survival (nadir 2+ definition) and all patients had a minimum follow-up of 5 years. For contemporary patients from 2011, quality metrics from post-implant computed tomography as defined by RCR guidelines are presented. A mean D90 of 138.7 Gy (standard deviation 24.7) was achieved for the historic cohort. Biochemical control at 10 years was 76% in patients with D90 > 140 Gy and 68% in those with D90 standard deviation) D90 has increased from 154 (15.3) Gy in 2011 to 164 (13.5) Gy in 2013. Similarly, an increase in the mean (standard deviation) V100 from 92 (4.4) to 95 (3.2) % is noted over time. No difference between clinicians was noted. D90 values of less than 140 Gy continue to be predictive of increased risk of recurrence of prostate cancer across risk groups with longer follow-up. Quality assurance can be used to ensure improved and consistent implant quality in a team with multiple clinicians. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights

  8. Radiation protection procedures and dose to the staff in brachytherapy with permanent implant of the sources

    International Nuclear Information System (INIS)

    Tosi, G.; Cattani, F.

    2002-01-01

    The treatment of intra capsular prostate cancers with the permanent implantation of low energy sealed radioactive sources (''103 Pd-''125I) offers the same probability of curing the tumours as surgery and external-beam radiotherapy with a minimum incidence of unwanted side-effects. The first attempts of using sealed sources for treating prostate cancers go back to 1917, when Barringer reported the results obtained with the implant of ''236Ra needles. Beginning from that period the interest for prostate brachytherapy has shown a fluctuating trend, due especially to the technological possibilities and to the status of the alternative treatment modalities (surgery, external radiotherapy). The main reason of the substantial failure of brachytherapy as compared to the two other treatment modalities had two main causes: the energy, too high ( E≅ 840 keV), of γ-radiation emitted by ''226 Ra in equilibrium with its decay products and the lack of imaging techniques able to visualize with sufficient accuracy both the prostate and the arrangement, inside it, of the radioactive sources. The employ of low energy γ-emitting radionuclides began in 1974, when Whitmore et al. working at the Sloan Kettering Memorial Cancer Hospital of New York suggested the use of ''125 I sealed sources for the realisation of interstitial permanent implants. Also this attempt, though reducing the side effects typical of the surgical intervention (incontinence, impotence), did non give the expected results in terms of local control of the disease and, as a consequence, of the survival's length. This partial failure was attributed to the fact that, in most cases the dose distribution inside the target volume was not homogeneous, due to the inadequacy of the available imaging techniques used for checking the real position of the sources, during their manual insertion in the tissues. In the last ten years,however, great progresses have been made in the US i maging techniques, in the manufacture of

  9. Implementation of High-Dose-Rate Brachytherapy and Androgen Deprivation in Patients With Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lilleby, Wolfgang, E-mail: wolfgang.lilleby@ous-hf.no [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway); Tafjord, Gunnar; Raabe, Nils K. [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway)

    2012-07-01

    Purpose: To evaluate outcome (overall survival [OS], the actuarial 5-year cancer-specific survival [CSS], disease-free survival [DFS], biochemical failure-free survival [BFS]), complications and morbidity in patients treated with high-dose-rate brachytherapy (HDR-BT) boost and hormonal treatment with curative aims. Methods: Between 2004 and 2009, 275 prospectively followed pN0/N0M0 patients were included: 19 patients (7%) with T2, Gleason score 7 and prostate-specific antigen (PSA) <10 and 256 patients (93%) with T3 or Gleason score 8-10 or PSA >20 received multimodal treatment with conformal four-field radiotherapy (prostate/vesiculae 2 Gy Multiplication-Sign 25) combined with HDR-BT (iridium 192; prostate 10 Gy Multiplication-Sign 2) with long-term androgen deprivation therapy (ADT). Results: After a median observation time of 44.2 months (range, 10.4-90.5 months) 12 patients had relapsed clinically and/or biochemically and 10 patients were dead, of which 2 patients died from prostate cancer. Five-year estimates of BFS, CSS, DFS, and OS rates were 98.5%, 99.3%, 95.6%, and 96.3%, respectively. None of the patients with either Gleason score <8 or with intermediate risk profile had relapsed. The number of HDR-BT treatments was not related to outcome. Despite of age (median, 65.7 years; range, 45.7-77 years) and considerable pretreatment comorbidity in 39 of 275 patients, Genitourinary treatment-related morbidity was moderate with long-lasting Radiation Therapy Oncology Group Grade 2 voiding problems in 26 patients (9.5%) and occasionally mucous discharge in 20 patients (7%), none with Grade >2 for gastrointestinal at follow-up. Complications during implantations were related to pubic arch interference (4 patients) and lithotomy time, causing 2 patients to develop compartment syndrome. Conclusion: Despite still preliminary observations, our 5-year outcome estimates favor the implementation of high-dose-rate brachytherapy in high-risk patients combined with conformal

  10. Comparison of dose length, area, and volume histograms as quantifiers of urethral dose in prostate brachytherapy

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Merrick, Gregory S.; Dorsey, Anthony T.; Hagedorn, Brenda M.

    2000-01-01

    Purpose: To determine the magnitude of the differences between urethral dose-volume, dose-area, and dose-length histograms (DVH, DAH, and DLH, respectively, or DgH generically). Methods and Materials: Six consecutive iodine-125 ( 125 I) patients and 6 consecutive palladium-103 ( 103 Pd) patients implanted via a modified uniform planning approach were evaluated with day 0 computed tomography (CT)-based dosimetry. The urethra was identified by the presence of a urinary catheter and was hand drawn on the CT images with a mean radius of 3.3 ± 0.7 mm. A 0.1-mm calculation matrix was employed for the urethral volume and surface analysis, and urethral dose points were placed at the centroid of the urethra on each 5-mm CT slice. Results: Although individual patient DLHs were step-like, due to the sparseness of the data points, the composite urethral DLH, DAH, and DVHs were qualitatively similar. The DAH curve delivered more radiation than the other two curves at all doses greater than 90% of the prescribed minimum peripheral dose (mPD) to the prostate. In addition, the DVH curve was consistently higher than the DLH curve at most points throughout that range. Differences between the DgH curves were analyzed by integrating the difference curves between 0 and 200% of the mPD. The area-length, area-volume, and volume-length difference curves integrated in the ratio of 3:2:1. The differences were most pronounced near the inflection point of the DgH curves with mean A 125 , V 125 , and L 125 values of 36.6%, 31.4%, and 23.0%, respectively, of the urethra. Quantifiers of urethral hot spots such as D 10 , defined as the minimal dose delivered to the hottest 10% of the urethra, followed the same ranking: area analysis indicated the highest dose and length analysis, the lowest dose. D 10 was 148% and 136% of mPD for area and length evaluations, respectively. Comparing the two isotopes in terms of the amount of urethra receiving a given dose, 103 Pd implants were significantly

  11. Postoperative high dose rate vaginal apex brachytherapy in stage I endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Turner, B.; Knisely, J.; Kacinski, B.; Roberts, K.; Peschel, R.; Gumbs, A.; Rutherford, T.; Edraki, B.; Schwartz, P.; Chambers, J.; Kohorn, E.; Wilson, L.

    1996-01-01

    Introduction: Patients with stage I endometrial adenocarcinoma have traditionally been treated with TAH/BSO and radiation. The reported incidence of local recurrence in surgically treated patients with Figo stage IA or IB endometrial adenocarcinoma is 4-10% at 2 years. Combined surgery and radiation has resulted in a reduction of recurrence to 2-6%. We report the presentation, local and distant control, salvage rate, survival and complications for patients undergoing high dose rate (HDR) vaginal apex brachytherapy following surgery. Methods: Between 1985 and 1994 a total of 302 patients with Figo stage I endometrial carcinoma were treated with HDR Ir-192 vaginal apex brachytherapy to a total dose of 21 Gy in 3 fractions at 0.5 cm from the vaginal mucosa. The pathologic stage by treatment group was IA: 31%, IB: 68%, and IC: 1%. The histologic grade of the patient's tumors was grade 1: 69%, 2: 27%, and 3: 4%. The median time from surgery to radiation was 33 days (range 14-66 days). The median follow-up for 300 patients with stage IA (91 patients), IB (205 patients), and IC (4 patients) was respectively 36, 34 and 40 months (2 patients lost to follow-up prior to 6 months). Results: Patients presented with vaginal bleeding (94%) or abnormal pap smear (6%) at a median age for stage IA and IB, of 55 and 64 years, respectively. The crude overall survival of the patient population at 2 years is 95%. Median overall time to failure is 19.5 months (range 10-36 months). The overall failure rate was 2.7% (8 patients), local failure only 1.0% (38% of failed group), distant failure only 0.3% (12% of failed group) and combined local/distant failure 1.3% (50% of failed group). The local failure rate for pathologic stage IA patients was 1.0% and no distant disease was observed. The local failure rate for pathologic stage IB patients was 3.4% 7/205 and distant failure was 2.4% 5/205. The majority of patients with recurrence had grade 2 histologic changes 5/8. The overall salvage rate

  12. Post-operative high dose rate vaginal apex brachytherapy in stage I endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Gumbs, A.A.; Turner, B.C.; Knisely, J.P.S.; Kacinski, B.M.; Roberts, K.B.; Peschel, R.E.; Haffty, B.G.; Rutherford, T.J.; Edraki, B.; Schwartz, P.E.; Wilson, L.D.

