WorldWideScience

Sample records for dorsal horn astrocytes

  1. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  2. Spinal dorsal horn astrocytes: New players in chronic itch

    Directory of Open Access Journals (Sweden)

    Makoto Tsuda

    2017-01-01

    Full Text Available Chronic itch is a debilitating symptom of inflammatory skin conditions, such as atopic dermatitis, and systemic diseases, for which existing treatment is largely ineffective. Recent studies have revealed the selective neuronal pathways that are involved in itch sensations; however, the mechanisms by which itch turns into a pathological chronic state are poorly understood. Recent advances in our understanding of the mechanisms producing chronic itch have been made by defining causal roles for astrocytes in the spinal dorsal horn in mouse models of chronic itch including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for itch chronicity and lead to a previously unrecognized target for treating chronic itch.

  3. Effect of propofol on glutamate-induced activation and elated inflammatory cytokines of astrocytes from spinal cord dorsal horn

    Institute of Scientific and Technical Information of China (English)

    Chengming Qin; Qing Li; Juying Liu; Tao Zhu; Yong Xiang

    2008-01-01

    BACKGROUND: Astrocytes participate in central nervous system-mediated physiological or pathological processes, such as pain. Activated dorsal horn astrocytes from the spinal cord produce nerve active substances and proinflammatory cytokines, such as interleukin-I beta (IL-1 β ), IL-6, and tumor necrosis factor-a (TNF-a ), which play important roles in pain transduction and regulation. OBJECTIVE: To investigate the effects of different doses of propofol on activation of cultured spinal cord dorsal horn astrocytes induced by glutamate, as well as changes in IL-1 β, IL-6, and TNF-a, and IL-10 (anti-inflammatory cytokine) expression in rats, and to explore the dose relationship of propofnl. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Central Laboratory of Yunyang Medical College between March 2006 and December 2007. MATERIALS: Forty healthy, Wistar rats, aged 2-3 days, were selected. Propofol was provided by Zeneca, UK; glutamate by Sigma, USA; EPICS XL flow cytometry by Beckman culture, USA; rabbit-anti-mouse glial fibrillary acidic protein (GFAP) antibody kit and inflammatory cytokine detection kit were provided by Zhongshan Biotechnology Company Ltd., Beijing; multimedia color pathologic image analysis system was a product of Nikon, Japan. METHODS: Astrocytes were harvested from T11-L6spinal cord dorsal horn of Wistar rats and incubated for 3 weeks. The cells were divided into seven groups, according to various treatment conditions: control group was cells cultured in Hank's buffered saline solution; intralipid group was cells cultured in intralipid (0.2 mL/L); glutamate group was cells cultured with 100 μ mol/L glutamate; propofol group was cells cultured with 250 μ mol/L propofol; three glutamate plus propofol groups were cultured in 100 μ mol/L of glutamate, followed by 5, 25, and 250 μ mol/L of prnpofol 10 minutes later. MAIN OUTCOME MEASURES: GFAP-labeled astrocytes were analyzed using a multimedia

  4. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury.

    Science.gov (United States)

    Watson, Jaime L; Hala, Tamara J; Putatunda, Rajarshi; Sannie, Daniel; Lepore, Angelo C

    2014-01-01

    In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain

  5. Chemokine CCL2 up-regulated in the medullary dorsal horn astrocytes contributes to nocifensive behaviors induced by experimental tooth movement.

    Science.gov (United States)

    Luo, Wei; Fu, Runqing; Tan, Yu; Fang, Bing; Yang, Zhi

    2014-02-01

    To test the hypothesis that the astrocytic chemokine (C-C motif) ligand 2 (CCL2) plays an important role in nocifensive behaviors after experimental tooth movement (ETM), the expression and cellular localization of CCL2 and astrocyte activation in the medullary dorsal horn (MDH) were determined by immunohistochemistry in rats. The dose-dependent effects of intrathecal C-C chemokine receptor type 2 (CCR2) antagonists on these changes in nocifensive behaviors were evaluated. Exogenous CCL2 was added to medullary dorsal horn slices to evaluate its contributory role in the induction of extracellular signal-regulated kinase (ERK) activation ex vivo. We found a significant increase in the expression of CCL2 and glial fibrillary acidic protein (GFAP), corresponding well to the nocifensive behaviors after ETM. In addition, application of recombinant CCL2 led to ERK activation, which could be attenuated effectively by pretreatment with CCL2-neutralizing antibody ex vivo. The magnitude of the nocifensive behavior could be reduced by medullary CCR2 antagonists in a dose-dependent manner. Therefore, the astrocytic CCL2 is actively involved in the development and maintenance of tooth-movement pain and thus may be a potential target for analgesics in orthodontic nocifensive responses control.

  6. Chronic at-level thermal hyperalgesia following rat cervical contusion spinal cord injury is accompanied by neuronal and astrocyte activation and loss of the astrocyte glutamate transporter, GLT1, in superficial dorsal horn.

    Science.gov (United States)

    Putatunda, Rajarshi; Hala, Tamara J; Chin, Jeannie; Lepore, Angelo C

    2014-09-18

    Neuropathic pain is a form of pathological nociception that occurs in a significant portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. While many peripheral and central mechanisms have been implicated in neuropathic pain, central sensitization of dorsal horn spinothalamic tract (STT) neurons is a major underlying substrate. Furthermore, dysregulation of extracellular glutamate homeostasis and chronic astrocyte activation play important underlying roles in persistent hyperexcitability of these superficial dorsal horn neurons. To date, central sensitization and astrocyte changes have not been characterized in cervical SCI-induced neuropathic pain models, despite the fact that a major portion of SCI patients suffer contusion trauma to cervical spinal cord. In this study, we have characterized 2 rat models of unilateral cervical contusion SCI that behaviorally result in chronic persistence of thermal hyperalgesia in the ipsilateral forepaw. In addition, we find that STT neurons are chronically activated in both models when compared to laminectomy-only uninjured rats. Finally, persistent astrocyte activation and significantly reduced expression of the major CNS glutamate transporter, GLT1, in superficial dorsal horn astrocytes are associated with both excitability changes in STT neurons and the neuropathic pain behavioral phenotype. In conclusion, we have characterized clinically-relevant rodent models of cervical contusion-induced neuropathic pain that result in chronic activation of both STT neurons and astrocytes, as well as compromise in astrocyte glutamate transporter expression. These models can be used as important tools to further study mechanisms underlying neuropathic pain post-SCI and to test potential therapeutic interventions.

  7. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  8. Fos, nociception and the dorsal horn.

    Science.gov (United States)

    Coggeshall, Richard E

    2005-12-01

    The protooncogene c-fos is rapidly activated after noxious stimuli to express the protein Fos in spinal dorsal horn neurons that are in the 'correct' locations for nociceptive information transfer. As such, therefore, mapping Fos expression in these neurons is at present the best global marker for efficiently locating populations of neurons in the awake animal that respond to nociceptive input. This allows, among other things, precise behavioral measurements to be correlated with Fos expression. Two arenas where mapping dorsal horn Fos expression has made a major impact are in the anatomy of nociceptive systems and as a useful assay for the analgesic properties of various therapeutic regimens. Also Fos expression is the only way to map populations of neurons that are responding to non-localized input such as withdrawal after addiction and vascular occlusion. Another insight is that it shows a clear activation of neurons in superficial 'pain-processing' laminae by innocuous stimuli after nerve lesions, a finding that presumably bears on the allodynia that often accompanies these lesions. It is to be understood, however, that the Fos localizations are not sufficient unto themselves, but the major function of these studies is to efficiently locate populations of cells in nociceptive pathways so that powerful anatomic and physiologic techniques can be brought to bear efficiently. Thus, the purpose of this review is to summarize the studies whose numbers are geometrically expanding that deal with Fos in the dorsal horn and the conclusions therefrom.

  9. Bursting deep dorsal horn neurons: The pharmacological target for the anti-spastic effects of Zolmitriptan?

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Carlsen, Eva Maria Meier

    2016-01-01

    In a recent publication, Thaweerattanasinp and colleagues investigated spinal cord injury and firing properties of deep dorsal horn neurons during NMDA or Zolmitriptan application by employing electrophysiology in an in vitro spinal cord preparation. Deep dorsal horn neurons were classified...

  10. Endomorphins: localization, release and action on rat dorsal horn neurons.

    Science.gov (United States)

    Dun, N J; Dun, S L; Wu, S Y; Williams, C A; Kwok, E H

    2000-01-01

    Endomorphin (Endo) 1 and 2, two tetrapeptides isolated from the bovine and human brain, have been proposed to be the endogenous ligand for the mu-opiate receptor. A multi-disciplinary study was undertaken to address the issues of localization, release and biological action of Endo with respect to the rat dorsal horn. First, immunohistochemical studies showed that Endo-1- or Endo-2-like immunoreactivity (Endo-1- or Endo-2-LI) is selectively expressed in fiber-like elements occupying the superficial layers of the rat dorsal horn, which also exhibit a high level of mu-opiate receptor immunoreactivity. Second, release of immunoreactive Endo-2-like substances (irEndo) from the in vitro rat spinal cords upon electrical stimulation of dorsal root afferent fibers was detected by the immobilized antibody microprobe technique. The site of release corresponded to laminae I and II where the highest density of Endo-2-LI fibers was localized. Lastly, whole-cell patch clamp recordings from substantia gelatinosa (SG) neurons of rat lumbar spinal cord slices revealed two distinct actions of exogenous Endo-1 and Endo-2: (1) depression of excitatory and/or inhibitory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (2) hyperpolarization of SG neurons. These two effects were prevented by the selective mu-opiate receptor antagonist beta-funaltrexamine. The localization of endomorphin-positive fibers in superficial layers of the dorsal horn and the release of irEndo upon stimulation of dorsal root afferents together with the observation that Endo inhibits the activity of SG neurons by interacting with mu-opiate receptors provide additional support of a role of Endo as the endogenous ligand for the mu-opiate receptor in the rat dorsal horn.

  11. 幻肢痛大鼠脊髓背角小胶质细胞和星形胶质细胞数量的变化%Changes in the number of microglias snd astrocytes in the spinal dorsal horn in a rat model of phantom limb pain

    Institute of Scientific and Technical Information of China (English)

    林菁艳; 彭彬; 杨正伟; 闵苏

    2012-01-01

    Objective To investigate the changes in the number of microglias and astrocytes in the spinal dorsal born in a rat model of phantom limb pain.Methods Eleven healthy adult SD rats of both sexes weighing 290-300 g were randomly divided into 2 groups:sham operation group (group S,n =5 ) and unilateral sciatic nerve transection group (group SNT,n =6).Phantom limb pain model was induced by resection of a 0.5 cm segment of unilateral sciatic nerve in group SNT.In group S unilateral sciatic nerve was exposed but not transected.The animals were observed for autotomy and scored (0 =no autotomy,13 =the worst autotomy) after operation and were sacrificed on the 28th day after operation.The L5 segment of the spinal cord was removed for determination of the number of microglials (by iba-1 immuno-histochemistry) and astrocytes (by GFAP immuno-histochemistry).Results In group S no animal developed autotomy.In group SNT autotomy started from the 2nd day after operation and the score reached 9-11.Compared with group S,the number of the microglias and astrocytes in the spinal dorsal horn was significantly decreased in the operated side in group SNT ( P < 0.05 ).Conclusion The number of microglias and astrocytes in the spinal dorsal horn is decreased in animals with phantom limb pain.%目的 探讨幻肢痛大鼠脊髓背角小胶质细胞和星形胶质细胞数量的变化.方法 健康成年SD大鼠11只,雌雄不拘,体重290~300 g,采用随机数字表法,将其随机分为2组:假手术组(S组,n=5)和单侧坐骨神经横断组(SNT组,n=6).术后持续观察SNT组大鼠自噬情况,并进行自噬评分.术后28d时取L5节段脊髓组织,分别进行iba-1(标记小胶质细胞)及胶质纤维酸性蛋白(标记星形胶质细胞)免疫组化染色,进行手术侧和非手术侧脊髓背角小胶质细胞和星形胶质细胞的计数.结果 S组无一只大鼠发生自噬,SNT组术后2d开始陆续发生自噬,最高自噬评分9~11分.与S组比较,SNT组手术侧脊

  12. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...

  13. Visualizing sensory transmission between dorsal root ganglion and dorsal horn neurons in co-culture with calcium imaging.

    Science.gov (United States)

    Ohshiro, Hiroyuki; Ogawa, Shinji; Shinjo, Katsuhiro

    2007-09-15

    Sensory information is conveyed to the central nervous system by primary afferent neurons within dorsal root ganglia (DRG), which synapse onto neurons of the dorsal horn of the spinal cord. This synaptic connection is central to the processing of both sensory and pain stimuli. Here, we describe a model system to monitor synaptic transmission between DRG neurons and dorsal horn neurons that is compatible with high-throughput screening. This co-culture preparation comprises DRG and dorsal horn neurons and utilizes Ca(2+) imaging with the indicator dye Fura-2 to visualize synaptic transmission. Addition of capsaicin to co-cultures stimulated DRG neurons and led to activation of dorsal horn neurons as well as increased intracellular Ca(2+) concentrations. This effect was dose-dependent and absent when DRG neurons were omitted from the culture. NMDA receptors are a critical component of synapses between DRG and dorsal horn neurons as MK-801, a use-dependent non-competitive antagonist, prevented activation of dorsal horn neurons following capsaicin treatment. This model system allows for rapid and efficient analysis of noxious stimulus-evoked Ca(2+) signal transmission and provides a new approach both for investigating synaptic transmission in the spinal cord and for screening potential analgesic compounds.

  14. Single-unit analysis of the spinal dorsal horn in patients with neuropathic pain.

    Science.gov (United States)

    Guenot, Marc; Bullier, Jean; Rospars, Jean-Pierre; Lansky, Petr; Mertens, Patrick; Sindou, Marc

    2003-04-01

    Despite the key role played by the dorsal horn of the spinal cord in pain modulation, single-unit recordings have only been performed very rarely in this structure in humans. The authors report the results of a statistical analysis of 64 unit recordings from the human dorsal horn. The recordings were done in three groups of patients: patients with deafferentation pain resulting from brachial plexus avulsion, patients with neuropathic pain resulting from peripheral nerve injury, and patients with pain resulting from disabling spasticity. The patterns of neuronal activities were compared among these three groups. Nineteen neurons were recorded in the dorsal horns of five patients undergoing DREZotomy for a persistent pain syndrome resulting from peripheral nerve injury (i.e., nondeafferented dorsal horns), 31 dorsal horn neurons were recorded in nine patients undergoing DREZotomy for a persistent pain syndrome resulting from brachial plexus avulsion (i.e., deafferented dorsal horns), and 14 neurons were recorded in eight patients undergoing DREZotomy for disabling spasticity. These groups were compared in terms of mean frequency, coefficient of variation of the discharge, other properties of the neuronal discharge studied by the nonparametric test of Wald-Wolfowitz, and the possible presence of bursts. The coefficient of variation tended to be higher in the deafferented dorsal horn group than in the other two groups. Two neurons displaying burst activity could be recorded, both of which belonged to the deafferented dorsal horn group. A significant difference was found in term of neuronal behavior between the peripheral nerve trauma group and the other groups: The brachial plexus avulsion and disabling spasticity groups were very similar, including various types of neuronal behavior, whereas the peripheral nerve lesion group included mostly neurons with "nonrandom" patterns of discharge (i.e., with serial dependency of interspike intervals).

  15. 氯胺酮对N-甲基-D-天冬氨酸诱导大鼠脊髓背角星形胶质细胞损伤的作用%Influence of ketamine on astrocyte damage in spinal dorsal horn of rats induced by N-methyl-D-aspartic acid

    Institute of Scientific and Technical Information of China (English)

    李清; 刘菊英; 周青山; 朱涛; 秦成名

    2006-01-01

    组,差异显著[分别为(25.26±6.13)%,(5.66±2.24)%,P<0.01],100μmol/LN-甲基-D-天冬氨酸+1 mmol/L氯胺酮组低于100 μmol/L N-甲基-D-天冬氨酸组,差异显著[分别为(24.41±4.82)%,(25.26±6.13)%,P<0.01].③丙二醛含量和超氧化物歧化酶活性变化:100 μmol/L N-甲基-D-天冬氨酸使星形胶质细胞内丙二醛含量显著升高,而超氧化物歧化酶活性明显降低;1 mmol/L氯胺酮明显降低丙二醛含量,显著增强超氧化物歧化酶活性,该效应在临床镇痛剂量以内有明显量效关系,与N-甲基-D-天冬氨酸组相比差异显著(P<0.01).1 mmol/L氯胺酮组与对照组相比、100μmol/L N-甲基-D-天冬氨酸+0.1 mmol/L氯胺酮组与N-甲基-D-天冬氨酸组相比差异均无显著性.结论:N-甲基-D-天冬氨酸受体过度激活可诱导大鼠脊髓背角星形胶质细胞大量凋亡,适量氯胺酮显著抑制细胞凋亡,其机制可能增强星形胶质细胞Bcl-2蛋白表达,同时抑制自由基的产生和增强超氧化物歧化酶活性.%BACKGROUND: Ketamine is a kind of frequently used general venous anesthesia drug in clinic, and the medication in vein or epidural cavum has analgesic effect. It is N-methyl-D-aspartic acid (NMDA) receptor noncompetitive antagonist, which can inhibit toxic effect of excitatory amino acids.OBJECTIVE: To observe effect of ketamine on apoptosis of dorsal horn astrocytes of spinal cord of rats induced by NMDA receptor over activation and explore its possible mechanism of action.DESIGN: Randomized controlled observation.SETTING: Department of Anesthesiology, Taihe Hospital Affiliated to Yunyang Medical College.MATERIALS: The experiment was conducted at Cell Biology Laboratory,Institute of Basic Medical Sciences, Yunyang Medical College between September 2003 and January 2005. Neonatal Wistar rats of two or three days were provided by Animal Experimental Center of Wuhan University. METHODS: Primary astrocytes in dorsal horn of T11-L6 spinal cord of Wistar rats were purified and

  16. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Eva Meier Carlsen

    2014-06-01

    Full Text Available Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice. Neurons responded to electrical stimulation by monosynaptic EPSCs. We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with DPCPX prevented it. Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets converted into adenosine that binds to inhibitory

  17. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  18. Inhibition of spinal cord dorsal horn neuronal activity by electrical stimulation of the cerebellar cortex.

    Science.gov (United States)

    Hagains, Christopher E; Senapati, Arun K; Huntington, Paula J; He, Ji-Wei; Peng, Yuan B

    2011-11-01

    The cerebellum plays a major role in not only modulating motor activity, but also contributing to other functions, including nociception. The intermediate hemisphere of the cerebellum receives sensory input from the limbs. With the extensive connection between the cerebellum to brain-stem structures and cerebral cortex, it is possible that the cerebellum may facilitate the descending system to modulate spinal dorsal horn activity. This study provided the first evidence to support this hypothesis. Thirty-one wide-dynamic-range neurons from the left lumbar and 27 from the right lumbar spinal dorsal horn were recorded in response to graded mechanical stimulation (brush, pressure, and pinch) at the hind paws. Electrical stimulation of the cerebellar cortex of the left intermediate hemisphere significantly reduced spinal cord dorsal horn neuron-evoked responses bilaterally in response to peripheral high-intensity mechanical stimuli. It is concluded that the cerebellum may play a potential antinociceptive role, probably through activating descending inhibitory pathways indirectly.

  19. [Subpopulation of calbindin-immunoreactive interneurons in the dorsal horn of the mice spinal cord].

    Science.gov (United States)

    Porseva, V V; Shilkin, V V; Strelkov, A A; Masliukov, P M

    2014-01-01

    In the dorsal horn of the spinal cord in the plates I-IV on the thoracic and lumbar levels different subpopulations of interneurons immunoreactive for calbindin 28 kDa (CAB IR), which are specific to each plate. In the area of the medial edge of the dorsal horn, we have found a special subpopulation of CAB IR interneurons whose morphometric characteristics differ from CAB IR interneurons subpopulations of said plates. The number of CAB IR interneurons was maximal in the plate II at all levels of the spinal cord. Leveled differences are more CAB IR interneurons and larger area of the cross sections at the lumbar level.

  20. The mechanisms underlying long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-Guo

    2008-01-01

    Long-term potentiation (LTP) of C-fiber evoked feld potentials in spinal dorsal horn is first reported in 1995. Since then, the mechanisms underlying the long-lasting enhancement in synaptic transmission between primary afferent C-fibers and neurons in spinal dorsal horn have been investigated by different laboratories. In this article, the related data were summarized and discussed.

  1. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  2. PROTEIN KINASES AND CENTRAL SENSITIZATION OF SPINAL DORSAL HORN NEURONS:CENTRAL MECHANISMS OF PAIN

    Institute of Scientific and Technical Information of China (English)

    QING LIN

    2003-01-01

    @@ The enhanced responsiveness of spinal dorsal horn neurons, including spinothalamic tract (STT) cells, that follows peripheral tissue injury or inflammation is thought to underlie the development of secondary hyperalgesia and allodynia and is referred to as "central sensitization" because the increases in excitability do not appear to depend on continued activity of peripheral nociceptors.

  3. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Koblan Kenneth S

    2002-08-01

    Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

  4. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Hugues Petitjean

    2015-11-01

    Full Text Available Neuropathic pain is a chronic debilitating disease that results from nerve damage, persists long after the injury has subsided, and is characterized by spontaneous pain and mechanical hypersensitivity. Although loss of inhibitory tone in the dorsal horn of the spinal cord is a major contributor to neuropathic pain, the molecular and cellular mechanisms underlying this disinhibition are unclear. Here, we combined pharmacogenetic activation and selective ablation approaches in mice to define the contribution of spinal cord parvalbumin (PV-expressing inhibitory interneurons in naive and neuropathic pain conditions. Ablating PV neurons in naive mice produce neuropathic pain-like mechanical allodynia via disinhibition of PKCγ excitatory interneurons. Conversely, activating PV neurons in nerve-injured mice alleviates mechanical hypersensitivity. These findings indicate that PV interneurons are modality-specific filters that gate mechanical but not thermal inputs to the dorsal horn and that increasing PV interneuron activity can ameliorate the mechanical hypersensitivity that develops following nerve injury.

  5. Peripheral nerve injury sensitizes neonatal dorsal horn neurons to tumor necrosis factor-α

    OpenAIRE

    2009-01-01

    Abstract Background Little is known about whether peripheral nerve injury during the early postnatal period modulates synaptic efficacy in the immature superficial dorsal horn (SDH) of the spinal cord, or whether the neonatal SDH network is sensitive to the proinflammatory cytokine TNFα under neuropathic conditions. Thus we examined the effects of TNFα on synaptic transmission and intrinsic membrane excitability in developing rat SDH neurons in the absence or presence of sciatic nerve damage....

  6. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat

    Institute of Scientific and Technical Information of China (English)

    Pei-Jing Rong; Bing Zhu; Qi-Fu Huang; Xin-Yan Gao; Hui Ben; Yan-Hua Li

    2005-01-01

    AIM: To observe how acupuncture stimulation influences the visceral nociception in rat and to clarify the interactions between acupuncture or somatic input and visceral nociceptive inputs in the spinal dorsal horn. These will provide scientific base for illustrating the mechanism of acupuncture on visceral pain.METHODS: Experiments were performed on SpragueDawley rats and the visceral nociceptive stimulus was generated by colorectal distention (CRD). Unit discharges from individual single neuron were recorded extracellularly with glass-microelectrode in L1-3 spinal dorsal horn.Acupuncture stimulation was applied at contralateral heterotopic acupoint and ipsilateral homotopic acupoint,both of which were innervated by the same segments that innervate also the colorectal-gut.RESULTS: The visceral nociception could be inhibited at the spinal level by the heterotopic somatic mechanical stimulation and acupuncture. The maximal inhibition was induced by acupuncture or the somatic noxious stimulation at spinal dorsal horn level with inhibiting rate of 68.61%and 60.79%, respectively (P<0.01 and <0.001). In reversible spinalized rats (cervical-thoracic cold block)both spontaneous activity and responses to CRD increased significantly in 16/20 units examined, indicating the existence of tonic descending inhibition. The inhibition of acupuncture on the noxious CRD disappeared totally in the reversible spinalized rats (P<0.001).CONCLUSION: The inputs of noxious CRD and acupuncture may interact at the spinal level. The nociceptive visceral inputs could be inhibited by acupuncture applied to hetero-topic acupoint. The effect indicates that the spinal dorsal horn plays a significant role in mediating the inhibition of acupuncture and somatic stimulation on the neuronal response to the noxious visceral stimulation and the inhibition is modulated by upper cervical cord and/or supra-spinal center.

  7. Neuronal hyperexcitability in the dorsal horn after painful facet joint injury

    OpenAIRE

    2010-01-01

    Excessive cervical facet capsular ligament stretch has been implicated as a cause of whiplash-associated disorders following rear-end impacts, but the pathophysiological mechanisms that produce chronic pain in these cases remain unclear. Using a rat model of C6/C7 cervical facet joint capsule stretch that produces sustained mechanical hyperalgesia, the presence of neuronal hyperexcitability was characterized 7 days after joint loading. Extracellular recordings of spinal dorsal horn neuronal a...

  8. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  9. Inward currents induced by ischemia in rat spinal cord dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Gu Jianguo G

    2007-04-01

    Full Text Available Abstract Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM and APV (50 μM. The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM. Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.

  10. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...... for intrinsic postsynaptic properties in nociceptive plasticity and for L-type Ca2+ channels as a promising target for therapeutic intervention....

  11. Effects of intrathecal injection of glial cell inhibitor on spinal cord astrocytes following chronic compression of dorsal root ganglia in rats

    Institute of Scientific and Technical Information of China (English)

    Xianhong Zhang; Wen Shen; Mingde Wang; Yinming Zeng

    2009-01-01

    BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To investigate the effects of intrathecal injection of fluorocitrate, minocycline or both on astrocyte activation and proliferation in the spinal dorsal horn of compressed dorsal root ganglion in rats. DESIGN, TIME AND SETTING: The neurology randomized controlled animal study was performed at the Jiangsu Institute of Anesthesia Medicine, from September 2006 to April 2007. MATERIALS: A total of 96 male Sprague Dawley rats, aged 6-8 weeks, were selected for this study. Following intrathecal catheterization, 80 rats underwent steel bar insertion into the L4-5 intervertebral foramina to make a stable compression on the L4-5 posterior root ganglion. Thus rat models of ganglion compression were established. Minocycline and fluorocitrate were purchased from Sigma, USA. METHODS: A total of 96 rats were randomly and equally divided into six groups. Rat L4, L5 transverse process and intervertebral foramina were exposed in the sham operation group, but without steel bar insertion. The model group did not receive any manipulations. Rats in the phosphate buffered saline (PBS) group were intrathecally injected with 0.01 mmol/L PBS (20 μL). Rats in the fluorocitrate group were subjected to 1 μmol/L fluorocitrate (20 μL). Rats in the minocycline group were intrathecally injected with 5 g/L minocycline (20 μL). Rats in the minocycline and fluorocitrate group received a mixture (20 μL) of 5 g/L minocycline and 1 μmol/L fluorocitrate. Following model establishment, drugs were administered once a day. MAIN OUTCOME MEASURES: At 7 and 14 days following model induction, glial fibrillary acidic protein expression in the spinal dorsal horn was measured by immunofluorescence microscopy. Six sections with significant glial fibrillary acidic protein -positive expression were

  12. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...... revealed the occurrence of axosomatic and axodendritic contacts between labeled boutons and giant neurons. The synaptic nature of these contacts has been confirmed by use of electron microscope procedures involving the partial three-dimensional reconstruction of identified giant neurons. Intracellular...... recording in spinal cord slices provided functional evidence indicating the monosynaptic connections between dorsal root afferents and giant neurons. The recorded neurons were morphologically identified by means of biocytin injection and with avidin conjugates. Electrical stimulation of the ipsilateral...

  13. Effect of type-2 astrocytes on the viability of dorsal root ganglion neurons and length of neuronal processes

    Institute of Scientific and Technical Information of China (English)

    Chunling Fan; Hui Wang; Dan Chen; Xiaoxin Cheng; Kun Xiong; Xuegang Luo; Qilin Cao

    2014-01-01

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly un-derstood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic pro-tein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neurons. Results demonstrated that the number of dorsal root ganglion neurons was higher following co-culture of oligodendrocyte precursor cells and type-2 astrocytes than when cultured alone, but lower than that of neurons co-cultured with type-1 astrocytes. The length of the longest process and the length of all processes of a single neuron were shortest in neurons cultured alone, followed by neurons co-cultured with type-2 astrocytes, then neurons co-cultured with oligodendrocyte precursor cells, and longest in neurons co-cultured with type-1 astrocytes. These results indicate that co-culture with type-2 astrocytes can increase neuronal survival rate and process length. However, compared with type-1 astrocytes and oligodendrocyte precursor cells, the promotion effects of type-2 astrocytes on the growth of dorsal root ganglion neurons were weaker.

  14. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.

    Science.gov (United States)

    Jeong, Seok-Gwon; Choi, In-Sun; Cho, Jin-Hwa; Jang, Il-Sung

    2013-12-01

    Although muscarinic acetylcholine (mACh) receptors are expressed in trigeminal ganglia, it is still unknown whether mACh receptors modulate glutamatergic transmission from primary afferents onto medullary dorsal horn neurons. In this study, we have addressed the cholinergic modulation of primary afferent glutamatergic transmission using a conventional whole cell patch clamp technique. Glutamatergic excitatory postsynaptic currents (EPSCs) were evoked from primary afferents by electrical stimulation of trigeminal tract and monosynaptic EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices. Muscarine and ACh reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, muscarine reduced the frequency of miniature EPSCs without affecting the current amplitude, suggesting that muscarine acts presynaptically to decrease the probability of glutamate release onto medullary dorsal horn neurons. The muscarine-induced decrease of glutamatergic EPSCs was significantly occluded by methoctramine or AF-DX116, M2 receptor antagonists, but not pirenzepine, J104129 and MT-3, selective M1, M3 and M4 receptor antagonists. The muscarine-induced decrease of glutamatergic EPSCs was highly dependent on the extracellular Ca2+ concentration. Physostigmine and clinically available acetylcholinesterase inhibitors, such as rivastigmine and donepezil, significantly shifted the concentration-inhibition relationship of ACh for glutamatergic EPSCs. These results suggest that muscarine acts on presynaptic M2 receptors to inhibit glutamatergic transmission by reducing the Ca2+ influx into primary afferent terminals, and that M2 receptor agonists and acetylcholinesterase inhibitors could be, at least, potential targets to reduce nociceptive transmission from orofacial tissues.

  15. Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn

    Directory of Open Access Journals (Sweden)

    Vaughan Christopher W

    2010-10-01

    Full Text Available Abstract Background There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were made from lamina I - II neurons in rat spinal cord slices in vitro to examine the effect of opioids on TRP agonist-enhanced glutamatergic spontaneous miniature excitatory postsynaptic currents (EPSCs. Results Under basal conditions the μ-opioid agonist DAMGO (3 μM reduced the rate of miniature EPSCs in 68% of neurons, while the δ- and κ-opioid agonists deltorphin-II (300 nM and U69593 (300 nM did so in 13 - 17% of neurons tested. The TRP agonists menthol (400 μM and icilin (100 μM both produced a Ca2+-dependent increase in miniature EPSC rate which was unaffected by the voltage dependent calcium channel (VDCC blocker Cd2+. The proportion of neurons in which deltorphin-II reduced the miniature EPSC rate was enhanced in the presence of icilin (83%, but not menthol (0%. By contrast, the proportion of DAMGO and U69593 responders was unaltered in the presence of menthol (57%, 0%, or icilin (57%, 17%. Conclusions These findings demonstrate that δ-opioid receptor activation selectively inhibits inputs activated by icilin, whereas μ-opioid receptor activation has a more widespread effect on synaptic inputs to neurons in the superficial dorsal horn. These findings suggest that δ-opioids may provide a novel analgesic approach for specific, TRPA1-like mediated pain modalities.

  16. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  17. Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones

    Directory of Open Access Journals (Sweden)

    Gary J. Stephens

    2013-05-01

    Full Text Available Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC. Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs. In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/− mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1, w-conotoxin-GVIA (CTX; CaV2.2 or SNX-482 (CaV2.3. PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/− mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system.

  18. Convergent nociceptive input to spinal dorsal horn neurons after peripheral nerve injury.

    Science.gov (United States)

    Terayama, Ryuji; Kishimoto, Noriko; Yamamoto, Yuya; Maruhama, Kotaro; Tsuchiya, Hiroki; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-03-01

    The number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the spinal dorsal horn evoked by noxious stimulation was previously shown to be increased following peripheral nerve injury, and this increase was proposed to reflect the neuropathic pain state. The aim of this study was to investigate whether anomalous convergent primary afferent input to spinal dorsal horn neurons contributed to nerve injury-induced c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input from different branches of the sciatic nerve after injury to the tibial nerve. c-Fos expression and the phosphorylation of ERK were induced by noxious heat stimulation of the hindpaw and also by electrical stimulation (ES) of the injured tibial nerve, respectively. The number of c-Fos-IR neurons was significantly decreased 3 days after the injury. However, the number of c-Fos-IR neurons returned to the control level 14 days after the injury. P-ERK immunoreactive (p-ERK-IR) neurons were induced in the central terminal field of the tibial nerve by ES of the tibial nerve. The topographic distribution pattern and number of such p-ERK-IR neurons remained unchanged after the nerve injury. The time course of changes in the number of double-labeled neurons, that presumably received convergent primary afferent input, showed a pattern similar to that of c-Fos-IR neurons after the injury. These results indicate that convergent primary nociceptive input through neighboring intact nerves may contribute to c-Fos hyperinducibility in the spinal dorsal horn.

  19. Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse.

    Science.gov (United States)

    Akiyama, T; Nagamine, M; Davoodi, A; Iodi Carstens, M; Cevikbas, F; Steinhoff, M; Carstens, E

    2015-10-01

    Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml(-1)·min(-1)), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.