    1996-01-01

    Purpose/Objective: Patients with Stage I endometrial adenocarcinoma have traditionally been treated with total abdominal hysterectomy/bilateral salpingo-oophorectomy and radiation. The reported incidence of local recurrence in surgically treated patients with FIGO Stage IA or IB endometrial adenocarcinoma is 4-10% at 2 years. Combined surgery and radiation has resulted in a reduction of recurrence to 2-6%. We report the presentation, actuarial survival, actuarial rate of local failure, salvage rate, and complications for patients undergoing high dose rate (HDR) vaginal apex brachytherapy following surgery. Materials and Methods: Between 1985 and 1994 a total of 286 patients with FIGO Stage I endometrioid uterine adenocarcinoma were treated with HDR Ir-192 vaginal apex brachytherapy alone to a total dose of 21 Gy in 3 fractions at 0.5 cm from the vaginal mucosa. The pathologic stage by treatment group was IA: 31%, IB: 68%, and IC: 1%. The histologic grade of the patient's tumors was grade 1: 69%, 2: 29%, and 3: 2% of patients. The median time from surgery to radiation was 34 days (range 14-66 days). The median follow-up for 286 patients with Stage IA (92 patients), IB (190 patients), and IC (4 patients) was respectively, 37, 35 and 40 months (2 patients lost to follow-up prior to 6 months). Results: Patients presented with vaginal bleeding (94%) or abnormal pap smear (6%) at a median age for Stage IA and IB, of 54 and 63 years, respectively (range 32-88). The 5-year overall actuarial survival rate was 94.5%. The 5-year actuarial survival rate by histologic grade was 97.5% and 91.5% for FIGO grade 1 and 2, respectively (p=.011). The 5-year actuarial survival rate by depth of myometrial invasion was 99.0% and 92.5% for Stage IA and IB, respectively (p=.029). Median overall time to failure is 19.5 months (range 10-36 months). The 5-year actuarial rate of local failure was 4.5%. The overall failure rate in our study group was 2.8% (8 patients), local failure only 1

  13. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  14. Long term results of a prospective dose escalation phase-II trial: Interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer

    International Nuclear Information System (INIS)

    Lettmaier, Sebastian; Lotter, Michael; Kreppner, Stephan; Strnad, Annedore; Fietkau, Rainer; Strnad, Vratislav

    2012-01-01

    Purpose: We reviewed our seven year single institution experience with pulsed dose rate brachytherapy dose escalation study in patients with intermediate and high risk prostate cancer. Materials and methods: We treated a total of 130 patients for intermediate and high risk prostate cancer at our institution between 2000 and 2007 using PDR-brachytherapy as a boost after conformal external beam radiation therapy to 50.4 Gy. The majority of patients had T2 disease (T1c 6%, T2 75%, T3 19%). Seventy three patients had intermediate-risk and 53 patients had high-risk disease according to the D’Amico classification. The dose of the brachytherapy boost was escalated from 25 to 35 Gy – 33 pts. received 25 Gy (total dose 75 Gy), 63 pts. 30 Gy (total dose 80 Gy) and 34 pts. 35 Gy, (total dose 85 Gy) given in one session (dose per pulse was 0.60 Gy or 0.70 Gy/h, 24 h per day, night and day, with a time interval of 1 h between two pulses). PSA-recurrence-free survival according to Kaplan–Meier using the Phoenix definition of biochemical failure was calculated and also late toxicities according to Common Toxicity Criteria scale were assessed. Results: At the time of analysis with a median follow-up of 60 months biochemical control was achieved by 88% of patients – only 16/130 patients (12.3%) developed a biochemical relapse. Biochemical relapse free survival calculated according to Kaplan–Meier for all patients at 5 years was 85.6% (83.9% for intermediate-risk patients and 84.2% for high-risk patients) and at 9 years’ follow up it was 79.0%. Analysing biochemical relapse free survival separately for different boost dose levels, at 5 years it was 97% for the 35 Gy boost dose and 82% for the 25 and 30 Gy dose levels. The side effects of therapy were negligible: There were 18 cases (15%) of grade 1/2 rectal proctitis, one case (0.8%) of grade 3 proctitis, 18 cases (15%) of grade 1/2 cystitis, and no cases (0%) with dysuria grade 3. No patient had a bulbourethral

  15. Obstructive urination problems after high-dose-rate brachytherapy boost treatment for prostate cancer are avoidable

    International Nuclear Information System (INIS)

    Kragelj, Borut

    2016-01-01

    Aiming at improving treatment individualization in patients with prostate cancer treated with combination of external beam radiotherapy and high-dose-rate brachytherapy to boost the dose to prostate (HDRB-B), the objective was to evaluate factors that have potential impact on obstructive urination problems (OUP) after HDRB-B. In the follow-up study 88 patients consecutively treated with HDRB-B at the Institute of Oncology Ljubljana in the period 2006-2011 were included. The observed outcome was deterioration of OUP (DOUP) during the follow-up period longer than 1 year. Univariate and multivariate relationship analysis between DOUP and potential risk factors (treatment factors, patients’ characteristics) was carried out by using binary logistic regression. ROC curve was constructed on predicted values and the area under the curve (AUC) calculated to assess the performance of the multivariate model. Analysis was carried out on 71 patients who completed 3 years of follow-up. DOUP was noted in 13/71 (18.3%) of them. The results of multivariate analysis showed statistically significant relationship between DOUP and anti-coagulation treatment (OR 4.86, 95% C.I. limits: 1.21-19.61, p = 0.026). Also minimal dose received by 90% of the urethra volume was close to statistical significance (OR = 1.23; 95% C.I. limits: 0.98-1.07, p = 0.099). The value of AUC was 0.755. The study emphasized the relationship between DOUP and anticoagulation treatment, and suggested the multivariate model with fair predictive performance. This model potentially enables a reduction of DOUP after HDRB-B. It supports the belief that further research should be focused on urethral sphincter as a critical structure for OUP

  16. High-Dose-Rate Endobronchial Brachytherapy for Recurrent Airway Obstruction From Hyperplastic Granulation Tissue

    International Nuclear Information System (INIS)

    Tendulkar, Rahul D.; Fleming, Peter A.; Reddy, Chandana A.; Gildea, Thomas R.; Machuzak, Michael; Mehta, Atul C.

    2008-01-01

    Purpose: Benign endobronchial granulation tissue causes airway obstruction in up to 20% of patients after lung transplantation or stent placement. High-dose-rate endobronchial brachytherapy (HDR-EB) has been successful in some cases refractory to standard bronchoscopic interventions. Methods and Materials: Between September 2004 and May 2005, 8 patients with refractory benign airway obstruction were treated with HDR-EB, using one to two fractions of Ir-192 prescribed to 7.1 Gy at a radius of 1 cm. Charts were retrospectively reviewed to evaluate subjective clinical response, forced expiratory volume in 1 second (FEV 1 ), and frequency of therapeutic bronchoscopies over 6-month periods before and after HDR-EB. Results: The median follow-up was 14.6 months, and median survival was 10.5 months. The mean number of bronchoscopic interventions improved from 3.1 procedures in the 6-month pretreatment period to 1.8 after HDR-EB. Mean FEV 1 improved from 36% predicted to 46% predicted. Six patients had a good-to-excellent subjective early response, but only one maintained this response beyond 6 months, and this was the only patient treated with HDR-EB within 24 h from the most recent bronchoscopic intervention. Five patients have expired from causes related to their chronic pulmonary disease, including one from hemoptysis resulting from a bronchoarterial fistula. Conclusion: High-dose-rate-EB may be an effective treatment for select patients with refractory hyperplastic granulation tissue causing recurrent airway stenosis. Performing HDR-EB within 24-48 h after excision of obstructive granulation tissue could further improve outcomes. Careful patient selection is important to maximize therapeutic benefit and minimize toxicity. The optimal patient population, dose, and timing of HDR-EB should be investigated prospectively

  17. Obstructive urination problems after high-dose-rate brachytherapy boost treatment for prostate cancer are avoidable.

    Science.gov (United States)

    Kragelj, Borut

    2016-03-01

    Aiming at improving treatment individualization in patients with prostate cancer treated with combination of external beam radiotherapy and high-dose-rate brachytherapy to boost the dose to prostate (HDRB-B), the objective was to evaluate factors that have potential impact on obstructive urination problems (OUP) after HDRB-B. In the follow-up study 88 patients consecutively treated with HDRB-B at the Institute of Oncology Ljubljana in the period 2006-2011 were included. The observed outcome was deterioration of OUP (DOUP) during the follow-up period longer than 1 year. Univariate and multivariate relationship analysis between DOUP and potential risk factors (treatment factors, patients' characteristics) was carried out by using binary logistic regression. ROC curve was constructed on predicted values and the area under the curve (AUC) calculated to assess the performance of the multivariate model. Analysis was carried out on 71 patients who completed 3 years of follow-up. DOUP was noted in 13/71 (18.3%) of them. The results of multivariate analysis showed statistically significant relationship between DOUP and anti-coagulation treatment (OR 4.86, 95% C.I. limits: 1.21-19.61, p = 0.026). Also minimal dose received by 90% of the urethra volume was close to statistical significance (OR = 1.23; 95% C.I. limits: 0.98-1.07, p = 0.099). The value of AUC was 0.755. The study emphasized the relationship between DOUP and anticoagulation treatment, and suggested the multivariate model with fair predictive performance. This model potentially enables a reduction of DOUP after HDRB-B. It supports the belief that further research should be focused on urethral sphincter as a critical structure for OUP.

  18. SU-E-T-636: Investigation of Dose Variation in High Dose Radiation Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hyvarinen, M; Leventouri, T; Casey, C; Long, S [Florida Atlantic University, Boca Raton, FL (United States); Pella, S [South Florida Radiation Oncology and Florida Atlantic University, Boca Raton, FL (United States); Dumitru, N [University of Bucharest, Bucharest-magurele, Ilfov (Romania); Herrera, R [Louis Stokes VA Medical Center, Cleveland, OH (United States)

    2014-06-15

    Purpose: The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator's placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Significant dose variation was obtained for the Contura, Savi, MLM and Prostate applicators. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended. Florida Atlantic University may provide Travel reimbursements.

  19. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    International Nuclear Information System (INIS)

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-01-01

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using 60 Co or 192 Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of 60 Co or 192 Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by 60 Co source were smaller (8%–19%) than from 192 Ir. However, as the distance increases, the more penetrating gamma rays produced by 60 Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a 60 Co source (11.1 mSv/Gy) is lower than from a 192 Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced

  20. Rectal doses during LDR and HDR intracavitary brachytherapy of gyneacological malignancies: comparison of direct measurement with that of calculated from radiograph

    International Nuclear Information System (INIS)

    Chougule, Arun; Agarwal, D.P.

    2001-01-01

    In the present study rectal doses using CaSO 4 :Dy powder has been measured in 14 cases of cancer cervix treated by LDR brachytherapy and 20 cases of cancer cervix treated by HDR brachytherapy. The maximum rectal dose in LDR varied from 1073-1856 cGy for point A dose of 3000 cGy. The maximum rectal dose was found to be at 6-8 cm from the anal verge. The results of the calculation and actual measurements has been compared

  1. Dosimetric comparison of different dose prescription systems with CT based intracavitary brachytherapy and manual back projection technique to reconstruct the applicator

    International Nuclear Information System (INIS)

    Oinam, A.S.; Dubey, S.; Kehwar, T.S.; Rout, Sanjaya K.; Patel, F.D.; Sharma, S.C.; Goyal, D.R.; Narayan, P.

    2002-01-01

    Intracavitary brachytherapy is one of the well-established techniques for the treatment of carcinoma of cervix. The prediction of late effect of normal tissue like rectum and bladder needs the defining of the volume of the bladder and rectum in situ. In the normal planning of intracavitary and interstitial implants, simulated radiograph films are used to reconstruct the applicator geometry and dose points to represent the dose to critical organs. CT based brachytherapy can define such volume instead of defining dose points, which represent the dose to these critical organs

  2. [A Quality Assurance (QA) System with a Web Camera for High-dose-rate Brachytherapy].

    Science.gov (United States)

    Hirose, Asako; Ueda, Yoshihiro; Oohira, Shingo; Isono, Masaru; Tsujii, Katsutomo; Inui, Shouki; Masaoka, Akira; Taniguchi, Makoto; Miyazaki, Masayoshi; Teshima, Teruki

    2016-03-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an (192)Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.31±0.1 mm and that of dwell time errors 0.1±0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size.

  3. On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.

  4. A phantom for verification of dwell position and time of a high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Madebo, M.; Kron, T.; Pillainayagam, J.; Franich, R.

    2012-01-01

    Accuracy of dwell position and reproducibility of dwell time are critical in high dose rate (HDR) brachytherapy. A phantom was designed to verify dwell position and dwell time reproducibility for an Ir-192 HDR stepping source using Computed Radiography (CR). The central part of the phantom, incorporating thin alternating strips of lead and acrylic, was used to measure dwell positions. The outer part of the phantom features recesses containing different absorber materials (lead, aluminium, acrylic and polystyrene foam), and was used for determining reproducibility of dwell times. Dwell position errors of <1 mm were easily detectable using the phantom. The effect of bending a transfer tube was studied with this phantom and no change of clinical significance was observed when varying the curvature of the transfer tube in typical clinical scenarios. Changes of dwell time as low as 0.1 s, the minimum dwell time of the treatment unit, could be detected by choosing dwell times over the four materials that produce identical exposure at the CR detector.

  5. Preparation and determination of kerma for Iridium 192 sources of low dose rate for brachytherapy

    International Nuclear Information System (INIS)

    Tendilla, J.I.; Tovar M, V.; Mitsoura, E.; Aguilar H, F.; Alanis M, J.

    2000-01-01

    The practice of Brachytherapy with Iridium-192 sources of low dose rate (0.4 - 0.8 Gy/h) is a technique used in the treatment of diverse illnesses. in this work the preparation, quality control and calibration are presented in terms of kerma in air of Iridium-192 using as target these recycled Iridium-Platinum wires. The targets were obtained as decayed sources of different radio therapeutical centers in the country and they were characterized by Scanning electron microscopy in order to determine their chemical composition. Subsequently it was developed an experimental design to establish the effect of neutron flux, geometrical array and irradiation time over the activity and percentage of the sources homogeneity. The homogeneity was determined by auto radiography and by Gamma spectroscopy. Once the optimal irradiation conditions were established, it is determined the apparent activity and kerma in air using a well type ionization chamber with traceability to a primary laboratory. Iridium-192 sources were obtained with an average homogeneity 96 %, apparent activity 282.129 ± 0.531 M Bq and kerma in air 0.03200 ± 0.00006 m Gy m/h A. (Author)

  6. CT-guided high-dose-rate brachytherapy of unresectable hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Collettini, Federico; Schreiber, Nadja; Schnapauff, Dirk; Denecke, Timm; Hamm, Bernd; Gebauer, Bernhard; Wust, Peter; Schott, Eckart

    2015-01-01

    The purpose of the present study was to evaluate the clinical outcome of CT-guided high-dose-rate brachytherapy (CT-HDRBT) in patients with unresectable hepatocellular carcinoma (HCC). Over a 6-year period, 98 patients with 212 unresectable HCC underwent CT-HDRBT applying a 192 Ir source at our institution. Magnetic resonance imaging (MRI) follow-up was performed 6 weeks after the intervention and then every 3 months. The primary endpoint was local tumor control (LTC); secondary endpoints included progression-free survival (PFS) and overall survival (OS). Patients were available for MRI evaluation for a mean follow-up of 23.1 months (range 4-64 months; median 20 months). Mean tumor diameter was 5 cm (range 1.8-12 cm). Eighteen of 212 (8.5 %) tumors showed local progression after a mean LTC of 21.1 months. In all, 67 patients (68.4 %) experienced distant tumor progression. The mean PFS was 15.2 months. Forty-six patients died during the follow-up period. Median OS was 29.2 months. Actuarial 1-, 2-, and 3-year OS rates were 80, 62, and 46 %, respectively. CT-HDRBT is an effective therapy to attain local tumor control in patients with unresectable HCC. Prospective randomized studies comparing CT-HDRBT with the standard treatments like Radiofrequency ablation (RFA) and chemoembolization (TACE) are mandatory. (orig.) [de

  7. High dose rate brachytherapy (HDRB) in prostate cancer - technique description and preliminary results

    International Nuclear Information System (INIS)

    Cordova Junior, Ardo Lotar; Salvajoli, Joao Victor; Pelizzon, Antonio CAssio Assis; Cecilio, Paulo Jose

    1998-01-01

    Describe the technique and preliminary results of high dose rate brachytherapy (HDRB) in localized prostate cancer. Subjects methods: Between March, 1997 and April, 1998, 26 patients were treated with external beam radiotherapy (45 to 50.4 Gy - 1.8 Gy per day) and implants (16 Gy in 2 days - twice a day). Median age was 68 years. The distribution by clinical stage was: 5 T1c, 9 T2a, 10 T2b and 2 T3a. Median initial PSA was 16 ng/ml. Results: With a median follow-up of 4 months, 85% of patients showed normal levels of PSA, with a median of 0.6 ng/ml, 60 to 90 days after treatment. Dysuria grades 1 and 2 and proctitis grade 1 were found in 11,3 and 5 patients, respectively. Conclusion: The method is safe, with acceptable early side effects. Longer follow-up is necessary before drawing any conclusions. (author)

  8. A quality assurance (QA) system with a web camera for high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Hirose, Asako; Ueda, Yoshihiro; Ohira, Shingo

    2016-01-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an 192 Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.3±0.1 mm and that of dwell time errors 0.1 ± 0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size. (author)

  9. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A [The Christie Hospital NHS Foundation Trust, Manchester, Greater Manchester (United Kingdom)

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  10. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    International Nuclear Information System (INIS)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-01-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature

  11. High-dose rate brachytherapy in the treatment of prostate cancer: acute toxicity and biochemical behavior analysis

    International Nuclear Information System (INIS)

    Esteves, Sergio Carlos Barros; Oliveira, Antonio Carlos Zuliani de; Cardoso, Herbeni; Tagawa, Eduardo Komai; Castelo, Roberto; D'Imperio, Marcio

    2006-01-01

    Objective: this study focuses on the biochemical response of the following variables: prostate volume, prostate-specific antigen (PSA) value, Gleason scores, staging, the risk of the disease, and hormone therapy. Objective: in the period between February of 1998 and July of 2001, 46 patients with prostate cancer were treated with radiotherapy, in a combination of teletherapy and high-dose rate (HDR) brachytherapy. The age ranged from 51 to 79 years (averaging 66.4 years). T1c stage was the most frequent one: 30 (65%). The Gleason score was below 7 in 78% of the patients. PSA ranged from 3.4 to 33.3, being below 10 in 39% of the cases. The average prostatic volume was 32.3 cc. Twenty-eight percent of the patients received hormone therapy. Teletherapy dose ranged from 45 to 50.4 Gy, associated to four fractions of 4 Gy of HDR brachytherapy. Results: the follow-up period varied from 6 to 43 months. Four patients missed the follow-up and four died (one due to the disease). Out of the 39 patients that were analyzed, 76% presented a less than 1.5 PSA. None of the analyzed variables were found to be of statistical significance (p > 0.05) regarding biochemical control. Conclusion: the use of HDR brachytherapy was found to be effective in the treatment of prostate cancer and, in this study, the variables considered as prognostic factors did not interfere in the biochemical control. (author)

  12. The novel nomogram of Gleason sum upgrade: possible application for the eligible criteria of low dose rate brachytherapy.

    Science.gov (United States)

    Budäus, Lars; Graefen, Markus; Salomon, Georg; Isbarn, Hendrik; Lughezzani, Giovanni; Sun, Maxine; Chun, Felix K H; Schlomm, Thorsten; Steuber, Thomas; Haese, Alexander; Koellermann, Jens; Sauter, Guido; Fisch, Margit; Heinzer, Hans; Huland, Hartwig; Karakiewicz, Pierre I

    2010-10-01

    To examine the rate of Gleason sum upgrading (GSU) from a sum of 6 to a Gleason sum of ≥7 in patients undergoing radical prostatectomy (RP), who fulfilled the recommendations for low dose rate brachytherapy (Gleason sum 6, prostate-specific antigen ≤10 ng/mL, clinical stage ≤T2a and prostate volume ≤50 mL), and to test the performance of an existing nomogram for prediction of GSU in this specific cohort of patients. The analysis focused on 414 patients, who fulfilled the European Society for Therapeutic Radiation and Oncology and American Brachytherapy Society criteria for low dose rate brachytherapy (LD-BT) and underwent a 10-core prostate biopsy followed by RP. The rate of GSU was tabulated and the ability of available clinical and pathological parameters for predicting GSU was tested. Finally, the performance of an existing GSU nomogram was explored. The overall rate of GSU was 35.5%. When applied to LD-BT candidates, the existing nomogram was 65.8% accurate versus 70.8% for the new nomogram. In decision curve analysis tests, the new nomogram fared substantially better than the assumption that no patient is upgraded and better than the existing nomogram. GSU represents an important issue in LD-BT candidates. The new nomogram might improve patient selection for LD-BT and cancer control outcome by excluding patients with an elevated probability of GSU. © 2010 The Japanese Urological Association.