  20. Altered intrinsic and synaptic properties of lumbosacral dorsal horn neurons in a mouse model of colitis.

    Science.gov (United States)

    Farrell, Kristen E; Keely, Simon; Walker, Marjorie M; Brichta, Alan M; Graham, Brett A; Callister, Robert J

    2017-08-23

    Visceral pain in inflammatory and functional gastrointestinal conditions is a major clinical problem. The exact mechanisms underlying the development of pain, during and after visceral inflammation, are unknown clinical and pre-clinical evidence that suggests plasticity within the spinal cord dorsal horn is a contributing factor. Here we use an in vivo preparation and patch-clamp electrophysiology to test whether the synaptic and intrinsic properties of superficial dorsal horn (SDH) neurons are altered 5days after the induction of mild colitis in adult male mice (i.e. during acute inflammation of the colon). Whole-cell recordings were made from lumbosacral (L6-S1) superficial dorsal horn neurons (SDH), in animals under isoflurane anesthesia. Noxious colorectal distension (CRD) was used to identify SDH neurons with colonic inputs, while stimulation of the hind paw and tail was employed to assess convergent cutaneous input. Following inflammation, a significantly increased proportion of SDH neurons received both colonic and cutaneous inputs, compared to neurons in naïve animals. In addition, the nature and magnitude of responses to CRD and cutaneous stimulation differed in inflamed animals, as was spontaneous excitatory synaptic drive. Conversely, several measures of intrinsic excitability were altered in a manner that would decrease SDH network excitability following colitis. We propose that during inflammation, sensitization of colonic afferents results in increased signaling to the SDH. This is accompanied by plasticity in SDH neurons whereby their intrinsic properties are changed to compensate for altered afferent activity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP

    Directory of Open Access Journals (Sweden)

    Willis William D

    2006-09-01

    Full Text Available Abstract Background The synaptic and cellular mechanisms of pain-related central sensitization in the spinal cord are not fully understood yet. Calcitonin gene-related peptide (CGRP has been identified as an important molecule in spinal nociceptive processing and ensuing behavioral responses, but its contribution to synaptic plasticity, cellular mechanisms and site of action in the spinal cord remain to be determined. Here we address the role of CGRP in synaptic plasticity in the spinal dorsal horn in a model of arthritic pain. Results Whole-cell current- and voltage-clamp recordings were made from substantia gelatinosa (SG neurons in spinal cord slices from control rats and arthritic rats (> 6 h postinjection of kaolin/carrageenan into the knee. Monosynaptic excitatory postsynaptic currents (EPSCs were evoked by electrical stimulation of afferents in the dorsal root near the dorsal root entry zone. Neurons in slices from arthritic rats showed increased synaptic transmission and excitability compared to controls. A selective CGRP1 receptor antagonist (CGRP8-37 reversed synaptic plasticity in neurons from arthritic rats but had no significant effect on normal transmission. CGRP facilitated synaptic transmission in the arthritis pain model more strongly than under normal conditions where both facilitatory and inhibitory effects were observed. CGRP also increased neuronal excitability. Miniature EPSC analysis suggested a post- rather than pre-synaptic mechanism of CGRP action. Conclusion This study is the first to show synaptic plasticity in the spinal dorsal horn in a model of arthritic pain that involves a postsynaptic action of CGRP on SG neurons.

  2. Changes in response properties of nociceptive dorsal horn neurons in a murine model of cancer pain

    Institute of Scientific and Technical Information of China (English)

    Donald A. Simone; Sergey G. Khasabov; Darryl T. Hamamoto

    2008-01-01

    Pain associated with cancer that metastasizes to bone is often severe and debilitating. A better understanding of the neural mechanisms that mediate cancer pain is needed for the development of more effective treatments. In this study, we used an established model of cancer pain to characterize changes in response properties of dorsal horn neurons. Fibrosarcoma cells were implanted into and around the calcaneus bone in mice and extracellular electrophysiological recordings were made from wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons. Responses of WDR and HT neurons evoked by mechanical, heat, and cold stimuli applied to the plantar surface of the hind paw were compared between tumor bearing mice and control mice. Mice exhibited hyperalgesia to mechanical and heat stimuli applied to their tumor-bearing hind paw. WDR neurons in tumor-beating mice exhibited an increase in spontaneous activity, and enhanced responses to mechanical, heat, and cold stimuli as compared to controls. Our findings show that sensitization of WDR neurons, but not HT neurons, contributes to tumor-evoked hyperalgesia.

  3. Peripheral nerve injury sensitizes neonatal dorsal horn neurons to tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Baccei Mark L

    2009-03-01

    Full Text Available Abstract Background Little is known about whether peripheral nerve injury during the early postnatal period modulates synaptic efficacy in the immature superficial dorsal horn (SDH of the spinal cord, or whether the neonatal SDH network is sensitive to the proinflammatory cytokine TNFα under neuropathic conditions. Thus we examined the effects of TNFα on synaptic transmission and intrinsic membrane excitability in developing rat SDH neurons in the absence or presence of sciatic nerve damage. Results The spared nerve injury (SNI model of peripheral neuropathy at postnatal day (P6 failed to significantly alter miniature excitatory (mEPSCs or inhibitory (mIPSCs postsynaptic currents in SDH neurons at P9-11. However, SNI did alter the sensitivity of excitatory synapses in the immature SDH to TNFα. While TNFα failed to influence mEPSCs or mIPSCs in slices from sham-operated controls, it significantly increased mEPSC frequency and amplitude following SNI without modulating synaptic inhibition onto the same neurons. This was accompanied by a significant decrease in the paired-pulse ratio of evoked EPSCs, suggesting TNFα increases the probability of glutamate release in the SDH under neuropathic conditions. Similarly, while SNI alone did not alter action potential (AP threshold or rheobase in SDH neurons at this age, TNFα significantly decreased AP threshold and rheobase in the SNI group but not in sham-operated littermates. However, unlike the adult, the expression of TNFα in the immature dorsal horn was not significantly elevated during the first week following the SNI. Conclusion Developing SDH neurons become susceptible to regulation by TNFα following peripheral nerve injury in the neonate. This may include both a greater efficacy of glutamatergic synapses as well as an increase in the intrinsic excitability of immature dorsal horn neurons. However, neonatal sciatic nerve damage alone did not significantly modulate synaptic transmission or

  4. Development of regional specificity of spinal and medullary dorsal horn neurons

    Institute of Scientific and Technical Information of China (English)

    Yu-Feng Xie; Xing-Hong Jiang; Barry J Sessle; Xian-Min Yu

    2016-01-01

    Extensive studies have focused on the development and regionalization of neurons in the central nervous system(CNS). Many genes, which play crucial roles in the development of CNS neurons, have been identified. By using the technique "direct reprogramming", neurons can be produced from multiple cell sources such as fibroblasts. However, understanding the region-specific regulation of neurons in the CNS is still one of the biggest challenges in the research field of neuroscience. Neurons located in the trigeminal subnucleus caudalis(Vc) and in the spinal dorsal horn(SDH) play crucial roles in pain and sensorimotor functions in the orofacial and other somatic body regions, respectively. Anatomically, Vc represents the most caudal component of the trigeminal system, and is contiguous with SDH. This review is focused on recent data dealing with the regional specificity involved in the development of neurons in Vc and SDH.

  5. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located laterally in the deep...

  6. Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach.

    Science.gov (United States)

    Alba-Delgado, Cristina; El Khoueiry, Corinne; Peirs, Cédric; Dallel, Radhouane; Artola, Alain; Antri, Myriam

    2015-09-01

    Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH) through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Specific interneurons located within inner lamina II (IIi) and expressing the gamma isoform of protein kinase C (PKCγ⁺) have been shown to be key elements for such circuits. However, their morphologic and electrophysiologic features are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized such lamina IIi PKCγ⁺ interneurons and compared them with neighboring PKCγ⁻ interneurons. Our results reveal that PKCγ⁺ interneurons display very specific activity and response properties. Compared with PKCγ⁻ interneurons, they exhibit a smaller membrane input resistance and rheobase, leading to a lower threshold for action potentials. Consistently, more than half of PKCγ⁺ interneurons respond with tonic firing to step current. They also receive a weaker excitatory synaptic drive. Most PKCγ⁺ interneurons express Ih currents. The neurites of PKCγ⁺ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, at least 2 morphologically and functionally different subpopulations of PKCγ⁺ interneurons can be identified: central and radial PKCγ⁺ interneurons. The former exhibit a lower membrane input resistance, rheobase and, thus, action potential threshold, and less PKCγ⁺ immunoreactivity than the latter. These 2 subpopulations might thus differently contribute to the gating of dorsally directed circuits within the MDH underlying mechanical allodynia.

  7. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  8. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  9. Both Ca2+-permeable and -impermeable AMPA receptors contribute to primary synaptic drive onto rat dorsal horn neurons

    Science.gov (United States)

    Tong, Chi-Kun; MacDermott, Amy B

    2006-01-01

    Blockade of Ca2+-permeable AMPA receptors in the rat spinal cord diminishes the development of hyperalgesia and allodynia associated with peripheral injury. Cobalt uptake studies reveal that Ca2+-permeable AMPA receptors are expressed by some substance P receptor-expressing (NK1R+) neurons in lamina I, as well as other neurons throughout the superficial dorsal horn. Selective elimination of NK1R+ neurons in lamina I and lamina III/IV of the dorsal horn also suppresses development of hyperalgesia and allodynia. These observations raise the possibility that Ca2+-permeable AMPA receptors contribute to excitatory synaptic drive onto the NK1R+ neurons associated with allodynia and hyperalgesia. The first synapse in the pain pathway is the glutamatergic excitatory drive from the primary afferent fibres onto dorsal horn neurons. Therefore, we tested whether Ca2+-permeable AMPA receptors are located on lamina I and lamina III/IV NK1R+ neurons postsynaptic to primary afferent fibres, using inward rectification and polyamine toxins for receptor identification. We examined three different populations of dorsal horn neurons; lamina I NK1R+ neurons, including projection neurons, and non-NK1R+ (NK1R−) neurons including interneurons, and lamina III/IV NK1R+ neurons, believed to contribute to the low-threshold mechanosensory pathway. The majority of synapses in all three groups had rectification indices less than 1.0 and greater than 0.4, indicating that the AMPA receptors at these synapses are a mixture of Ca2+-permeable and -impermeable forms. Lamina III/IV NK1R+ neurons and lamina I NK1R− neurons have a significantly higher proportion of postsynaptic Ca2+-permeable AMPA receptors than lamina I NK1R+ neurons. Thus synaptically positioned Ca2+-permeable AMPA receptors directly contribute to low-threshold sensory afferent drive into the dorsal horn, and can mediate afferent input onto interneurons such as GABAergic neurons. These receptors also contribute to high

  10. Electrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injury.

    Science.gov (United States)

    Rank, M M; Flynn, J R; Galea, M P; Callister, R; Callister, R J

    2015-09-01

    In the weeks and months following an incomplete spinal cord injury (SCI) significant spontaneous recovery of function occurs in the absence of any applied therapeutic intervention. The anatomical correlates of this spontaneous plasticity are well characterized, however, the functional changes that occur in spinal cord interneurons after injury are poorly understood. Here we use a T10 hemisection model of SCI in adult mice (9-10 wks old) combined with whole-cell patch clamp electrophysiology and a horizontal spinal cord slice preparation to examine changes in intrinsic membrane and synaptic properties of deep dorsal horn (DDH) interneurons. We made these measurements during short-term (4 wks) and long-term (10 wks) spontaneous recovery after SCI. Several important intrinsic membrane properties are altered in the short-term, but recover to values resembling those of uninjured controls in the longer term. AP discharge patterns are reorganized at both short-term and long-term recovery time points. This is matched by reorganization in the expression of voltage-activated potassium and calcium subthreshold-currents that shape AP discharge. Excitatory synaptic inputs onto DDH interneurons are significantly restructured in long-term SCI mice. Plots of sEPSC peak amplitude vs. rise times suggest considerable dendritic expansion or synaptic reorganization occurs especially during long-term recovery from SCI. Connectivity between descending dorsal column pathways and DDH interneurons is reduced in the short-term, but amplified in long-term recovery. Our results suggest considerable plasticity in both intrinsic and synaptic mechanisms occurs spontaneously in DDH interneurons following SCI and takes a minimum of 10 wks after the initial injury to stabilize.

  11. Endomorphins suppress nociception-induced c-Fos and Zif/268 expression in the rat spinal dorsal horn.

    Science.gov (United States)

    Tateyama, Shingo; Ikeda, Tetsuya; Kosai, Kazuko; Nakamura, Tadashi; Kasaba, Toshiharu; Takasaki, Mayumi; Nishimori, Toshikazu

    2002-09-06

    We evaluated the potency of endomorphin-1 and -2 as endogenous ligands on c-Fos and Zif/268 expression in the spinal dorsal horn by formalin injection to the rat hind paw. Endomorphin-1, -2, or morphine was administered intrathecally or intracerebroventricularly 5 min before formalin injection (5%, 100 microl). All drugs produced marked reductions of formalin-induced c-Fos and Zif/268 immunoreactivity in laminae I and II, and laminae V and VI in the rat lumbar spinal cord. The reductions of Zif/268 expression by endomorphins were greater than those by morphine, while the reductions of c-Fos expression by endomorphins were smaller than those by morphine. These effects of endomorphins were attenuated by pretreatment with naloxone. These results indicate that endomorphin-1 and -2 act as endogenous ligands of mu-opioid receptor in neurons of the spinal dorsal horn and suppress the processing of nociceptive information in the central nervous system.

  12. Electrical maturation of spinal neurons in the human fetus: comparison of ventral and dorsal horn.

    Science.gov (United States)

    Tadros, M A; Lim, R; Hughes, D I; Brichta, A M; Callister, R J

    2015-11-01

    The spinal cord is critical for modifying and relaying sensory information to, and motor commands from, higher centers in the central nervous system to initiate and maintain contextually relevant locomotor responses. Our understanding of how spinal sensorimotor circuits are established during in utero development is based largely on studies in rodents. In contrast, there is little functional data on the development of sensory and motor systems in humans. Here, we use patch-clamp electrophysiology to examine the development of neuronal excitability in human fetal spinal cords (10-18 wk gestation; WG). Transverse spinal cord slices (300 μm thick) were prepared, and recordings were made, from visualized neurons in either the ventral (VH) or dorsal horn (DH) at 32°C. Action potentials (APs) could be elicited in VH neurons throughout the period examined, but only after 16 WG in DH neurons. At this age, VH neurons discharged multiple APs, whereas most DH neurons discharged single APs. In addition, at 16-18 WG, VH neurons also displayed larger AP and after-hyperpolarization amplitudes than DH neurons. Between 10 and 18 WG, the intrinsic properties of VH neurons changed markedly, with input resistance decreasing and AP and after-hyperpolarization amplitudes increasing. These findings are consistent with the hypothesis that VH motor circuitry matures more rapidly than the DH circuits that are involved in processing tactile and nociceptive information.

  13. Recombinant neural progenitor transplants in the spinal dorsal horn alleviate chronic central neuropathic pain.

    Science.gov (United States)

    Jergova, Stanislava; Gajavelli, Shyam; Pathak, Nirmal; Sagen, Jacqueline

    2016-04-01

    Neuropathic pain induced by spinal cord injury (SCI) is clinically challenging with inadequate long-term treatment options. Partial pain relief offered by pharmacologic treatment is often counterbalanced by adverse effects after prolonged use in chronic pain patients. Cell-based therapy for neuropathic pain using GABAergic neuronal progenitor cells (NPCs) has the potential to overcome untoward effects of systemic pharmacotherapy while enhancing analgesic potency due to local activation of GABAergic signaling in the spinal cord. However, multifactorial anomalies underlying chronic pain will likely require simultaneous targeting of multiple mechanisms. Here, we explore the analgesic potential of genetically modified rat embryonic GABAergic NPCs releasing a peptidergic NMDA receptor antagonist, Serine-histogranin (SHG), thus targeting both spinal hyperexcitability and reduced inhibitory processes. Recombinant NPCs were designed using either lentiviral or adeno-associated viral vectors (AAV2/8) encoding single and multimeric (6 copies of SHG) cDNA. Intraspinal injection of recombinant cells elicited enhanced analgesic effects compared with nonrecombinant NPCs in SCI-induced pain in rats. Moreover, potent and sustained antinociception was achieved, even after a 5-week postinjury delay, using recombinant multimeric NPCs. Intrathecal injection of SHG antibody attenuated analgesic effects of the recombinant grafts suggesting active participation of SHG in these antinociceptive effects. Immunoblots and immunocytochemical assays indicated ongoing recombinant peptide production and secretion in the grafted host spinal cords. These results support the potential for engineered NPCs grafted into the spinal dorsal horn to alleviate chronic neuropathic pain.

  14. Input-output mapping reconstruction of spike trains at dorsal horn evoked by manual acupuncture

    Science.gov (United States)

    Wei, Xile; Shi, Dingtian; Yu, Haitao; Deng, Bin; Lu, Meili; Han, Chunxiao; Wang, Jiang

    2016-12-01

    In this study, a generalized linear model (GLM) is used to reconstruct mapping from acupuncture stimulation to spike trains driven by action potential data. The electrical signals are recorded in spinal dorsal horn after manual acupuncture (MA) manipulations with different frequencies being taken at the “Zusanli” point of experiment rats. Maximum-likelihood method is adopted to estimate the parameters of GLM and the quantified value of assumed model input. Through validating the accuracy of firings generated from the established GLM, it is found that the input-output mapping of spike trains evoked by acupuncture can be successfully reconstructed for different frequencies. Furthermore, via comparing the performance of several GLMs based on distinct inputs, it suggests that input with the form of half-sine with noise can well describe the generator potential induced by acupuncture mechanical action. Particularly, the comparison of reproducing the experiment spikes for five selected inputs is in accordance with the phenomenon found in Hudgkin-Huxley (H-H) model simulation, which indicates the mapping from half-sine with noise input to experiment spikes meets the real encoding scheme to some extent. These studies provide us a new insight into coding processes and information transfer of acupuncture.

  15. Nociceptive input from the rat thoracolumbar fascia to lumbar dorsal horn neurones.

    Science.gov (United States)

    Hoheisel, Ulrich; Taguchi, Toru; Treede, Rolf-Detlef; Mense, Siegfried

    2011-09-01

    In anaesthetised rats, systematic electrophysiological recordings from dorsal horn neurones in spinal segments Th13-L5 were made to obtain information about the spinal nociceptive processing from the lumbar thoracolumbar fascia. Six to fourteen percent of the neurones in the spinal segments Th13-L2 had nociceptive input from the thoracolumbar fascia in naïve animals, no neurones responsive to input from the lumbar fascia were found in segments L3-L5. The segmental location of the receptive fields in the fascia was shifted 2-4 segments caudally relative to the spinal segment recorded from. Most neurones were convergent in that they received additional input from other deep somatic tissues in the low back (87%) and from the skin in the abdominal wall or the proximal leg (50%). The proportion of neurones responsive to input from the thoracolumbar fascia rose significantly from 4% to 15% (Pfascia in normal animals - responded to fascia input in animals with inflamed muscle. The data suggest that the nociceptive input from the thoracolumbar fascia contributes to the pain in low back pain patients.

  16. Properties of sodium currents in neonatal and young adult mouse superficial dorsal horn neurons.

    Science.gov (United States)

    Tadros, Melissa A; Farrell, Kristen E; Graham, Brett A; Brichta, Alan M; Callister, Robert J

    2015-03-28

    Superficial dorsal horn (SDH) neurons process nociceptive information and their excitability is partly determined by the properties of voltage-gated sodium channels. Recently, we showed the excitability and action potential properties of mouse SDH neurons change markedly during early postnatal development. Here we compare sodium currents generated in neonate (P0-5) and young adult (≥P21) SDH neurons. Whole cell recordings were obtained from lumbar SDH neurons in transverse spinal cord slices (CsF internal, 32°C). Fast activating and inactivating TTX-sensitive inward currents were evoked by depolarization from a holding potential of -100 mV. Poorly clamped currents, based on a deflection in the IV relationship at potentials between -60 and -50 mV, were not accepted for analysis. Current density and decay time increased significantly between the first and third weeks of postnatal development, whereas time to peak was similar at both ages. This was accompanied by more subtle changes in activation range and steady state inactivation. Recovery from inactivation was slower and TTX-sensitivity was reduced in young adult neurons. Our study suggests sodium channel expression changes markedly during early postnatal development in mouse SDH neurons. The methods employed in this study can now be applied to future investigations of spinal cord sodium channel plasticity in murine pain models.

  17. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Jun

    2012-07-01

    Full Text Available Abstract Background Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2-chemokine C-C motif receptor 2 (CCR2 signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. Methods The inferior alveolar nerve and mental nerve transection (IAMNT was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP, and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. Results IAMNT induced persistent (>21 days heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 μg significantly attenuated IAMNT-induced heat hyperalgesia. Conclusion The data suggest that CCL2-CCR

  18. Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones

    OpenAIRE

    Nowak, A; Mathieson, H.R.; Chapman, R.J.; Janzsó, G.; Yanagawa, Y; Obata, K.; Szabo, G.; King, A. E.

    2011-01-01

    GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profil...

  19. Extracellular glutamate in the dorsal horn of the lumbar spinal cord in the freely moving rat during hindlimb stepping.

    Science.gov (United States)

    Walwyn, W M; Ta-Haung, J; Ackerson, L; Maidment, N T; Edgerton, V R

    1999-08-01

    The capacity to reestablish locomotor function after complete spinal cord transection in the adult mammal is now well documented. Further studies have shown different neurotransmitters to be involved in the initiation and maintenance of these locomotor patterns. However, there has been no in vivo evidence of the changes in glutamate or any other neurotransmitter in the extracellular space of the dorsal horn during an alternating motor pattern such as hindlimb stepping. This study describes an in vivo microdialysis technique to measure extracellular glutamate in the dorsal horn of the spinal cord in the fully awake intact rat. A concentric microdialysis probe was placed in the dorsal horn at L5, and 18 h later dialysate samples were collected at 20-min intervals before, during, and after 20 min of hindlimb stepping. During stepping, extracellular glutamate rose 150% above resting levels and returned to resting levels 40 min later. This increase may have occurred either as a result of primary afferent depolarization or modulation by the descending and ascending supraspinal pathways. In another series of experiments extracellular glutamate was, therefore, measured in the dorsal horn of the chronic spinally transected rat during 20 min of hindlimb stepping. Although the spinal group did not take as many steps as the intact group, those taking more than 40 steps showed a significant rise in extracellular glutamate, and the number of steps taken by the individual spinal rats correlated positively with the individual values of extracellular glutamate (r2 = 0.63). These results are consistent with glutamate being an important neurotransmitter in the spinal cord in normal locomotion.

  20. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization?

    OpenAIRE

    2010-01-01

    Abstract Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides, cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible that much of the information transfer between activated microglia and neurons, at least in this context, may be explicable in terms of the ac...

  1. Chronic morphine treatment enhances sciatic nerve stimulation-induced immediate early gene expression in the rat dorsal horn.

    Science.gov (United States)

    Bojovic, Ognjen; Bramham, Clive R; Tjølsen, Arne

    2015-01-01

    Synaptic plasticity is a property of neurons that can be induced by conditioning electrical stimulation (CS) of afferent fibers in the spinal cord. This is a widely studied property of spinal cord and hippocampal neurons. CS has been shown to trigger enhanced expression of immediate early gene proteins (IEGPs), with peak increases observed 2 hour post stimulation. Chronic morphine treatment has been shown to promoteinduce opioid-induced hyperalgesia, and also to increase CS-induced central sensitization in the dorsal horn. As IEGP expression may contribute to development of chronic pain states, we aimed to determine whether chronic morphine treatment affects the expression of IEGPs following sciatic nerve CS. Changes in expression of the IEGPs Arc, c-Fos or Zif268 were determined in cells of the lumbar dorsal horn of the spinal cord. Chronic Morphine pretreatment over 7 days led to a significant increase in the number of IEGP positive cells observed at both 2 h and 6 h after CS. The same pattern of immunoreactivity was obtained for all IEGPs, with peak increases occurring at 2 h post CS. In contrast, morphine treatment alone in sham operated animals had no effect on IEGP expression. We conclude that chronic morphine treatment enhances stimulus-induced expression of IEGPs in the lumbar dorsal horn. These data support the notion that morphine alters gene expression responses linked to nociceptive stimulation and plasticity.

  2. Intersegmental synchronization of spontaneous activity of dorsal horn neurons in the cat spinal cord.

    Science.gov (United States)

    Manjarrez, E; Jiménez, I; Rudomin, P

    2003-02-01

    Extracellular recordings of neuronal activity made in the lumbosacral spinal segments of the anesthetized cat have disclosed the existence of a set of neurons in Rexed's laminae III-VI that discharged in a highly synchronized manner during the occurrence of spontaneous negative cord dorsum potentials (nCDPs) and responded to stimulation of low-threshold cutaneous fibers (<1.5x T) with mono- and polysynaptic latencies. The cross-correlation between the spontaneous discharges of pairs of synchronic neurons was highest when they were close to each other, and decreased with increasing longitudinal separation. Simultaneous recordings of nCDPs from several segments in preparations with the peripheral nerves intact have disclosed the existence of synchronized spontaneous nCDPs in segments S1-L4. These potentials lasted between 25 and 70 ms and were usually larger in segments L7-L5, where they attained amplitudes between 50 and 150 micro V. The transection of the intact ipsilateral hindlimb cutaneous and muscle nerves, or the section of the dorsal columns between the L5 and L6, or between the L6 and L7 segments in preparations with already transected nerves, had very small effects on the intersegmental synchronization of the spontaneous nCDPs and on the power spectra of the cord dorsum potentials recorded in the lumbosacral enlargement. In contrast, sectioning the ipsilateral dorsal horn and the dorsolateral funiculus at these segmental levels strongly decoupled the spontaneous nCDPs generated rostrally from those generated caudally to the lesion and reduced the magnitude of the power spectra throughout the whole frequency range. These results indicate that the lumbosacral intersegmental synchronization between the spontaneous nCDPs does not require sensory inputs and is most likely mediated by intra- and intersegmental connections. It is suggested that the occurrence of spontaneous synchronized nCDPs is due to the activation of tightly coupled arrays of neurons, each

  3. Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn.

    Science.gov (United States)

    Polgár, Erika; Sardella, Thomas C P; Watanabe, Masahiko; Todd, Andrew J

    2011-04-15

    Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.

  4. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury.

    Science.gov (United States)

    Pei, Bao-An; Zi, Jin-Hua; Wu, Li-Sheng; Zhang, Cun-Hua; Chen, Yun-Zhen

    2015-10-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.

  5. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Directory of Open Access Journals (Sweden)

    Dubner Ronald

    2005-09-01

    Full Text Available Abstract Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors to compare gene expression profiles in the lumbar spinal dorsal horn (LDH of adult (P60 male rats that received neonatal CAR treatment within (at postnatal day 3; P3 and outside (at postnatal 12; P12 of the sensitive period. The data were obtained both without inflammation (at baseline and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems in the LDH ipsilateral to the

  6. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.

    Science.gov (United States)

    Ren, Ke; Novikova, Svetlana I; He, Fang; Dubner, Ronald; Lidow, Michael S

    2005-09-22

    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The

  7. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse.

    Science.gov (United States)

    Graham, B A; Tadros, M A; Schofield, P R; Callister, R J

    2011-05-15

    Inhibitory glycine receptors (GlyRs) are pentameric ligand gated ion channels composed of α and β subunits assembled in a 2:3 stoichiometry. The α1/βheteromer is considered the dominant GlyR isoform at 'native' adult synapses in the spinal cord and brainstem. However, the α3 GlyR subunit is concentrated in the superficial dorsal horn (SDH: laminae I-II), a spinal cord region important for processing nociceptive signals from skin, muscle and viscera. Here we use the spasmodic mouse, which has a naturally occurring mutation (A52S) in the α1 subunit of the GlyR, to examine the effect of the mutation on inhibitory synaptic transmission and homeostatic plasticity, and to probe for the presence of various GlyR subunits in the SDH.We usedwhole cell recording (at 22-24◦C) in lumbar spinal cord slices obtained from ketamine-anaesthetized (100 mg kg⁻¹, I.P.) spasmodic and wild-type mice (mean age P27 and P29, respectively, both sexes). The amplitude and decay time constants of GlyR mediated mIPSCs in spasmodic micewere reduced by 25% and 50%, respectively (42.0 ± 3.6 pA vs. 31.0 ± 1.8 pA, P spasmodic GlyRs (EC50 =130 ± 20 μM vs. 64 ± 11 μM, respectively; n =8 and 15, respectively). Differential agonist sensitivity and mIPSC decay times were subsequently used to probe for the presence of α1-containing GlyRs in SDHneurones.Glycine sensitivity, based on the response to 1-3 μM glycine, was reduced in>75% of neurones tested and decay times were faster in the spasmodic sample. Together, our data suggest most GlyRs and glycinergic synapses in the SDH contain α1 subunits and few are composed exclusively of α3 subunits. Therefore, future efforts to design therapies that target the α3 subunit must consider the potential interaction between α1 and α3 subunits in the GlyR.

  8. Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones.

    Science.gov (United States)

    Nowak, A; Mathieson, H R; Chapman, R J; Janzsó, G; Yanagawa, Y; Obata, K; Szabo, G; King, A E

    2011-09-01

    GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K(+)-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as 'fast-spiking'. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K(+)-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.

  9. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    Science.gov (United States)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  10. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    Science.gov (United States)

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P neurons is influenced by spontaneous firings of DRG neurons after CCD.

  11. In vivo characterization of colorectal and cutaneous inputs to lumbosacral dorsal horn neurons in the mouse spinal cord.

    Science.gov (United States)

    Farrell, K E; Rank, M M; Keely, S; Brichta, A M; Graham, B A; Callister, R J

    2016-03-01

    Chronic abdominal pain is a common symptom of inflammatory bowel disease and often persists in the absence of gut inflammation. Although the mechanisms responsible for ongoing pain are unknown, clinical and preclinical evidence suggests lumbosacral spinal cord dorsal horn neurons contribute to these symptoms. At present, we know little about the intrinsic and synaptic properties of this population of neurons in either normal or inflammed conditions. Therefore, we developed an in vivo preparation to make patch-clamp recordings from superficial dorsal horn (SDH) neurons receiving colonic inputs in naïve male mice. Recordings were made in the lumbosacral spinal cord (L6-S1) under isoflurane anesthesia. Noxious colorectal distension (CRD) was used to determine whether SDH neurons received inputs from mechanical stimulation/distension of the colon. Responses to hind paw/tail cutaneous stimulation and intrinsic and synaptic properties were also assessed, as well as action potential discharge properties. Approximately 11% of lumbosacral SDH neurons in the cohort of neurons sampled responded to CRD and a majority of these responses were subthreshold. Most CRD-responsive neurons (80%) also responded to cutaneous stimuli, compared with <50% of CRD-non-responsive neurons. Furthermore, CRD-responsive neurons had more hyperpolarized resting membrane potentials, larger rheobase currents, and reduced levels of excitatory drive, compared to CRD-non-responsive neurons. Our results demonstrate that CRD-responsive neurons can be distinguished from CRD-non-responsive neurons by several differences in their membrane properties and excitatory synaptic inputs. We also demonstrate that SDH neurons with colonic inputs show predominately subthreshold responses to CRD and exhibit a high degree of viscerosomatic convergence.

  12. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    Science.gov (United States)

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  13. NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn

    Directory of Open Access Journals (Sweden)

    MacDermott Amy B

    2010-05-01

    Full Text Available Abstract Background NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. Results Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. Conclusions Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.

  14. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.

  15. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    Science.gov (United States)

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    Detailed electrophysiological characterisation of spinal opioid receptors in the mouse has been limited due to various technical difficulties. In this study, extracellular single unit recordings were made from dorsal horn neurones in a perfused spinal cord with attached trunk-hindquarter to investigate the role of delta-opioid receptor in mediating nociceptive and non-nociceptive transmission in mouse. Noxious electrical shock, pinch and heat stimuli evoked a mean response of 20.8+/-2.5 (n=10, PSNC 80) was perfused for 8-10 min, these evoked nociceptive responses were reversibly depressed. SNC 80 (2 microM) depressed the nociceptive responses evoked by electrical shock, pinch and heat by 74.0+/-13.7% (n=8, PSNC 80 was 92.6+/-6.8% (n=3). SNC 80 at 5 microM also completely abolished the wind-up and/or hypersensitivity (n=5). The depressant effects of SNC 80 on the nociceptive responses were completely blocked by 10 microM naloxone (n=5) and 3 microM 17-(cyclopropylmethyl)-6,7-dehydro-4,5 alpha-epoxy-14 beta-ethoxy-5 beta-methylindolo [2',3':6',7'] morphinan-3-ol hydrochloride (HS 378, n=8), a novel highly selective delta-opioid receptor antagonist. Interestingly, HS 378 (3 microM) itself potentiated the background activity and evoked responses to pinch and heat by 151.8+/-38.4% (PSNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse.

  16. Altered responsiveness to substance P and 5-hydroxytryptamine in cat dorsal horn neurons after 5-HT depletion with p-chlorophenylalanine.

    Science.gov (United States)

    Jeftinija, S; Raspantini, C; Randić, M; Yaksh, T L; Go, V L; Larson, A A

    1986-03-12

    The responsiveness of functionally identified cat spinal dorsal horn neurons to iontophoretically applied substance P (SP) and 5-hydroxytryptamine (5-HT) has been investigated by means of extracellular recording after 5-HT depletion with p-chlorophenylalanine (p-CPA). In addition, the spinal levels of 5-HT, SP, cholecystokinin octapeptide, neurotensin, and vasoactive intestinal polypeptide have been measured in intact and p-CPA-pretreated cats. In the present study we have demonstrated an altered responsiveness of dorsal horn neurons to locally applied SP and 5-HT. We found in p-CPA-pretreated cats that the proportion of neurons responding with excitation to SP and 5-HT was significantly increased. At the same time, depression induced by 5-HT in the dorsal horn cells was virtually absent in p-CPA-pretreated animals. Our finding that spinal level of 5-HT was significantly decreased in p-CPA-treated animals is consistent with previous studies. No convincing alteration in the spinal levels of 4 analyzed peptides was found in p-CPA-treated animals. The present study has shown that pharmacological depletion of 5-HT has two major effects: (1) it increases significantly the proportion of dorsal horn neurons excited by SP and 5-HT; and (2) it is ineffective in inducing 5-HT supersensitivity. Further work is needed to explain mechanisms involved in these effects.