  13. Evaluation of radiation dose on people adjacent to implant patients during brachytherapy for prostate cancer using {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Ko, Seong Jin; Kang, Se Sik; Kim, Chang Soo [Catholic University, Busan (Korea, Republic of)

    2009-10-15

    The incidence of prostate cancer is rapidly increasing due to aging of the population and westernization of dietary habits, etc. As a result, the frequency of prostate cancer has become the fifth highest among all male cancers and the first among urological cancers. Brachytherapy is commonly used for locally progressing prostate cancers. Since the mid 1980s, therapies using radio-isotopes, such as low-invasive {sup 125}I, {sup 103}Pd and {sup 192}Ir, have been widely performed in the U.S. and Europe. However, brachytherapy involves implanting radio-isotopes into the human body which is of concern because it may expose the health care professionals administering the therapy to unnecessary radiation. Accordingly, this study intends to predict the radiation dose that people adjacent to patients implanted with a radio-isotope are exposed to during prostate cancer radiation therapy by using a mathematical anthropomorphic phantom and {sup 192}Ir.

  14. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V.

    1998-01-01

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  15. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy

    DEFF Research Database (Denmark)

    Andersen, Else Stougård; Noe, Karsten Østergaaard; Sørensen, Thomas Sangild

    2013-01-01

    Background and purpose: Variations in organ position, shape, and volume cause uncertainties in dose assessment for brachytherapy (BT) in cervix cancer. The purpose of this study was to evaluate uncertainties associated with bladder dose accumulation based on DVH parameter addition (previously...... called "the worst case assumption") in fractionated BT. Materials and methods: Forty-seven patients treated for locally advanced cervical cancer were included. All patients received EBRT combined with two individually planned 3D image-guided adaptive BT fractions. D2 and D0.1 were estimated by DVH...

  16. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-10-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  17. High-dose regions versus likelihood of cure after prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Merrick, Gregory; Sutlief, Steven; True, Laurence; Butler, Wayne

    2005-01-01

    Purpose: To analyze the effect of high-dose regions on biochemical cancer control rates after prostate brachytherapy. Methods and Materials: Patients with 1997 American Joint Committee on Cancer clinical Stage T1c-T2a prostate carcinoma (Gleason grade 5-6, prostate-specific antigen level 4-10 ng/mL) were randomized to implantation with 125 I (144 Gy) vs. 103 Pd (125 Gy, National Institute of Standards and Technology 1999). Isotope implantation was performed by standard techniques, using a modified peripheral loading pattern. Of the 313 patients entered in the protocol, 270 were included in this analysis. The 125 I source strength ranged from 0.4 to 0.89 mCi (median, 0.55 mCi), and the 103 Pd source strength ranged from 1.3 to 1.6 mCi (median, 1.5 mCi). CT was performed within 4 h after implantation. The dosimetric parameters analyzed included the percentage of the postimplant prostate volume covered by the 100%, 150%, 200%, and 300% prescription dose (V 100 , V 150 , V 200 , and V 300 , respectively). The median time to the last follow-up for patients without failure was 2.7 years. Freedom from biochemical failure was defined as a serum prostate-specific antigen level of ≤0.5 ng/mL at last follow-up. Patients were censored at last follow-up if their serum prostate-specific antigen level was still decreasing. Results: The mean V 100 , V 150 , V 200 , and V 300 value was 90% (±8%), 63% (±14), 35% (±13%), and 14% (±7%), respectively. Patients with a V 100 of ≥90% had a 3-year freedom from biochemical failure rate of 96% vs. 87% for those with a V 100 of 100 of ≥90% were analyzed, no relationship was found between higher dose regions and the likelihood of cancer control. This lack of effect on biochemical control was apparent for both isotopes. Conclusion: High-dose regions do not appear to affect cancer control rates, as long as >90% of the prostate volume is covered by the prescription dose

  18. High-dose-rate intracavitary brachytherapy in the management of cervical and vaginal intraepithelial neoplasia

    International Nuclear Information System (INIS)

    Ogino, Ichiro; Kitamura, Tatsuo; Okajima, Hiroyuki; Matsubara, Sho

    1998-01-01

    Purpose: To assess the effectiveness of high-dose rate intracavitary brachytherapy (HDR-ICR) in patients with grade 3 cervical intraepithelial neoplasia (CIN-3) and grade 3 vaginal intraepithelial neoplasia (VAIN-3). Methods and Materials: This was a retrospective analysis in 20 patients with CIN-3 (n = 14) or VAIN-3 (n = 6), average age 61.9 years, managed with HDR-ICR at Kanagawa Cancer Center. Two patients with CIN-3 with microinvasive foci and 11 other patients with CIN-3 were treated with HDR-ICR for cervical lesions. Six patients with CIN-3 after hysterectomy received HDR-ICR for recurrent or residual VAIN-3 lesions. One patient received radiation therapy for both CIN-3 and VAIN-3 lesions. All these patients but one were postmenopausal. Results: Seventeen patients were treated with HDR-ICR alone, and three with combined external radiation therapy. The dose was calculated at Point A located 2 cm superior to the external os and 2 cm lateral to the axis of the intrauterine tube for intact uterus. For lesions of the vaginal stump, the dose was calculated at a point 1 cm superior to the vaginal apex or 1 cm beyond vaginal mucosa. In the 14 patients treated for CIN-3 lesions, the mean total dose of HDR-ICR was 26.1 Gy (range 20-30). Six patients received HDR-ICR for VAIN-3 lesions with mean dose of 23.3 Gy (range 15-30). At follow-up (mean 90.5 months; range 13-153), 14 patients were alive and 6 had died owing to nonmalignant intercurrent disease. No patient developed recurrent disease. Rectal bleeding occurred in three patients, but this symptom subsided spontaneously. Moderate and severe vaginal reactions were noted in two patients, in whom the treatment had included the entire vagina. Conclusions: HDR-ICR can be employed as the primary management strategy for postmenopausal women with CIN-3. In intraepithelial neoplasia involving the vaginal wall after hysterectomy, HDR-ICR should be considered as an alternative to total vaginectomy

  19. Use of CT or MR dosimetry in high dose rate (HDR) brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Liu, C.; Das, R.; See, A.; Duchesne, G.M.; Van Dyk, S.; Tai, K.H.

    2003-01-01

    Brachytherapy (BT) has, in recent years, become a well-utilised treatment option for prostate cancer. Tumour control probability relies on accurate dosimetry, which in turn relies on the accurate definition of the prostate gland. In external beam radiotherapy and BT, MRI has been shown to be a superior imaging modality when delineating the prostate gland especially at the apex. To date, data on MRI planning in prostate BT has focussed mainly on permanent interstitial implants. No data currently exists comparing MRI vs CT planning in HDR BT and its subsequent impact on prostate dosimetry. To determine the effects of MRI vs CT in HDR BT with respect to prostatic volumes and normal tissue doses, with the evaluations made using dose-volume histograms (DVH). Dosimetry parameters derived using CT and MRI (T2 weighted) scans of 11 patients who had received TRUS guided implants for HDR BT, were compared using the PlatoTM computer planning system. Treatment plans were generated on volumes marked by the same radiation oncologist for each patient. Comparison was made of the treatment plans (dosimetry) between: 1. CT generated plans; 2. CT generated plans assessed using MRI marked volumes and 3. MRI generated plans. We confirm the previously reported results that CT scans can overestimate prostatic volumes compared with MRI. Variations were noted in CT and MRI based plans that may allow improved sparing of the rectum and urethra when using MRI planning. The main disadvantages of using MRI scans are access to facilities as well as identifying a dummy source to adequately define the tips of our catheters. It is feasible to utilise MRI scans for HDR BT planning. The clearer definition of anatomical structures has added advantages when contouring the prostate

  20. Treatment outcome with low-dose-rate interstitial brachytherapy in early-stage oral tongue cancers

    Directory of Open Access Journals (Sweden)

    Bhalavat Rajendra

    2009-01-01

    Full Text Available Purpose : Although radical radiotherapy is known to be equally effective for early-stage oral tongue cancers (T1-2 N0 with the added advantage of organ and function preservation, surgery remains the preferred treatment. We present outcome of patients treated with brachytherapy (BT either radical or boost. Materials and Methods : Fifty-seven patients (T1/T2 31/26 were studied. Seventeen patients (30% were treated with radical BT (50-67 Gy while 40 (70% with external beam radiation therapy (EBRT + BT (36-56 Gy + 15-38 Gy]. Low-dose-rate (LDR BT was delivered with 192 Ir wires, using plastic bead technique with varied dose rates (< 60 cGy/h in 29 patients, 60-90 cGy/h in 17, and> 90 cGy/h in 11. Results : The overall local control (LCR was achieved in 59.7% (34/57 patients. LCR for T1 and T2 was 67.8% and 50%, respectively. A total of 23 patients had failures [local: 20 (T1: 8; T2: 12 patients, node: 5 (T1:2; T2: 3, and local + nodal: 3]. Overall 5-year disease-free survival and overall survival (OAS were 51% and 67%, respectively and those for T1 and T2 was 64.5/77.4% and 38.5/54% respectively (P = 0.002. All 16 patients were salvaged. Median survival after salvage treatment was 13.5 months (6-100 months. Soft tissue necrosis was observed in 12.3% (7/57 and osteoradionecrosis in two patients. Conclusion : BT, as an integral part of radical radiation therapy in early-stage tongue cancers, appears to be an effective alternative treatment modality with preservation of the organ and function without jeopardizing the outcome.

  1. Second salvage high-dose-rate brachytherapy for radiorecurrent prostate cancer

    Directory of Open Access Journals (Sweden)

    Metha Maenhout

    2017-04-01

    Full Text Available Purpose : Salvage treatments for localized radiorecurrent prostate cancer can be performed safely when a focal and image guided approach is used. Due to the low toxicity, the opportunity exists to investigate a second salvage treatment when a second locally recurrent prostate cancer occurs. Here, we describe a second salvage treatment procedure of 4 patients. Material and methods : Four patients with a pathologically proven second local recurrence were treated in an outpatient magnetic resonance imaging (MRI-guided setting with a single fraction of 19 Gy focal high-dose-rate brachytherapy (HDR-BT. Delineation was performed using choline-PET-CT or a 68Ga-PSMA PET in combination with multiparametric 3 Tesla MRI in all four patients. Toxicity was measured using common toxicity criteria for adverse events (CTCAE version 4.0. Results : With a median follow-up of 12 months (range, 6-15, there were 2 patients with biochemical recurrence as defined by the Phoenix-definition. There were no patients with grade 3 or more toxicity. In all second salvage HDR-BT treatments, the constraints for rectum, bladder, and urethra were met. Median treatment volume (GTV was 4.8 cc (range, 1.9-6.6 cc. A median of 8 catheters (range, 6-9 were used, and the median dose to the treatment volume (GTV was a D95: 19.3 Gy (SD 15.5-19.4 Gy. Conclusions : Second focal salvage MRI-guided HDR-BT for a select group of patients with a second locally recurrent prostate cancer is feasible. There was no grade 3 or more acute toxicity for these four patients.

  2. Clinical result of high-dose rate intraluminal brachytherapy for esophageal carcinoma with a remote afterloading system

    International Nuclear Information System (INIS)

    Fukuda, Haruyuki; Nakajima, Toshifumi; Tada, Takuhito; Tanaka, Masahiro; Tsumura, Masashi; Onoyama, Yasuto

    1992-01-01

    During the period from 1977 through 1987, 105 patients with esophageal carcinoma were radically treated by radiotherapy. Forty-six patients receiving therapy before August 1982 were all treated by external beam therapy alone (Group 1). Since September 1982, 26 patients were treated by external beam therapy alone (Group 2) and 33 patients were treated by high-dose-rate intraluminal brachytherapy with a remote afterloading system combined with external beam therapy (Group 3). Dose of external beam therapy for Group 1, Group 2 and Group 3 patients were 66.7 Gy, 68.7 Gy and 55.9 Gy on the average. The intraluminal brachytherapy was performed with a total dose of 12 Gy consisting of 3 Gy twice a week. Ten of 72 patients (14%) treated by external beam therapy alone achieved complete response, whereas 14 of 33 patients (42%) treated by high-dose-rate intraluminal brachytherapy combined with external beam therapy had complete response. One-, and 3-year survival rates were 36% and 10% in the Group 1, 32% and 12% in the Group 2 and 56% and 36% in the Group 3. For Group 3, good survival rate was obtained in tumorous type and serrated type. Patients with tumor of less than 5 cm in Group 3 had good survival. The data suggest that the high-dose-rate intraluminal bracytherapy prescribed as a boost therapy following external beam therapy is an effective therapy modality for esophageal carcinoma which is of non-circumferential tumor or less than 5 cm. (author)

  3. Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE.

    Science.gov (United States)

    Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M

    60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Endoluminal high dose rate brachytherapy in the treatment of primary and recurrent bronchogenic tree malignancies

    Directory of Open Access Journals (Sweden)

    Maria Fortunato

    2009-03-01

    Full Text Available Introduction: Locally advanced tumours as the initial form of presentation of tumours in the bronchial tree are not a rare event. Bronchogenic recurrence is frequent in the natural history of some tumours. The choice of therapeutic options from the raft available depends on such variables as initial therapy, place of recurrence, symptoms and patient's physical status. Aim: To demonstrate the advantages of endoluminal brachytherapy (EBT with high dose rate (HDR in primary and recurrent tumour of the bronchial tree. Material and methods: A retrospective study of seven patients (pts with primary tumours of the colon, trachea and lung. Tracheobronchial recurrence (trachea, two pts, bronchus, five pts occurred betweenMarch 2003 and September 2004. Patients under-went EBT with HDR for primary or recurrent therapy in association with external radiotherapy, laser therapy and chemotherapy with palliative or curative intention. EBT with HDR doses of 5 to 7 Gy in 2 to 4 fractions at 1 cm from the source axis were given. Treatment included endoluminal application of Ir192 with a French 6 catheter. Results: There was symptomatic relief related to reduction of tumour in six of the seven patients treated. In one of the six patients studied, there was progression of the local disease between the second and third fractions of the treatment (obstruction of the trachea. In a mean follow up of 17 (2-40 months between EBT and this study, three patients are alive, one has no evidence of disease while two have had bronchial recurrence, four patients have died, one after massive haemoptysis and three due to disease progression. Discussion and conclusions: Patients undergoing brachytherapy for symptomatic primary tumours or endobronchial recurrence show good tolerance, important symptom relief and improved quality of life. Despite the small size of our sample, it is clear that EBT with HDR plays an important role in the palliative/curative treatment of these patients

  5. A real-time in vivo dosimetric verification method for high-dose rate intracavitary brachytherapy of nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhenyu; Deng Xiaowu; Cao Xinping; Huang Shaomin; Lerch, Michael; Rosenfeld, Anatoly [State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-11-15

    Purpose: A real-time in vivo dosimetric verification method using metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters has been developed for patient dosimetry in high-dose rate (HDR) intracavitary brachytherapy of nasopharyngeal carcinoma (NPC). Methods: The necessary calibration and correction factors for MOSFET measurements in {sup 192}Iridium source were determined in a water phantom. With the detector placed inside a custom-made nasopharyngeal applicator, the actual dose delivered to the tumor was measured in vivo and compared to the calculated values using a commercial brachytherapy planning system. Results: Five MOSFETs were independently calibrated with the HDR source, yielding calibration factors of 0.48 {+-} 0.007 cGy/mV. The maximum sensitivity variation was no more than 7% in the clinically relevant distance range of 1-5 cm from the source. A total of 70 in vivo measurements in 11 NPC patients demonstrated good agreement with the treatment planning. The mean differences between the planned and the actually delivered dose within a single treatment fraction were -0.1%{+-} 3.8% and -0.1%{+-} 3.7%, respectively, for right and left side assessments. The maximum dose deviation was less than 8.5%. Conclusions: In vivo measurement using the real-time MOSFET dosimetry system is possible to evaluate the actual dose to the tumor received by the patient during a treatment fraction and thus can offer another line of security to detect and prevent large errors.

  6. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  7. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  8. Positional variation of applicators during low dose rate intracavitary brachytherapy for cervical cancer: a prospective study

    Directory of Open Access Journals (Sweden)

    Arul Ponni

    2010-10-01

    Full Text Available Purpose: In order to know the effect of variation in position of applicators to the dose received by the tumor volume, critical organs such as rectum and bladder and the correlation of variation on the clinical outcome.Material and methods: 36 patients with histologically proven cervical cancer, undergoing intracavitary brachythe - rapy (ICBT from October 2005 to December 2006 were the subjects of the study. Two pairs of orthogonal X-ray films were taken: one prior to loading of sources and the other after removal of sources. These patients were followed up as per the RTOG criteria.Results: The median duration of insertion was 25 hours with a median follow up period of 6.7 months. The translational variation of the applicator position for all patients was 3 mm and 1 mm (2 SD, respectively, in the patient’s lateral and antero-posterior direction. The rotational variation was 3 and 4 degrees (2 SD in the patient’s transverse and sagittal planes. Detailed analysis of source movement showed following changes in median dose: point A: 14%, point B: 2%, point P: 1%, Rectum 1: 3.5%, Rectum 2: 4% and Bladder: 9.1%. The incidence of rectal toxicity was 6/36(16.7% and that of bladder was 1/36 (2.8%. When the variables were grouped to evaluate the relationship, our study showed statistically significant relationship between: R2 and rectal toxicity (p value: 0.002, point A and rectal toxicity (Pearson: 0.792, lateral displacement/anteroposterior displacement and rectal toxicity (p value: 0.012/0.003, beta angle and R2 (p value: 0.002.Conclusions: The geometric relationships between the ICBT applicators and the critical structures vary during the course of low dose rate brachytherapy. Source movement does result in significant dose alterations in terms of increased rate of complications, but its impact on cure rates needs to be studied in the future.

  9. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  10. Neither high-dose nor low-dose brachytherapy increases flap morbidity in salvage treatment of recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Peter W. Henderson

    2016-08-01

    Full Text Available Purpose: While brachytherapy is often used concurrently with flap reconstruction following surgical ablation for head and neck cancer, it remains unclear whether it increases morbidity in the particularly high risk subset of patients undergoing salvage treatment for recurrent head and neck cancer (RH&NC. Material and methods : A retrospective chart review was undertaken that evaluated patients with RH&NC who underwent flap coverage after surgical re-resection and concomitant brachytherapy. The primary endpoint was flap viability, and the secondary endpoints were flap and recipient site complications. Results : In the 23 subjects included in series, flap viability and skin graft take was 100%. Overall recipient site complication rate was 34.8%, high-dose radiation (HDR group 50%, and low-dose radiation (LDR group 29.4%. There was no statistically significant difference between these groups. Conclusions : In patients who undergo flap reconstruction and immediate postoperative radiotherapy following salvage procedures for RH&NC, flap coverage of defects in combination with brachytherapy remains a safe and effective means of providing stable soft tissue coverage.

  11. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    International Nuclear Information System (INIS)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O.

    2011-01-01

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  12. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2011-08-15

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  13. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States)

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  14. A mechanical system design of the iridium-192 isotope wire in cervical cancer brachytherapy with medium dose rate

    International Nuclear Information System (INIS)

    Ari Satmoko; Sanda; Tri Harjanto; Atang Susila

    2010-01-01

    In 2010, brachytherapy engineering development activities have a purpose to establish a detailed design of the cervical cancer brachytherapy with medium dose rate. The brachytherapy will use an Iridium-92 source with the emitting radiation of 5 to 10 Curies. The source is wrapped in SS-316 capsule and carried by a SS-316 wire having diameter of about 1 mm dan length of 1800 mm. As part of this activity, the preliminary design of the mechanical drive systems for the isotope source has been developed. The technical specifications for the main components of the mechanical drive system have been successfully determined. This is started by studying the concept design, performing calculations, determining technical specifications, and finally defining the main components. From the evaluation, some components were decided: a stepper motor PK264A1-SG10, needle bearing NKI-10/20, spiral tube in SS316-1/8'' with 120 mm in diameter, rubber-based belts with a width of 20 mm, and aluminium drum with a diameter of 100 mm. Not all components could be identified in detail, especially for the components that do not exist in the marketplace and have to be created ourself Since the main components have been identified, the detailed design step of the mechanical drive systems for the isotope source can be performed. (author)

  15. Assessing patient characteristics and radiation-induced non-targeted effects in vivo for high dose-rate (HDR) brachytherapy.