  17. Exercise alleviates hypoalgesia and increases the level of calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Patrícia Severo do Nascimento

    2012-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of treadmill training on nociceptive sensitivity and immunoreactivity to calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats. METHODS: Male Wistar rats were divided into three groups: control, diabetic and trained diabetic. Treadmill training was performed for 8 weeks. The blood glucose concentrations and body weight were evaluated 48 h after diabetes induction and every 30 days thereafter. The nociceptive sensitivity was evaluated using the tail-flick apparatus. The animals were then transcardially perfused, and the spinal cords were post-fixed, cryoprotected and sectioned in a cryostat. Immunohistochemistry for calcitonin gene-related peptide analysis was performed on the dorsal horn of the spinal cord. RESULTS: The nociceptive sensitivity analysis revealed that, compared with the control and trained diabetic animals, the latency to tail deflection on the apparatus was longer for the diabetic animals. Optical densitometry demonstrated decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord in diabetic animals, which was reversed by treadmill training. CONCLUSION: We concluded that treadmill training can alleviate nociceptive hypoalgesia and reverse decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord of diabetic animals without pharmacological treatment.

  18. Induction of long-term potentiation in single nociceptive dorsal horn neurons is blocked by the CaMKII inhibitor AIP.

    Science.gov (United States)

    Pedersen, Linda Margareth; Lien, Guro Flor; Bollerud, Ingunn; Gjerstad, Johannes

    2005-04-11

    Neuronal events leading to development of long-term potentiation (LTP) in the nociceptive pathways may be a cellular mechanism underlying central hyperalgesia. Here, we examine whether induction of LTP in nociceptive dorsal horn neurons at depths of 80-500 microm from the cord surface can be affected by spinal application of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor AIP. Extracellular recordings from single neurons in intact urethane anesthetized Sprague-Dawley rats were performed, and the neuronal A-fiber and C-fiber responses after sciatic nerve test pulses were defined according to latencies. A clear LTP of the nociceptive transmission following sciatic nerve high-frequency stimulation (HFS) was observed in single neurons in laminae I-IV of the dorsal horn. The increase in the C-fiber response after HFS was blocked in the presence of 2.0 mM AIP (P fiber response was not affected by 2.0 mM AIP alone or by vehicle. Thus, our data show that the neuronal process leading to the induction of LTP in the dorsal horn induced by HFS is clearly inhibited by the specific CaMKII inhibitor AIP. It is concluded that CaMKII may be important for the induction of LTP in single nociceptive dorsal horn neurons.

  19. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats.

    Science.gov (United States)

    Guan, Yun; Wacnik, Paul W; Yang, Fei; Carteret, Alene F; Chung, Chih-Yang; Meyer, Richard A; Raja, Srinivasa N

    2010-12-01

    The sites of action and cellular mechanisms by which spinal cord stimulation reduces neuropathic pain remain unclear. We examined the effect of bipolar electrical-conditioning stimulation (50 Hz, 0.2 ms, 5 min) of the dorsal column and lumbar dorsal roots on the response properties of spinal wide dynamic range (WDR) neurons in rats after L5 spinal nerve injury. The conditioning stimulation intensity was set at the lowest current that evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ- or C-compound action potential. Within 15 min of the dorsal column or root conditioning stimulation, the spontaneous activity rate of WDR neurons was significantly reduced in nerve-injured rats. Conditioning stimulation also significantly attenuated WDR neuronal responses to mechanical stimuli in nerve-injured rats and inhibited the C-component of the neuronal response to graded intracutaneous electrical stimuli applied to the receptive field in nerve-injured and sham-operated rats. It is noteworthy that dorsal column stimulation blocked windup of WDR neuronal response to repetitive intracutaneous electrical stimulation (0.5 Hz) in nerve-injured and sham-operated rats, whereas dorsal root stimulation inhibited windup only in sham-operated rats. Therefore, stimulation of putative spinal substrates at A-fiber intensities with parameters similar to those used by patients with spinal cord stimulators attenuated established WDR neuronal hyperexcitability in the neuropathic condition and counteracted activity-dependent increase in neuronal excitability (i.e., windup). These results suggest a potential cellular mechanism underlying spinal cord stimulation-induced pain relief. This in vivo model allows the neurophysiologic basis for spinal cord stimulation-induced analgesia to be studied.

  20. Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn

    Directory of Open Access Journals (Sweden)

    Géranton Sandrine M

    2008-09-01

    Full Text Available Abstract Background Regulation of pain states is, in part, dependent upon plastic changes in neurones within the superficial dorsal horn. There is also compelling evidence that pain states are under the control of descending projections from the brainstem. While a number of transcription factors including Methyl-CpG-binding protein 2 (MeCP2, Zif268 and Fos have been implicated in the regulation of dorsal horn neurone sensitization following injury, modulation of their activity by descending controls has not been investigated. Results Here, we describe how descending controls regulate MeCP2 phosphorylation (P-MeCP2, known to relieve transcriptional repression by MeCP2, and Zif268 and Fos expression in the rat superficial dorsal horn, after CFA injection into the hind paw. First, we report that CFA significantly increased P-MeCP2 in Lamina I and II, from 30 min post injection, with a maximum reached after 1 h. The increase in P-MeCP2 paralleled that of Zif268 and Fos, and P-MeCP2 was expressed in large sub-populations of Zif268 and Fos expressing neurones. Serotonergic depletion of the lumbar spinal cord with 5,7 di-hydroxytryptamine creatinine sulphate (5,7-DHT reduced the inflammation evoked P-MeCP2 in the superficial dorsal horn by 57%, and that of Zif268 and Fos by 37.5% and 30% respectively. Although 5,7-DHT did not change primary thermal hyperalgesia, it significantly attenuated mechanical sensitivity seen in the first 24 h after CFA. Conclusion We conclude that descending serotonergic pathways play a crucial role in regulating gene expression in the dorsal horn and mechanical sensitivity associated with an inflammatory pain state.

  1. A afferent fibers are involved in the pathology of central changes in the spinal dorsal horn associated with myofascial trigger spots in rats.

    Science.gov (United States)

    Meng, Fei; Ge, Hong-You; Wang, Yong-Hui; Yue, Shou-Wei

    2015-11-01

    A afferent fibers have been reported to participate in the development of the central sensitization induced by inflammation and injuries. Current evidence suggests that myofascial trigger points (MTrPs) induce central sensitization in the related spinal dorsal horn, and clinical studies indicate that A fibers are associated with pain behavior. Because most of these clinical studies applied behavioral indexes, objective evidence is needed. Additionally, MTrP-related neurons in dorsal root ganglia and the spinal ventral horn have been reported to be smaller than normal, and these neurons were considered to be related to A fibers. To confirm the role of A fibers in MTrP-related central changes in the spinal dorsal horn, we studied central sensitization as well as the size of neurons associated with myofascial trigger spots (MTrSs, equivalent to MTrPs in humans) in the biceps femoris muscle of rats and provided some objective morphological evidence. Cholera toxin B subunit-conjugated horseradish peroxidase was applied to label the MTrS-related neurons, and tetrodotoxin was used to block A fibers specifically. The results showed that in the spinal dorsal horn associated with MTrS, the expression of glutamate receptor (mGluR1α/mGluR5/NMDAR1) increased, while the mean size of MTrS-related neurons was smaller than normal. After blocking A fibers, these changes reversed to some extent. Therefore, we concluded that A fibers participated in the development and maintenance of the central sensitization induced by MTrPs and were related to the mean size of neurons associated with MTrPs in the spinal dorsal horn.

  2. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training

    Science.gov (United States)

    Rank, M M; Flynn, J R; Battistuzzo, C R; Galea, M P; Callister, R; Callister, R J

    2015-01-01

    Following incomplete spinal cord injury (SCI), collaterals sprout from intact and injured axons in the vicinity of the lesion. These sprouts are thought to form new synaptic contacts that effectively bypass the lesion epicentre and contribute to improved functional recovery. Such anatomical changes are known to be enhanced by exercise training; however, the mechanisms underlying exercise-mediated plasticity are poorly understood. Specifically, we do not know how SCI alone or SCI combined with exercise alters the intrinsic and synaptic properties of interneurons in the vicinity of a SCI. Here we use a hemisection model of incomplete SCI in adult mice and whole-cell patch-clamp recording in a horizontal spinal cord slice preparation to examine the functional properties of deep dorsal horn (DDH) interneurons located in the vicinity of a SCI following 3 or 6 weeks of treadmill exercise training. We examined the functional properties of local and descending excitatory synaptic connections by recording spontaneous excitatory postsynaptic currents (sEPSCs) and responses to dorsal column stimulation, respectively. We find that SCI in untrained animals exerts powerful effects on intrinsic, and especially, synaptic properties of DDH interneurons. Plasticity in intrinsic properties was most prominent at 3 weeks post SCI, whereas synaptic plasticity was greatest at 6 weeks post injury. Exercise training did not markedly affect intrinsic membrane properties; however, local and descending excitatory synaptic drive were enhanced by 3 and 6 weeks of training. These results suggest exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI. PMID:25556804

  3. Altered acetylcholinesterase levels in the spinal cord anterior horn and dorsal root ganglion following sciatic nerve ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang; Pei Wang; Songhe Yang; Jingfeng Xue

    2009-01-01

    BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degeneration and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) expression in relevant cells following sciatic nerve ischemia remains unclear. OBJECTIVE: To observe AChE concentration changes following peripheral nerve ischemia. DESIGN, TIME AND SETTING: The present comparative observation, neuroanatomical experiment was performed at the Central Laboratory Animal of Chengde Medical College between 2006 and 2007. MATERIALS: A total of 20 healthy, adult, Wistar rats were randomized into two groups (n = 10): 8-day ischemia and 14-day ischemia. METHODS: Ischemia injury was induced in the unilateral sciatic nerve (experimental side) through ligation of the common iliac artery. The contralateral side received no intervention, and served as the control side. Rats in the 8-day ischemia and 14-day ischemia groups were allowed to survive for 8 and 14 days, respectively. MAIN OUTCOME MEASURES: The L5 lumbar spinal cord and the L5 dorsal root ganglion were removed from both sides and sectioned utilizing a Leica vibrating slicer. AChE cellular expression was detected using Karnovsky-Root, and the number of AChE-positive cells and average gray value were analyzed using a MiVnt image analysis system. RESULTS: In the 8-day ischemia group, AChE-positive cell numbers were significantly less in the dorsal root ganglion and spinal cord anterior horn of the experimental side, but the average gray value was significantly greater, compared with the control side (P < 0.05). These changes were more significant in the 14-day ischemia group than in the 8-day ischemia group (P < 0.01). CONCLUSION: Peripheral nerve ischemia leads to decreased AChE expression in the associated cells in a time-dependent manner.

  4. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    Science.gov (United States)

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  5. Synaptic organization of substance P, glutamate and GABA-immunoreactive boutons on functionally identified neurons in cat spinal deeper dorsal horn

    Institute of Scientific and Technical Information of China (English)

    魏锋; 赵志奇

    1997-01-01

    In order to determine how nociceptive input conveyed by the C-fibers terminating in superficial lam-inae of the spinal cord reaches the wide dynamic range (WDR) cells in deeper dorsal horn, which functions as ascend-ing projection pathway, the morphological features of some WDR cells in the deeper dorsal horn of the cat lumbar spinal cord were studied by intracellular injection of horseradish peroxidase and physiological characterization. One of the fully stained neurons with somata in lamina V and dendrites that entered lamina Ⅱ were examined by electron mi-croscopy. Immunogold staining of ultrathin sections through the labeled proximal dendrites in lamina Ⅱ revealed that these dendrites received numerous synapses from substance P and glutamate immunoreactive (IR) axons, which were considered originating from C-fibers. In addition, many GABA-IR terminals were found presynaptic to the labeled dendrites. The results, therefore, suggest that the information carried by primary afferent can be sent from t

  6. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn.

    Science.gov (United States)

    Smith, K M; Boyle, K A; Mustapa, M; Jobling, P; Callister, R J; Hughes, D I; Graham, B A

    2016-06-21

    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.

  7. Involvement of ATP in noxious stimulus-evoked release of glutamate in rat medullary dorsal horn: a microdialysis study.

    Science.gov (United States)

    Kumar, Naresh; Cherkas, Pavel S; Chiang, C Y; Dostrovsky, Jonathan O; Sessle, Barry J; Coderre, Terence J

    2012-12-01

    Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice

    OpenAIRE

    2011-01-01

    Abstract Background Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn. Results To develop a new tool for the identification of in vitro enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC). Enkephalinergic neurons from these mice expressed enhanced green fluorescent prot...

  9. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    Science.gov (United States)

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P CFA group at 25 h and 3rd day post-injection (P CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  10. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  11. Astrocytes and Microglia-Mediated Immune Response in Maladaptive Plasticity is Differently Modulated by NGF in the Ventral Horn of the Spinal Cord Following Peripheral Nerve Injury.

    Science.gov (United States)

    De Luca, Ciro; Savarese, Leonilde; Colangelo, Anna Maria; Bianco, Maria Rosaria; Cirillo, Giovanni; Alberghina, Lilia; Papa, Michele

    2016-01-01

    Reactive astrocytes and activated microglia are the key players in several pathophysiologic modifications of the central nervous system. We used the spared nerve injury (SNI) of the sciatic nerve to induce glial maladaptive response in the ventral horn of lumbar spinal cord and examine its role in the remodeling of the tripartite synapse plasticity. Imaging the ventral horn revealed that SNI was associated with both an early microglial and astrocytic activation, assessed, respectively, by analysis of Iba1 and GFAP expression. Microglia, in particular, localized peculiarly surrounding the motor neurons somata. Perineuronal astrocytes, which play a key role in maintaining the homeostasis of neuronal circuitry, underwent a substantial phenotypic change following peripheral axotomy, producing reactive gliosis. The gliosis was associated with the reduction of glial aminoacid transporters (GLT1 and GlyT1) and increase of neuronal glutamate transporter EAAC1. Although the expression of GABAergic neuronal marker GAD65/67 showed no change, glutamate increase, as demonstrated by HPLC analysis, shifted the excitatory/inhibitory balance as showed by the net increase of the glutamate/GABA ratio. Moreover, endogenous NGF levels were altered in SNI animals and not restored by the intrathecal NGF administration. This treatment reverted phenotypic changes associated with reactive astrocytosis, but failed to modify microglia activation. These findings on one hand confirm the correlation between gliopathy and maladaptive plasticity of the spinal synaptic circuitry, on the other hand add new data concerning the complex peculiar behavior of different glial cells in neuronal degenerative processes, defining a special role of microglia in sustaining the inflammatory response.

  12. Stimulation-induced expression of immediate early gene proteins in the dorsal horn is increased in neuropathy.

    Science.gov (United States)

    Bojovic, Ognjen; Bramham, Clive R; Tjølsen, Arne

    2016-01-01

    Peripheral neuropathic pain is described as a pain state caused by an injury or dysfunction of the nervous system, and could have clinical manifestations such as hyperalgesia, allodynia and spontaneous pain. The development of neuropathic pain may depend on long-term forms of neuronal plasticity in the spinal cord (SC). Expression of the immediate early gene proteins (IEGPs) Arc, Zif268, and c-Fos are implicated in establishment of long-term potentiation (LTP) induced by conditioning stimulation (CS) of primary afferent fibres. However, the impact of the neuropathic state (Bennett's model) on CS-induced expression of IEGPs has not been studied. The aim of this study was to compare the levels of Arc, c-Fos and Zif268 immunoreactivity prior to and after conditioning stimulation in animals with developed neuropathic pain, with sham operated, non-ligated controls. Twenty-four animals were divided equally into the neuropathic and non-neuropathic groups. Neuropathic pain was induced in all animals by conducting a loose ligation of the sciatic nerve with Chromic Catgut 4.0 sutures 7 days prior to conditioning stimulation or sham operation. The loose ligation was performed by placing sutures around the sciatic nerve compressing the nerve slightly just enough to reduce but not completely diminish the perineural circulation. A state of neuropathy was confirmed by a significant decrease in mechanical withdrawal threshold measured by von Frey's fibres. Immunohistochemical analysis was performed on transverse sections obtained from the L3-L5 segments of the SC at 2 and 6h post-CS and IEGP positive cells were counted in lamina I and II of the dorsal horn. During statistical analyses, the groups were compared by means of analysis of variance (univariate general linear model). If significant differences were found, each set of animals was compared with the sham group with post hoc Tukey's multiple comparison test. Strikingly, all IEGPs exhibited a significant increase in

  13. In vivo electrochemical monitoring of serotonin in spinal dorsal horn with Nafion-coated multi-carbon fiber electrodes.

    Science.gov (United States)

    Rivot, J P; Cespuglio, R; Puig, S; Jouvet, M; Besson, J M

    1995-09-01

    Biosensors sensitive for in vivo monitoring of serotonin (5-HT) in the CNS by differential normal pulse voltammetry were constructed by coating treated multicarbon fiber electrodes (mCFEs) with Nafion (N-mCFE). In vitro sensitivities of mCFE and N-mCFE were compared in solutions ranging from 5 nM to 20 microM of uric acid (UA), 5-hydroxyindoleacetic acid (5-HIAA), and 5-HT. The mCFEs were three to seven times less sensitive for 5-HIAA or UA than for 5-HT. Nafion treatment dramatically decreased sensitivity for 5-HIAA and UA of N-mCFEs (approximately 10(3) times), whereas it remained in the nanomolar range for 5-HT. In vivo, in the dorsal horn of the lumbar spinal cord of anesthetized rats, the monoamine oxidase inhibitor clorgyline (10 mg/kg i.p.) produced a reduction (55 +/- 3% at 180 min) of peak 3 of oxidation current (characteristic of 5-hydroxyindoles) monitored with mCFEs, but with N-mCFEs (in this latter case the peak was termed 3N) peak 3N increased to 135 +/- 5% at 180 min. The 5-HT release-inducer p-chloroamphetamine (PCA; 6 mg/kg i.p.) induced a slight (12 +/- 3% at 150 min) decrease in peak 3 measured with mCFEs, whereas with N-mCFEs PCA induced a rapid increase of peak 3N (137 +/- 6% at 90 min). The xanthine oxidase inhibitor allopurinol (10 mg/kg i.p.) produced a decrease (30 +/- 3% at 180 min) in peak 3 (mCFEs), but peak 3N (N-mCFEs) was not affected (106% at 180 min). After pretreatment with allopurinol, PCA also produced an increase (135 +/- 6% at 90 min) in peak 3N.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Neuronal intrinsic properties shape naturally-evoked sensory inputs in the dorsal horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Cecilia eReali

    2013-12-01

    Full Text Available Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN. To test this idea, we took advantage of an integrated spinal cord–hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS -mediated by L- and T-type Ca2+ channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain.

  15. Changes in correlation between spontaneous activity of dorsal horn neurones lead to differential recruitment of inhibitory pathways in the cat spinal cord.

    Science.gov (United States)

    Chávez, D; Rodríguez, E; Jiménez, I; Rudomin, P

    2012-04-01

    Simultaneous recordings of cord dorsum potentials along the lumbo-sacral spinal cord of the anaesthetized cat revealed the occurrence of spontaneous synchronous negative (n) and negative-positive (np) cord dorsum potentials (CDPs). The npCDPs, unlike the nCDPs, appeared preferentially associated with spontaneous negative dorsal root potentials (DRPs) resulting from primary afferent depolarization. Spontaneous npCDPs recorded in preparations with intact neuroaxis or after spinalization often showed a higher correlation than the nCDPs recorded from the same pair of segments. The acute section of the sural and superficial peroneal nerves further increased the correlation between paired sets of npCDPs and reduced the correlation between the nCDPs recorded from the same pair of segments. It is concluded that the spontaneous nCDPs and npCDPs are produced by the activation of interconnected sets of dorsal horn neurones located in Rexed's laminae III–IV and bilaterally distributed along the lumbo-sacral spinal cord. Under conditions of low synchronization in the activity of this network of neurones there would be a preferential activation of the intermediate nucleus interneurones mediating Ib non-reciprocal postsynaptic inhibition. Increased synchronization in the spontaneous activity of this ensemble of dorsal horn neurones would recruit the interneurones mediating primary afferent depolarization and presynaptic inhibition and, at the same time, reduce the activation of pathways mediating Ib postsynaptic inhibition. Central control of the synchronization in the spontaneous activity of dorsal horn neurones and its modulation by cutaneous inputs is envisaged as an effective mechanism for the selection of alternative inhibitory pathways during the execution of specific motor or sensory tasks.

  16. Long-term actions of interleukin-1β on delay and tonic firing neurons in rat superficial dorsal horn and their relevance to central sensitization

    Directory of Open Access Journals (Sweden)

    Ballanyi Klaus

    2008-12-01

    Full Text Available Abstract Background Cytokines such as interleukin 1β (IL-1β have been implicated in the development of central sensitization that is characteristic of neuropathic pain. To examine its long-term effect on nociceptive processing, defined medium organotypic cultures of rat spinal cord were exposed to 100 pM IL-1β for 6–8 d. Interleukin effects in the dorsal horn were examined by whole-cell patch-clamp recording and Ca2+ imaging techniques. Results Examination of the cultures with confocal Fluo-4 AM imaging showed that IL-1β increased the change in intracellular Ca2+ produced by exposure to 35–50 mM K+. This is consistent with a modest increase in overall dorsal horn excitability. Despite this, IL-1β did not have a direct effect on rheobase or resting membrane potential nor did it selectively destroy any specific neuronal population. All effects were instead confined to changes in synaptic transmission. A variety of pre- and postsynaptic actions of IL-1β were seen in five different electrophysiologically-defined neuronal phenotypes. In putative excitatory 'delay' neurons, cytokine treatment increased the amplitude of spontaneous EPSC's (sEPSC and decreased the frequency of spontaneous IPSC's (sIPSC. These effects would be expected to increase dorsal horn excitability and to facilitate the transfer of nociceptive information. However, other actions of IL-1β included disinhibition of putative inhibitory 'tonic' neurons and an increase in the amplitude of sIPSC's in 'delay' neurons. Conclusion Since spinal microglial activation peaks between 3 and 7 days after the initiation of chronic peripheral nerve injury and these cells release IL-1β at this time, our findings define some of the neurophysiological mechanisms whereby nerve-injury induced release of IL-1β may contribute to the central sensitization associated with chronic neuropathic pain.

  17. Long-term effects of brain-derived neurotrophic factor on the frequency of inhibitory synaptic events in the rat superficial dorsal horn.

    Science.gov (United States)

    Lu, V B; Colmers, W F; Smith, P A

    2009-07-21

    Chronic constriction injury (CCI) of rat sciatic nerve produces a specific pattern of electrophysiological changes in the superficial dorsal horn that lead to central sensitization that is associated with neuropathic pain. These changes can be recapitulated in spinal cord organotypic cultures by long term (5-6 days) exposure to brain-derived neurotrophic factor (BDNF) (200 ng/ml). Certain lines of evidence suggest that both CCI and BDNF increase excitatory synaptic drive to putative excitatory neurons while reducing that to putative inhibitory interneurons. Because BDNF slows the rate of discharge of synaptically-driven action potentials in inhibitory neurons, it should also decrease the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) throughout the superficial dorsal horn. To test this possibility, we characterized superficial dorsal horn neurons in organotypic cultures according to five electrophysiological phenotypes that included tonic, delay and irregular firing neurons. Five to 6 days of treatment with 200 ng/ml BDNF decreased sIPSC frequency in tonic and irregular neurons as might be expected if BDNF selectively decreases excitatory synaptic drive to inhibitory interneurons. The frequency of sIPSCs in delay neurons was however increased. Further analysis of the action of BDNF on tetrodotoxin-resistant miniature inhibitory postsynaptic currents (mIPSC) showed that the frequency was increased in delay neurons, unchanged in tonic neurons and decreased in irregular neurons. BDNF may thus reduce action potential frequency in those inhibitory interneurons that project to tonic and irregular neurons but not in those that project to delay neurons.

  18. Effects of tyrosyl-arginine (kyotorphin), a new opioid dipeptide, on single neurons in the spinal dorsal horn of rabbits and the nucleus reticularis paragigantocellularis of rats.

    Science.gov (United States)

    Satoh, M; Kawajiri, S; Yamamoto, M; Akaike, A; Ukai, Y; Takagi, H

    1980-03-01

    The effects of a new endogenous opioid dipeptide (Tyr-Arg), kyotorphin, on single unit activities recorded from the lamina V type neurons in the spinal dorsal horn and the neurons in nucleus reticularis paragigantocellularis (NRPG) of the medulla oblongata were investigated in the rabbit and rat, respectively. Microelectrophoretically applied kyotorphin predominantly depressed the lamina V type neurons but excited the NRPG neurons. Such predominant effects were antagonized by naloxone. These results suggest that kyotorphin has qualitatively similar actions to those of enkephalins in both central regions examined.

  19. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    Science.gov (United States)

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. N-methyl-D-aspartate receptor expression in the spinal dorsal horn of a rat model of formalin-induced inflammatory pain following intrathecal injection of butorphanol

    Institute of Scientific and Technical Information of China (English)

    Yichun Wang; Yuan Zhang; Qulian Guo; Xiaohong Liu; Mingde Wang; Hui Luo

    2010-01-01

    Clinical and animal experiments have proved that intrathecal injection of butorphanol has an analgesic effect. However, whether the analgesic effect is associated with activation of the N-methyl-D-aspartate (NMDA) receptor remains unclear. This study presumed that intrathecal injection of butorphanol has an analgesic effect on formalin-induced inflammatory pain in rats, and its analgesic effect is associated with inhibition of NMDA receptors. Concurrently, ketamine was injected into the intrathecal space, which is a non-competitive NMDA receptor antagonist, to determine the analgesic mechanism of butorphanol. The total reflection time in phase 1 and phase 2 of rat hind paws carding action was reduced when the butorphanol dose was increased to 25 μg,or a low dose of butorphanol was combined with ketamine. Intrathecal injection of a high dose of butorphanol alone or a Iow dose of butorphanol combined with ketamine can remarkably reduce NMDA receptor expression in the L5 spinal dorsal horn of formalin-induced pain rats. The results suggest that intrathecal injection of butorphanol has analgesic effects on formalin-induced inflammatory pain, and remarkably reduces NMDA receptor expression in the rat spinal dorsal horn.Ketamine strengthens this analgesic effect. The analgesic mechanism of intrathecal injection of butorphanol is associated with inhibition of NMDA receptor activation.

  1. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    Science.gov (United States)

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  2. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  3. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  4. Endogenous interleukin-1β in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors.

    Science.gov (United States)

    Yan, Xisheng; Weng, Han-Rong

    2013-10-18

    Excessive activation of glutamate receptors and overproduction of proinflammatory cytokines, including interleukin-1β (IL-1β) in the spinal dorsal horn, are key mechanisms underlying the development and maintenance of neuropathic pain. In this study, we investigated the mechanisms by which endogenous IL-1β alters glutamatergic synaptic transmission in the spinal dorsal horn in rats with neuropathic pain induced by ligation of the L5 spinal nerve. We demonstrated that endogenous IL-1β in neuropathic rats enhances glutamate release from the primary afferent terminals and non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Myeloid differentiation primary response protein 88 (MyD88) is a mediator used by IL-1β to enhance non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Presynaptic NMDA receptors are effector receptors used by the endogenous IL-1β to enhance glutamate release from the primary afferents in neuropathic rats. This is further supported by the fact that NMDA currents recorded from small neurons in the dorsal root ganglion of normal rats are potentiated by exogenous IL-1β. Furthermore, we provided evidence that functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is mediated by the neutral sphingomyelinase/ceramide signaling pathway. Hence, functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is a crucial mechanism leading to enhanced glutamate release and activation of non-NMDA receptors in the spinal dorsal horn neurons in neuropathic pain conditions. Interruption of such functional coupling could be an effective approach for the treatment of neuropathic pain.

  5. Identification of cerebellin2 in chick and its preferential expression by subsets of developing sensory neurons and their targets in the dorsal horn.

    Science.gov (United States)

    Yang, Mao; Cagle, Michael C; Honig, Marcia G

    2010-07-15

    The cerebellins are a family of four secreted proteins, two of which, Cbln1 and Cbln3, play an important role in the formation and maintenance of parallel fiber-Purkinje cell synapses. We have identified the chicken homologue of Cbln2 and, through the use of in situ hybridization, shown that it is expressed by specific subsets of neurons in the dorsal root ganglia (DRGs) and spinal cord starting shortly after those neurons are generated. In the developing spinal cord, Cbln2 is highly expressed by dI1, dI3, dI5, and dILB dorsal interneurons and to a lesser extent by dI2, dI4, dI6, and dILA dorsal interneurons, but not by ventral (v0-v3) interneurons. After the spinal cord has matured and neurons have migrated to their final destinations, Cbln2 is abundant in the dorsal horn. In the DRGs, Cbln2 is expressed by TrkB+ and TrkC+ sensory neurons, but not by TrkA+ sensory neurons. Interestingly, regions of the spinal cord where TrkB+ and TrkC+ afferents terminate (i.e., laminae II, III, IV, and VI) exhibit the highest levels of Cbln2 expression. Cbln2 is also expressed by preganglionic sympathetic neurons and their targets in the sympathetic chain ganglia. Thus, the results show that Cbln2 is frequently expressed by synaptically connected neuronal populations. This, in turn, raises the possibility that if Cbln2, like Cbln1, plays a role in the formation and maintenance of synapses, it may somehow mediate bi-directional communication between discrete populations of neurons and their appropriate neuronal targets.

  6. Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the cat lumbosacral spinal cord.

    Science.gov (United States)

    García, C A; Chávez, D; Jiménez, I; Rudomin, P

    2004-05-06

    In the anesthetized and paralyzed cat, spontaneous negative cord dorsum potentials (nCDPs) appeared synchronously in the L3 to S1 segments, both ipsi- and contralaterally. The acute section of both the intact sural and the superficial peroneal nerve increased the variability of the spontaneous nCDPs without affecting their intersegmental coupling. On the other hand, the synchronization between the spontaneous nCDPs recorded in segments L5-L6 was strongly reduced following an interposed lesion of the left (ipsilateral) dorsolateral spinal quadrant and it was almost completely abolished by an additional lesion of the contralateral dorsolateral quadrant at the same level. Our observations support the existence of a system of spontaneously active dorsal horn neurons that is bilaterally distributed along the lumbosacral segments and affects, in a synchronized and organized manner, impulse transmission along many reflex pathways, including those mediating presynaptic inhibition.

  7. A combined electrophysiological and morphological study of neuropeptide Y-expressing inhibitory interneurons in the spinal dorsal horn of the mouse.

    Science.gov (United States)

    Iwagaki, Noboru; Ganley, Robert P; Dickie, Allen C; Polgár, Erika; Hughes, David I; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J; Riddell, John S

    2016-03-01

    The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread.

  8. Protein kinase C gamma interneurons in the rat medullary dorsal horn: distribution and synaptic inputs to these neurons, and subcellular localization of the enzyme.

    Science.gov (United States)

    Peirs, Cédric; Patil, Sudarshan; Bouali-Benazzouz, Rabia; Artola, Alain; Landry, Marc; Dallel, Radhouane

    2014-02-01

    The γ isoform of protein kinase C (PKCγ), which is concentrated in interneurons in the inner part of lamina II (IIi ) of the dorsal horn, has been implicated in the expression of tactile allodynia. Lamina IIi PKCγ interneurons were shown to be activated by tactile inputs and to participate in local circuits through which these inputs can reach lamina I, nociceptive output neurons. That such local circuits are gated by glycinergic inhibition and that A- and C-fibers low threshold mechanoreceptors (LTMRs) terminate in lamina IIi raise the general issue of synaptic inputs to lamina IIi PKCγ interneurons. Combining light and electron microscopic immunochemistry in the rat spinal trigeminal nucleus, we show that PKCγ-immunoreactivity is mostly restricted to interneurons in lamina IIi of the medullary dorsal horn, where they constitute 1/3 of total neurons. The majority of synapses on PKCγ-immunoreactive interneurons are asymmetric (likely excitatory). PKCγ-immunoreactive interneurons appear to receive exclusively myelinated primary afferents in type II synaptic glomeruli. Neither large dense core vesicle terminals nor type I synaptic glomeruli, assumed to be the endings of unmyelinated nociceptive terminals, were found on these interneurons. Moreover, there is no vesicular glutamate transporter 3-immunoreactive bouton, specific to C-LTMRs, on PKCγ-immunoreactive interneurons. PKCγ-immunoreactive interneurons contain GABAA ergic and glycinergic receptors. At the subcellular level, PKCγ-immunoreactivity is mostly concentrated on plasma membranes, close to, but not within, postsynaptic densities. That only myelinated primary afferents were found to contact PKCγ-immunoreactive interneurons suggests that myelinated, but not unmyelinated, LTMRs play a critical role in the expression of mechanical allodynia.

  9. Activation of medullary dorsal horn γ isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia.

    Science.gov (United States)

    Pham-Dang, Nathalie; Descheemaeker, Amélie; Dallel, Radhouane; Artola, Alain

    2016-03-01

    The γ isoform of protein kinase C (PKCγ), which is concentrated in a specific class of interneurons within inner lamina II (IIi ) of the spinal dorsal horn and medullary dorsal horn (MDH), is known to be involved in the development of mechanical allodynia, a widespread and intractable symptom of inflammatory or neuropathic pain. However, although genetic and pharmacological impairment of PKCγ were shown to prevent mechanical allodynia in animal models of pain, after nerve injury or reduced inhibition, the functional consequences of PKCγ activation alone on mechanical sensitivity are still unknown. Using behavioural and anatomical approaches in the rat MDH, we tested whether PKCγ activation in naive animals is sufficient for the establishment of mechanical allodynia. Intracisternal injection of the phorbol ester, 12,13-dibutyrate concomitantly induced static as well as dynamic facial mechanical allodynia. Monitoring neuronal activity within the MDH with phospho-extracellular signal-regulated kinases 1 and 2 immunoreactivity revealed that activation of both lamina I-outer lamina II and IIi -outer lamina III neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the manifestation of mechanical allodynia. Phorbol ester, 12,13-dibutyrate-induced mechanical allodynia and associated neuronal activations were all prevented by inhibiting selectively segmental PKCγ with KIG31-1. Our findings suggest that PKCγ activation, without any other experimental manipulation, is sufficient for the development of static and dynamic mechanical allodynia. Lamina IIi PKCγ interneurons have been shown to be directly activated by low-threshold mechanical inputs carried by myelinated afferents. Thus, the level of PKCγ activation within PKCγ interneurons might gate the transmission of innocuous mechanical inputs to lamina I, nociceptive output neurons, thus turning touch into pain.

  10. Role of 5-HT1 receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn

    Science.gov (United States)

    Jeong, Hyo-Jin; Mitchell, Vanessa A; Vaughan, Christopher W

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT receptor agonists have variable nociceptive effects within the spinal cord. While there is some evidence for 5-HT1A spinally-mediated analgesia, the role of other 5-HT1 receptor subtypes remains unclear. In the present study, we examined the spinal actions of a range of 5-HT1 agonists, including sumatriptan, on acute pain, plus their effect on afferent-evoked synaptic transmission onto superficial dorsal horn neurons. EXPERIMENTAL APPROACH For in vivo experiments, 5-HT agonists were injected via chronically implanted spinal catheters to examine their effects in acute mechanical and thermal pain assays using a paw pressure analgesymeter and a Hargreave's device. For in vitro experiments, whole-cell patch-clamp recordings of primary afferent-evoked glutamatergic EPSC were made from lamina II neurons in rat lumbar spinal slices. KEY RESULTS Intrathecal (i.t.) delivery of the 5-HT1A agonist R ± 8-OH-DPAT (30–300 nmol) produced a dose-dependent thermal, but not mechanical, analgesia. Sumatriptan and the 5-HT1B, 5-HT1D, 5-HT1F agonists CP93129, PNU109291 and LY344864 (100 nmol) had no effect on either acute pain assay. R ± 8-OH-DPAT (1 µM) and sumatriptan (3 µM) both reduced the amplitude of the evoked EPSC. In contrast, CP93129, PNU109291 and LY344864 (0.3–3 µM) had no effect on the evoked EPSC. The actions of both R ± 8-OH-DPAT and sumatriptan were abolished by the 5-HT1A antagonist WAY100635 (3 µM). CONCLUSIONS AND IMPLICATIONS These findings indicate that the 5-HT1A receptor subtype predominantly mediates the acute antinociceptive and cellular actions of 5-HT1 ligands within the rat superficial dorsal horn. PMID:21950560

  11. Material basis for inhibition of Dragon's Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats

    Institute of Scientific and Technical Information of China (English)

    GUO Min; CHEN Su; LIU XiangMing

    2008-01-01

    In vivo experiments were designed to verify the analgesic effect of Dragon's Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon's Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and Ioureirin B) extracted from Dragon's Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill's coefficients describing the dose-response relations of drugs were dif-ferent, based on the concept of dose equivalence, the equations of addillvity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tal-larida's isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon's Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill's coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and Ioureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon's Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and Ioureirin B was the material basis for the analgesic effect of Dragon's Blood.

  12. Material basis for inhibition of Dragon’s Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In vivo experiments were designed to verify the analgesic effect of Dragon’s Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon’s Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from Dragon’s Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill’s coefficients describing the dose-response relations of drugs were dif-ferent, based on the concept of dose equivalence, the equations of additivity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tal-larida’s isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon’s Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill’s coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and loureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon’s Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and loureirin B was the material basis for the analgesic effect of Dragon’s Blood.

  13. Material basis for inhibition of Dragon's Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats.

    Science.gov (United States)

    Guo, Min; Chen, Su; Liu, Xiangming

    2008-11-01

    In vivo experiments were designed to verify the analgesic effect of Dragon's Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon's Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from Dragon's Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill's coefficients describing the dose-response relations of drugs were different, based on the concept of dose equivalence, the equations of additivity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tallarida's isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon's Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill's coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and loureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon's Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and loureirin B was the material basis for the analgesic effect of Dragon's Blood.

  14. Suppression of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the sensitization of dorsal horn WDR neurons and pain hypersensitivity in a rat model of bone cancer pain.

    Science.gov (United States)

    Cai, Jie; Fang, Dong; Liu, Xiao-Dan; Li, Song; Ren, Juan; Xing, Guo-Gang

    2015-03-01

    Primary and metastatic cancers that affect bones are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. In the present study, we investigated whether inhibition of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the development of bone cancer pain via sensitization of dorsal horn wide dynamic range (WDR) neurons. Using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumor cells, we observed a significant increase in C-fiber responses of dorsal horn WDR neurons in the MRMT-1 injected rats, indicating sensitization of spinal WDR neurons in bone cancer rats. Furthermore, we discovered that blockade of KCNQ/M channels in the spinal cord by local administration of XE-991, a specific KCNQ/M channel blocker, caused a robust increase in excitability of dorsal horn WDR neurons, while, producing obvious pain hypersensitivity in normal rats. On the contrary, activation of spinal KCNQ/M channels by retigabine, a selective KCNQ/M channel opener, not only inhibited the bone cancer‑induced hyperexcitability of dorsal horn WDR neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in the bone cancer rats, while all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. All things considered, these results suggest that suppression of KCNQ/M channels in the spinal cord likely contributes to the development of bone cancer pain via sensitization of dorsal horn WDR neurons in rats following tumor cell inoculation.

  15. The pain pathway in the rat following noxious thermal stimulation: effect of morphine on pERK1/2 and TRPV1 at the dorsal horn level, and on hyperalgesia.

    Science.gov (United States)

    Donnerer, Josef; Liebmann, Ingrid

    2013-01-01

    The aim of the present study was to investigate the phosphorylation of ERK1/2 in the lumbar dorsal horn of the rat by fluorescence immunohistochemistry following a noxious thermal stimulation of the hind paw. The protein level of TRPV1 in the dorsal spinal cord and the development of a heat hyperalgesia after the acute noxious thermal stimulation were also measured. The protein content of TRPV1 was determined by Western blot and heat hyperalgesia by the plantar test. At 2 and 10 min after the thermal stimulation a 4-fold increase in pERK1/2 immunoreactivity was observed in cells of lamina I/II of the L3-L5 dorsal horn. A pretreatment with the opioid analgesic morphine markedly attenuated ERK1/2 phosphorylation. The protein content of TRPV1 in the lumbar dorsal spinal cord was not significantly altered at 1 and 4 h after the thermal hind paw stimulation and by the morphine pretreatment. Heat hyperalgesia in the plantar test was observed at 8 h, but not at 24 h after the noxious stimulation. This temporary hyperalgesia was prevented by the morphine pretreatment. The present findings indicate that ERK1/2 activation in dorsal horn nociceptive neurons may be linked to the development of hyperalgesia, and that opioid analgesics are effective agents to prevent sensitization in the pain pathway at spinal level.

  16. Capillary electrophoresis combined with microdialysis in the human spinal cord: a new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn.

    Science.gov (United States)

    Parrot, Sandrine; Sauvinet, Valérie; Xavier, Jean-Michel; Chavagnac, Delphine; Mouly-Badina, Laurence; Garcia-Larrea, Luis; Mertens, Patrick; Renaud, Bernard

    2004-06-01

    A method originally developed for the separation of the three neurotransmitters gamma-aminobutyric acid (GABA), glutamate (Glu) and L-aspartate (L-Asp) in microdialysis samples from rat brain (Sauvinet et al., Electrophoresis 2003, 24, 3187-3196) was applied to human spinal dialysates obtained during peroperative microdialysis from patients undergoing surgery against chronic pain. Molecules were tagged on their primary amine function with the fluorogene agent, naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by capillary electrophoresis (CE, 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L sodium dodecyl sulfate and 10 mmol/L hydroxypropyl-beta-cyclodextrin, + 25 kV voltage), were detected by laser-induced fluorescence detection (LIFD) using a 442 nm helium-cadmium laser. The complete method, including microdialysis sampling and analysis by CE-LIFD, has been validated for the analysis of human spinal microdialysates. The analytical detection limits were 1, 3.7 and 17 nmol/L for GABA, Glu and L-Asp respectively. This method allows an accurate measurement of the three amino acid neurotransmitters during an in vivo monitoring performed as rapidly as every minute in the human spinal dorsal horn. In addition, the effect of a brief peroperative electrical stimulation of the dorsal rootlets was investigated. The results obtained illustrate the advantages of combining microdialysis with CE-LIFD for studying neurotransmitters with such a high sampling rate.

  17. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    Science.gov (United States)

    Krutki, Piotr; Jelen, Sabina; Jankowska, Elzbieta

    2011-04-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons.

  18. Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    horn, was distinguished by the ability to generate a burst response following a hyperpolarization from rest or during a depolarization from a hyperpolarized holding potential. The burst response was inactivated at the resting membrane potential. 3. The burst response was mediated by a low threshold Ca2......+ spike assumed to be mediated by T-type Ca2+ channels since it resisted tetrodotoxin and was blocked by 3 mM Co2+ or 100-300 microM Ni2+ and resembled the low threshold spike (LTS) described elsewhere. 4. Some burst-generating cells also displayed plateau potentials mediated by L-type Ca2+ channels....... In these cells the burst following a hyperpolarizing current pulse, applied from the resting membrane potential, facilitated the activation of the plateau potential. Wind-up of the plateau potential was produced when the hyperpolarizing pulse generating the burst was repeated at 0.1-0.3 Hz or faster. 5...

  19. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord.

    Science.gov (United States)

    Cagle, Michael C; Honig, Marcia G

    2014-02-01

    The cerebellins (Cblns) are a family of secreted proteins that are widely expressed throughout the nervous system, but whose functions have been studied only in the cerebellum and striatum. Two members of the family, Cbln1 and Cbln2, bind to neurexins on presynaptic terminals and to GluRδs postsynaptically, forming trans-synaptic triads that promote synapse formation. Cbln1 has a higher binding affinity for GluRδs and exhibits greater synaptogenic activity than Cbln2. In contrast, Cbln4 does not form such triads and its function is unknown. The different properties of the three Cblns suggest that each plays a distinct role in synapse formation. To begin to elucidate Cbln function in other neuronal systems, we used in situ hybridization to examine Cbln expression in the mouse spinal cord. We find that neurons expressing Cblns 1, 2, and 4 tend to occupy different laminar positions within the dorsal spinal cord, and that Cbln expression is limited almost exclusively to excitatory neurons. Combined in situ hybridization and immunofluorescent staining shows that Cblns 1, 2, and 4 are expressed by largely distinct neuronal subpopulations, defined in part by sensory input, although there is some overlap and some individual neurons coexpress two Cblns. Our results suggest that differences in connectivity between subpopulations of dorsal spinal cord neurons may be influenced by which Cbln each subpopulation contains. Competitive interactions between axon terminals may determine the number of synapses each forms in any given region, and thereby contribute to the development of precise patterns of connectivity in the dorsal gray matter.

  20. Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    2012-01-01

    Full Text Available Astrocytic Ca2+ dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+ signaling in living central nervous system. Ca2+ waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101 and imaged astrocytic Ca2+ levels with Oregon-Green BAPTA-1 (OGB. Then, we studied astrocytic Ca2+ levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+ levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  1. Effect of pre-electroacupuncture on p38 and c-Fos expression in the spinal dorsal horn of rats suffering from visceral pain

    Institute of Scientific and Technical Information of China (English)

    XU Ke-da; LIANG Tao; WANG Kun; TIAN De-an

    2010-01-01

    Background Acupuncture is an effective way to relieve pain, but the mechanism by which electroacupuncture (EA) decreases the visceral pain state still remains unclear. This study aimed to evaluate the effects of pre-electroacupuncture on pain behaviors, p38 phosphorylation, and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn of rats suffering from visceral pain. This study also investigated the probable signaling regulatory mechanism of the analgesic effect induced by electroacupuncture. Methods All rats were randomized into the control (Con) group, the Con+EA group, the visceral pain (VP) group, and VP+EA group (n=8 for all groups). The visceral pain model was established using 40 ul of 5% formalin solution injected into the colon of rats. EA was applied to the bilateral Jiaji acupoints for 20 minutes before application of visceral pain. Parameters for EA were set at a continuous wave (20 Hz) and intensity where the rats shook their whiskers but did not scrabble (≤1 mA). The visceral pain score was recorded and the expressions of p38 and c-Fos protein were detected using Western blotting. Real-time quantitative PCR was also used to determine the expression of c-Fos mRNA. Results Rats in the VP group immediately presented with obvious visceral pain behaviors after being injected with formalin. p38 activity and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn were higher in the VP group than in the Con group (P <0.05). By contrast, visceral pain behaviors were delayed in rats from the VP+EA group. p38 activity and c-Fos protein and mRNA expression were lower in the VP+EA group than that in the VP group (P<0.01). Conclusions Pre-electroacupuncture of the Jiaji acupoint has prophylactic analgesic effects on rats suffering from visceral pain. The p38 signal transduction pathway may be partly involved in the regulatory mechanism of this analgesic effect.

  2. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model

    Directory of Open Access Journals (Sweden)

    Li Q

    2016-12-01

    Full Text Available Qian Li,1,* Cheng-Hao Guo,2,* Mohammed Ali Chowdhury,1 Tao-Li Dai,1 Wei Han,1,3 1Department of Gastroenterology, Qilu Hospital of Shandong University, 2Department of Pathology, Medical School of Shandong University, 3Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: The transient receptor potential ankyrin-1 (TRPA1 channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH and persistent post-inflammatory visceral hypersensitivity.Methods: We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS or vehicle (n=12 per group. Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry.Results: Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (P<0.05, which corresponded to a lower nociceptive threshold. Expression of TRPA1 in the SDH (especially in the substantia gelatinosa and the colon was significantly greater in the TNBS-treated group than in controls (P<0.05. In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023, and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041.Conclusion: Our results indicate

  3. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2006-02-01

    Full Text Available Abstract In this study, we show that capsaicin (CAP depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels of primary afferent fibers in adenosine 5'-triphosphate (ATP- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ, and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP. The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C. This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl adenosine 5'-triphosphate (TNP-ATP. Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.

  4. Intrathecal baclofen, a GABAB receptor agonist, inhibits the expression of p-CREB and NR2B in the spinal dorsal horn in rats with diabetic neuropathic pain.

    Science.gov (United States)

    Liu, Peng; Guo, Wen-Ya; Zhao, Xiao-Nan; Bai, Hui-Ping; Wang, Qian; Wang, Xiu-Li; Zhang, Ying-Ze

    2014-08-01

    This study aimed to investigate the effect of baclofen, a γ-aminobutyric acid B (GABAB) receptor agonist, on the expression of p-CREB and NR2B in the spinal dorsal horn of rats with diabetic neuropathic pain (DNP). The DNP rats, which were successfully induced with streptozocin, were distributed among 3 groups that were treated with saline (D1 group), baclofen (D2 group), or CGP55845 + baclofen (D3 group) continuously for 4 days. The rats induced with saline and subsequently treated with saline were used as controls (C group). The times for the paw withdrawal threshold and thermal withdrawal latency of the D1 group were lower than those for the C group, and were significantly increased after baclofen treatment, but not when GABA receptor was pre-blocked with CGP55845 (D3 group). Increased protein expression levels of NR2B and p-CREB and mRNA levels of NR2B were found in the D1 group when compared with the controls. Baclofen treatment significantly suppressed their expression, bringing it close to the levels of controls. However, in the D3 group, the expression of p-CREB and NR2B were still significantly higher than that of the controls. Activation of GABAB receptor by baclofen attenuates diabetic neuropathic pain, which may partly be accomplished via down-regulating the expression of p-CREB and NR2B.

  5. Phosphorylation of the GluN1 subunit in dorsal horn neurons by remifentanil: a mechanism for opioid-induced hyperalgesia.

    Science.gov (United States)

    Zhang, C; Li, S S; Zhao, N; Yu, C

    2015-03-13

    Remifentanil (an ultra-short acting μ-opioid receptor agonist) use has been associated with acute opioid tolerance and hyperalgesia. Previous electrophysiological studies have shown that remifentanil elicits rapid and prolonged upregulation of N-methyl-D-aspartate receptor (NMDAR) currents. However, the effect of remifentanil on the levels of the GluN1 subunit of the NMDAR in dorsal horn neurons (DHNs) has not been reported. We investigated the effect of remifentanil, along with ketamine (NMDAR antagonist) and naloxone (μ-opioid receptor antagonist), on GluN1 mRNA levels and the amount of phosphorylated GluN1 in primary cultures of embryonic rat DHNs. DHNs were isolated from 18-19-day rat embryos and treated with remifentanil or vehicle for 1 h. GluN1 mRNA and protein levels, determined by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively, were significantly and persistently increased by remifentanil exposure compared with the control group (P < 0.05). These results may partially account for the mechanism of remifentanil-induced hyperalgesia. This increase was prevented by ketamine (NMDAR antagonist) and naloxone (μ-opioid receptors antagonist), thus providing a potential therapeutic mechanism for the prevention of opioid-induced hyperalgesia.

  6. Intravenous administration of lidocaine directly acts on spinal dorsal horn and produces analgesic effect: An in vivo patch-clamp analysis.

    Science.gov (United States)

    Kurabe, Miyuki; Furue, Hidemasa; Kohno, Tatsuro

    2016-05-18

    Intravenous lidocaine administration produces an analgesic effect in various pain states, such as neuropathic and acute pain, although the underlying mechanisms remains unclear. Here, we hypothesized that intravenous lidocaine acts on spinal cord neurons and induces analgesia in acute pain. We therefore examined the action of intravenous lidocaine in the spinal cord using the in vivo patch-clamp technique. We first investigated the effects of intravenous lidocaine using behavioural measures in rats. We then performed in vivo patch-clamp recording from spinal substantia gelatinosa (SG) neurons. Intravenous lidocaine had a dose-dependent analgesic effect on the withdrawal response to noxious mechanical stimuli. In the electrophysiological experiments, intravenous lidocaine inhibited the excitatory postsynaptic currents (EPSCs) evoked by noxious pinch stimuli. Intravenous lidocaine also decreased the frequency, but did not change the amplitude, of both spontaneous and miniature EPSCs. However, it did not affect inhibitory postsynaptic currents. Furthermore, intravenous lidocaine induced outward currents in SG neurons. Intravenous lidocaine inhibits glutamate release from presynaptic terminals in spinal SG neurons. Concomitantly, it hyperpolarizes postsynaptic neurons by shifting the membrane potential. This decrease in the excitability of spinal dorsal horn neurons may be a possible mechanism for the analgesic action of intravenous lidocaine in acute pain.

  7. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  8. Amitriptyline and carbamazepine utilize voltage-gated ion channel suppression to impair excitability of sensory dorsal horn neurons in thin tissue slice: An in vitro study.

    Science.gov (United States)

    Wolff, Matthias; Czorlich, Patrick; Nagaraj, Chandran; Schnöbel-Ehehalt, Rose; Li, Yingji; Kwapiszewska, Grazyna; Olschewski, Horst; Heschl, Stefan; Olschewski, Andrea

    2016-08-01

    Amitriptyline, carbamazepine and gabapentin are often used for the treatment of neuropathic pain. However, their analgesic action on central sensory neurons is still not fully understood. Moreover, the expression pattern of their target ion channels is poorly elucidated in the dorsal horn of the spinal cord. Thus, we performed patch-clamp investigations in visualized neurons of lamina I-III of the spinal cord. The expression of the different voltage-gated ion channels, as the targets of these drugs, was detected by RT-PCR and immunohistochemistry. Neurons of the lamina I-III express the TTX-sensitive voltage-gated Na(+) as well as voltage-gated K(+) subunits assembling the fast inactivating (A-type) currents and the delayed rectifier K(+) currents. Our pharmacological studies show that tonically-firing, adapting-firing and single spike neurons responded dose-dependently to amitriptyline and carbamazepine. The ion channel inhibition consecutively reduced the firing rate of tonically-firing and adapting-firing neurons. This study provides evidence for the distribution of voltage-gated Na(+) and K(+) subunits in lamina I-III of the spinal cord and for the action of drugs used for the treatment of neuropathic pain. Our work confirms that modulation of voltage-gated ion channels in the central nervous system contributes to the antinociceptive effects of these drugs.

  9. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    Science.gov (United States)

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; Pstrychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  10. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    Science.gov (United States)

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  11. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn

    Science.gov (United States)

    Hughes, D I; Sikander, S; Kinnon, C M; Boyle, K A; Watanabe, M; Callister, R J; Graham, B A

    2012-01-01

    Axo-axonic synapses on the central terminals of primary afferent fibres modulate sensory input and are the anatomical correlate of presynaptic inhibition. Although several classes of primary afferents are under such inhibitory control, the origin of these presynaptic inputs in the dorsal horn is unknown. Here, we characterize the neurochemical, anatomical and electrophysiological properties of parvalbumin (PV)-expressing cells in wild-type and transgenic mice where enhanced green fluorescent protein (eGFP) is expressed under the PV promoter. We show that most PV cells have either islet or central cell-like morphology, receive inputs from myelinated primary afferent fibres and are concentrated in laminae II inner and III. We also show that inhibitory PV terminals in lamina II inner selectively target the central terminals of myelinated afferents (∼80% of 935 PVeGFP boutons) and form axo-axonic synapses (∼75% of 71 synapses from PV boutons). Targeted whole-cell patch-clamp recordings from PVeGFP positive cells in laminae II and III showed action potential discharge was restricted to the tonic firing and initial bursting patterns (67% and 33% respectively; n = 18), and virtually all express Ih subthreshold voltage-gated currents (94%; n = 18). These neurons show higher rheobase current than non-eGFP cells but respond with high frequency action potential discharge upon activation. Together, our findings show that PV neurons in laminae II and III are a likely source of inhibitory presynaptic input on to myelinated primary afferents. Consequently PV cells are ideally placed to play an important role in the development of central sensitization and tactile allodynia. PMID:22674718

  12. Co-existence of calcium-binding proteins and γ-aminobutyric acid or glycine in neurons of the rat medullary dorsal horn

    Institute of Scientific and Technical Information of China (English)

    王文; 武胜昔; 李云庆

    2004-01-01

    Background We investigated the co-expression of calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV, a combination of the three is referred to as CaBPs) with γ-aminobutyric acid (GABA) or glycine in neurons of the rat medullary dorsal horn (MDH).Methods Immunofluorescence histochemical double-staining for CaBPs and GABA or glycine was performed on the sections from rat MDH.Results CB-, CR-, PV-, GABA- and glycine-like immunoreactive (LI) neurons were differentially observed in all layers of the MDH, but particularly in lamina Ⅱ. Neurons that exhibited immunoreactivity for both CaBPs and GABA or glycine were also observed mainly in lamina Ⅱ. A few of them were found in laminae I and III. The percentages of neurons which co-expressed CB/GABA or CB/glycine out of the total numbers of CB- and GABA-LI neurons or CB- and glycine-LI neurons were 5.3% and 12.1% or 4.1% and 10.0%, respectively. The ratios of CR/GABA or CR/glycine co-existing neurons out of the total numbers of CR- and GABA-LI neurons or CR- and glycine-LI neurons were 5.8% and 7.6% or 4.4% and 7.1%, respectively. The rates of PV/GABA or PV/glycine co-localized neurons out of the total numbers of PV- and GABA-LI neurons or PV- and glycine-LI neurons were 11.1% and 5.1% or 9.9% and 5.1%, respectively. Conclusion The results indicate that some neurons in the MDH contain both CaBPs and GABA or glycine.

  13. Systemic administration of lidocaine suppresses the excitability of rat cervical dorsal horn neurons and tooth-pulp-evoked jaw-opening reflex.

    Science.gov (United States)

    Takeda, Mamoru; Oshima, Katsuo; Takahashi, Masayuki; Matsumoto, Shigeji

    2009-10-01

    Although systemic lidocaine has been demonstrated to have analgesic actions in neuropathic pain conditions, the effect of intravenous lidocaine on trigeminal pain has not been elucidated. The aim of the present study is to investigate the effect of intravenous lidocaine administration on the excitability of the upper cervical dorsal horn (C1) neuron having convergent inputs from both tooth-pulp (TP) and facial skin as well as nociceptive jaw-opening reflex (JOR). After electrical stimulation of TP, extracellular single-unit recordings from 19 C1 neurons and the digastric muscle electromyogram (dEMG) were made in pentobarbital-anesthetized rats. These neurons also responded to non-noxious and noxious mechanical stimulation (touch and pinch) of facial skin, and every neuron was considered to be a wide dynamic range (WDR) neuron. The TP-evoked C1 neuronal and dEMG activities were dose-dependently inhibited by systematic administration of lidocaine (1-2 mg/kg, i.v.). After intravenous injection of lidocaine, the unit discharges induced by both touch and pinch stimuli were inhibited, and the size of the receptive field for pinch was also significantly decreased. The mean spontaneous discharge frequencies were significantly inhibited by the application of lidocaine. These changes were reversed within -20 min. These results suggest that in the absence of neuropathic pain intravenous lidocaine injection suppresses the trigeminal nociceptive reflex as well as the excitability of C1 neurons having convergent inputs from TP and somatic afferents. Systemic lidocaine administration, therefore, may contribute to the alleviation of trigeminal-referred pain associated with tooth pain.

  14. Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain.

    Science.gov (United States)

    Medrano, Maria Carmen; Dhanasobhon, Dhanasak; Yalcin, Ipek; Schlichter, Rémy; Cordero-Erausquin, Matilde

    2016-07-01

    Plasticity of inhibitory transmission in the spinal dorsal horn (SDH) is believed to be a key mechanism responsible for pain hypersensitivity in neuropathic pain syndromes. We evaluated this plasticity by recording responses to mechanical stimuli in silent neurons (nonspontaneously active [NSA]) and neurons showing ongoing activity (spontaneously active [SA]) in the SDH of control and nerve-injured mice (cuff model). The SA and NSA neurons represented 59% and 41% of recorded neurons, respectively, and were predominantly wide dynamic range (WDR) in naive mice. Nerve-injured mice displayed a marked decrease in the mechanical threshold of the injured paw. After nerve injury, the proportion of SA neurons was increased to 78%, which suggests that some NSA neurons became SA. In addition, the response to touch (but not pinch) was dramatically increased in SA neurons, and high-threshold (nociceptive specific) neurons were no longer observed. Pharmacological blockade of spinal inhibition with a mixture of GABAA and glycine receptor antagonists significantly increased responses to innocuous mechanical stimuli in SA and NSA neurons from sham animals, but had no effect in sciatic nerve-injured animals, revealing a dramatic loss of spinal inhibitory tone in this situation. Moreover, in nerve-injured mice, local spinal administration of acetazolamide, a carbonic anhydrase inhibitor, restored responses to touch similar to those observed in naive or sham mice. These results suggest that a shift in the reversal potential for anions is an important component of the abnormal mechanical responses and of the loss of inhibitory tone recorded in a model of nerve injury-induced neuropathic pain.

  15. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  16. Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Kofuji Takefumi

    2011-05-01

    Full Text Available Abstract Background Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn. Results To develop a new tool for the identification of in vitro enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC. Enkephalinergic neurons from these mice expressed enhanced green fluorescent protein (eGFP under the control of the preproenkephalin (PPE gene (penk1 promoter. eGFP-positive neurons were distributed throughout the gray matter of the spinal cord, and were primarily observed in laminae I-II and V-VII, in a pattern similar to the distribution pattern of enkephalin-containing neurons. Double immunostaining analysis using anti-enkephalin and anti-eGFP antibodies showed that all eGFP-expressing neurons contained enkephalin. Incubation in the presence of forskolin, an activator of adenylate cyclase, increased the number of eGFP-positive neurons. These results indicate that eGFP expression is controlled by the penk1 promoter, which contains cyclic AMP-responsive elements. Sections obtained from sciatic nerve-ligated mice exhibited increased eGFP-positive neurons on the ipsilateral (nerve-ligated side compared with the contralateral (non-ligated side. These data indicate that PPE expression is affected by peripheral nerve injury. Additionally, single-neuron RT-PCR analysis showed that several eGFP positive-neurons in laminae I-II expressed glutamate decarboxylase 67 mRNA and that some expressed serotonin type 3 receptors. Conclusions These results suggest that eGFP-positive neurons in laminae I-II coexpress enkephalin and γ-aminobutyric acid (GABA, and are activated by forskolin and in conditions of nerve injury. The penk1-eGFP BAC transgenic mouse contributes to the further characterization of enkephalinergic neurons in the transmission and

  17. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain.

    Science.gov (United States)

    Duric, Vanja; McCarson, Kenneth E

    2007-10-31

    Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  18. NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice.

    Science.gov (United States)

    Li, Shuai; Cao, Jing; Yang, Xian; Suo, Zhan-Wei; Shi, Lei; Liu, Yan-Ni; Yang, Hong-Bin; Hu, Xiao-Dong

    2011-11-01

    Calcium influx via N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) regulates the intracellular trafficking of NMDARs, leading to long-lasting modification of NMDAR-mediated synaptic transmission that is involved in development, learning, and synaptic plasticity. The present study investigated the contribution of such NMDAR-dependent synaptic trafficking in spinal dorsal horn to the induction of pain hypersensitivity. Our data showed that direct activation of NMDARs by intrathecal NMDA application elicited pronounced mechanical allodynia in intact mice, which was concurrent with a specific increase in the abundance of NMDAR subunits NR1 and NR2B at the postsynaptic density (PSD)-enriched fraction. Selective inhibition of NR2B-containing NMDARs (NR2BR) by ifenprodil dose dependently attenuated the mechanical allodynia in NMDA-injected mice, suggesting the importance of NR2BR synaptic accumulation in NMDA-induced pain sensitization. The NR2BR redistribution at synapses after NMDA challenge was associated with a significant increase in NR2B phosphorylation at Tyr1472, a catalytic site by Src family protein tyrosine kinases (SFKs) that has been shown to prevent NR2B endocytosis. Intrathecal injection of a specific SFKs inhibitor, PP2, to block NR2B tyrosine phosphorylation eliminated NMDA-induced NR2BR synaptic expression and also attenuated the mechanical allodynia. These data suggested that activation of spinal NMDARs was able to accumulate NR2BR at synapses via SFK signaling, which might exaggerate NMDAR-dependent nociceptive transmission and contribute to NMDA-induced nociceptive behavioral hyperresponsiveness.

  19. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model

    Science.gov (United States)

    Li, Qian; Guo, Cheng-Hao; Chowdhury, Mohammed Ali; Dai, Tao-Li; Han, Wei

    2016-01-01

    Introduction The transient receptor potential ankyrin-1 (TRPA1) channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH) and persistent post-inflammatory visceral hypersensitivity. Methods We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS) or vehicle (n=12 per group). Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry. Results Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (Pcolon was significantly greater in the TNBS-treated group than in controls (P<0.05). In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023), and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041). Conclusion Our results indicate that upregulation of TRPA1 expression in the SDH is associated with persistent post-inflammatory visceral hypersensitivity in the rat and provides insight into potential therapeutic targets for the control of persistent visceral hypersensitivity. PMID:27980434

  20. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn.

    Science.gov (United States)

    Wang, D; Chen, T; Zhou, X; Couture, R; Hong, Y

    2013-12-03

    Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain.

  1. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers.

    Science.gov (United States)

    Haugan, F; Wibrand, K; Fiskå, A; Bramham, C R; Tjølsen, A

    2008-07-17

    Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.

  2. Effects of ketamine on neuronal activity of the spinal dorsal horn in rats with unilateral hindpaw inflammation%氯胺酮对单足致炎大鼠脊髓背角神经元活动的影响

    Institute of Scientific and Technical Information of China (English)

    郭华; 李菁锦; 吕国蔚

    2000-01-01

    A total of 32 units were extracellularly recorded from the spinal dorsal horn of rats. Unitary discharges evoked by stimulation of A and C fiber in ipsilateral lateral and medial plantar nerve were increased after carrageenan injection to the plantar area. The evoked responses to both A and C fiber were significantly decreased or even disappeared after administration of ketamine. The windup phenomenon was observed in neurons located deeply in the dorsal horn following carrageenan injection and was significantly suppressed or abolished after ketamine administration. The results above show NMDA receptor appears to be involved in the increase of excitability and the development of windup phenomenon in the spinal cord dorsal horn associated with carrageenan induced inflammation.%在大鼠脊髓背角用细胞外记录技术共记录到32个单位.角叉菜胶一侧足底注射致炎后, 电刺激该侧足底内外侧神经激动其中A、C纤维时, 脊髓背角神经元的诱发放电数均显著增加; 静脉注射NMDA受体拮抗剂氯胺酮后, A、C纤维刺激诱发的放电反应均显著下降甚至消失. 致炎后脊髓背角深层单位出现Windup现象, 静脉注射氯胺酮后该现象减轻或消失.结果提示: 角叉菜胶致炎导致脊髓背角神经元兴奋性升高和Windup; NMDA受体参与炎症痛和Windup形成.

  3. Direct excitation of deep dorsal horn neurones in the rat spinal cord by the activation of postsynaptic P2X receptors.

    Science.gov (United States)

    Shiokawa, Hiroaki; Nakatsuka, Terumasa; Furue, Hidemasa; Tsuda, Makoto; Katafuchi, Toshihiko; Inoue, Kazuhide; Yoshimura, Megumu

    2006-06-15

    ATP mediates somatosensory transmission in the spinal cord through the activation of P2X receptors. Nonetheless, the functional significance of postsynaptic P2X receptors in spinal deep dorsal horn neurones is still not yet well understood. Using the whole-cell patch-clamp technique, we investigated whether the activation of postsynaptic P2X receptors can modulate the synaptic transmission in lamina V neurones of postnatal day (P) 9-12 spinal cord slices. At a holding potential of -70 mV, ATPgammaS (100 microm), a nonhydrolysable ATP analogue, generated an inward current, which was resistant to tetrodotoxin (1 microm) in 61% of the lamina V neurones. The ATPgammaS-induced inward current was accompanied by a significant increase in the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in the majority of lamina V neurones. The ATPgammaS-induced inward current was not reproduced by P2Y receptor agonists, UTP (100 microm), UDP (100 microm), and 2-methylthio ADP (100 microm), and it was also not affected by the addition of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS) into the pipette solution, thus suggesting that ionotropic P2X receptors were activated by ATPgammaS instead of metabotropic P2Y receptors. On the other hand, alpha,beta-methylene ATP (100 microm) did not change any membrane current, but instead increased the mEPSC frequency in the majority of lamina V neurones. The ATPgammaS-induced inward current was suppressed by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (10 microm), but not by trinitrophenyl-ATP (TNP-ATP) (1 microm). Furthermore, we found that ATPgammaS (100 microm) produced a clear inward current which was observed in all lamina V neurones over P16 spinal cord slices, in contrast to P9-12. These results indicate that distinct subtypes of P2X receptors were functionally expressed at the post- and presynaptic sites in lamina V neurones, both of which may contribute to the hyperexcitability of lamina V in

  4. Differential effects of glutamate receptor antagonists on dorsal horn neurons responding to colorectal distension in a neonatal colon irritation rat model

    Institute of Scientific and Technical Information of China (English)

    Chun Lin; Elie D Al-Chaer

    2005-01-01

    AIM: To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX),two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).METHODS: Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001,0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 μmoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.RESULTS: (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20,40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dosedependent manner; (3) In control rats, CNQX (2 μmoL)had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 μmoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 μmoL)significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.CONCLUSION: Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.