    Science.gov (United States)

    Pinho, Christine; Timotin, Emilia; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Farrell, Thomas J; Seymour, Colin; Mothersill, Carmel

    2015-01-01

    To test whether blood, urine, and tissue based colony-forming assays are a useful clinical detection tool for assessing fractionated treatment responses and non-targeted radiation effects in bystander cells. To assess patients' responses to radiation treatments, blood serum, urine, and an esophagus explant-based in vivo colony-forming assay were used from oesophageal carcinoma patients. These patients underwent three fractions of high dose rate (HDR) intraluminal brachytherapy (ILBT). Human keratinocyte reporters exposed to blood sera taken after the third fraction of brachytherapy had a significant increase in cloning efficiency compared to baseline samples (p fractions for the blood sera data only. Patient characteristics such as gender had no statistically significant effect (p > 0.05). Large variability was observed among the patients' tissue samples, these colony-forming assays showed no significant changes throughout fractionated brachytherapy (p > 0.05). Large inter-patient variability was found in the urine and tissue based assays, so these techniques were discontinued. However, the simple blood-based assay had much less variability. This technique may have future applications as a biological dosimeter to predict treatment outcome and assess non-targeted radiation effects.

  16. The mechanical system design of the iridium-192 isotope wire in cervical cancer brachytherapy with medium dose rate

    International Nuclear Information System (INIS)

    Ari Satmoko; Sanda; Tri Harjanto; Atang Susila

    2010-01-01

    In 2010, brachytherapy engineering activities have a purpose to establish a detailed design of the cervical cancer brachytherapy with medium dose rate. The brachytherapy will use an Iridium-92 source with the emiting radiation of 5 to 10 Curies. The source is wrapped in SS-316 capsule and carried by a SS-316 wire having diameter of about 1 mm dan length of 1800 mm. As part of this activity, the preliminary design of the mechanical drive systems for the isotope source has been developed. The technical specifications for the main components of the mechanical drive system have been successfully determined. This is started by studying the concept design, performing calculations, determining technical specifications, and finally defining the main components. From the evaluation, some components were decided: a stepper motor PK264A1-SG10, needle bearing NKI-10/20, spiral tube in SS316-1/8'' with 120 mm in diameter, rubber-based belts with a width of 20 mm, and aluminium drum with a diameter of 100 mm. Not all components could be identified in detail, especially for the components that do not exist in the market place and have to be created ourself. Since the main components have been identified, the detailed design step of the mechanical drive systems for the isotope source can be performed. (author)

  17. Development of a program for calculation of second dose and securities in brachytherapy high dose rate

    International Nuclear Information System (INIS)

    Esteve Sanchez, S.; Martinez Albaladejo, M.; Garcia Fuentes, J. D.; Bejar Navarro, M. J.; Capuz Suarez, B.; Moris de Pablos, R.; Colmenares Fernandez, R.

    2015-01-01

    We assessed the reliability of the program with 80 patients in the usual points of prescription of each pathology. The average error of the calculation points is less than 0.3% in 95% of cases, finding the major differences in the axes of the applicators (maximum error -0.798%). The program has proved effective previously testing him with erroneous dosimetry. Thanks to the implementation of this program is achieved by the calculation of the dose and part of the process of quality assurance program in a few minutes, highlighting the case of HDR prostate due to having a limited time. Having separate data sheet allows each institution to its protocols modify parameters. (Author)

  18. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    Directory of Open Access Journals (Sweden)

    Firoozabadi M. M.

    2017-03-01

    Full Text Available Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source.

  19. The prediction of late rectal complications in patients treated with high dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Roman, Ted N.; Chappell, Rick; Evans, Michael D.C.; Fowler, Jack F.

    1997-01-01

    Purpose: The aim of this work is to investigate an unusually high rate of late rectal complications in a group of 43 patients treated with concomitant irradiation and chemotherapy for carcinoma of the cervix between December 1988 and April 1991, with a view to identifying predictive factors. Methods and Materials: The biologically effective dose received by each patient to the rectal reference point defined by the International Commission of Radiation Units and Measurements, Report 38, were calculated. Radiotherapy consisted of 46 Gy external beam irradiation plus three high dose-rate intracavitary treatments of 10 Gy each prescribed to point A. Cisplatin 30 mg/m 2 was given weekly throughout the duration of the irradiation. The results have been compared to data from 119 patients treated with irradiation alone to assess the confounding effect of the cisplatin. Results: The relationship between the biologically effective dose delivered to the rectal reference point and the development of late complications shows a strong dose-response with a threshold for complications occurring at approximately 125 Gy 3 corresponding to a brachytherapy dose of approximately 8 Gy per fraction. This value is approximately the same biologically effective dose threshold as that found for external beam irradiation in the head and neck region. The data from the group of patients treated without cisplatin is comparable to the data from the first group of patients in the lower dose ranges; the higher doses were not used and thus are not available for comparison. Conclusion: Using the linear quadratic model applied to our clinical results, we have established a threshold for late rectal complications for patients treated with external beam irradiation and high dose-rate brachytherapy for carcinoma of the cervix. This threshold is consistent with similar data for external beam irradiation in the head and neck region

  20. Assessment of the feasibility of using transrectal ultrasound for postimplant dosimetry in low-dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane; Barber, Jim; Tanguay, Jacob; Button, Michael; Cochlin, Dennis; Smith, Christian; Lester, Jason Francis

    2016-01-01

    A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there was no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.

  1. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  2. Radioablation of liver malignancies with interstitial high-dose-rate brachytherapy. Complications and risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Mohnike, Konrad; Wolf, Steffen; Damm, Robert; Seidensticker, Max; Seidensticker, Ricarda; Fischbach, Frank; Pech, Maciej; Ricke, Jens [Otto-von-Guericke-Universitaet, Klinik fuer Radiologie und Nuklearmedizin, Universitaetsklinikum Magdeburg A.oe.R., Magdeburg (Germany); Peters, Nils; Hass, Peter; Gademann, Guenther [Otto-von-Guericke-Universitaet, Klinik fuer Strahlentherapie, Universitaetsklinikum Magdeburg A.oe.R., Magdeburg (Germany)

    2016-05-15

    To evaluate complications and identify risk factors for adverse events in patients undergoing high-dose-rate interstitial brachytherapy (iBT). Data from 192 patients treated in 343 CT- or MRI-guided interventions from 2006-2009 at our institution were analyzed. In 41 %, the largest tumor treated was ≥ 5 cm, 6 % of the patients had tumors ≥ 10 cm. Prior to iBT, 60 % of the patients had chemotherapy, 22 % liver resection, 19 % thermoablation or transarterial chemoembolization (TACE). Safety was the primary endpoint; survival data were obtained as the secondary endpoints. During follow-up, MRI or CT imaging was performed and clinical and laboratory parameters were obtained. The rate of major complications was below 5 %. Five major bleedings (1.5 %) occurred. The frequency of severe bleeding was significantly higher in patients with advanced liver cirrhosis. One patient developed signs of a nonclassic radiation-induced liver disease. In 3 patients, symptomatic gastrointestinal (GI) ulcers were detected. A dose exposure to the GI wall above 14 Gy/ml was a reliable threshold to predict ulcer formation. A combination of C-reactive protein ≥ 165 mg/l and/or leukocyte count ≥ 12.7 Gpt/l on the second day after the intervention predicted infection (sensitivity 90.0 %; specificity 92.8 %.) Two patients (0.6 %) died within 30 days. Median overall survival after the first liver treatment was 20.1 months for all patients and the local recurrence-free surviving proportion was 89 % after 12 months. Image-guided iBT yields a low rate of major complications and is effective. (orig.) [German] Evaluierung der Komplikationsrate und Identifizierung von Risikofaktoren fuer Komplikationen und Nebenwirkungen bei Patienten mit Lebermalignomen, die mit der hochdosierten interstitiellen Brachytherapie (iBT) behandelt wurden. Von 2006 bis 2009 wurden 192 Patienten in 343 CT- oder MRT-gefuehrten Interventionen behandelt und deren Daten ausgewertet. Der groesste behandelte Tumor war in

  3. Late effects of post-high-dose-rate brachytherapy for oropharyngeal carcinoma: are they severer than post-low-dose-rate?

    International Nuclear Information System (INIS)

    Nose, T.; Koizumi, M.; Nishiyama, K.; Peiffert, D.; Lapeyre, M.; Hoffstetter, S.

    2004-01-01

    Background: late effects by high-dose-rate (HDR) brachytherapy have been believed severer than low-dose-rate (LDR) provided tumor control was constant. Local control of oropharyngeal carcinoma with HDR at Osaka Medical Center was comparable to LDR series from Centre Alexis Vautrin (82%, 79.5%, respectively). To assess the feasibility of HDR brachytherapy, the late effects were compared. Patients and methods: the data of 29 HDR and 24 LDR patients (median follow-up of 27 and 29.5 months, respectively; p = 0.89) were collected. The HDR schedule was 21 Gy/3.5 fractions/2 days following 46 Gy/23 fractions external beam, while 25 Gy/3 days following 50 Gy/25 fractions external beam was for LDR. Late changes were evaluated using RTOG/EORTC late morbidity scoring scheme. For subclinical late changes, mucosa chapter of Dische score was modified for brachytherapy. Scores were discussed through photos and were agreed on by authors. Late sequelae were estimated, by reviewing charts, concerning frequency, severity, and duration of mucosal damages (erosion and ulcer). Results: Late changes were of no difference (p = 0.12 for EORTC/RTOG, and p = 0.45, 0.47, 1.00, 0.12, 0.16, 0.95, 0.27, 0.21 for erythema, ulceration, edema, thinning, pallor, telangiectasia, mobility impairment of tongue/faucial pillars, respectively, of the modified Dische score). Late sequelae showed no differences (p = 0.90, 0.12, 0.40 for frequency, severity, duration, respectively, of mucosal damages). Conclusion: the late effects by HDR were not severer than by LDR. HDR oropharyngeal brachytherapy is as safe as LDR. (orig.)