  5. Neurokinin-1 Receptor-Immunopositive Neurons in the Medullary Dorsal Horn Provide Collateral Axons to both the Thalamus and Parabrachial Nucleus in Rats.

    Science.gov (United States)

    Li, Xu; Ge, Shun-Nan; Li, Yang; Wang, Han-Tao

    2017-01-17

    It has been suggested that the trigemino-thalamic and trigemino-parabrachial projection neurons in the medullary dorsal horn (MDH) are highly implicated in the sensory-discriminative and emotional/affective aspects of orofacial pain, respectively. In previous studies, some neurons were reported to send projections to both the thalamus and parabrachial nucleus by way of collaterals in the MDH. However, little is known about the chemoarchitecture of this group of neurons. Thus, in the present study, we determined whether the neurokinin-1 (NK-1) receptor, which is crucial for primary orofacial pain signaling, was expressed in MDH neurons co-innervating the thalamus and parabrachial nucleus. Vesicular glutamate transporter 2 (VGLUT2) mRNA, a biomarker for the subgroup of glutamatergic neurons closely related to pain sensation, was assessed in trigemino-parabrachial projection neurons in the MDH. After stereotactic injection of fluorogold (FG) and cholera toxin subunit B (CTB) into the ventral posteromedial thalamic nucleus (VPM) and parabrachial nucleus (PBN), respectively, triple labeling with fluorescence dyes for FG, CTB and NK-1 receptor (NK-1R) revealed that approximately 76 % of the total FG/CTB dually labeled neurons were detected as NK-1R-immunopositive, and more than 94 % of the triple-labeled neurons were distributed in lamina I. In addition, by FG retrograde tract-tracing combined with fluorescence in situ hybridization (FISH) for VGLUT2 mRNA, 54, 48 and 70 % of FG-labeled neurons in laminae I, II and III, respectively, of the MDH co-expressed FG and VGLUT2 mRNA. Thus, most of the MDH neurons co-innervating the thalamus and PBN were glutamatergic. Most MDH neurons providing the collateral axons to both the thalamus and parabrachial nucleus in rats were NK-1R-immunopositive and expressed VGLUT2 mRNA. NK-1R and VGLUT2 in MDH neurons may be involved in both sensory-discriminative and emotional/affective aspects of orofacial pain processing.

  6. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice.

    Science.gov (United States)

    Morioka, Norimitsu; Zhang, Fang Fang; Nakamura, Yoki; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-10-01

    Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw mechanical hypersensitivity was observed beginning 3days after partial sciatic nerve ligation (PSNL), but a persistent downregulation of astrocytic Cx43 in ipsilateral lumbar spinal dorsal horn was not observed until 7days post-PSNL, suggesting that Cx43 downregulation mediates the maintenance and not the initiation of nerve injury-induced hypersensitivity. Downregulation of Cx43 expression by intrathecal treatment with Cx43 siRNA also induced mechanical hypersensitivity. Conversely, restoring Cx43 by an adenovirus vector expressing Cx43 (Ad-Cx43) ameliorated PSNL-induced mechanical hypersensitivity. The sensitized state following PSNL is likely maintained by dysfunctional glutamatergic neurotransmission, as Cx43 siRNA-induced mechanical hypersensitivity was attenuated with intrathecal treatment of glutamate receptor antagonists MK801 and CNQX, but not neurokinin-1 receptor antagonist CP96345 or the Ca(2+) channel subunit α2δ1 blocker gabapentin. The source of this dysfunctional glutamatergic neurotransmission is likely decreased clearance of glutamate from the synapse rather than increased glutamate release into the synapse. Astrocytic expression of glutamate transporter GLT-1, but not GLAST, and activity of glutamate transport were markedly decreased in mice intrathecally injected with Cx43-targeting siRNA but not non-targeting siRNA. Glutamate release from spinal synaptosomes prepared from mice treated with either Cx43-targeting siRNA or non-targeting siRNA was unchanged. Intrathecal injection of Ad-Cx43 in PSNL mice restored astrocytic GLT-1 expression. The cytokine tumor necrosis factor (TNF) has been

  7. Resolvin D1 reverses chronic pancreatitis-induced mechanical allodynia, phosphorylation of NMDA receptors, and cytokines expression in the thoracic spinal dorsal horn

    Directory of Open Access Journals (Sweden)

    Quan-Xin Feng

    2012-10-01

    Full Text Available Abstract Background We previously reported that immune activation in the spinal dorsal horn contributes to pain induced by chronic pancreatitis (CP. Targeting immune response in the CNS may provide effective treatments for CP-induced pain. Recent findings demonstrate that resolvin D1 (RvD1 can potently dampen inflammatory pain. We hypothesized that intrathecal injection of RvD1 may inhibit pain of CP. Methods Rat CP model was built through intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS. All the rats were divided into three groups: TNBS, sham, and naïve controls and were further divided for intrathecal RvD1 administration. Pain behavior of rats was tested with von Frey filaments. Anxiety-like behavior and free locomotor and exploration of rats were evaluated by open field test and elevated plus maze. Pancreatic histology was evaluated with hematoxylin and eosin staining. Phosphorylation of NMDA receptor and expression of inflammatory cytokines were examined with Western blot, real-time RT-PCR and ELISA. Results Behavioral study indicated that compared to the vehicle control, RvD1 (100 ng/kg significantly decreased TNBS-induced mechanical allodynia at 2 h after administration (response frequencies: 49.2 ± 3.7% vs 71.3 ± 6.1%, and this effect was dose-dependent. Neither CP nor RvD1 treatment could affect anxiety-like behavior. CP or RvD1 treatment could not affect free locomotor and exploration of rats. Western blot analysis showed that compared with that of naïve group, phosphorylated NR1 (pNR1 and pNR2B in TNBS rats were significantly increased in the spinal cord (pNR1: 3.87±0.31 folds of naïve control, pNR2B: 4.17 ± 0.24 folds of naïve control. Compared to vehicle control, 10 ng/kg of RvD1 could significantly block expressions of pNR1 (2.21 ± 0.26 folds of naïve and pNR2B (3.31 ± 0.34 folds of naïve. Real-time RT-PCR and ELISA data showed that RvD1 (10 ng/kg but not vehicle could significantly block expressions of

  8. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine.

    Science.gov (United States)

    Dieb, W; Hafidi, A

    2013-09-01

    Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.

  9. 三种新发现的脊髓背角双投射神经元的特征与意义%Characteristics and implications of the three newly discovered double projection spinal dorsal horn neurons

    Institute of Scientific and Technical Information of China (English)

    吕国蔚; 李菁锦

    2002-01-01

    1980年来,我室用解剖学和(或)生理学方法鉴定出了脊颈束/背索突触后(sCT/DCPS),脊孤束/背索突触后(SST/DCPS)和脊颈束/脊孤束(SCT/SST)等三种脊髓背角神经元.这些神经元以经其各自的分叉轴突分别向两个靶核投射为特征.它们的另一特征是具有会聚性躯体-内脏觉传入输入.部分神经元除通过分叉初级传入从外周接受躯体-内脏感觉输入外,还从中枢神经系统各自的靶核接受躯体-内脏觉输入.这些发现对牵涉痛和针刺镇痛的发生机制提供新的理解.%Three neuronal populations, spinocervical tract / dorsal column postsynaptic (SCT/DCPS) , spinosolitarytract / dorsal column postsynaptic (SST/DCPS) and spinocervical tract / spinosolitary tract (SCT/SST) neurons, havebeen anatomically and/or physiologically identified in the spinal dorsal horn by our group since the 1980s. These newlyidentified neurons are characterized by their divergent projections to two target nuclei via their branched axons. These neu-rons are also characterized by having convergent viscero-somatic afferent inputs. Some of these neurons receive viscero-so-matic sensory inputs from both. the periphery via, in part, dichotomized primary afferents and their own target nuclei in thecentral nervous system. These findings put an new insight into mechanisms of referred pain and acupuncture.

  10. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain.

    Science.gov (United States)

    Moon, Ji-Young; Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-10-01

    We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic

  11. 姜黄素对2型糖尿病神经痛大鼠脊髓背角和背根神经节RAGE表达的影响%Effects of curcumin on expression of receptor for advanced glycation end-products in spinal dorsal horn and dorsal root ganglion of rats with type 2 diabetic neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    史小婷; 徐霞; 曹红; 李佳佳; 吴绍胜; 李军

    2014-01-01

    Objective To evaluate the effects of curcumin on the expression of receptor for advanced glycation end-products (RAGE) in the spinal dorsal horn and dorsal root ganglion (DRG) of the rats with type 2 diabetic neuropathic pain (DNP).Methods Male Sprague-Dawley rats,weighing 160-180 g,were used in this study.Type 2 diabetes mellitus was induced by high-fat and high-sucrose diet for 8 weeks and intraperitoneal streptozotocin (STZ) 35 mg/kg and confirmed by fasting blood glucose level ≥ 16.7 mmol/L 3 days later.Type 2 DNPwas confirmed by the mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal latency (TWL) measured on day 14 after STZ administration less than 80% of the baseline value.Eighty-one rats with type 2 DNP were randomly divided into 3 groups (n =27 each) using a random number table:DNP group,DNP + curcumin group (DCur group),and DNP+ solvent group (group DSC).In DCur and DSC groups,curcumin 100 mg· kg-1 · d-1 and corn oil 4 ml · kg-1 · d-1 were injected intraperitonally,respectively,for 14 consecutive days starting from the day 14 after STZ administration.Another 27 normal male Sprague-Dawley rats served as control group (group C) and were fed with normal forage.MWT and TWL were measured before STZ injection,at day 14 after STZ injection,and on 3,7 and 14 days after curcumin injection.RAGE positive cells were determined by immuno-histochemistry and the expression of RAGE by Western blot in the spinal dorsal horn and DRG after MWT and TWL were measured on 3,7 and 14 days after curcumin injection.Results Compared with group C,MWT was significantly decreased and TWL was shortened at 14 days after STZ injection and each time point after curcumin injection,the rate of RAGE positive cells in the spinal dorsal horn and DRG was increased at each time point after curcumin injection,and the expression of RAGE was up-regulated in the spinal dorsal horn at each time point after curcumin injection and in the DRG at 7 and 14 days after curcumin

  12. Connections between 5-HT-containing terminals and 5-HT2A receptor and γ-aminobutyric acid or glycine co-existed neurons in the rat medullary dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LI Hui; LI Yun-qing

    2001-01-01

    Objective: To investigate the connections between serotonin (5-HT)-containing terminals and 5-HT2A receptor (5-HT2AR)/γ-aminobutyric acid (GABA) or 5-HT2AR/glycine co-existed neurons in the rat medullary dorsal horn (MDH).Methods: Immunofluorescence histochemical triple-staining for 5-HT, 5-HT2AR, GABA or glycine. Results: 5-HT-immunoreaetive fibers and terminals were chiefly located in the superficial laminae (laminae Ⅰ and Ⅱ) of the MDH. Neurons exhibiting 5-HT2AR-, GABA- or glycine-immunoreactivities were mainly observed in the superficial laminae. Some 5-HT2AR-immunopositive neurons also exhibited GABA- or glycine-immunoreaetivities. 5-HT-containing terminals made close contacts with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons. Conclusion: 5-HT2AR/GABA or 5-HT2AR /glycine co-exist in some of the neurons in the superficial laminae of the MDH. 5-HT-immunoreactive terminals form close connections with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons.

  13. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats.

    Science.gov (United States)

    Sagar, Devi Rani; Kelly, Sara; Millns, Paul J; O'Shaughnessey, Celestine T; Kendall, David A; Chapman, Victoria

    2005-07-01

    Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (PCB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target.

  14. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  15. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  16. 大鼠脊髓背角神经元痛放电确定性行为的年龄相关变化%Age-related changes in deterministic behaviors of nociceptive firing of rat dorsal horn neurons

    Institute of Scientific and Technical Information of China (English)

    郑继宏; 冯威; 菅忠; 陈军

    2004-01-01

    为阐明脊髓背角神经元痛放电的年龄相关的动力学变化,本研究采用非线性预报方法,对两组不同年龄大鼠(成年青龄鼠3~4月龄,老年鼠>22月龄)组织损伤诱发的脊髓背角神经元痛放电峰峰间期序列进行了确定性行为的定量分析.结果显示,皮下注入蜜蜂毒,在两组大鼠均诱发脊髓背角广动力域神经元长时程放电,而老龄大鼠的痛放电峰峰间期序列表现出更高的可确定性.本研究表明,单个神经元的痛放电动力学在整个生命过程中并不是恒定不变的,伤害性神经元活动的年龄相关动力学变化可能是老年人群中多样化痛反应的内在机制之一.%To demonstrate the age-related changes in the dynamics of the nociceptive discharge of dorsal horn nociceptive neurons, the nonlinear prediction method was used to quantify the degree of deterministic behavior within the interspike interval series of tissue injuryinduced firing of spinal nociceptive neurons in anesthetized adult young (3~4 months) and aged (>22 months) rats. Subcutaneous bee venom injection induced long-term discharge of spinal wide dynamic range (WDR) neurons in both groups. However, the nociceptive discharge of single WDR neurons in the aged group showed higher determinism when compared with the adult young rats. This result suggests that the dynamics of single nocicepfive neurons may not remain constant throughout the life span, and this age-associated change may be an underlying mechanism for various pain manifestations in the elderly population.

  17. Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence.

    Science.gov (United States)

    Doly, Stéphane; Fischer, Jacqueline; Brisorgueil, Marie-Jeanne; Vergé, Daniel; Conrath, Marie

    2005-09-26

    Several lines of evidence indicate that 5-HT7 receptors are involved in pain control at the level of the spinal cord, although their mechanism of action is poorly understood. To provide a morphological basis for understanding the action of 5-HT on this receptor, we performed an immunocytochemical study of 5-HT7 receptor distribution at the lumbar level. 5-HT7 immunolabelling is localized mainly in the two superficial laminae of the dorsal horn and in small and medium-sized dorsal root ganglion cells, which is consistent with a predominant role in nociception. In addition, moderate labelling is found in the lumbar dorsolateral nucleus (Onuf's nucleus), suggesting involvement in the control of pelvic floor muscles. Electron microscopic examination of the dorsal horn revealed three main localizations: 1) a postsynaptic localization on peptidergic cell bodies in laminae I-III and in numerous dendrites; 2) a presynaptic localization on unmyelinated and thin myelinated peptidergic fibers (two types of axon terminals are observed, large ones, presumably of primary afferent origin, and smaller ones partially from intrinsic cells; this presynaptic labelling represents 60% and 22% of total labelling in laminae I and II, respectively); and 3) 16.9% of labelling in lamina I and 19.8% in lamina II are observed in astrocytes. Labeled astrocytes are either intermingled with neuronal elements or make astrocytic "feet" on blood vessels. In dendrites, the labelling is localized on synaptic differentiations, suggesting that 5-HT may act synaptically on the 5-HT7 receptor. This localization is compared with other 5-HT receptor localizations, and their physiological consequences are discussed.

  18. Focusing horn

    CERN Multimedia

    Was used for the AA (antiproton accumulator). Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet.For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  19. 幻肢痛大鼠脊髓背角神经元和突触数量的变化%Changes in the number of synapses and neurons in spinal dorsal horn in a rat model of phantom limb pain

    Institute of Scientific and Technical Information of China (English)

    林菁艳; 彭彬; 杨正伟; 闵苏

    2010-01-01

    Objective To investigate the changes in the number of synapses and neurons in the spinal dorsal horn in a rat model of phantom limb pain. Methods Eleven healthy adult SD rats of both sexes weighing 209-300 g were randomly divided into 2 groups: sham operation group (group S, n = 5) and phantom limb pain group (group P, n = 6). Phantom limb pain was induced by resection of a 0.5 cm segment of unilateral sciatic nerve in group P. In group S unilateral sciatic nerve was exposed but not transected. The animals were observed for autotomy and scored (0 = no autotomy, 13 = the worst autotomy) after operation and were sacrificed on the 28th day after operation. The L3-6 segment of the spinal cord was removed for determination of the number of neurons (by Nissl's staining) and synapses (by synaptophysin immuno-histochemistry).Results In group S no animal developed autotomy. In group P autotomy started from the 2nd day after operation and the score reached 9-11. The number of the neurons in the spinal dorsal horn in all 4 segments and the number of synapses in L3 and 16 segments were comparable between the two sides and the 2 groups. The number of synapses in the spinal dorsal horn of L4and L5 segment was significantly larger in the operated side than in the contralateral side in group P. Conclusion The number of synapses in the spinal dorsal horn significantly increases in animals with plantom limb pain which induces no increase in the number of neurons in the spinal dorsal horn.%目的 探讨幻肢痛大鼠脊髓背角神经元和突触数量的变化.方法 健康成年SD大鼠11只,雄雌不拘,体重290~300 g,随机分为2组:假手术组(S组,n=5)和单侧坐骨神经横断组(P组,n=6).术后持续观察P组大鼠自噬情况,并进行自噬评分.术后28 d时,取L3~6节段脊髓组织,分别进行尼氏染色(显示神经元)和突触素免疫组织化学染色(显示突触数量),计数手术侧和非手术侧脊髓背角神经元和突触的数量.结果 P

  20. 不同频率电针对正常大鼠脊髓背角的转录组学研究%Transcriptomics Study of the Transcriptional Response of the Spinal Dorsal Horn to Electroacupuncture Stimulation with Different Frequencies

    Institute of Scientific and Technical Information of China (English)

    王珂; 张嵘; 赵国屏; 张庆华; 崔彩莲

    2012-01-01

    Objective To explore the effects of low-and high-frequency electroacupuncture (EA) on the gene expression profiles in rat spinal dorsal horn (DH) under the physiological state, thus providing the information to find out the differences of different EA frequencies induced effects. Methods Using cDNA microarray, the changes of the gene expressions in the DH were detected and compared between 2 Hz EA and 100 Hz EA at bilateral Zusanli (ST36) and Sanyinjiao(SP6). The differentially expressed genes were identified. The EASE scores were used to comprehensively analyze the gene functions (by Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results (1) After EA stimulation 1 150 genes/expressed sequence tags (ESTs) were differentially expressed by 2 Hz EA, while 1 270 genes/ESTs were differentially expressed by 100 Hz EA. (2) Both 2 Hz and 100 Hz EA could induce the modulation of the same 516 genes/ESTs in the same direction, which was correlated with neural signal transmission. (3) The differentially expressed genes regulated specifically by 2 Hz were correlated with neural plasticity. (4) The differentially expressed genes regulated specifically by 100 Hz were correlated with stress and immunoregulation. Conclusions Either low-or high-frequency EA could extensively regulate the spinal cord information processing. The low-frequency EA participated more in the regulation of neural plasticity, while high-frequency EA had more significant effects on stress and immunoregulation.%目的 探索生理状态下低频和高频电针对大鼠脊髓背角区域基因表达谱的影响,为理解不同频率的电针效应差异提供研究资料.方法 采用基因表达谱芯片技术,检测比较2 Hz和100 Hz电针刺激大鼠双侧足三里穴(ST36)和三阴交穴(SP6)后脊髓背角区域基因表达的变化,识别差异表达基因,利用生物信息学手段对差异表达基因所涉及的基因功能和通路进行富集识别与分析.结果 (1

  1. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  2. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor.

    Science.gov (United States)

    O'Brien, E E; Smeester, B A; Michlitsch, K S; Lee, J-H; Beitz, A J

    2015-08-20

    While spinal cord astrocytes play a key role in the generation of cancer pain, there have been no studies that have examined the relationship of tumor-induced astrocyte activation and aromatase expression during the development of cancer pain. Here, we examined tumor-induced mechanical hyperalgesia and cold allodynia, and changes in Glial fibrillary acid protein (GFAP) and aromatase expression in murine models of painful and non-painful bone cancer. We demonstrate that implantation of fibrosarcoma cells, but not melanoma cells, produces robust mechanical hyperalgesia and cold allodynia in tumor-bearing mice compared to saline-injected controls. Secondly, this increase in mechanical hyperalgesia and cold allodynia is mirrored by significant increases in both spinal astrocyte activity and aromatase expression in the dorsal horn of fibrosarcoma-bearing mice. Importantly, we show that aromatase is only found within a subset of astrocytes and not in neurons in the lumbar spinal cord. Finally, administration of an aromatase inhibitor reduced tumor-induced hyperalgesia in fibrosarcoma-bearing animals. We conclude that a painful fibrosarcoma tumor induces a significant increase in spinal astrocyte activation and aromatase expression and that the up-regulation of aromatase plays a role in the development of bone tumor-induced hyperalgesia. Since spinal aromatase is also upregulated, but to a lesser extent, in non-painful melanoma bone tumors, it may also be neuroprotective and responsive to the changing tumor environment.

  3. Effects of gabapentin combined with morphine on expression of glial fibillary acid protein of spinal dorsal horn in rats with neuropathic pain%加巴喷丁联合吗啡对神经病理性疼痛大鼠脊髓胶质原纤维酸性蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘红; 万朝权; 田可耘; 梅莉; 崔灿; 张晓晨

    2012-01-01

    目的:观察加巴喷丁联合吗啡镇痛对坐骨神经慢性压迫(CCI)大鼠脊髓背角胶质原纤维酸性蛋白(GFAP)表达的影响.方法:选择重量在180~220 g的成年雄性SD大鼠24只,随机分为4组(n=6):假手术组(S组)、模型组(M组)、预防性镇痛组(P组)和常规镇痛组(N组).M组、P组和N组采用CCI建立神经病理性疼痛模型,P组在术前1 d至手术后9 d使用加巴喷丁联合吗啡镇痛,N组在手术当日至手术后第9天加巴喷丁联合吗啡镇痛,S组和M组仅给予生理盐水.分别于手术后第3、5、7、9天测定各组50%机械刺激缩足阈值,手术后第10天采用免疫组化测定脊髓GFAP表达.结果:与M组相比,P组和N组50%缩足阈值升高,同时脊髓背角GFAP表达降低(M组:0.623 7±0.049 03,P组:0.461 6±0.038 90,N组:0.521 5±0.026 91).结论:加巴喷丁联合吗啡可以减轻CCI神经病理性疼痛和脊髓背角GFAP的表达.%Objective To observe the effects of gabapentin combined with morphine on expression of glial fibillary acid protein (GFAP) of spinal dorsal horn in rats model of chronic constriction injury (CCI) to sciatic nerve. Methods Twenty four male Sprague-Dawley rats were randomly divided into sham operation group (group S), model group (group M), preventive analgesia group (group P) and normal analgesia group (group N), and were subjected to CCI (group M, P, N) or sham surgery (group S). Gabapentin combined with morphine were given from pre-operative day 1 to postoperative day 9 in group P, and in group N they were given from operative day to postoperative day 9. The group M and group S were given normal saline. Mechanical withdraw threshold of the rats were measured with Von Frey hair on pre-operative day 1 and postoperative day 3, 5, 7, 9 respectively. The expression of GFAP in spinal dorsal horn was assessed by immunohistochemistry at postoperative day 10. Results After operation, mechanical withdraw threshold decreased markedly in group M. Compared

  4. The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Sheu-Ran; Kang, Suk-Yun; Moon, Ji-Young; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Lee, Jang-Hern

    2016-10-20

    Although we have recently demonstrated that carrageenan-induced inflammation upregulates the expression of spinal interleukin (IL)-1β, which inhibits spinal astrocyte activation and results in the delayed development of Mirror-Image Pain (MIP), little is known regarding the mechanisms that underlie how spinal IL-1β inhibits the astrocyte activation. In this study, we examined the effect of spinal IL-1β on astrocyte gap junctions (GJ) and the development of MIP. Following unilateral carrageenan (CA) injection, mechanical allodynia (MA) was evaluated at various time points. Immunohistochemistry and Western blot analysis were used to determine changes in the expression of GFAP and connexins (Cx) in the spinal cord dorsal horn. Carrageenan rats showed a delayed onset of contralateral MA, which mimicked the temporal expression pattern of spinal Cx43 (an astrocyte gap junctional protein) and GFAP. Intrathecal administration of an interleukin-1 receptor antagonist (IL-1ra) twice-a-day on post-carrageenan injection days 0 to 3 caused a significant increase in contralateral MA and spinal Cx43 and GFAP expression. In addition, co-administration of IL-1β with IL-1ra blocked the IL-1ra-induced increase in contralateral MA and the upregulated expression of spinal Cx43 and GFAP. Finally, co-administration of carbenoxolone (CBX; a GJ decoupler) or Gap26 (a specific Cx43 mimetic blocking peptide) with IL-1ra significantly blocked the IL-1ra-induced early development of contralateral MA and the associated upregulation of spinal Cx43 and GFAP expression. These results demonstrate that spinal IL-1β suppresses Cx43 expression and astrocyte activation during the early phase of CA-induced inflammation resulting in the delayed onset of contralateral MA. These findings imply that spinal IL-1β can inhibit astrocyte activation and regulate the time of induction of contralateral MA through modulation of spinal Cx43 expression.

  5. 姜黄素对2型糖尿病神经病理性痛大鼠脊髓背角及背根神经节p-ERK和p-CREB表达的影响%Effect of curcumin on expression of p-ERK and p-CREB in spinal dorsal horn and dorsal root ganglion in type 2 diabetic neuropathic pain in rats

    Institute of Scientific and Technical Information of China (English)

    周林; 袁超; 史小婷; 郑昌健; 连庆泉; 李军; 曹红

    2013-01-01

    目的 评价姜黄素对2型糖尿病神经病理性痛大鼠脊髓背角及背根神经节磷酸化细胞外信号调节激酶(p-ERK)、磷酸化环磷酸腺苷反应元件结合蛋白(p-CREB)表达的影响.方法 高脂高糖喂养雄性SD大鼠8周诱导胰岛素抵抗,以35 mg/kg链脲佐菌素(STZ)单次腹腔注射,3d后血糖≥16.7 mmol/L大鼠为2型糖尿病大鼠.注射STZ后14d机械缩足阈(MWT)和热缩足潜伏期(TWL)低于基础值80%的大鼠为2型糖尿病神经病理性痛大鼠,采用随机数字表法,将其分为3组(n=27):2型糖尿病神经病理性痛组(DNP组)、姜黄素组(Cur组)和溶剂对照组(SC组).Cur组和SC组于注射STZ后14 d腹腔注射姜黄素和玉米油100 mg/kg(25 mg/ml),1次/d,连续14 d,DNP组不做任何处理.另取27只正常大鼠为对照组(C组),给予普通饲料喂养.给予姜黄素后第3、7和14天(T13)时测定MWT和TWL后各组随机取9只大鼠处死,取L4-6脊髓背角和背根神经节,采用Westem blot法检测p-ERK和p-CREB的表达.结果 与C组比较,DNP组和SC组T13时MWT降低,TWL缩短,脊髓背角和背根神经节p-ERK、p-CREB表达上调,Cur组T1时MWT降低,TWL缩短,脊髓背角和背根神经节p-ERK、p-CREB表达上调(P<0.05);与DNP组比较,Cur组T23时MWT升高,TWL延长,脊髓背角和背根神经节p-ERK、p-CREB表达下调(P<0.05).DNP组与SC组各指标比较差异无统计学意义(P>0.05).结论 姜黄素可通过抑制脊髓背角和背根神经节p-ERK、p-CREB表达上调减轻大鼠2型糖尿病神经病理性痛.%Objective To evaluate the effects of curcumin on the expression of phosphorylated extracellular signal-related kinase (p-ERK) and phosphorylated cAMP response element binding protein (p-CREB) in the spinal dorsal horn and dorsal root ganglion (DRG) in type 2 diabetic neuropathic pain (DNP) in rats.Methods Type 2 diabetes mellitus was induced by high-fat and high-sucrose diet and intraperitoneal streptozotocin (STZ) 35mg/kg,and confirmed by

  6. 姜黄素对2型糖尿病大鼠神经病理性痛及脊髓背角和背根神经节IRE1α表达的影响%Effects of curcumin on type 2 diabetic neuropathic pain and expression of inositol-requiring enzyme 1α in spinal dorsal horn and dorsal root ganglia in rats

    Institute of Scientific and Technical Information of China (English)

    党江坤; 汪小丹; 周林; 曹红; 吴艳; 李军; 连庆泉

    2012-01-01

    目的 评价姜黄素对2型糖尿病大鼠神经病理性痛及脊髓背角和背根神经节肌醇需求激酶1α(IRE1α)表达的影响.方法 高脂高糖喂养雄性SD大鼠8周诱导胰岛素抵抗,以35 mg/kg链脲佐菌素(STZ)单次腹腔注射,3d后血糖≥16.7 mmol/L大鼠为2型糖尿病大鼠.注射STZ 14 d后机械缩足阈值(MWT)和热缩足潜伏期(TWL)低于基础值80%的大鼠为2型糖尿病神经病理性痛大鼠,采用随机数字表法,将其随机分为3组(n=27):2型糖尿病神经病理性痛组(DNP组)、姜黄素组(Cur组)和溶剂对照组(SC组).Cur组和SC组于注射STZ 14 d后腹腔注射姜黄素或玉米油100 mg/kg(25mg/ml),1次/d,连续14d,DNP组不做任何处理.另取27只正常大鼠为对照组(C组),给予普通饲料喂养.给予姜黄素后第3、7和14天时测定MWT和TWL,痛阈测定后用Western blot法检测大鼠脊髓背角和背根神经节IREIα的表达.结果 与C组比较、DNP组、Cur组和SC组MWT降低,TWL缩短,脊髓背角和背根神经节IRE1α表达上H调(P<0.05);与DNP组比较,Cur组MWT升高,TWL延长,脊髓背角和背根神经节IREIα表达下调(p<0.05).SC组和DNP组上述指标比较差异无统计学意义(P>0.05).结论 姜黄素可减轻2型糖尿病大鼠神经病理性痛,其机制与抑制脊髓背角和背根神经节IRE1α表达有关.%Objective To investigate the effects of curcumin on type 2 diabetic neuropathic pain (DNP)and expression of inositol-requiring enzyme 1α (IRE1α) in spinal dorsal horn and dorsal root ganglia (DRG) in rats.Methods Type 2 diabetes mellitus was induced by high-fat and high-sucrose diet and intraperitoneal streptozotocin (STZ) 35 mg/kg,and confirmed by fasting blood glucose level > 16.7 mmol/L in male SD rats.Type 2 DNP was confirmed by the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWI.) measured on day 14 after STZ administration < 80% of the baseline value.The rats were then randomly divided into 3

  7. 姜黄素对2型糖尿病神经病理性痛大鼠脊髓背角和背根神经节MMP-2及MMP-9表达的影响%Effect of curcumin on expression of MMP-2 and MMP-9 in spinal dorsal horn and dorsal root ganglion of rats with type 2 diabetic neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    吴绍胜; 孙传峰; 曹红; 李佳佳; 史小婷; 李军

    2014-01-01

    Objective To evaluate the effect of curcumin on the expression of MMP-2 and MMP-9 in the spinal dorsal horn and dorsal root ganglion (DRG) of rats with type 2 diabetic neuropathic pain (DNP).Methods Type 2 diabetes mellitus was induced by high-fat and high-sucrose diet and intraperitoneal streptozotocin 35 mg/kg,and confirmed by fasting blood glucose level ≥ 16.7 mmol/L in male Sprague-Dawley rats.Type 2 DNP was confirmed by the mechanical paw withdrawal threshold (MWT) and thermal paw withdraw latency (TWL) measured on day 14 after streptozotocin administration < 80% of the baseline value.The rats were then randomly divided into 3 groups (n =27 each):type 2 DNP group (group DNP); curcumin group (group Cur); solvent control group (group SC).In Cur and SC groups,curcumin 100 mg/kg and corn oil 4 ml/kg were injected intraperitonally,respectively,once a day for 14 consecutive days starting from day 14 after streptozotocin administration.Another 27 normal Sprague-Dawley male rats served as control group (group C) and were fed with normal forage.MWT and TWL were measured before type 2 DNP was induced,after type 2 DNP was induced,and at 3,7 and 14 days after curcumin injection(T1-5).The rats were sacrificed after MWT and TWL were measured at T3-5,and the lumbar segments of the spinal cord and DRG (L4-6) were removed for determination of the expression of MMP-2 and MMP-9 by Western blot.Results Compared with group C,MWT was significantly decreased and TWL was shortened,and MMP-2 and MMP-9 expression in the spinal dorsal horn and DRG was up-regulated in DNP,Cur and SC groups.Compared with DNP group,MWT was significantly increased and TWL was prolonged,and MMP-2 and MMP-9 expression in the spinal dorsal horn and DRG was down-regulated in Cur group,and no significant changes were found in the parameters mentioned above in SC group.Conclusion The mechanism by which curcumin attenuates type 2 DNP may be related to up-regulation of the expression of MMP-2 and MMP-9 in the

  8. Effects of the stimulation of colorectal distention on expression of P2X4 and P2X7 receptors in dorsal commissural nucleus and dorsal horn of sacral segment of spinal cord in rats with irritable bowel syndrome%结肠扩张刺激对肠易激综合征大鼠DCN核团及骶髓后角中P2X4及P2X7受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    朱琳; 章鹏宇; 王景杰; 黄裕新

    2011-01-01

    目的 观察肠易激综合征(irritable bowel syndrome,IBS)致内脏高敏感化大鼠在结肠扩张刺激时大鼠腹直肌肌电变化,并观察骶髓后联合核(dorsal commissural nucleus,DCN)和脊髓后角中P2X4和P2X7受体表达的变化情况,为探讨IBS内脏敏化的神经机制提供理论依据.方法 以旋毛虫感染大鼠建立IBS大鼠模型,并以正常大鼠作为对照,实验共分4组:正常大鼠无刺激组,正常大鼠结肠扩张刺激组,IBS大鼠无刺激组,IBS大鼠结肠扩张刺激组.采用免疫组织荧光化学方法,将P2X4和P2X7受体分别标记,观察其在骶髓后角及DCN核团上的表达变化,并同步测定大鼠腹直肌肌电变化.结果 IBS结肠刺激组大鼠腹直肌肌电变化、大鼠骶髓后角及DCN核团中的P2X4和P2X7受体表达较正常大鼠对照组及IBS未刺激组均显著增强.结论 P2X4 和 P2X7受体可能是IBS致内脏敏感性增高的重要因素.%Objective To explore the expression of P2X4 and P2X7 receptors in dorsal commissural nucleus ( DCN ) and dorsal horn of sacral segment of spinal cord in rats with irritable bowel syndrome( IBS ) induced by the stiruulation of colorectal distention,and to provide a theoretical evidence in prevention and treatment of IBS. Methods The rats were gavaged with the Trichinella spiralis to establish the irritable bowel syndrome model,and then divided into 2 groups :IBS without colon distension group and IBS with colon distension group. The normal rats were chosen as controls. and were also divided into 2 groups according to receiving colon distension or not. The expression of P2X4 and P2X7 receptors was detected in neurons of DCN and dorsal horn of the sacral segment of spinal cord in all rats using the immunofluorescent staining method, and the myoelectric changes of the rectus abdominis were recorded at the same time. Result.s The electro-activity of the rectus abdominis and the expression of P2X4 and P2X7 receptors were significantly en

  9. Change of pannexin1 expression in dorsal horn of spinal cord in rats with neuropathic pain%缝隙连接蛋白pannexin1在神经病理性疼痛大鼠脊髓背角的表达变化

    Institute of Scientific and Technical Information of China (English)

    周功锐; 包晓航; 毛庆祥; 龙宗泓; 景胜; 黄静; 杨天德

    2015-01-01

    Objective To observe the expression of pannexin1(PX1) in the dorsal horn of spinal cord in model ratwith neu-ropathipain afteselective ligation of sciatinerve branche.Method50 male SD ratwere randomly divided into 3 group,inclu-ding the control group(Wgroup ,n= 10) ,sham operation group(sham group ,n= 10) and sciatinerve branch selective injury group(SNI group ,n=30) .30 ratwere killed on postoperative 3 ,5 ,7 ,14 d and the lumbasegmenof the spinal cord wataken fodetecting the expression of PX1 by using Western blo.Othe20 ratwere killed on 7 d afteSNI and the expression of glial fibril-lary acidiprotein(GFAP) in the spinal cord wadetected with immunohistology .Among them ,10 ratin the SNI group were trea-ted with intrathecal intubation before operation and administrated with saline 20 μL ocarbenoxolone(CBX) 20 μL by intrathecal injection on postoperative 7 d fodetermining the expression of GFAP by the immunohistology .ResultThe expression of PX1 in the SNI group waincreased and enhanced with time ,which wasignificantly highethan thain the Wgroup and the sham group (P<0 .05);the GFAP expression on 7 d in the SNI group waobviously increased compared with the Wgroup and the sham group(P<0 .05);afteintrathecal injection of CBX ,the expression of GFAP wasignificantly decreased compared with thain the normal saline group(P<0 .05) .No statistically significandifferencein the expression of PX1 and GFAP were found in the Wgroup and the sham group .Conclusion PX1 may be involved in the activation of astrocyte,prompting thaPX1 playan importanrole in the neuropathipain caused by the peripheral nervel injury .%目的 观察缝隙连接蛋白pannexin1(PX1)在坐骨神经分支选择结扎模型大鼠脊髓背角上的表达变化.方法 健康SD雄性大鼠50只 ,分为对照组(WT组 ,n=10)、假手术组(sham组 ,n=10)和坐骨神经分支选择性损伤组(SNI组 ,n=30).SNI组20只大鼠于术后3、5、7、14 d(n=5) ,WT、sham组于术后14 d(n=5)

  10. 异丙酚对正常大鼠脊髓背角感觉神经元反应性的抑制作用%Inhibitory effects of spinal propofol on the responses of spinal dorsal horn neurons in normal rats

    Institute of Scientific and Technical Information of China (English)

    孙焱芫; 李开诚; 陈军

    2004-01-01

    脊髓背角感觉神经元不仅在感觉信息的传递和调节中起到重要作用,也是各种内源性和外源性药物的作用靶位.为了解静脉麻醉剂异丙酚是否对背角感觉神经元的反应性具有调节作用,本实验采用在体单细胞胞外记录技术,观察了脊髓背表面直接滴注0.5 μmol异丙酚对戊巴比妥钠麻醉大鼠脊髓背角广动力域(WDR)神经元和低阈值机械感受型(LTM)神经元反应性的影响.实验发现,异丙酚能抑制背角WDR神经元由施加于外周感受野伤害性热刺激(45、47、49和53℃,15 s)和夹捏机械刺激(10 s)诱发的反应性,与DMSO对照组比较具有显著性统计学差异(P<0.05);同样,异丙酚对非伤害性机械刺激诱发的WDR或LTM神经元的反应性也具有显著的抑制作用(P<0.05).本结果提示,异丙酚可直接作用于正常大鼠脊髓背角神经元,对由非伤害性和伤害性纤维介导的神经元反应性均产生抑制作用,因此异丙酚的脊髓抗伤害作用可能不是特异性的.%Spinal dorsal horn neurons play an important role in the processing of sensory information and are also targets of modulation by both endogenous and exogenous drugs. Propofol is an intravenous anesthetic and whether it has direct modulatory actions on sensory neuronal responses of the spinal cord dorsal horn has not been well studied. In the present study, a single dose (0.5 ?mol) of propofol dissolved in dimethyl sulfoxide (DMSO) was directly applied onto the dorsal surface of the spinal cord and its effect was evaluated in 25 wide-dynamicrange (WDR) neurons and 10 low-threshold mechanoreceptive (LTM) neurons by using extracellular single unit recording technique in sodium pentobarbital anesthetized rats. Compared with the DMSO treatment, propofol produced a significant inhibition of WDR neuronal activity evoked by both noxious heat (45, 47, 49 or 53℃, 15 s) and mechanical (pinch, 10 s) stimuli applied to their cutaneous receptive

  11. Effects of electroacupuncture on expression of c-fos protein in the spinal dorsal horn of rats with chronic visceral hyperalgesia%电针对慢性内脏痛敏大鼠脊髓背角c-fos蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    祁德波; 李为民

    2012-01-01

    OBJECTIVE:Acupuncture is widely used in clinics to suppress chronic visceral pain in patients with irritable bowel syndrome (IBS); however,the exact neurobiological mechanisms for its therapeutic effects need further exploration.The aim of this study was to investigate the possible involvement of spinal neurons in the effects of electroacupuncture (EA) in relieving chronic visceral hyperalgesia in a rat model of IBS.METHODS:Colon mechanical irritation was applied to male neonatal Sprague-Dawley rats to establish the IBS model.Behavioral test of the abdominal withdraw reflex (AWR) response to colorectal distention stimuli was conducted to judge the degree of colorectal sensitivity.EA at acupoints Zusanli (ST36) and Shangjuxu (ST37) was applied bilaterally in a total of four times every other day,while sham-EA at similar acupoints was done by inserting needles without electrical stimulation.Immunohistochemical methods were used to display the expression of proto-oncogene protein c-fos in the spinal dorsal horn.RESULTS:It was found that AWR scores were significantly increased in the IBS model rats (P<0.01),accompanied with significant increase in the expression of c-fos protein in the superficial laminae (SDH,laminae Ⅰ and Ⅱ) and nucleus proprius (NP,laminae Ⅲ and Ⅳ),the neck of the dorsal horn (NECK,laminae V and Ⅵ) at lumbosacral (L6-S2) spinal level,and in NECK at thoracolumbar (T13-L2) spinal level,when compared with normal rats (P<0.05).After EA treatment,AWR scores and the expression of c-fos protein in SDH,NP and NECK at similar spinal levels were significantly decreased in the IBS model rats (P<0.05).No such effects on either AWR scores or the expression of c-fos protein were observed in IBS model rats after sham-EA treatment.CONCLUSION:The abnormally high neuronal excitability in the spinal dorsal horn may be an important reason underlying the visceral hyperalgesia in IBS model rats.EA treatment can relieve the chronic visceral hyperalgesia in

  12. Activity correlations between on-like and off-like cells of the rostral ventromedial medulla and simultaneously recorded wide-dynamic-range neurons of the spinal dorsal horn in rats.

    Science.gov (United States)

    Salas, Rafael; Ramirez, Karla; Vanegas, Horacio; Vazquez, Enrique

    2016-12-01

    Considerable evidence supports the notion that on- and off-cells of the rostral ventromedial medulla (RVM) facilitate and depress, respectively, spinal nociceptive transmission. This notion stems from a covariation of on- or off-cell activities and spinal nocifensive reflexes. Such covariation could theoretically be due to their independently responding to a common source, or to an RVM-derived modulation of ventral horn neurons. Here, we tested whether on- and off-cells indeed modulate spinal nociceptive neurons. In deeply anesthetized rats, unitary recordings were simultaneously made from an RVM on-like or off-like cell and a spinal nociceptive neuron that shared a receptive field (RF) at a hind paw. Action potential firing in RVM/spinal neuron pairs was highly correlated, positively for on-like cells and negatively for off-like cells, both during ongoing activity and during application of calibrated noxious pressure to the RF. Microinjection of morphine into RVM induced a correlated decrease in on-like cell/spinal neuron ongoing activity and response to noxious stimulation. RVM morphine induced changes in off-like cell activity that were not correlated with spinal neuronal activity. These results suggest that on-cells exert a positive modulation upon spinal nociceptive neurons, upstream to ventral horn circuits and plausibly at the origin of nociceptive information that eventually reaches the cerebral cortex. On-cells may in this manner contribute to inflammation- and neuropathy-induced increases in withdrawal reflexes. Most significantly, on-cell modulation of nociceptive neurons may be a key factor in clinical pain conditions such as hyperalgesia and allodynia.

  13. Expression of GABAB1 receptors in spinal dorsal horn neurons in rats with diabetic neuropathic pain%糖尿病神经病理性痛大鼠脊髓背角γ-氨基丁酸B1受体表达的变化

    Institute of Scientific and Technical Information of China (English)

    刘彦涛; 王秀丽; 王倩; 董蕊; 马江红; 王秋筠; 郭跃先

    2010-01-01

    Objective To investigate the role of GABAB1 receptors in spinal dorsal horn neurons in the development of diabetic neuropathic pain (DNP). Methods Sixty pathogen free male SD rats aged 4 weeks weighing 150-170 g were randomly divided into 2 groups ( n = 30 each): control group and DNP group. Diabetes mellitus was induced by single intraperitoneal injection of streptozotocin 50 mg/kg. Blood glucose levels and paw withdrawal threshold to mechanical stimuli were measured at 3, 5 and 7 weeks (T1, T2, T3 ) after IP STZ/NS ( n = 10 each). The animals were sacrificed after PWL measurement. The lumbar segment of the spinal cord was removed for determination of the expression of GABAB1 receptors by immuno-histochemistry, RT-PCR and Western blot analysis. Results The blood glucose levels were significantly higher while the PWT was significantly lower at T1,T2 and T3 in group DNP than in control group. The expression of GABAB1 receptor mRNA and protein in spinal dorsal horn was significantly lower at T2 and T3 in DNP group than in control group. Conclusion The expression of GABAb1 receptors is down-regulated in spinal dorsal horn neurons in rats with DNP.%目的 探讨糖尿病神经病理性痛(DNP)大鼠脊髓背角γ-氨基丁酸B1(GABAB1)受体表达的变化.方法 SD雄性大鼠60只,随机分为2组(n=30),DNP组(D组)腹腔注射链脲佐菌素50 mg/kg制备糖尿病模型,正常对照组(C组)给予等容量生理盐水.分别于给予链脲佐菌素或生理盐水后3、5、7周时取10只大鼠,采集静脉血样,测定空腹血糖浓度,然后测定机械缩足阈值,取脊髓组织,分别采用免疫组化法和Western blot法测定脊髓背角GABAB1受体表达水平,采用RT-PCR法测定脊髓背角GABAB1受体mRNA表达水平.结果 与C组比较,D组血糖升高,机械缩足阈值降低,GABAB1受体及GABAB1受体mRNA表达下调(P<0.05).结论 DNP大鼠脊髓背角GABAB1受体表达下调.

  14. The influence of GABAB receptor expression in the spinal dorsal horn of rats by using baclofen in combination with morphine%巴氯芬与吗啡联合应用对脊髓背角GABAB受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    单文燕; 陈艳平; 曹德权

    2012-01-01

    目的 探讨巴氯芬与吗啡联合应用对脊髓背角GABAB受体表达的影响.方法 成年雄性SD大鼠48只鞘内置管成功后,随机均分为四组,分别鞘内注射生理盐水10μl(NS组),吗啡10μg(M组),巴氯芬0.5μg(B组)和巴氯芬0.5μg+吗啡10 μg(BM组).每天9:00和16:00鞘内注射,在9:30行热水浴甩尾潜伏期(TFL)测定,连测3次,间隔5 min,取其均值,将第1天注药后的TFL均值作为基础值,以TFL恢复到基础值作为出现吗啡耐受的标准.第11天晨,取大鼠腰段脊髓行免疫组织化学染色观察脊髓背角GABAB受体的表达.结果 注药后第10天M组大鼠TFL恢复至基础值,出现吗啡耐受现象,B组和BM组未出现吗啡耐受现象(P<0.01).M组GABABR1及GABABR2表达明显低于其它三组(P<0.01).结论 巴氯芬与吗啡联合应用可以减轻吗啡对脊髓背角GABAB受体表达的下调作用.%Objective To investigate the effects of GABAB receptor expression in the spinal dorsal horn of rats by using baclofen in combination with morphine. Methods Healthy male SD rats were randomly divided into four groups after the success of intrathecal cathetemation (n=12). They included saline group(group NS): 0. 9% saline 10 /μ∣, morphine group(group M). morphine 10 figs baclofen group(group B): baclofen 0. 5 μg, baclofen-morphine group (group BM): baclofen 0. 5 μg +morphine 10 μg. Drugs were given by intrathecal injection on 9:00 am and 16:00 pm for 10 consecutive days. At 9:30 the tail-flick latency (TFL) in rats were measured continued 3 limes with an interval of 5 mm. The mean value of TFL measured on the first day were considered as the baseline, and the return to baseline level of TFL were regarded as the morphine tolerance standard. In the morning of the eleventh day, spinal lumbar enlargement of rats were removed and cut into frozen sections to test GABAB receptors expression by immunohistochemical staining. Results TFL of rats returned to baseline in group M after 10 days

  15. The expression of BDNF and TrkB in the spinal dorsal horn of the asthmatic mice%哮喘小鼠C7~T5节段脊髓后角BDNF及其受体TrkB的表达研究

    Institute of Scientific and Technical Information of China (English)

    张宝辉; 方秀斌; 刘晓湘

    2013-01-01

    Objective To study the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tyrosine kinase receptor B (TrkB) in the spinal dorsal horn of the asthmatic mice. Methods 20 BALB/c mice were randomly divided into normal control group and asthmatic group. The airway resistance of mice was measured with AniRes 2005 pulmonary function meter; The expressions of BDNF and TrkB were observed by immunofluorescence and western blot methods of all the groups. Results Inspiratory resistance and expiratory resistance in the asthmatic mice were obviously higher than in normal control mice, the asthmatic model was successfully constructed. The mean optic density (MOD) of BDNF and TrkB positive product in the C7-T5 spinal dorsal horn increased significantly in the asthmatic mice than in normal control by means of immunofluorescence (P<0.01), and the same result was obtain by western blot method. Conclusion The expressions of BDNF and TrkB were elevated in the C7-T5 spinal dorsal horn of the asthmatic mice.%目的 探讨在哮喘发病中,脑源性神经营养因子(BDNF)及其高亲和力受体酪氨酸激酶B(TrkB)在哮喘小鼠C7~T5节段脊髓后角内的表达变化.方法 BALB/c小鼠20只,按随机数字表法均分为正常对照组和哮喘组,利用AniRes2005肺功能仪测小鼠气道阻力、免疫荧光方法和Western blot方法检测各组小鼠C7~T5节段脊髓后角内BDNF及其高亲和力受体TrkB的表达变化.结果 哮喘组小鼠吸气阻力和呼气阻力明显高于正常组(P<0.01),哮喘模型建立成功.免疫荧光结果显示哮喘组C7~T5节段脊髓后角内BDNF及TrkB阳性产物的平均光密度值(MOD)显著高于正常对照组(P<0.01),Western blot方法检测也得到了相同的结果.结论 哮喘小鼠C7~T5节段脊髓后角内BDNF及TrkB的表达升高.

  16. 毒蕈碱乙酰胆碱M2/M4受体亚型在调节脊髓背角神经元谷氨酸能递质释放中的作用%Role of muscarinic cholinergic receptor subtypes in regulating glutamatergic synaptic transmission in rat spinal dorsal horn

    Institute of Scientific and Technical Information of China (English)

    杜威; 郭英; 袁维秀

    2013-01-01

    Objective To investigate the role of muscarinic cholinergic receptor (mAChR) subtypes in the regulation of glutamatergic input to the spinal dorsal horn neurons and the possible mechanism.Methods Whole-cell voltage-clamp recordings on acute spinal slice was utilized to investigate the effect of activation of mAChRs and blockade of M2/M4 subtypes on glutamatergic synaptic transmission in rat spinal dorsal horn neurons.Results The nonselective mAChRs agonist oxotremorine-M concentration-dependently decreased the amplitude of monosynaptic and polysynaptic evoked glutamate-mediated excitatory postsynaptic currents (eEPSCs) in most of the neurons.The M2/M4 antagonist himbacine completely blocked the inhibitory effect of oxotremorine-M in 92.3% of monosynaptic and 75% of polysynaptic neurons in the spinal cord slices.In the remaining 16% neurons,himbacine partially blocked the inhibitory effect of oxotremorine-M.Conclusions Activation of mAChRs in the spinal cord attenuates synaptic glutamate release to the dorsal horn neurons mainly through M2 and M4 receptor subtypes,indicating that a presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the cholinergic system and mAChRs.%目的 研究毒蕈碱胆碱能受体(mAChRs)亚型对脊髓背角感觉神经元谷氨酸能突触传递的调节机制.方法 在急性切取的腰段脊髓切片上,利用全细胞膜片钳法记录mAChRs非特异性激动剂氢化震颤素M(Oxo-M)对脊髓背角浅层神经元谷氨酸能兴奋性突触后电流(eEPSCs)的影响,给予M2/M4受体特异性拮抗剂喜巴辛,观察mAChRs在脊髓背角浅层神经元谷氨酸能递质释放调节过程中的作用.结果 不同浓度Oxo-M使脊髓背角神经元单突触和多突触eEPSCs的幅度显著降低,其抑制强度呈浓度依赖性,喜巴辛可以拮抗Oxo-M对刺激诱发eEPSCs幅度的抑制作用,在记录的25个细胞中,92.3%的单突触细胞和75%的多突触细胞表现为Oxo-M

  17. 瑞芬太尼诱导大鼠脊髓背角痛觉过敏及利多卡因的抑制作用%Remifentanil-induced hyperalgesia in spinal dorsal horn and the inhibition of lidocaine in rats

    Institute of Scientific and Technical Information of China (English)

    崔伟华; 谭红; 韩如泉; 李树人; 李俊发

    2011-01-01

    Objective To determine the involvement of conventional protein kinase Cgamma (cPKCγ) in the inhibitory action of lidocaine on remifentanil-induced hyperalgesia of rats after propofol-remifentanil-based anesthesia.Methods Male Sprague-Dawley rats were allocated into the following groups randomly: propofol only (group P),propofol + remifentanil ( group R), propofol + remifentanil + lidocaine ( group RL), and propofol + lidocaine (group L). Cumulative pain score and withdrawal response to mechanical stimulation, immunoblotting, and immunofluorescence were applied to observe remifentanil-induced hyperalgesia and cPKCγ membrane translocation.Results (1)Cumulative pain score in group R was higher than that in other groups on postanesthesia 120 min (P < 0. 05 ). While it were similar among group P, RL and L. (2) Withdrawal threshold on the ipsilateral side to incised plantar in group R were lower than the other groups ( P < 0. 05) on postanesthesia 120 min. ( 3 ) Both immunoblotting and immunofluorescence demonstrated that the membrane translocation of PKCγ in dorsal horn neurons increased in propofol-remifentanil anesthetized animals and systemic lidocaine inhibited it. Surgery procedure won't affect the membrane translocation of PKCγin dorsal horn neurons shortly after anesthesia. Conclusion Increased PKCγmembrane translocation in spinal dorsal horn involves in remffentanil-induced hyperalgesia, which was inhibited by systemic lidocaine and may contributes to reduction of postoperative pain in rats after remifentanilbased anesthesia.%目的 探讨大鼠脊髓背角细胞蛋白激酶Cγ(PKCγ)膜转位/激活在瑞芬太尼诱导痛觉过敏中的作用及利多卡因的抑制作用.方法 将大鼠随机分为4组:(1)丙泊酚组(P组),(2)瑞芬太尼组(R组),(3)瑞芬太尼-利多卡因组(RL组)及(4)利多卡因组(L组).比较4组麻醉后累积疼痛评分和机械性刺激缩足阈值.用免疫印迹(每组n=8)和免疫荧光法测量脊髓

  18. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such ...

  19. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine.

    Directory of Open Access Journals (Sweden)

    Huang-Hui Wu

    Full Text Available BACKGROUND: This study aims to identify that intrathecal (i.t. injection of dexmedetomidine (Dex and ropivacaine (Ropi induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. METHODS: Male, adult Sprague-Dawley rats were randomly divided into sham, control and i.t. medication groups. The analgesia profiles of i.t. Dex, Ropi, and their combination detected by Hargreaves heat test were investigated on the subcutaneous (s.c. injection of complete Freund adjuvant (CFA induced chronic pain in rat and their synergistic analgesia was confirmed by using isobolographic analysis. During consecutive daily administration, pain behavior was daily recorded, and immunohistochemical staining was applied to investigate the number of Fos-immunoreactive (Fos-ir neurons on hour 2 and day 1, 3 and 7, and the expression of glial fibrillary acidic protein (GFAP within the spinal dorsal horn (SDH on day 1, 3, 5 and 7 after s.c. injection of CFA, respectively, and then Western blot to examine spinal GFAP and β-actin levels on day 3 and 7. RESULTS: i.t. Dex or Ropi displayed a short-term analgesia in a dose-dependent manner, and consecutive daily administrations of their combination showed synergistic analgesia and remarkably down-regulated neuronal and astrocytic activations indicated by decreases in the number of Fos-ir neurons and the GFAP expression within the SDH, respectively. CONCLUSION: i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.

  20. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats.

    Science.gov (United States)

    Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio

    2005-06-28

    Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.

  1. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats.

    Science.gov (United States)

    Wang, X-W; Li, T-T; Zhao, J; Mao-Ying, Q-L; Zhang, H; Hu, S; Li, Q; Mi, W-L; Wu, G-C; Zhang, Y-Q; Wang, Y-Q

    2012-08-16

    Cancer pain, especially cancer-induced bone pain, affects the quality of life of cancer patients, and current treatments for this pain are limited. The present study demonstrates that spinal extracellular signal-regulated kinase (ERK) activation in glial cells plays a crucial role in cancer-induced bone pain. From day 4 to day 21 after the intra-tibia inoculation with Walker 256 mammary gland carcinoma cells, significant mechanical allodynia was observed as indicated by the decrease of mechanical withdrawal thresholds in the von Frey hair test. Intra-tibia inoculation with carcinoma cells induced a vast and persistent (>21 D) activation of ERK in the bilateral L2-L3 and L4-L5 spinal dorsal horn. The increased pERK1/2-immunoreactivity was observed in both Iba-1-expressing microglia and GFAP-expressing astrocytes but not in NeuN-expressing neurons. A single intrathecal injection of the selective MEK (ERK kinase) inhibitors PD98059 (10 μg) on day 12 and U0126 (1.25 and 3 μg) on day 14, attenuated the bilateral mechanical allodynia in the von Frey hair test. Altogether, our results suggest that ERK activation in spinal microglia and astrocytes is correlated with the onset of allodynia and is important for allodynia maintenance in the cancer pain model. This study indicated that inhibition of the ERK pathway may provide a new therapy for cancer-induced bone pain.

  2. INHIBITIVE EFFECTS OF ELECTROACUPUNCTUROACUPUNCTURE ON LTP OF SYNAPIIC IRRANSMIS-SION TO FACILITATED BY EXCITOMOTOR OF IGLURS INTRATHECAL ADMINISTRA-TION IN SPINAL DORSAL HORN OF RATS%电针抑制iGluRs激动剂鞘内给药易化的大鼠脊髓背角突触传递LTP

    Institute of Scientific and Technical Information of China (English)

    马骋; 冯克辉; 闰丽萍

    2009-01-01

    Objective:To observe the inhibitive effects of electroacupuncture(EA)on long-term potentia- tion(LTP)of C-fiber evoked potentials in the spinal dorsal horn facilitated by excitomotor of NMDA or AMPA receptors,and explore the analgesia mechanism of acupuncture in neuropathic pain.Methods: Sprague-Dawley rats were divided into 7 groups:control,NMDA(NMDA)IntratheCal administration(i. t.),AMPA([±]-AMPA HBr)i.t.,EA+NMDA i.t.,EA+AMPA i.t.,NMDA i.t.+EA,and AMPA i.t+EA.The rats were fixed on stereotaxic instrument after anesthesia.C-fiber evoked field potentials in the spinal dorsal horn(L4/L5)were recorded by extracellular recording.The test stimulus was given in single pulse with 2mA,0.5ms,100Hz,5min each once on the sciatic nerve.The lower intensity high- frequency train plus stimulus(HFS)wag given in 4 trains of 1 S duration at 10s intervals with 2mA,0. 5ms,lOOHz on same place.The NMDA or[±]-AMPA HBr(40pg)was injected with i.t.,to excite the related receptor.On GB30 and BL40,EA Wag acupunctured with 1mA,2Hz,30min.Results:In the con- trol,the variation rate of evoked potentials showed no significant differences compared with before or after HFS.After excitomotor i.t then lower intensity HFS.the LTP was induced significantly and com- pared with control(P<0.01).The exeitomotor i.t.and HFS after EA,the LTP was inhibited markedly (P<0.01).After the LTP was steady kept lhr induced by the excitomotor i.t.and HFS,the EA was operated.In NMDA i.t.+EA,LTP was inhibited markedly(P<0.01);In AMPA i.t.+EA,the LTP was step down significantly(Pdorsal hom to facilitated by excitomotor of iGluRs WaS inhibited by EA.The results indi- cate that the abnormal excitability of neuron in the spinal dorsal horn with neuropathic pain Was inhibited by EA,which might be the postsynaptic mecharism underlying EA analgesia.%目的:观察电针对离子型谷氨酸受体(iGluRs)激动剂易化脊髓背角神经元

  3. Influence of Pain - Relieving Plaster on Expressions of pERK and pCREB in Spinal Dorsal Horn of Rats with Bone Cancer Pain%中药止痛巴布贴对骨癌痛大鼠脊髓背角p - ERK、p-CREB的影响

    Institute of Scientific and Technical Information of China (English)

    姜涌; 王文萍

    2012-01-01

    目的:观察中药止痛巴布贴对骨癌痛大鼠痛行为及骨髓背角神经节pERK、pCREB表达的影响.方法:108只180 ~ 220g雌性Wistar大鼠随机分为3组,分别为空白对照组(Con组,n=24)、假手术组(Sham组,n=24)、骨癌痛模型组(Ca组,n=60),3组分别于手术前2天、术后每隔4日测定机械痛阈(MWT)和热痛阈(TWL).于术后7天确认造模成功后,将成功的模型鼠随机分为两组,即模型组(Ca组,n=28)和中药止痛巴布贴组(CM组,n=25).术后7天、14天和21天各组处死大鼠(n≥8),取大鼠脊髓腰椎L4-6膨大处,用免疫组化方法测定脊髓背角pERK、pCREB的变化.结果:脊髓背角神经pERK、pCREB表达:Ca组阳性神经元数目增加,术后7天、术后14、21天与Con组和Sham组比较有统计学差异(P<0.05);CM组于术后14天、术后21天与Con组和Sham组统计学差异逐渐缩小(P>0.05).结论:中药止痛巴布贴对骨癌痛有比较明显的镇痛作用,其对脊髓背角c-fos的影响,可能是通过降低脊髓背角神经节pERK、pCREB的表达而产生的,即通过ERK - CREB 信号转导通路完成的.%Objective: The influence of Pain - Relieving Plaster on expressions of pERK and pCREB in the spinal dorsal hom of rats with bone cancer pain. Method: 108 female Wistar rats(180 ~220g)were randomly divided into 3 groups, respectively : blank control group (group Con, n — 24), sham operation group (group Sham, n = 24), bone cancer pain model group (group Ca, n =60). The 3 groups were determined mechanical pain threshold (MWT) and thermal pain threshold(TWL)2 days before operation and every 4 days after operation. On the 7th day after operation, the successful model rats were randomly divided into two groups; the model group (group Ca, n =25) and Pain - Relieving Plaster group (group CM, n =18). After 7 days, 14 days and 21 days rats in each group were sacrificed( n≥8),the determination of pERK and pCREB in spinal dorsal horn of L4 - 6 was modified by

  4. NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达%NMDA Receptor Channels Are Involved in The Expression of Long-term Potentiation of C-fiber Evoked Field Potentials in Rat Spinal Dorsal Horn

    Institute of Scientific and Technical Information of China (English)

    张红梅; 周利君; 胡能伟; 张彤; 刘先国

    2006-01-01

    以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK 801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK 801(0.1 mg/kg)对脊髓LTP无影响,注射0.5 mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK 801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APV.结果显示,脊髓局部给予50μmol/L APV对LTP无影响,100 μmol/L对LTP有显著的抑制作用,当浓度升至200 μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.%In hippocampus, numerous studies have shown that N-methyl-D-aspartate (NMDA) receptors are essential for the initiation of long-term potentiation (LTP), whereas the expression of LTP is primarily mediated by the phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the increased insertion of postsynaptic AMPA receptors. However, in recent years there is also evidence that NMDA receptor channels contribute to the expression of LTP under physiological conditions. It was examined whether NMDA receptor channels contributed to the expression of LTP of C-fiber evoked field potentials in rat spinal dorsal horn by intravenous or spinal application of NMDA receptor antagonists after the establishment of LTP. It was found that MK 801 (a non-competitive NMDA receptor antagonist) at dose of 0.1 mg/kg (iv) had no effect on the spinal LTP and at the dose of 0.5 mg/kg depressed the LTP significantly. However, the inhibitory effect of MK 801 at higher dose (1.0 mg/kg)was not

  5. 姜黄素对糖尿病神经病理性痛大鼠脊髓背角NR2B与NR1活性的影响%Effects of curcumin on activity of NR2B and NR1 in spinal dorsal horn in a rat model of diabetic neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    李佳佳; 马益梅; 连庆泉; 李军; 曹红

    2014-01-01

    Objective To evaluate the effects of curcumin on the activity of NR2B and NR1 in the spinal dorsal horn in a rat model of diabetic neuropathic pain (DNP).Methods Diabetes mellitus was induced by high-sucrose and high-fat diet and intraperitoneal streptozotocin 35 mg/kg,then confirmed by fasting blood glucose level ≥ 16.7 mmol/L 3 days later in male Sprague-Dawley rats.DNP was confirmed by the mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal latency (TWL) measured on day 14 after streptozotocin administration < 80% of the baseline value.The rats were then randomly divided into 3 groups (n =27 each) using a random number table:DNP,DNP+ curcumin group (group DCur)and DNP + solvent control group (group DSC).Curcumin 100 mg· kg-1 · d-1 and corn oil 4 ml· kg-1 · d-1 were injected intraperitoneally for 14 consecutive days starting from 14 days after administration of streptozotocin in DCur and DSC groups,respectively.Another 27 normal male Sprague-Dawley rats served as control group (group C) and were fed with normal forage.At 3,7 and 14 days after curcumin injection,MWT and TWL were measured and the lumbar segments (L4-6) of the spinal cord were removed.The expression of pTyr1472-NR2B and pSer896-NR1 in the spinal dorsal horn was determined by immunohistochemistry and Western blot.Results Compared with group C,MWT was significantly decreased,TWL was shortened,and the expression of pTyr1472-NR2B was up-regulated at each time point in group DNP.Compared with group DNP,MWT was significantly increased,and TWL was prolonged at 7 days after curcumin injection,and the expression of pTyr1472-NR2B was down-regulated at 3 days after curcumin injection in group DCur.There was no significant difference in each parameter between DNP and DSC groups,and in the expression of pSer896-NR1 between the four groups.Conclusion The mechanism by which curcumin mitigates neuropathic pain in type 2 diabetic rats may be related to inhibition of up-regulation of p

  6. 青藤碱对神经病理性痛大鼠脊髓背角神经元凋亡的影响%Effects of sinomenine on neuronal apoptosis in spinal dorsal horns in a rat model of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    郝珍; 冷玉芳; 金建萍; 胡晓慧; 赵文宇; 周菲; 于洁; 吴小精

    2014-01-01

    Objective To evaluate the effects of sinomenine on neuronal apoptosis in the spinal dorsal horns in a rat model of neuropathic pain (NP).Methods One hundred and eight male Wistar rats,weighing 180-220 g,were randomly divided into 3 groups with 36 animals in each group:sham operation group (group S),NP group and sinomenine group (group SIN).The animals were anesthetized with intraperitoneal chloral hydrate.In groups NP and SIN,NP was induced by chronic constrictive injury.The sciatic nerve was exposed and four ligatures were placed on the right sciatic nerve at 1 mm intervals with 4-0 chromic catgut.In group S,the right sciatic nerves were exposed,but not ligated.In group SIN,sinomenine 40 mg/kg was injected intraperitoneally once a day starting from the end of operation until one day before the rats were sacrificed.In groups NP and S,the rats received the equal volume of normal saline instead of sinomenine.Twelve animals in each group were randomly chosen at 1 day before operation (T0) and 3,7 and 14 days after operation (T1-33) to measure mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal latency (TWL).The rats in each group were sacrificed at T1-3 after measurement of pain threshold and the lumbar segments (L4-6) of the spinal cord were removed for determination of caspase-3 mRNA and p38MAPK mRNA expression (by real-time fluorescent quantitative PCR) and cell apoptosis (by TUNEL) in the spinal dorsal horn.Apoptosis rate (AR =the number of apoptotic cells/the total number of cells examined) was calculated.Results Compared with group S,MWT and TWL were significantly decreased,the expression of caspase-3 mRNA and p38MAPK mRNA was up-regulated,and AR was increased at T1-3 in NP and SIN groups (P < 0.05).Compared with group NP,MWT and TWL were significantly increased,the expression of caspase-3 mRNA and p38MAPK mRNA was down-regulated,and AR was decreased at T1-3 in group SIN (P < 0.05).MWT and TWL were significantly lower,and the expression of