  4. Interstitial high-dose-rate brachytherapy boost: The feasibility and cosmetic outcome of a fractionated outpatient delivery scheme

    International Nuclear Information System (INIS)

    Manning, Matthew A.; Arthur, Douglas W.; Schmidt-Ullrich, Rupert K.; Arnfield, Mark R.; Amir, Cyrus; Zwicker, Robert D.

    2000-01-01

    Purpose: To evaluate the feasibility, potential toxicity, and cosmetic outcome of fractionated interstitial high dose rate (HDR) brachytherapy boost for the management of patients with breast cancer at increased risk for local recurrence. Methods and Materials: From 1994 to 1996, 18 women with early stage breast cancer underwent conventionally fractionated whole breast radiotherapy (50-50.4 Gy) followed by interstitial HDR brachytherapy boost. All were considered to be at high risk for local failure. Seventeen had pathologically confirmed final surgical margins of less than 2 mm or focally positive. Brachytherapy catheter placement and treatment delivery were conducted on an outpatient basis. Preplanning was used to determine optimal catheter positions to enhance dose homogeneity of dose delivery. The total HDR boost dose was 15 Gy delivered in 6 fractions of 2.5 Gy over 3 days. Local control, survival, late toxicities (LENT-SOMA), and cosmetic outcome were recorded in follow-up. In addition, factors potentially influencing cosmesis were analyzed by logistic regression analysis. Results: The minimum follow-up is 40 months with a median 50 months. Sixteen patients were alive without disease at last follow-up. There have been no in-breast failures observed. One patient died with brain metastases, and another died of unrelated causes without evidence of disease. Grade 1-2 late toxicities included 39% with hyperpigmentation, 56% with detectable fibrosis, 28% with occasional discomfort, and 11% with visible telangiectasias. Grade 3 toxicity was reported in one patient as persistent discomfort. Sixty-seven percent of patients were considered to have experienced good/excellent cosmetic outcomes. Factors with a direct relationship to adverse cosmetic outcome were extent of surgical defect (p = 0.00001), primary excision volume (p = 0.017), and total excision volume (p = 0.015). Conclusions: For high risk patients who may benefit from increased doses, interstitial HDR

  5. High-dose-rate brachytherapy as salvage modality for locally recurrent prostate cancer after definitive radiotherapy. A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikonstantinou, Georgios; Zamboglou, Nikolaos; Roedel, Claus; Tselis, Nikolaos [J.W. Goethe University of Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Zoga, Eleni [Sana Klinikum Offenbach, Department of Radiotherapy and Oncology, Offenbach am Main (Germany); Strouthos, Iosif [Medical Center - University of Freiburg, Department of Radiotherapy and Oncology, University of Freiburg, Freiburg (Germany); Butt, Saeed Ahmed [Sana Klinikum Offenbach, Department of Medical Physics and Engineering, Offenbach am Main (Germany)

    2017-09-15

    To review the current status of interstitial high-dose-rate brachytherapy as a salvage modality (sHDR BRT) for locally recurrent prostate cancer after definitive radiotherapy (RT). A literature search was performed in PubMed using ''high-dose-rate, brachytherapy, prostate cancer, salvage'' as search terms. In all, 51 search results published between 2000 and 2016 were identified. Data tables were generated and summary descriptions created. The main outcome parameters used were biochemical control (BC) and toxicity scores. Eleven publications reported clinical outcome and toxicity with follow-up ranging from 4-191 months. A variety of dose and fractionation schedules were described, including 19.0 Gy in 2 fractions up to 42.0 Gy in 6 fractions. The 5-year BC ranged from 18-77%. Late grade 3 genitourinary and gastrointestinal toxicity was 0-32% and 0-5.1%, respectively. sHDR BRT appears as safe and effective salvage modality for the reirradiation of locally recurrent prostate cancer after definitive RT. (orig.) [German] Zusammenfassende Darstellung relevanter Literatur zur interstitiellen High-Dose-Rate-Brachytherapie als Salvage-Modalitaet (sHDR-BRT) bei der Behandlung des lokal rezidivierten Prostatakarzinoms nach vorausgegangener definitiver Radiotherapie (RT). In der PubMed-Datenbank wurde eine Literaturrecherche mit den Suchbegriffen ''high-dose-rate, brachytherapy, prostate cancer, salvage'' durchgefuehrt. Zwischen den Jahren 2000 und 2016 wurden 51 Publikationen identifiziert. Die biochemische Kontrolle (BC) sowie das assoziierte Toxizitaetsprofil waren onkologische Hauptpunkte in der Analyse der beruecksichtigten Literatur. Von onkologischen Ergebnissen und Toxizitaeten berichteten 11 Publikationen bei einer medianen Nachbeobachtungszeit von 4-191 Monaten. Eine Variabilitaet von Dosis- und Fraktionierungsregimen wurde beschrieben mit totalen physikalischen Dosen von 19,0 Gy in 2 Fraktionen bis zu 42,0 Gy in 6 Fraktionen

  6. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  7. Quality of Life of Oral Cancer Patients After Low-Dose-Rate Interstitial Brachytherapy

    International Nuclear Information System (INIS)

    Yoshimura, Ryo-ichi; Shibuya, Hitoshi; Miura, Masahiko; Watanabe, Hiroshi; Ayukawa, Fumio; Hayashi, Keiji; Toda, Kazuma

    2009-01-01

    Purpose: To assess the quality of life (QOL) of oral cancer patients treated with low-dose-rate interstitial brachytherapy (LDR-BT) alone. Methods and Materials: Between June 2005 and July 2006, a total of 56 patients with oral cancer were enrolled in this prospective study. QOL was assessed by means of the core questionnaire and head and neck questionnaire module of the European Organization for Research and Treatment of Cancer (EORTC Quality of Life Questionnaire-Core 30 [QLQ-C30] and QLQ Head and Neck 35 [H and N35]). The questionnaires were distributed to the patients before the start of treatment and 3 months, 6 months, and 12 months after the start of LDR-BT. Results: It was possible to analyze the results for 20 of the initial 56 patients because they did not experience metastasis or recurrence during this study. No functions or symptoms asked about in the QLQ-C30 deteriorated during the first year. The emotional function score steadily and significantly increased. No symptoms in the QLQ-H and N35 significantly deteriorated. The scores for pain, trouble with social eating, and weight loss on the QLQ-H and N35 steadily and significantly decreased. Age, gender, and LDR-BT source had no effect on the change in QOL during the first year, but T-stage significantly affected the change in global health status, tumor site affected the changes in swallowing, sensory problems, sticky saliva, and complications affected the changes in pain, swallowing, and mouth opening. Conclusions: QOL of oral cancer patients treated with LDR-BT is high. However, tumor stage, tumor site, and complications affected the changes in a few functions and symptoms during the first year

  8. Long-term results of curative intraluminal high dose rate brachytherapy for endobronchial carcinoma

    Directory of Open Access Journals (Sweden)

    Kawamura Hidemasa

    2012-07-01

    Full Text Available Abstract Background The treatment strategy of central lung tumors is not established. Intraluminal brachytherapy (ILBT is widely used for palliative treatment of endobronchial tumors, however, it is also a promising option for curative treatment with limited data. This study evaluates the results after ILBT for endobronchial carcinoma. Method Sixteen-endobronchial carcinoma of 13 patients treated with ILBT in curative intent for 2000 to 2008 were retrospectively reviewed. ILBT using high dose rate 192 iridium thin wire system was performed with 5 Gy/fraction at mucosal surface. The patient age ranged from 57 to 82 years old with median 75 years old. The 16 lesions consisted of 13 central endobronchial cancers including 7 roentgenographically occult lung cancers and 3 of tracheal cancers. Of them, 10 lesions were treated with ILBT of median 20 Gy combined with external beam radiation therapy of median 45 Gy and 6 lesions were treated with ILBT alone of median 25 Gy. Results Median follow-up time was 32.5 months. Two-year survival rate and local control rate were 92.3% and 86.2%, respectively. Local recurrences were observed in 2 lesions. Three patients died due to lung cancer (1 patient and intercurrent disease (2 patients. Complications greater than grade 2 were not observed except for one grade 3 dyspnea. Conclusions ILBT combined with or without EBRT might be a curative treatment option in inoperable endobronchial carcinoma patients with tolerable complication.

  9. Assessment of radiation doses to the para-aortic, pelvic, and inguinal lymph nodes delivered by image-guided adaptive brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy M I; Aagaard, Torben; Fokdal, Lars U

    2015-01-01

    PURPOSE: This study evaluated the dose delivered to lymph nodes (LNs) by brachytherapy (BT) and the effect of BT image-guided optimization on the LN dose. METHODS AND MATERIALS: Twenty-five patients with locally advanced cervical cancer were retrospectively analyzed, 16 patients of them had LN...

  10. High Dose Rate Brachytherapy in Two 9 Gy Fractions in the Treatment of Locally Advanced Cervical Cancer - a South Indian Institutional Experience.

    Science.gov (United States)

    Ghosh, Saptarshi; Rao, Pamidimukkala Bramhananda; Kotne, Sivasankar

    2015-01-01

    Although 3D image based brachytherapy is currently the standard of treatment in cervical cancer, most of the centres in developing countries still practice orthogonal intracavitary brachytherapy due to financial constraints. The quest for optimum dose and fractionation schedule in high dose rate (HDR) intracavitary brachytherapy (ICBT) is still ongoing. While the American Brachytherapy Society recommends four to eight fractions of each less than 7.5 Gy, there are some studies demonstrating similar efficacy and comparable toxicity with higher doses per fraction. To assess the treatment efficacy and late complications of HDR ICBT with 9 Gy per fraction in two fractions. This is a prospective institutional study in Southern India carried on from 1st June 2012 to 31st July 2014. In this period, 76 patients of cervical cancer satisfying our inclusion criteria were treated with concurrent chemo-radiation following ICBT with 9 Gy per fraction in two fractions, five to seven days apart. The median follow-up period in the study was 24 months (range 10.6 - 31.2 months). The 2 year actuarial local control rate, disease-free survival and overall survival were 88.1%, 84.2% and 81.8% respectively. Although 38.2% patients suffered from late toxicity, only 3 patients had grade III late toxicity. In our experience, HDR brachytherapy with 9 Gy per fraction in two fractions is an effective dose fractionation for the treatment of cervical cancer with acceptable toxicity.