  7. Effect of morphine on synaptic long-term potentiation in spinal dorsal horn evoked by electric stimulation of sciatic nerve in rats%吗啡对电刺激坐骨神经诱发大鼠脊髓背角突触长时程增强的影响

    Institute of Scientific and Technical Information of China (English)

    吴江; 黄德樱; 程洁; 上官守琴; 胡祁生

    2009-01-01

    Objective To evaluate the effect of morphine on synaptic long-term potentiation (LTP) in the spinal dorsal horn evoked by electric stimulation of sciatic nerve in rats. Methods Twenty-seven healthy male SD rats aged 60-90 d weighing 180-200 g were randomly divided into 4 groups: group Ⅰ control (group C, n=7), group Ⅱ morphine (group M, n=7), group Ⅲ naloxone (group N, n=6), and group Ⅳ morphine + naloxone (group MN, n=7). The animals were anesthetized with intraperitoneal 10% urethane 1 g/kg, intubated and then mechanically ventilated. The bipolar insulated stainless steel recording electrode (impedance 0.5-1 MΩ, diameter 0.1 mm) was inserted into the left side of the spinal dorsal horn at T13-L1 to stimulate the left side of the sciatic nerve. Single square pulses (15 V, 0.5 ms, 1/60 Hz for 30 min) was applied to evoke spinal field potentials. Normal saline 10 μl, morphine 10 μl (15 μg/μl), naloxone 10 μl (2.5 μg/μl), and the mixture 10 μl of naloxone 5 μl (2.5 μg/μl) and morphine 5 μl (15 μg/μl) was gradually instilled over 2 rain in the 4 groups respectively. Five minutes later, high-frequency and intensity tetanic stimulation (30-40 V, 0.5 ms, 100 Hz, given in 4 trains of 1-s duration at 10-s intervals) was used to induce LTP. Then single square stimuli (15 V, 5 ms, 1/60 Hz) were applied to the sciatic nerve for 210 min. The amplitude and latency period of the field potential were recorded 30 min before tetanic stimulation, and 0-30, 35-60, 65-120 and 125-210 min after titanic stimulation. Results Compared with group C, the amplitude of the field potential was significantly decreased and the latency period prolonged in group M and MN, but there was no significant difference in the above indices between group N and C. Compared with group M, the amplitude of the field potential was significantly increased and the latency period shortened in group MN. Compared with those 30 min before the tetanic stimulation, the amplitude of the field

  8. 右美托咪啶对神经病理性痛大鼠脊髓背角pERK、c-fos表达的影响%Effection of dexmedetomidine on expression of pERK, C-FOS in spineal cord dorsal horn in a rat model of chronic neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    高毅; 孙丽

    2015-01-01

    目的:评价右美托咪啶对神经病理性痛大鼠脊髓背角神经元磷酸化胞外反应激酶( phosphoryltion of extracellular reg-ulated protein kinases, pERK )、c-fos蛋白表达的影响。方法:健康成年雄性Wistar大鼠54只,6~8周龄,体重180~220 g,采用随机数字表法,将其分为3组(n=18):假手术组(S组)、慢性神经病理性痛组(C组)和右美托咪啶组(D组)。 S组仅分离坐骨神经但不结扎,C组和D组采用结扎坐骨神经的方法制备大鼠坐骨神经慢性压迫性损伤( chronic constriction injury, CCI)的神经病理性痛模型,D组于术后即刻开始至处死前1天腹腔注射右美托咪啶50μg/kg,1次/d,S组和C组注射等容量生理盐水。于术前1天、术后3、7、14天时以缩足阈值( paw withdrawal threshold, PWT)测定大鼠机械痛阈和辐射热的缩足潜伏期( paw withdrawl latency, PWL)测定大鼠的热痛阈,并于术后测定痛阈后灌注处死大鼠,取L4~6脊髓组织,采用免疫组织化学法检测脊髓背角神经元pERK、c-fos的表达水平。结果:与S组比较,C组和D组术后3、7、14天时MWT降低,TWL缩短,脊髓背角pERK、c-fos表达上调(P<0.05);与C组比较,D组术后3、7、14天时MWT升高,TWL延长,脊髓背角pERK、c-fos表达下调(P<0.05)。与术前1天比较,C组和D组术后3、7、14天时MWT降低,TWL缩短;与术后3天时比较,C组和D组7、14天时MWT降低,TWL缩短,脊髓背角pERK、c-fos表达上调( P<0.05)。结论:右美托咪啶可减轻大鼠慢性神经病理性痛,抑制pERK、c-fos的表达可能是其作用机制之一。%Objective:To investigate the effects of dexmedetomidine ( Dex) on the expression of pERK,c-fos in spinal dorsal horn in a rat model of chronic neuropathic pain ( CNP) .Methods:Fifty-four adult male wistar rats weighing 180~220 g were randomly divided

  9. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2012-06-01

    Full Text Available Abstract Background The development of pain after peripheral nerve and tissue injury involves not only neuronal pathways but also immune cells and glia. Central sensitization is thought to be a mechanism for such persistent pain, and ATP involves in the process. We examined the contribution of glia to neuronal excitation in the juvenile rat spinal dorsal horn which is subjected to neuropathic and inflammatory pain. Results In rats subjected to neuropathic pain, immunoreactivity for the microglial marker OX42 was markedly increased. In contrast, in rats subjected to inflammatory pain, immunoreactivity for the astrocyte marker glial fibrillary acidic protein was increased slightly. Optically-recorded neuronal excitation induced by single-pulse stimulation to the dorsal root was augmented in rats subjected to neuropathic and inflammatory pain compared to control rats. The bath application of a glial inhibitor minocycline and a p38 mitogen-activated protein kinase inhibitor SB203580 inhibited the neuronal excitation in rats subjected to neuropathic pain. A specific P2X1,2,3,4 antagonist TNP-ATP largely inhibited the neuronal excitation only in rats subjected to neuropathic pain rats. In contrast, an astroglial toxin L-alpha-aminoadipate, a gap junction blocker carbenoxolone and c-Jun N-terminal kinase inhibitor SP600125 inhibited the neuronal excitation only in rats subjected to inflammatory pain. A greater number of cells in spinal cord slices from rats subjected to neuropathic pain showed Ca2+ signaling in response to puff application of ATP. This Ca2+ signaling was inhibited by minocycline and TNP-ATP. Conclusions These results directly support the notion that microglia is more involved in neuropathic pain and astrocyte in inflammatory pain.

  10. Expression of NMDAR, CGRP and the changes of microglia in sacral dorsal horn of irritable bowel syndrome rats%肠易激综合征大鼠骶髓后角中NMDAR、CGRP表达以及小胶质细胞的变化

    Institute of Scientific and Technical Information of China (English)

    崔曼莉; 王景杰; 秦明; 王旭霞; 杨琦; 黄裕新

    2011-01-01

    目的 观察肠易激综合征(irritable bowel syndrome,IBS)大鼠腹直肌肌电变化以及脊髓背角中NMDAR(N-methyldaspartate receportes,NMDAR)、CGRP(calcitonin gene-related peptide),以及骶髓后联合核(dorsal commissural nucleus,DCN)中小胶质细胞的变化,为研究IBS内脏敏化提供理论依据.方法 以旋毛虫感染大鼠致肠易激综合征大鼠模型,然后随机分为2组:IBS无刺激组和IBS结肠刺激组.另外选择5只正常大鼠作为对照.分别测定各组腹直肌肌电以及NMDAR、CGRP表达以及小胶质细胞的变化.结果 IBS结肠刺激组大鼠腹直肌肌电、大鼠骶髓后角中NMDAR和CGRP的表达以及骶髓后联合核中的小胶质细胞活化较正常对照组及IBS未刺激组均显著增强.结论 IBS大鼠内脏敏化可能与骶髓后角神经活性物质活化以及DCN中小胶质细胞的活化相关,这些物质以及细胞的活化进而导致神经元敏化的发生.%Objective To investigate the myoelectric changes of the rectus ahdominis in irritable bowel syndrome( IBS ) rats, the expression of NMDAR and CGRP in the dorsal horn of spinal cord of rats with IBS, and the activation of mic:roglial cells in dorsal commissural nucleus ( DCN ) , and to provide a theoretical basis for visceral hyperalgesia of the rats with IBS. Methods The rats were gavaged with the Trichinella spiralis to establish the irritable bowel syndrome model. The model rats were randomly divided into IBS group and IBS + colon distension group. Five normal rats were chosen as controls. The myoelectric changes of the rec:tus abdominis were observed. and the expression of NMDAR, CGRP and changes of microglia were determined using immunofluorescence method. Results The electro-activity of the rectus abdominis , the expression of NMDAR. CCRP and activation of microglia of the sacral joint nuclear were significantly enhanced in IBS rats with colon distension than that in the normal rats and non-stimulation IBS rats. Conclusion

  11. Iterative Specialisation of Horn Clauses

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    We present a generic algorithm for solving Horn clauses through iterative specialisation. The algorithm is generic in the sense that it can be instantiated with any decidable fragment of Horn clauses, resulting in a solution scheme for general Horn clauses that guarantees soundness and terminatio...

  12. Intrathecal co-administration of ketamine and morphine preventing activation of astrocytes and decreasing releases of IL-1β and IL-6 from spinal cord in rats of morphine tolerance

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the effects of intrathecal administration of ketamine, a non-competitive N-methy-D-aspartate receptor antagonist, combined with morphine on the activation of astrocytes and releases of IL-1β and IL-6 from spinal cord in the rats of morphine tolerance. Methods: Twenty-seven Sprague-Dawley male rats were randomly divided into sham-operated, morphine tolerance, and morphine plus ketamine group. The subarachnoid catheterization of all the rats was prepared by the method of Jianping Yang.Morphine 20 μg in 10 μl was administrated intrathecally to induce spinal morphine tolerance once daily for 5 consecutive days. Morphine and ketamine 250 μg in 10 μl total volume was given in morphine plus ketamine group. Three groups all received intrathecal morphine 5 μg in 10 μl for morphine challenge test at 24 h after last administration of the morphine. After morphine challenge test, lumbar spinal tissues were taken for measurement of glial fibrillary acidic protein (GFAP) of astrocyte in lumbar spinal horn cord by immunohistochemistry and IL-1βand IL-6 of spinal cord by ELISA. Results: The decrease of %MPE induced by chronic intrathecal morphine was inhibited by ketamine and hyperalgesia and allodynia induced by morphine-withdrawl were alleviated. The average areas, the average absorbency (-A), the integral absorbency (A) of GFAP immuno-reactive cells in the dorsal horn, and IL-1β and IL-6 of spinal cord were significantly larger in morphine tolerance group than in morphine plus ketamine group. Conclusion: Co-administration of ketamine and morphine enhance antinociceptive effect of morphine and prevent the development of morphine tolerance. Ketamine might attenuate the activation of astrocytes and inhibit the release of IL-1β and IL-6 from spinal cord in repeated intrathecal morphine rats.

  13. The Ram's Horn.

    Science.gov (United States)

    Rassias, John A., Ed.; And Others

    1983-01-01

    The summer-fall and winter-spring numbers of the journal, "The Ram's Horn," contain these articles: "The Text as Dramatic Departure"; "The Dartmouth Language Outreach Approach to Spanish for Police Action"; "The Dartmouth Intensive Language Model (DILM) in Florida: John Rassias with High School Teachers"; "The Flexibility of Using Drama Techniques…

  14. The role of α1 adrenaline receptors on GABAergic and glutamatergic synapse in spinal dorsal horn%α1-肾上腺素受体参与调控脊髓背角神经元突触传递的作用机制

    Institute of Scientific and Technical Information of China (English)

    袁维秀; 郭英; 徐娟; 张宏

    2012-01-01

    Objective To investigate the role of α1-adrenaline receptors in GABAergic and glutamatergic synapses via GABAA receptors in spinal dorsal horn. Methods Using whole -cell voltage-clamp recordings on acute spinal cord slice, the effect of blockade of α1-adrenaline receptors on GABAergic and glutamatergic synaptic transmission was studied. Results Selective al -adrenline receptors agonist phenylephrine cold significantly increase the frequency of GABAergic spontaneous IPSCs in a concentration dependent manner, and this effect was abolished by the α1-adrenaline receptor antagonist WB4101. Phenylephrine also significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic glutamatergic EPSCs was largely blocked by the GABAA receptor antagonist picrotoxin. Conclusion Activation of α1- adrenoceptors in the spinal cord attenuates glutamatergic input from primary afferents mainly through GABAA receptors, indicating that presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.%目的 研究α1-肾上腺素受体(α1- AR)调控脊髓背角感觉神经元谷氨酸能突触传递的作用机制.方法 在急性切取的腰段脊髓切片上,利用全细胞膜片钳法记录α1- AR激动剂苯肾上腺素对脊髓背角浅层神经元抑制性和兴奋性突触后电流(IPSCs和eEPSCs)的影响.结果 苯肾上腺素对IPSCs频率产生剂量依赖性兴奋作用,此作用可被α1- AR特异性拮抗剂WB4101完全拮抗.苯肾上腺素对eEPSCs振幅的抑制作用可以部分被GABAA受体拮抗剂印防己毒素(picrotoxin,PTX)拮抗.结论 位于脊髓背角神经元的α1-AR,促进初级传入纤维在脊髓背角释放γ-氨基丁酸(GABA),进而主要通过GABAA受体抑制初级传入纤维兴奋性谷氨酸能神经冲动的传入.下行肾上腺素能系统可能通过GABAA受体机制参

  15. 化瘀止痛方外用对骨转移癌疼痛大鼠脊髓背角的影响%Influence of Formula for Resolving Stasis and Relieving Pain on Pinal Cord Dorsal Horn of Rats with Bone Cancer Pain

    Institute of Scientific and Technical Information of China (English)

    邓博; 贾立群; 蔡大勇; 谭煌英; 高福云; 潘琳

    2012-01-01

    目的:研究化瘀止痛方外用对骨转移癌疼痛大鼠的镇痛作用及机制.方法:采用大鼠乳腺癌MRMT-1细胞,按Medhurst方法建立骨转移癌疼痛模型.以唑来膦酸为阳性对照,观察外用药对大鼠脊髓背角神经元原癌基因c - FOS蛋白表达、神经胶质细胞胶质细胞酸性蛋白(GFAP)表达的影响.结果:相对于假手术组,各手术组脊髓后角神经元c - FOS蛋白表达明显增高,GFAP染色阳性星形胶质细胞明显增生肥大.与模型组比较,脊髓背角c - FOS表达明显降低(P<0.05),GFAP表达变化改善.结论:外用中药对骨转移癌疼痛模型有明显镇痛作用,作用机制与拮抗伤害感受器并且抑制痛觉在脊髓水平的放大有关.%Objective: Evaluate the anti - - nociceptive effects of herbal medicine extraction in a rat model of bone cancer pain. Melluids:Following Medhursts method,a rat model of cancer - induced bone pain was established using the MRMT - 1 cell line. The corresponding segments of the ipsilateral spinal cord were processed for c - fos staining and glial fihrillary acidic protein{ GFAP)staining. Results:Compared to sham - operation group,c - fos and GFAP expression in the spinal cord dorsal horn of the model group was significantly increased. Compared to model group, treatment with herbal medicine extraction( ad us. Ext )significantly inhibited c - fos expression( P<0.05) ,GKAP exprcssion was also attenuated. Conclusions:The herbal medicine extraction is an anti - nociceptive agent in a rat model of metastatic cancer pain.

  16. The homeodomain factor Gbx1 is required for locomotion and cell specification in the dorsal spinal cord

    Directory of Open Access Journals (Sweden)

    Hamid Meziane

    2013-08-01

    Full Text Available Dorsal horn neurons in the spinal cord integrate and relay sensory information to higher brain centers. These neurons are organized in specific laminae and different transcription factors are involved in their specification. The murine homeodomain Gbx1 protein is expressed in the mantle zone of the spinal cord at E12.5-13.5, correlating with the appearance of a discernable dorsal horn around E14 and eventually defining a narrow layer in the dorsal horn around perinatal stages. At postnatal stages, Gbx1 identifies a specific subpopulation of GABAergic neurons in the dorsal spinal cord. We have generated a loss of function mutation for Gbx1 and analyzed its consequences during spinal cord development. Gbx1−/− mice are viable and can reproduce as homozygous null mutants. However, the adult mutant mice display an altered gait during forward movement that specifically affects the hindlimbs. This abnormal gait was evaluated by a series of behavioral tests, indicating that locomotion is impaired, but not muscle strength or motor coordination. Molecular analysis showed that the development of the dorsal horn is not profoundly affected in Gbx1−/− mutant mice. However, analysis of terminal neuronal differentiation revealed that the proportion of GABAergic inhibitory interneurons in the superficial dorsal horn is diminished. Our study unveiled a role for Gbx1 in specifying a subset of GABAergic neurons in the dorsal horn of the spinal cord involved in the control of posterior limb movement.

  17. P2X7受体拮抗剂A438079对肠易激综合征结肠扩张刺激大鼠DCN核团中P2X7、OX42、IL-1β、P38及骶髓后角中CGRP表达的影响%Effect of P2X7 receptor antagonist A438079 on expression of P2X7,OX42,IL-1β,P38 in dorsal commissural nucleus and CGRP expression in dorsal horn of sacral segment of spinal cord in rats with irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    朱琳; 章鹏宇; 黄裕新; 王景杰

    2012-01-01

    目的 探讨P2X7特异性受体拮抗剂A438079对肠易激综合征(irritable bowel syndrome,IBS)致内脏高敏感化大鼠在结肠扩张刺激状态时,骶髓后联合核(dorsal commissural nucleus,DCN)中P2X7、OX42、IL-1β、P38及脊髓背角中CGRP表达的变化,为探讨IBS内脏敏化的神经机制提供理论依据.方法 以15只旋毛虫感染大鼠建立肠易激综合征模型,随机分为三组,总共分为:B.IBS大鼠结肠扩张刺激组(n=5)、C.IBS大鼠鞘内注射0.9%生理盐水后结肠扩张刺激组(n=5)、D.IBS大鼠鞘内注射A438079后结肠扩张刺组(n=5).另外以5只正常大鼠作正常大鼠结肠扩张刺激组(n=5)、.采用免疫荧光组织化学方法观察大鼠DCN中P2X7、OX42、IL-1β、P38及脊髓后角中CGRP表达变化.结果 与B组IBS扩张刺激组相比较,D组鞘内注射拮抗剂A438079后在结肠扩张刺激时IBS大鼠DCN核团中P2X7、OX42、IL-1β、P38及骶髓后角中CGRP的表达量均明显下降(P<0.01).结论 P2X7受体在IBS致内脏敏化过程中广泛参与,并可能起重要作用.%Objective To explore the effect of A438079, a P2X7 receptor antagonist, on expression of P2X7 , 0x42, IL-1 β, P38 in dorsal commissural nucleus and calcitonin gene related peptide( CGRP ) in dorsal horn of sacral segment of spinal cord in rats with irritable bowel syndrome ( IBS ) induced by the stimulation of colorectal distention, and to provide a theoretical evidence in the prevention and treatment of IBS. Methods Fifteen rats were gavaged with the Trichinella spiralis to establish the IBS model, and then were divided into three groups: IBS + colon distension group ( B ), IBS + colon distension + intrathecal injection of saline ( C ), and IBS + colon distension + intrathecal injection of A438079( D ). Five normal rats with colon distension were chosen as control group. Immunofluorescent staining method was used to observe the expression of P2X7,OX42,I L-1β,P38 in neurons of DCN and CGRP expression in

  18. Effect of duloxetine on expression of Toll-like receptor 4 in spinal dorsal horn in a rat model of dia-betic neuropathic pain%度洛西汀对糖尿病神经病理性痛大鼠脊髓背角Toll样受体4表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈文君; 周冬梅; 苗蓓; 李伟

    2015-01-01

    目的:评价度洛西汀对糖尿病神经病理性痛大鼠脊髓背角Toll样受体4( TLR4)表达的影响。方法雄性SD大鼠,体重180~220 g,2月龄,采用高糖高脂饮食8周后腹腔注射链脲佐菌素( STZ)35 mg∕kg的方法制备2型糖尿病模型,取糖尿病神经病理性痛模型制备成功的大鼠75只,采用随机数字表法,将其分为5组( n=15):糖尿病神经病理性痛组( DNP 组)、DNP+生理盐水组( DNP+NS组)、DNP+不同剂量度洛西汀组( DNP+D5组、DNP+D10组和DNP+D20组)。另取正常大鼠15只作为对照组( C组)。 DNP+D5组、DNP+D10组和DNP+D20组于注射STZ后15 d时分别腹腔注射度洛西汀5、10和20 mg∕kg,1次∕d,连续14 d;DNP+NS组给予等容量生理盐水。于注射STZ前、注射STZ后14、17、21、28 d时测定机械缩足反应阈( MWT)和热缩足反应潜伏期( TWL)。于最后一次痛阈测定后,取L4⁃6节段脊髓,采用免疫组化法和Western blot法检测脊髓背角TLR4表达水平。结果与C组比较,DNP组、DNP+D5组、DNP+D10组和DNP+D20组MWT降低,TWL缩短,脊髓背角TLR4表达上调( P<0.05);与DNP组比较,DNP+D5组、DNP+D10组和DNP+D20组MWT升高,TWL延长,脊髓背角TLR4表达下调(P<0.05),DNP+NS组上述指标差异无统计学意义(P>0.05)。结论度洛西汀减轻大鼠糖尿病神经病理性痛的机制与下调脊髓背角TLR4表达有关。%Objective To evaluate the effect of duloxetine on the expression of Toll⁃like receptor 4 (TLR4) in the spinal dorsal horn in a rat model of diabetic neuropathic pain (DNP). Methods Type 2 di⁃abetes mellitus was induced by high⁃fat and high⁃sucrose diet and intraperitoneal streptozotocin ( STZ) 35 mg∕kg in male Sprague⁃Dawley rats, aged 2 months, weighing 180-220 g. Seventy⁃five rats with type 2 di⁃abetes mellitus were randomly divided into 5 groups ( n

  19. Effect of intrathecal injection of dexmedetomidine on protein kinase C expression of spinal dorsal horn neurons in a rat model of chronic neuralgia%鞘内注射右美托咪定干预慢性神经痛模型大鼠脊髓背角蛋白激酶C的表达

    Institute of Scientific and Technical Information of China (English)

    邓海洪; 马松梅; 肖晓山

    2014-01-01

    BACKGROUND:Dexmedetomidine is an efficient, highly selective alpha-2 adrenergic receptor agonist, with sedative, analgesia and anti-anxiety effects, it has little impact on the respiration. OBJECTIVE:To observe the analgesic effect induced by intrathecal injection of dexmedetomidine in rat model of spared nerve injury. METHODS:A total of 60 male Sprague-Dawley rats were randomly divided into three groups (n=12):normal control group, dexmedetomidine group and saline group. Except for the normal control group, spared nerve injury model was established in the rats of dexmedetomidine group and saline group. Dexmedetomidine group was treated with intrathecal injection of dexmedetomidine 3μg/kg every day within 14 days after injury. Saline group was given equal volume of saline for 14 days. The thermal withdrawal latency and mechanical withdrawal threshold were measured respectively before injury, after injury, before injection, and 2, 7, 14 days after intrathecal injection. Four rats were sacrificed in each group at day 2, 7 and 14 after injection, and the lumbar segments (L 4-6 Hematoxylin-eosin staining was performed to detect the morphology of the spinal dorsal horn neurons and ) of the spinal cord were removed. Real-time RT-PCR and western blot analysis were used to determine the expression of protein kinase C mRNA and protein in the spinal dorsal horn neurons. immunohistochemistry staining was carried out to assess the expression level and distribution of protein kinase C. RESULTS AND CONCLUSION:The thermal withdrawal latency and mechanical withdrawal threshold in dexmedetomidine group and saline group were significantly decreased compared with normal control group before or after injection (P  目的:观察鞘内注射右美托咪定对坐骨神经分支选择性损伤模型大鼠的镇痛作用。  方法:雄性SD大鼠60只,随机均分为3组。除正常对照组外,另2组大鼠建立坐骨神经分支选择性损伤模型,

  20. 脊髓背角神经元上调Nav1.8通道参与缺血再灌注损伤后痛觉过敏的机制%Mechanisms of ischemia-reperfusion induced hyperalgesia via up-regulation of neu-ronal Nav1. 8 channel in spinal dorsal horn

    Institute of Scientific and Technical Information of China (English)

    李晓倩; 张再莉; 马虹

    2016-01-01

    Objective To observe the effects of intrathecal injection (IT) of Nav1. 8 channel inhibitor 619C89 on hyperalgesia and spinal cord levels of neuronal Nav1. 8 expressions in rat model of spinal cord ischemia-reperfusion injury ( SCIRI) . Methods Male Sprague-Dawley rats were randomly divided into three groups:group S, group H (SCIRI+IT NS) and Nav1. 8 channel inhibitor group (group I,SCIRI+IT 5 μg/30 μL 619C89). The lumbar intrath-ecal catheters were implanted in L5-6 of rats and SCIRI models were established by aortic arch occlusion for 14 min. The thermal and mechanical nociceptive thresholds were assessed by paw withdrawal latency ( PWL ) to radiant heat and von Frey filaments. The 619C89 was administered intrathecally for 3 days before surgery. The spinal mRNA expression of Nav1. 8 was assessed by Real time-PCR and double immunofluorescence staining was performed for examination of the distribution of neurons and Nav1. 8 and also quantification of NeuN/Nav1. 8 positive cells of dorsal horn at 1,3,5, 7 and 14 days after surgery. Results Compared with group S,animals in group H had significantly lower mechanical and thermal pain thresholds,but higher spinal mRNA expression of Nav1. 8 ( P<0. 05 ) . Rats in group I had signifi-cantly higher mechanical and thermal pain thresholds and significantly lower mRNA expression of Nav1. 8 compared with those in group H (at any observed time points after IR,but most significantly at 7 days,P<0. 05). Double fluo-rescent staining showed the distribution of increased fluorescence intensity of Nav1. 8 was similar to that of fluorescent staining of NeuN ( neuronal marker) . The number of NeuN/Nav1. 8 positive cells was greatly increased in group H, whereas the number was obviously decreased in group I ( P<0. 05 ) . Conclusion Up-regulation of neuronal Nav1. 8 channel in spinal dorsal horn plays a role in IR-induced hyperalgesia.%目的:观察鞘内注射钠通道抑制剂619C89对脊髓缺血再灌注损伤引起的痛觉过

  1. Effect of nitric oxide with different doses on Bcl-2/Bax in spinal dorsal horn in rats induced by formalin%不同剂量的一氧化氮对福尔马林炎性痛大鼠脊髓背角Bcl-2/Bax表达的影响

    Institute of Scientific and Technical Information of China (English)

    未小明; 李宽; 祁文秀

    2011-01-01

    Objective: To investigate the effects of multiple application of different doses of nitric oxide (NO) on Bcl-2/ Bax in spinal dorsal horn induced by formalin. Methods: A succession of 4 d intrathecal injection of NO precursor L-arginine (L-Arg)10 μg/d (low L-Arg group) or 250 μg/d (high L-Arg group) or NOS inhibitor Nω-nitro-L-arginine methylester (L-NAME) 2700 μg/d (L-NAME group) in rats, and normal saline (NS group) was applied as a control, and administration once a day. Then rats were subcutaneously injected formalin (2%, 100 μL) into the right hindpaw, four hours later after formalin injection, Bcl-2 or Bax protein expression were detected with immunocytochemistry and Western Blot. Results: The immunocytochemistry showed the distributions of Bcl-2 and Bax were in both sides of the dorsal horn,especially in superficial laminae, and the expressions of bcl-2 and bax in the ipsilateral side of formalin injection were significantly increased than that in contralateral side of formalin injection in all four groups; the ratio of Bcl-2/Bax with Western-Blot was increased in low L-Arg group compared with normal saline group and was all decreased in high L-Arg group or L-NAME group compared with normal saline group. bcl-2 and bax are two major genes in the regulation of apoptosis, bcl-2 inhibits apoptosis and bax promotes apoptosis. Conclusion: Therefore, in inflammatory pain model, low doses of NO can promote the antiapoptotic gene expression, while high doses of NO and insufficient of NO both can promote pro-apoptotic gene expression, which affect the incidence of inflammatory pain.%目的:探讨多次应用不同剂量的一氧化氮(NO)对福尔马林炎性痛中脊髓背角神经元Bcl-2、Bax表达的影响.方法:连续4 d给大鼠各进行鞘内注射不同剂量的一氧化氮前体左旋精氨酸(L-arginine,L-Arg)10μg/d(低L-Arg组)、250 μg/d(高L-Arg组)或一氧化氮合酶(nitric oxide synthase,NOS)抑制剂Nω-硝基-L

  2. Antiproton Focus Horn

    CERN Multimedia

    1974-01-01

    Was used for the AA (antiproton accumulator). Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet.For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  3. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation......, regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  4. The role of α1-adrenoceptors on glutamatergic synapse via GABAB receptors in spinal dorsal horn%α1-肾上腺素受体通过GABAB受体调控脊髓背角神经元谷氨酸能突触传递

    Institute of Scientific and Technical Information of China (English)

    袁维秀; 郭英; 徐娟; 张宏

    2013-01-01

    目的 研究下行去甲肾上腺素系统α1-肾上腺素受体通过GABAB受体调控脊髓背角感觉神经元谷氨酸能突触传递的机制.方法 在急性切取的腰段脊髓切片上,利用全细胞膜片钳法记录α1-肾上腺素受体激动剂苯肾上腺素刺激诱发的脊髓背角浅层神经元谷氨酸能兴奋性突触后电流(eEPSCs),给予GABAB受体特异性拮抗剂CGP55845,进一步观察GABAB受体在苯肾上腺素对突触终末eEPSCs调节过程中的作用.结果 苯肾上腺素显著降低初级传入末梢单突触和多突触eEPSCs幅度,在突触后GABAB受体被从胞内阻断的条件下,再灌流CGP55845,阻断谷氨酸能突触前GABAB受体,可部分拮抗苯肾上腺素对刺激引发的EPSCs (eEPSCs)幅度的抑制作用.结论 位于脊髓背角神经元α1-肾上腺素受体,通过GABAB受体抑制初级传入纤维兴奋性谷氨酸能神经冲动的传入,这种突触前对谷氨酸释放的调节可能是下行肾上腺素能系统对伤害性刺激调控的作用机制.%Objective To investigate the role of α 1-adrenoceptors on glutamatergic synapse via GABAB receptors in spinal dorsal horn. Methods Using whole-cell voltage-clamp recordings on acute spinal cord slice,effect of blockade of α1 -adrenoceptors on glutamatergic synaptic transmission was studied. Results Selective α1 -adrenoceptors agonist phenylephrine significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic and polysynaptic glutamatergic EPSCs was largely blocked by the GABAB receptor antagonist CGP55845. Conclusion Activation of α1- adrenoceptors in the spinal cord attenuates glutamatergic input from primary afferents mainly through GABAB receptors, indicating a presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.