  11. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds

    International Nuclear Information System (INIS)

    Guix, Benjamin; Finestres, Fernando; Tello, Jose-Ignacio; Palma, Cesar; Martinez, Antonio; Guix, Jose-Ramon; Guix, Ricardo

    2000-01-01

    Purpose: To analyze the results obtained in a prospective group of patients with basal or squamous cell skin carcinomas of the face treated by high-dose-rate (HDR) brachytherapy via custom-made surface molds. Methods and Materials: A total of 136 patients with basal or squamous cell carcinomas of the face were treated between March 1992 and March 1997 by surface molds and HDR brachytherapy with iridium-192. Nineteen patients were treated with standard Brock applicators and 117 patients with custom-made polymethyl methacrylate applicators, built over a plaster mold obtained of the patient's face. Minimum dose administered to the tumor was 6000 to 6500 cGy in 33 to 36 fractions at 180 cGy/fraction in lesions of up to 4 cm. Lesions greater than 4 cm were boosted up to 7500-8000 cGy after a 3-week pause. Results: With the custom-made surface molds, the dose distribution was uniform in the surface of the skin and at 5 mm depth in the whole area of the applicator. Differences between the areas of maximum and minimum dose at this depth never reached values higher than 5% of the prescribed dose. At the edges of the custom-made molds dose gradient was sharp, with the detected dose at 5 mm from the applicator being negligible. All the patients were complete responders. There were 3 local recurrences, 1/73 patients treated for primary tumor and 2/63 patients treated for recurrent tumor. Actuarial local control at 5 years for all patients was 98%, for those patients with primary tumors 99%, and for recurrent patients 87%. The treatment tolerance was excellent in all cases. No severe, early, or late, complications were detected. Conclusions: Radiotherapy is a highly effective treatment of skin carcinomas of the face. Custom-made molds, to be used in conjunction with HDR brachytherapy equipment, make possible a uniform dose distribution, with a sharp dose gradient in the limits of applicators. Custom-made surface molds are easy and safe to use, and they fit very accurately for

  12. Evaluation of failure modes of computerized planning phase of interstitial implants with high dose rate brachytherapy using HFMEA

    International Nuclear Information System (INIS)

    Biazotto, Bruna; Tokarski, Marcio

    2014-01-01

    This paper evaluates the failure modes of the computerized planning step in interstitial implants with high dose rate brachytherapy. The prospective tool of risk management Health Care Failure Mode and Effects Analysis (HFMEA) was used. Twelve subprocesses were identified, and 33 failure modes of which 21 justified new safety actions, and 9 of them were intolerable risks. The method proved itself useful in identifying failure modes, but laborious and subjective in their assessment. The main risks were due to human factors, which require training and commitment of management to their mitigation. (author)

  13. Modulation of toxicity following external beam irradiation preceded by high-dose rate brachytherapy in inoperable oesophageal cancer

    International Nuclear Information System (INIS)

    Taal, B.G.; Aleman, B.M.P.; Koning, C.C.E.; Boot, H.

    1996-01-01

    To induce fast relief of dysphagia in inoperable oesephageal cancer, we applied high-dose rate (HDR) intraluminal irradiation followed by external irradiation (EBRT) in a phase II study. 15 patients (group A: n = 15; 10 men, 5 women; median age 66 years) were treated with 10 Gy HDR brachytherapy plus 40 Gy EBRT (15 fractions of 2.67 Gy). Severe side-effects were encountered in 60% of patients: 3 late ulceration, 2 pending fistula and 2 patients with fatal haemorrhage after an interval of 6 months. Overall response was excellent: 9 complete remissions (60%) and 6 partial responses (40%). Because of the high toxicity rate, in a subsequent study (group B: n = 30; 23 mean, 7 women; median age 66 years) the EBRT scheme was changed using smaller fractions (2.0 Gy) to reach the same total dose of 40 Gy. The complication rate (17%) was significantly reduced, while the overall response remained excellent (83%): 17 complete and 8 partial responses. The impressive change in complication rate of HDR brachytherapy and EBRT stresses the impact of the fraction per dose and illustrates the small therapeutic margins. (author)

  14. Modulation of toxicity following external beam irradiation preceded by high-dose rate brachytherapy in inoperable oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taal, B.G.; Aleman, B.M.P.; Koning, C.C.E.; Boot, H. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1996-09-01

    To induce fast relief of dysphagia in inoperable oesephageal cancer, we applied high-dose rate (HDR) intraluminal irradiation followed by external irradiation (EBRT) in a phase II study. 15 patients (group A: n = 15; 10 men, 5 women; median age 66 years) were treated with 10 Gy HDR brachytherapy plus 40 Gy EBRT (15 fractions of 2.67 Gy). Severe side-effects were encountered in 60% of patients: 3 late ulceration, 2 pending fistula and 2 patients with fatal haemorrhage after an interval of 6 months. Overall response was excellent: 9 complete remissions (60%) and 6 partial responses (40%). Because of the high toxicity rate, in a subsequent study (group B: n = 30; 23 mean, 7 women; median age 66 years) the EBRT scheme was changed using smaller fractions (2.0 Gy) to reach the same total dose of 40 Gy. The complication rate (17%) was significantly reduced, while the overall response remained excellent (83%): 17 complete and 8 partial responses. The impressive change in complication rate of HDR brachytherapy and EBRT stresses the impact of the fraction per dose and illustrates the small therapeutic margins. (author).

  15. High-dose-rate brachytherapy as salvage modality for locally recurrent prostate cancer after definitive radiotherapy. A systematic review

    International Nuclear Information System (INIS)

    Chatzikonstantinou, Georgios; Zamboglou, Nikolaos; Roedel, Claus; Tselis, Nikolaos; Zoga, Eleni; Strouthos, Iosif; Butt, Saeed Ahmed

    2017-01-01

    To review the current status of interstitial high-dose-rate brachytherapy as a salvage modality (sHDR BRT) for locally recurrent prostate cancer after definitive radiotherapy (RT). A literature search was performed in PubMed using ''high-dose-rate, brachytherapy, prostate cancer, salvage'' as search terms. In all, 51 search results published between 2000 and 2016 were identified. Data tables were generated and summary descriptions created. The main outcome parameters used were biochemical control (BC) and toxicity scores. Eleven publications reported clinical outcome and toxicity with follow-up ranging from 4-191 months. A variety of dose and fractionation schedules were described, including 19.0 Gy in 2 fractions up to 42.0 Gy in 6 fractions. The 5-year BC ranged from 18-77%. Late grade 3 genitourinary and gastrointestinal toxicity was 0-32% and 0-5.1%, respectively. sHDR BRT appears as safe and effective salvage modality for the reirradiation of locally recurrent prostate cancer after definitive RT. (orig.) [de

  16. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J.

    2012-01-01

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with 103 Pd, 125 I, or 131 Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( TUMOR D 90 ) and 10% of the organ at risk volumes ( OAR D 10 ) were calculated. The BED equation from Dale and Jones and published α/β and μ parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., TUMOR 7 BED 10 and OAR 7 BED 10 ). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on TUMOR BEDVH and OAR BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: TUMOR D 90 values were 102, 112, and 110 Gy for 103 Pd, 125 I, and 131 Cs, respectively. Corresponding TUMOR 7 BED 10 values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, TUMOR 7 BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused TUMOR 7 BED 10 to deviate by up to 46%. Over the range of OAR α/β values, OAR 7 BED 10 varied by up to 41%, 3.1%, and 1.4% for the lens, optic nerve, and lacrimal gland, respectively. Conclusions: BEDVH permits evaluation of the

  17. Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI.

    Science.gov (United States)

    Buus, Simon; Lizondo, Maria; Hokland, Steffen; Rylander, Susanne; Pedersen, Erik M; Tanderup, Kari; Bentzen, Lise

    To quantify needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer and propose a threshold for needle migration. Twenty-four high-risk prostate cancer patients treated with an HDR boost of 2 × 8.5 Gy were included. Patients received an MRI for planning (MRI1), before (MRI2), and after treatment (MRI3). Time from needle insertion to MRI3 was ∼3 hours. Needle migration was evaluated from coregistered images: MRI1-MRI2 and MRI1-MRI3. Dose volume histogram parameters from the treatment plan based on MRI1 were related to parameters based on needle positions in MRI2 or MRI3. Regression was used to model the average needle migration per implant and change in D90 clinical target volume, CTV prostate+3mm . The model fit was used for estimating the dosimetric impact in equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy. Needle migration was on average 2.2 ± 1.8 mm SD from MRI1-MRI2 and 5.0 ± 3.0 mm SD from MRI1-MRI3. D90 CTV prostate+3mm was robust toward average needle migration ≤3 mm, whereas for migration >3 mm D90 decreased by 4.5% per mm. A 3 mm of needle migration resulted in a decrease of 0.9, 1.7, 2.3, 4.8, and 7.6 equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy, respectively. Substantial needle migration in high-dose-rate brachytherapy occurs frequently in 1-3 hours following needle insertion. A 3-mm threshold of needle migration is proposed, but 2 mm may be considered for dose levels ≥15 Gy. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Nationwide, Multicenter, Retrospective Study on High-Dose-Rate Brachytherapy as Monotherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Yasuo, E-mail: yoshioka@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Kotsuma, Tadayuki [Department of Radiation Oncology, Osaka National Hospital, Osaka (Japan); Komiya, Akira [Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama (Japan); Department of Urology, Chiba University Hospital, Chiba (Japan); Kariya, Shinji [Department of Radiology, Kochi Medical School, Kochi (Japan); Konishi, Koji [Department of Radiation Oncology, Osaka Medical Center for Cancer and Ca