  5. Effect of activation of γ-aminobutyric acid B receptors on glutamate release in spinal dorsal horn neurons in rats with diabetic neuropathic pain%激活γ-氨基丁酸B受体对糖尿病神经痛大鼠脊髓背角神经元谷氨酸递质释放的影响

    Institute of Scientific and Technical Information of China (English)

    王秀丽; 吴川; 郭跃先; 王秋筠; 刘飞飞; 曹倩倩; 张兆龙

    2012-01-01

    release in spinal dorsal horn neurons in rats with diabetic neuropathyic pain(DNP). Methods Thirty Sprague-Dawley(SD) male rats(aged 4 weeks,weighing 150 g-170 g) were randomly divided into 2 groups (n=15):Normal rats group (N group),DN rats group (D group).DNP were induced by single intraperitoneal (IP) injection of streptozotocin (STZ,50 mg/kg),and rats in C group received the equal volume saline injection.At 3-4 weeks after STZ or saline intraperitoneal injection,blood glucose level and paw withdraw threshold (PWT) were measured,and the rats were then killed,the lumbar segment of spinal cord (L1-5) was removed for slices preparations.Monosynaptic glutamatergic evoked excitatory postsynaptic currents (eEPSCs) of lamina Ⅱ neurons were recorded by using whole-cell voltage-clamp patch.Bath baclofen (1,10,20,50 μmol/L) was applicated,monosynaptic eEPSCs was recorded before application of baclofen,at 1,10,20,50 μmol/L and wash out 5 min,the inhibitory rate (%) of eEPSCs was compared between two groups (n=15),the effect of CGP55845 (1 pmol/L) on eEPSCs of 50 μmol/L baclofen was analyzed in two groups (n=12). Results The mean blood glucose level was significantly higher in D group than in N group,while PWT in D group was significantly lower than that in N group (P<0.05).eEPSCs in totally 30 glutamatergic neurons was recorded by electrophysiological recording. (1, 10,20,50 μmol/L) baclofen dose-dependently decreased the amplitude of eEPSCs both in two groups,the significant decrease of the amplitude inhibitory rate (%) of eEPSCs was observed at 1,10,20,50 μmol/L baclofen both in two groups(P<0.05),its in D group were significantly decreased compared with N group at above times(P<0.05) respectively:(47±7) vs (21 ±7 ),(55 ±6) vs (50±6),(92±6) vs (72±9),(95 ±8) vs (88±8).CGP55845 was completely abolished the inhibitory effect of 50 μmol/L baclofen on the amplitude of monosynaptic eEPSCs in lamina Ⅱ neurons both two groups. Conclusions Activation of

  6. Role of phosphatidylinositol 3-kinase p110β in spinal dorsal horn neurons in the development of arthritic pain in rats: relationship with TRPV1 and ASIC1a%脊髓背角神经元磷脂酰肌醇-3激酶p110β在大鼠关节炎性痛形成中的作用:与辣椒素受体及酸敏感离子通道1a的关系

    Institute of Scientific and Technical Information of China (English)

    张亚军; 杨承祥; 王汉兵; 张斌; 项红兵; 田玉科

    2013-01-01

    目的 评价脊髓背角神经元磷脂酰肌醇-3激酶(PI3K) p110β在大鼠关节炎性痛形成中的作用及与辣椒素受体(TRPV1)及酸敏感离子通道1a(ASIC1a)的关系.方法 鞘内置管成功的成年雌性SD大鼠40只,3月龄,体重250 ~ 300 g,采用随机数字表法,将其分为4组(n=10)∶对照组(C组)、关节炎性痛组(AP组)、AP+ PI3K p110β错义寡核苷酸组(MS组)和AP+ PI3K p110β反义寡核苷酸组(AS组).采用右踝关节腔内注射完全弗氏佐剂建立关节炎性痛模型,模型制备后即刻AP组、MS组、AS组分别经鞘内注射生理盐水、错义寡核苷酸15 μg和反义寡核苷酸15 μg,容量20μl,1次/d,连续6d.于术前1d、术后4、7、10d时测定机械缩足反应阈(MWT)和热缩足反应潜伏期(TWL),术后10 d处死大鼠,取腰段脊髓,采用Western blot法检测脊髓背角神经元PI3K p110β表达,采用免疫组化法检测脊髓背角神经元TRPV1和ASICla的表达.结果 与C组比较,AP组、MS组和AS组术后各时点MWT降低,TWL缩短,脊髓背角神经元PI3K p110β、TRPV1和ASICla表达上调(P<0.01);与AP组和MS组比较,AS组术后各时点MWT升高,TWL延长,脊髓背角神经元PI3K p110β、TRPV1和ASIC1a表达下调(P<0.01).结论 脊髓背角神经元PI3K p110β参与大鼠关节炎性痛的形成,其机制与上调脊髓背角神经元TRPVl和ASICla的表达有关.%Objective To evaluate the role of phosphatidylinositol 3-kinase (PI3K) p110β in spinal dorsal horn neurons in the development of arthritic pain (AP) in rats and the relationship with transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channel (ASIC)1 a.Methods Forty adult female Sprague-Dawley rats in which intrathecal catheters were successfully placed,aged 3 months,weighing 250-300 g,were randomly divided into 4 groups (n =10 each):control group (group C),group AP,AP + PI3K p110β missense oligo-deoxynucleotide group (group MS) and AP + PI3K p110β antisense oligo

  7. Porosome in astrocytes.

    Science.gov (United States)

    Lee, Jin-Sook; Cho, Won Jin; Jeftinija, Ksenija; Jeftinija, Srdija; Jena, Bhanu P

    2009-02-01

    Secretion is a universal cellular process occurring in bakers yeast, to the complex multicellular organisms, to humans beings. Neurotransmission, digestion, immune response or the release of hormones occur as a result of cell secretion. Secretory defects result in numerous diseases and hence a molecular understanding of the process is critical. Cell secretion involves the transport of vesicular products from within cells to the outside. Porosomes are permanent cup-shaped supramolecular structures at the cell plasma membrane, where secretory vesicles transiently dock and transiently fuse to release intravesicular contents to the outside. In the past decade, porosomes have been determined to be the universal secretory machinery in cells, present in the exocrine pancreas, endocrine and neuroendocrine cells, and in neurons. In this study, we report for the first time the presence of porosomes in rat brain astrocytes. Using atomic force microscopy on live astrocytes, cup-shaped porosomes measuring 10-15 nm are observed at the cell plasma membrane. Further studies using electron microscopy confirm the presence of porosomes in astrocytes. Analogous to neuronal porosomes, there is a central plug in the astrocyte porosome complex. Immunoisolation and reconstitution of the astrocyte porosome in lipid membrane, demonstrates a structure similar to what is observed in live cells. These studies demonstrate that in astrocytes, the secretory apparatus at the cell plasma membrane is similar to what is found in neurons.

  8. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons.

    Science.gov (United States)

    Zhang, Zhi-Jun; Cao, De-Li; Zhang, Xin; Ji, Ru-Rong; Gao, Yong-Jing

    2013-10-01

    Recent studies have indicated an important role of chemokines such as CCL2 in the development of chronic pain. However, the distinct roles of different chemokines in the development and maintenance of neuropathic pain and in their interactions with neurons have not been clearly elucidated. We found that spinal nerve ligation (SNL) not only induced persistent neuropathic pain symptoms, including mechanical allodynia and heat hyperalgesia, but also produced sustained CXCL1 upregulation in the spinal cord. Double staining of immunofluorescence and in situ hybridization revealed that CXCL1 was primarily induced in spinal astrocytes. In cultured astrocytes, tumor necrosis factor-α induced robust CXCL1 expression via the activation of the c-jun N-terminal kinase. Intrathecal administration of CXCL1 neutralizing antibody transiently reduced SNL-induced pain hypersensitivity, suggesting an essential role of CXCL1 in neuropathic pain sensitization. In particular, intraspinal delivery of CXCL1 shRNA lentiviral vectors, either before or after SNL, persistently attenuated SNL-induced pain hypersensitivity. Spinal application of CXCL1 not only elicited pain hypersensitivity but also induced rapid neuronal activation, as indicated by the expression of phosphorylated extracellular signal-regulated kinase and cAMP response element binding protein, and c-Fos in spinal cord neurons. Interestingly, CXCR2, the primary receptor of CXCL1, was upregulated in dorsal horn neurons after SNL, and the CXCR2 antagonist SB225002 completely blocked the CXCL1-induced heat hyperalgesia. SB225002 also attenuated SNL-induced pain hypersensitivity. Collectively, our results have demonstrated a novel form of chemokine-mediated glial-neuronal interaction in the spinal cord that can drive neuropathic pain. Inhibition of the CXCL1-CXCR2 signaling may offer a new therapy for neuropathic pain management.

  9. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  10. Astrocytes in Migration.

    Science.gov (United States)

    Zhan, Jiang Shan; Gao, Kai; Chai, Rui Chao; Jia, Xi Hua; Luo, Dao Peng; Ge, Guo; Jiang, Yu Wu; Fung, Yin-Wan Wendy; Li, Lina; Yu, Albert Cheung Hoi

    2017-01-01

    Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.

  11. Targeting astrocytes in major depression

    OpenAIRE

    2015-01-01

    Astrocytes represent a highly heterogeneous population of neural cells primarily responsible for the homeostasis of the central nervous system. Astrocytes express multiple receptors for neurotransmitters, including the serotonin 5-HT2B receptors and interact with neurones at the synapse. Astroglia contribute to neurological diseases through homeostatic response, neuroprotection and reactivity. In major depression, astrocytes show signs of degeneration and are decreased in numbe...

  12. Conservation, Innovation, and Bias: Embryonic Segment Boundaries Position Posterior, but Not Anterior, Head Horns in Adult Beetles.

    Science.gov (United States)

    Busey, Hannah A; Zattara, Eduardo E; Moczek, Armin P

    2016-07-01

    The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution.

  13. Why are astrocytes important?

    Science.gov (United States)

    Verkhratsky, Alexei; Nedergaard, Maiken; Hertz, Leif

    2015-02-01

    Astrocytes, which populate the grey and white mater of the brain and the spinal cord are highly heterogeneous in their morphology and function. These cells are primarily responsible for homeostasis of the central nervous system (CNS). Most central synapses are surrounded by exceedingly thin astroglial perisynaptic processes, which act as "astroglial cradle" critical for genesis, maturation and maintenance of synaptic connectivity. The perisynaptic glial processes are densely packed with numerous transporters, which provide for homeostasis of ions and neurotransmitters in the synaptic cleft, for local metabolic support and for release of astroglial derived scavengers of reactive oxygen species. Through perivascular processes astrocytes contribute to blood-brain barrier and form "glymphatic" drainage system of the CNS. Furthermore astrocytes are indispensible for glutamatergic and γ-aminobutyrate-ergic synaptic transmission being the supplier of neurotransmitters precursor glutamine via an astrocytic/neuronal cycle. Pathogenesis of many neurological disorders, including neuropsychiatric and neurodegenerative diseases is defined by loss of homeostatic function (astroglial asthenia) or remodelling of astroglial homoeostatic capabilities. Astroglial cells further contribute to neuropathologies through mounting complex defensive programme generally known as reactive astrogliosis.

  14. 大麻素受体2激动剂JWH-015对骨癌痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白的影响%The effect of intraperitoneal injection cannabinoid 2 receptor agonist JWH-015 on the expression of phosphorylated cyclic AMP response element binding protein in spinal dorsal horn in a rat model of bone cancer pain

    Institute of Scientific and Technical Information of China (English)

    孙蓓; 张羽; 冷鑫; 顾小萍; 马正良

    2014-01-01

    目的 探讨腹腔注射大麻素受体(cannabinoid receptor,CB)2激动剂对骨癌痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cyclic AMP response element binding protein,pCREB)表达的影响. 方法 运用随机数字表法将63只雌性SD大鼠分为3组:肿瘤给药组(J组,15只)、肿瘤对照组(D组,24只)和假手术对照组(S组,24只).J组、D组的大鼠左侧胫骨上端骨髓腔被注入5μlWalker256大鼠乳腺癌细胞制备骨癌痛模型;S组则注入等量的生理盐水.在造模后第10天,J组腹腔注射JWH-015(100 μg/500μl),D组、S组注射等量JWH-015溶剂二甲基亚髓砜(dimethylsulfoxide,DMSO).每组大鼠于造模前1d,造模后4、7、10 d,腹腔注射后2、6、24、48、72 h,检测手术侧机械刺激缩足阈值(paw withdrawal mechanicalthreshold,PWMT)和行走痛行为学评分.D组和S组大鼠于造模后4、7d,J组、D组和S组大鼠于造模后10 d及腹腔注射后6、24、72 h,取脊髓腰膨大进行免疫印迹分析. 结果 与S组比较,J组和D组大鼠造模后7 d PWMT开始降低(P<0.05),造模后10 d行走痛行为学评分增加(P<0.05),脊髓背角pCREB表达水平于7、10 d上调(P<0.05).与D组比较,腹腔注射JWH-015后24 h,J组PWMT(8.7±1.6)g显著上升(P<0.05),行走痛行为学评分(1.0±0.6)分和pCREB的表达(0.56±0.10)明显下降(P<0.05). 结论 腹腔注射JWH-015可能通过下调脊髓背角pCREB的表达改善骨癌痛大鼠的痛行为.%Objective To investigate the change of phosphorylated cyclic AMP response element binding protein (pCREB) in spinal dorsal horn in a rat model of bone cancer pain,after intraperitoneal injection JWH-015.Methods Sixty-three female SD rats were randomly divided into 3 group:medication administration of JWH-015 group (group J,n=15),medication administration of dimethylsulfoxide (DMSO) group (group D,n=15) and sham group (group S,n=21).Group J,D:5 μl Walker256 breast cancer cells of rat were implanted

  15. Modulus of elasticity and dry-matter content of bovine claw horn affected by the changes of chronic laminitis.

    Science.gov (United States)

    Hinterhofer, Christine; Apprich, Veronika; Ferguson, James C; Stanek, Christian

    2007-11-01

    The mechanical properties of horn samples from 22 hind claws with chronic laminitis were determined in adult Austrian Fleckvieh cows. The resistance to deformation was quantified as the modulus of elasticity (E). Tension tests revealed mean E values of 520MPa for the dorsal wall, 243MPa for the abaxial wall, 339MPa for the axial wall and 97MPa for the sole. E tended to be lower in laminitic horn than in sound horn in all segments tested, with the difference being largest in the abaxial wall. The mean dry-matter content (DMC) of the laminitic claws was 75.8% in the dorsal wall, 75.86% in the abaxial wall, 71.15% in the axial wall and 69.28% in the sole. These values are generally comparable to those for sound claws except in the axial wall. Further, E and DMC were only correlated in the axial wall. Chronic laminitis leads to a low resistance of claw horn to mechanical insults in the dorsal wall, abaxial wall and sole, and to the loss of a correlation between the E and DMC in these segments. The reason for these alterations is therefore not increased ingress of moisture, but must be due to changes in the microstructure, biochemical components and/or horn formation by the diseased dermis.

  16. Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice

    NARCIS (Netherlands)

    J.C. Holstege (Jan); W. de Graaff (Wim); S.M. Hossaini (Mehdi); S.C. Cano; D. Jaarsma (Dick); J. Deschamps (Jacqueline); E. van den Akker (Eric)

    2008-01-01

    textabstractAlthough Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of

  17. Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice.

    NARCIS (Netherlands)

    Holstege, J.C.; de Graaff, W.G.A.J.; Hossaini, M.; Cano, S.C.; Jaarsma, D.; van den Akker, E.; Deschamps, J.

    2008-01-01

    Although Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive g

  18. Increased Expression of P2X7 Receptors Evoked by ATP in Cultured Spinal Cord Dorsal Horn Astrocytes%ATP刺激培养脊髓背角星形胶质细胞P2X7受体表达上调

    Institute of Scientific and Technical Information of China (English)

    曾俊伟; 刘晓红; 阮怀珍

    2008-01-01

    目的 观察体外培养的脊髓背角星形胶质细胞P2X1-7 受体表达,以及不同浓度三磷酸腺苷(adenosine triphosphate,ATP)对P2X1-7 受体及胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)表达的影响.方法 培养并纯化脊髓背角星形胶质细胞,采用免疫组织化学染色观察P2受体表达.随后在无血清培养条件下,加入不同浓度ATP(100μM,500μM,1mM,2mM)作用24h 后,观察脊髓背角星形胶质细胞P2X1-7 受体表达及GFAP表达的变化.对照组加入0.01M PBS处理24h.IPP图象分析软件得到P2X受体以及GFAP阳性细胞平均光密度.结果 体外培养的大鼠脊髓背角星形胶质细胞表达P2X1,P2X2,P2X4, P2X5,P2X6 和P2X7 受体; 在ATP(100μM,500μM,1mM,2mM)作用下,P2X1,P2X2,P2X4, P2X5,P2X6受体表达未见明显变化,而P2X7受体和 GFAP表达逐渐上调,并具量效关系.结论 体外培养的大鼠脊髓背角星形胶质细胞表达P2X1,P2X2,P2X4, P2X5,P2X6和P2X7受体,而ATP可以诱发星形胶质细胞GFAP及P2X7受体表达上调,这一结果提示,其中P2X7可能参与脊髓背角星形胶质细胞活性的调节.

  19. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    are reported to open the hemichannels and thereby create a permeation pathway through the plasma membrane. Cx30 and Cx43 have, in their hemichannel configuration, been proposed to act as ion channels and membrane pathways for different molecules, such as fluorescent dyes, ATP, prostaglandins, and glutamate......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli...

  20. Electromigration Issues in High Current Horn

    CERN Document Server

    Zhang, Wu; Hseuh, Brigitte; Sandberg, Jon; Simos, Nikolaos; Tuozzolo, Joseph; Weng, Wu-Tsung

    2005-01-01

    The secondary particle focusing horn for the AGS neutrino experiment proposal is a high current and high current density device. The peak current of horn is 300 kA. At the smallest area of horn, the current density is near 8 kA/mm2. At very high current density, a few kA/mm2, the electromigration phenomena will occur. Momentum transfer between electrons and metal atoms at high current density causes electromigration. The reliability and lifetime of focusing horn can be severely reduced by electromigration. In this paper, we discuss issues such as device reliability model, incubation time of electromigration, and lifetime of horn.

  1. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes.

    Science.gov (United States)

    Foust, Kevin D; Nurre, Emily; Montgomery, Chrystal L; Hernandez, Anna; Chan, Curtis M; Kaspar, Brian K

    2009-01-01

    Delivery of genes to the brain and spinal cord across the blood-brain barrier (BBB) has not yet been achieved. Here we show that adeno-associated virus (AAV) 9 injected intravenously bypasses the BBB and efficiently targets cells of the central nervous system (CNS). Injection of AAV9-GFP into neonatal mice through the facial vein results in extensive transduction of dorsal root ganglia and motor neurons throughout the spinal cord and widespread transduction of neurons throughout the brain, including the neocortex, hippocampus and cerebellum. In adult mice, tail vein injection of AAV9-GFP leads to robust transduction of astrocytes throughout the entire CNS, with limited neuronal transduction. This approach may enable the development of gene therapies for a range of neurodegenerative diseases, such as spinal muscular atrophy, through targeting of motor neurons, and amyotrophic lateral sclerosis, through targeting of astrocytes. It may also be useful for rapid postnatal genetic manipulations in basic neuroscience studies.

  2. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  3. RUPTURED RUDIMENTARY HORN PREGNANCY OF UNICORNUATE UTERUS

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2015-06-01

    Full Text Available Unicornuate uterus can sometimes be associated with rudimentary horn. Pregnancy in a rudimentary horn is rare and usually ends up in rupture. Diagnosis is difficult and can be missed in routine ultrasound scan and is usually detected after rupture. We report a case of G1P1 with rudimentary horn pregnancy which raised suspicion on ultr asound and was later diagnosed by MR imaging. Patient refused termination and presented next day with shock. Laparotomy revealed ruptured right rudimentary horn pregnancy.

  4. Horn belief change: A contraction core

    CSIR Research Space (South Africa)

    Booth, R

    2010-08-01

    Full Text Available , and counterfactuals’, Artificial Intelligence, 57(2–3), 227–270, (1992). [5] S.O. Hansson, ‘Kernel contraction’, Journal of Symbolic Logic, 59(3), 845–859, (1994). [6] M. Langlois, R. Sloan, B. Szo¨re´nyi, and G. Thra´n, ‘Horn complements: Towards Horn... to its contraction counterpart. Delgrande [3] investigated two classes of contraction functions for Horn belief sets, viz. e-contraction and i-contraction, while Booth et al. [2] subsequently extended Delgrande’s work. A Horn clause has the form p1...

  5. Miniaturization of planar horn motors

    Science.gov (United States)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-04-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of a stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2×2×2 mm piezoelectric stacks integrated into thin plates that are of the order of 3 × 3 × 0.2 cm.

  6. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...

  7. AA, sandwich line with magnetic horn

    CERN Document Server

    1980-01-01

    Continuation from 8010293: Finally, the sandwich line with the horn is placed on the ground, for the horn to be inspected and, if needed, exchanged for a new one. The whole procedure was trained with several members of the AA team, for quick and safe handling, and to share the radiation dose amongst them.

  8. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...

  9. Non-communicating Rudimentary Uterine Horn Pregnancy

    Directory of Open Access Journals (Sweden)

    I Upadhyaya

    2011-12-01

    Full Text Available Pregnancy in a non-communicating rudimentary horn is an extremely rare form of ectopic gestation. The rudimentary horn may or may not communicate with the uterine cavity with the majority of cases being non-communicating. The patient exhibits features of acute abdomen and carries a high risk of maternal death. Even modern scans remain elusive whereas laparatomy remains the confi rmatory procedure for the diagnosis. Because of the varied muscular constitution in the thickness and distensibility of the wall of the rudimentary horn, pregnancy is accommodated for a variable period of gestation. Here, we report three cases of pregnancy in a non-communicating rudimentary horn of the uterus in different periods of gestation, their outcome and a review of the available literature. Keywords: Mullerian anomalies, non-communicating rudimentary horn pregnancy, surgical management.

  10. Next steps in propositional horn contraction

    CSIR Research Space (South Africa)

    Booth, R

    2009-06-01

    Full Text Available not opted for this choice.) Our start- ing point for defining Horn e-contraction is in terms of Del- grande’s definition of e-remainder sets. Definition 3.1 (Horn e-Remainder Sets) For a belief setH , X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii... functions to be used for Horn partial meet e-contraction. Definition 3.2 (Horn e-Selection Functions) A partial meet Horn e-selection function σ is a function from P(P(LH)) to P(P(LH)) s.t. σ(H ↓e Φ) = {H} if H ↓e Φ = ∅, and ∅ 6= σ(H ↓eΦ) ⊆ H ↓e...

  11. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  12. Transcriptional control of GABAergic neuron development in the dorsal spinal cord

    Institute of Scientific and Technical Information of China (English)

    Huang Jing; Wu Shengxi

    2008-01-01

    GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronalnet works. In recent years, tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord. New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination. Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding. Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn. Here, we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord, especially the progresses in the homeodomain (HD) and basic-helix-loop-helix(bHLH) containing transcription factors.

  13. Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy.

    Science.gov (United States)

    Ramer, Matt S; Bishop, Thomas; Dockery, Peter; Mobarak, Makarim S; O'Leary, Donald; Fraher, John P; Priestley, John V; McMahon, Stephen B

    2002-02-01

    Injured dorsal root axons fail to regenerate into the adult spinal cord, leading to permanent sensory loss. We investigated the ability of intrathecal neurotrophin-3 (NT3) to promote axonal regeneration across the dorsal root entry zone (DREZ) and functional recovery in adult rats. Quantitative electron microscopy showed robust penetration of CNS tissue by regenerating sensory axons treated with NT3 at 1 and 2 weeks postrhizotomy. Light and electron microscopical anterograde tracing experiments showed that these axons reentered appropriate and ectopic laminae of the dorsal horn, where they formed vesicle-filled synaptic buttons. Cord dorsum potential recordings confirmed that these were functional. In behavioral studies, NT3-treated (but not untreated or vehicle-treated) rats regained proprioception. Recovery depended on NT3-mediated sensory regeneration: preventing regeneration by root excision prevented recovery. NT3 treatment allows sensory axons to overcome inhibition present at the DREZ and may thus serve to promote functional recovery following dorsal root avulsions in humans.

  14. Horn of Africa food crisis

    CERN Multimedia

    Staff Association

    2011-01-01

    YOU ARE WONDERFUL, THANK YOU! As we have indicated previously, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than half a million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. At the beginning of August we opened an account to receive your donations. We are pleased to announce that the funds received are 30’500 CHF, the total sum of which will be transferred to UNICEF. We would like to thank all those who have contributed to this important cause. Rolf Heuer Director-General Michel Goossens President of the Staff Association

  15. 12MW Horns Rev experiment

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Peña, A.; Mikkelsen, Torben

    The 12MW project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis...... relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting...... profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported....

  16. Olfactory coding in the honeybee lateral horn.

    Science.gov (United States)

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  17. The SeaHorn Verification Framework

    Science.gov (United States)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  18. AA, sandwich line with magnetic horn

    CERN Multimedia

    1980-01-01

    The magnetic horn, focusing the antiprotons emanating from the target, was affixed to a sandwich line through which the 150 kA pulses were supplied. Expecting to have to change from time to time the fragile horn (inner conductor only 0.7 mm thick), the assembly was designed for quick exchange. At the lower end of the sandwich line we see the connectors for the high-current cables, at the upper end the magnet horn. It has just been lifted from the V-supports which held it aligned downstream of the target. Continue with 8010293.

  19. Spinal anterior horn has the capacity to self-regenerate in amyotrophic lateral sclerosis model mice.

    Science.gov (United States)

    Miyazaki, Kazunori; Nagai, Makiko; Morimoto, Nobutoshi; Kurata, Tomoko; Takehisa, Yasushi; Ikeda, Yoshio; Abe, Koji

    2009-12-01

    The exact host environment necessary for neural regeneration in amyotrophic lateral sclerosis (ALS) has not yet been fully elucidated. We first focused on the extracellular matrix proteins in ALS model mice during development of the disease and then attempted to examine whether regeneration occurs in the ALS spinal cord under regenerative conditions. A progressive increase in gamma1 laminin (a promoter of regeneration) and a progressive decrease in semaphorin3A (Sema3A; an inhibitor of regeneration) were observed, mainly in the neuropil of the spinal anterior horn from 15 to 18 weeks, when astrocytes began to express both gamma1 laminin and Sema3A. On the other hand, a progressive increase in growth-associated protein 43 (GAP43; synaptic regeneration site) and a progressive decrease in synaptotagmin1 (actual synaptic bouton) were observed in the same areas of the spinal anterior horn from 15 to 18 weeks. Thus, the present data suggest that, although the spinal anterior horn in ALS models loses motor neurons, it initially possesses the capacity to self-regenerate but displays a progressive loss of ability to regenerate new effective synapses. Copyright 2009 Wiley-Liss, Inc.

  20. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    then proceeds by applying the linearisation transformation and solver for linear Horn clauses to a sequence of sets of clauses with successively increasing dimension bound. The approach is then further developed by using a solution of clauses of lower dimension to (partially) linearise clauses of higher......In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...

  1. 大鼠延髓背角内5-羟色胺、脑啡肽、γ-氨基丁酸、甘氨酸或P-物质能终末与钙结合蛋白阳性神经元间的联系%CONNECTIONS BETWEEN SEROTONERGIC, ENKEPHALINERGIC,GABAERGIC, GLYCINERGIC, SUBSTANCE P-ERGIC TERMINALS AND CALCIUM BINDING PROTEINS-CONTAINING NOCICEPTIVE NEURONS IN RAT MEDULLARY DORSAL HORN

    Institute of Scientific and Technical Information of China (English)

    李辉; 吴乐; 李云庆

    2006-01-01

    CB(calbindin-D28k),CR(calretinin)和PV(parvalbumin)是最常见的3种钙结合蛋白(calcium-binding proteins,CaBPs).本研究首先观察了面口部给予伤害性刺激诱发大鼠延髓背角(又称三叉神经脊束核尾侧亚核)神经元表达FOS蛋白的状况;然后通过免疫荧光组织化学技术检测这些神经元内是否含有CaBPs(CB、CR和PV);最后通过免疫荧光和免疫电镜染色技术观察5-HT、GABA、甘氨酸转运体2(glycine transporter 2,GlvT2)、脑啡肽(enkephalin,ENK)或SP与CaBPs/FOS双标神经元间的联系.在光镜下可观察到:(1)FOS阳性神经元在延髓背角各层均有分布,以Ⅱ层最为密集;(2)大多数CB、CR或PV阳性神经元位于Ⅱ层,余者分布在Ⅰ层和Ⅲ层;(3)5-HT、GABA、GlyT2,ENK及SP阳性纤维和终末主要位于延髓背角浅层(4)部分FOS阳性神经元同时呈CB、CR或PV阳性;(5)5-HT、GABA、GlyT2或ENK阳性终末分别与FOS/CB、FOS/CR或FOS/PV双标神经元形成密切接触;(6)SP阳性终末与5-HT、GABA、GlyT2或ENK阳性终末同时与CB、CR或PV阳性神经元形成密切接触.在电镜下观察到5-HT、GABA、GlyT2或ENK阳性终末与CB、CR或PV阳性神经元主要形成对称型(抑制性)突触联系.这些结果提示在大鼠延髓背角,5-HT、GABA、甘氨酸或ENK可能通过抑制含钙结合蛋白的伤害性感受神经元来调节面口部伤害性信息的传递.%Calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) are the most common calcium-binding proteins (CaBPs). In the present study, FOS immunoreactivity was first induced in neurons of the medullary dorsal horn (MDH) of the rat by noxious orofacial stimulation; CaBPs (CB, CR and PV) in these neurons were then identified by imumunofluorescence histochemistry, and then, in addition, afferents to CaBPs/FOS double-labeled neurons were showed by immunofluorescence histochemical staining for the γ-aminobutyric acid (GABA) , glycine transporter 2 (GlyT2) , enkephalin (ENK) , serotonin

  2. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  3. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Pankaj Seth; Nitin Koul

    2008-09-01

    Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

  4. Astrocytic glycogenolysis: mechanisms and functions.

    Science.gov (United States)

    Hertz, Leif; Xu, Junnan; Song, Dan; Du, Ting; Li, Baoman; Yan, Enzhi; Peng, Liang

    2015-02-01

    Until the demonstration little more than 20 years ago that glycogenolysis occurs during normal whisker stimulation glycogenolysis was regarded as a relatively uninteresting emergency procedure. Since then, a series of important astrocytic functions has been shown to be critically dependent on glycogenolytic activity to support the signaling mechanisms necessary for these functions to operate. This applies to glutamate formation and uptake and to release of ATP as a transmitter, stimulated by other transmitters or elevated K(+) concentrations and affecting not only other astrocytes but also most other brain cells. It is also relevant for astrocytic K(+) uptake both during the period when the extracellular K(+) concentration is still elevated after neuronal excitation, and capable of stimulating glycogenolytic activity, and during the subsequent undershoot after intense neuronal activity, when glycogenolysis may be stimulated by noradrenaline. Both elevated K(+) concentrations and several transmitters, including the β-adrenergic agonist isoproterenol and vasopressin increase free cytosolic Ca(2+) concentration in astrocytes, which stimulates phosphorylase kinase so that it activates the transformation of the inactive glycogen phosphorylase a to the active phosphorylase b. Contrary to common belief cyclic AMP plays at most a facilitatory role, and only when free cytosolic Ca(2+) concentration is also increased. Cyclic AMP is not increased during activation of glycogenolysis by either elevated K(+) concentrations or the stimulation of the serotonergic 5-HT(2B) receptor. Not all agents that stimulate glycogenolysis do so by directly activating phophorylase kinase--some do so by activating processes requiring glycogenolysis, e.g. for synthesis of glutamate.

  5. A Horn-to-Horn Power Transmission System at Terahertz Frequencies

    Science.gov (United States)

    Gonzalez, A.; Uzawa, Y.; Fujii, Y.; Kaneko, K.; Kuroiwa, K.

    2011-11-01

    A horn-to-horn power transmission system at Terahertz frequencies has been designed and tested. Power is generated at microwave frequencies and then frequency multiplied to the band 799-938 GHz. The resultant signal is radiated by a diagonal horn and redirected by two identical elliptical mirrors to another diagonal horn located far away. Useful design equations have been derived for the proposed system. The concept has been proven by careful measurements and utilized for the local oscillator injection in the Atacama Large Millimeter Array (ALMA) Band-10 receiver.

  6. Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal

    OpenAIRE

    1993-01-01

    The formation of dorsal-ventral polarity in Drosophila requires the asymmetric nuclear localization of the dorsal protein along the D/V axis. This process is regulated by the action of the dorsal group genes and cactus. We show that dorsal and cactus are both phosphoproteins that form a stable cytoplasmic complex, and that the cactus protein is stabilized by its interaction with dorsal. The dorsal-cactus complex dissociates when dorsal is targeted to the nucleus. While the phosphorylation of ...

  7. Assembly of the magnetic horns under way

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metres.

  8. Follicular infundibulum tumour presenting as cutaneous horn

    Directory of Open Access Journals (Sweden)

    Jayaraman M

    1996-01-01

    Full Text Available Tumour of follicular infundibulum is an organoid tumour with a plate like growth attached to the epidermis with connection from the follicular epithelium. We are reporting such a case unusually presenting as cutaneous horn.

  9. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  10. Agenesis of the dorsal pancreas

    Institute of Scientific and Technical Information of China (English)

    Lale Pasaoglu; Murat Vural; Hatice Gul Hatipoglu; Gokce Tereklioglu; Suha Koparal

    2008-01-01

    Developmental anomalies of the pancreas have been reported but dorsal pancreatic agenesis is an extremely rare entity. We report an asymptomatic 62-year-old woman with complete agenesis of the dorsal pancreas.Abdominal computed tomography (CT) revealed a normal pancreatic head, but pancreatic body and tail were not visualized. Magnetic resonance imaging (MRI)findings were similar to CT. At magnetic resonance cholangiopancreatography (MRCP), the major pancreatic duct was short and the dorsal pancreatic duct was not visualized. The final diagnosis was dorsal pancreatic agenesis.

  11. Horn of Africa food crisis

    CERN Multimedia

    Association du personnel

    2011-01-01

    Dear colleagues, As many of you are already aware, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than a half million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. An immediate, determined mobilization is required in order to avert an imminent humanitarian catastrophe and to prevent millions of people from being robbed of a future through the scourge of hunger and malnutrition. CERN has decided to join this international mobilization by specifically opening an account for those who want to make a donation to help the drought- and famine-affected populations in the region. Children being the first...

  12. Astrocyte-Synapse Structural Plasticity

    OpenAIRE

    2014-01-01

    The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmissi...

  13. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  14. Triptolide protects astrocytes from hypoxia/ reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    Minfang Guo; Hongcui Fan; Jiezhong Yu; Ning Ji; Yongsheng Sun; Liyun Liang; Baoguo Xiao; Cungen Ma

    2011-01-01

    Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.

  15. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  16. The rams horn in western history

    Science.gov (United States)

    Lubman, David

    2003-10-01

    The shofar or rams horn-one of the most ancient of surviving aerophones-may have originated with early Neolithic herders. The shofar is mentioned frequently and importantly in the Hebrew bible and in later biblical and post-biblical literature. Despite its long history, contemporary ritual uses, and profound symbolic significance to western religion, no documentation of shofar acoustical properties was found. Since ancient times, shepherds of many cultures have fashioned sound instruments from the horns of herd animals for practical and musical uses. Shepherd horns of other cultures exhibit an evolution of form and technology (e.g., the inclusion of finger holes). The shofar is unique in having retained its primitive form. It is suggested that after centuries of practical use, the shofar became emblematic of the shepherd culture. Ritual use then developed, which froze its form. A modern ritual rams horn played by an experienced blower was examined. This rather short horn was determined to have a source strength of 92 dB (A) at 1 m, a fundamental frequency near 420 Hz, and maximum power output between 1.2 and 1.8 kHz. Sample sounds and detection range estimates are provided.

  17. Relaxin protects astrocytes from hypoxia in vitro.

    Directory of Open Access Journals (Sweden)

    Jordan M Willcox

    Full Text Available The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD. Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD exposure, viability assays showed that relaxin-treated cells exhibited a higher viability when compared to astrocytes that experienced OGD-alone. Next, to test whether relaxin reduced the production of reactive oxygen species (ROS astrocytes were exposed to the same conditions as the previous experiment and a commercially available ROS detection kit was used to detect ROS production. Astrocytes that were treated with relaxin-2 and relaxin-3 showed a marked decrease in ROS production when compared to control astrocytes that were exposed only to OGD. Finally, experiments were performed to determine whether or not the mitochondrial membrane potential was affected by relaxin treatment during 24 hour OGD. Mitochondrial membrane potential was higher in astrocytes that were treated with relaxin-2 and relaxin-3 compared to untreated OGD-alone astrocytes. Taken together, these data present novel findings that show relaxin protects astrocytes from ischemic conditions through the reduction of ROS production and the maintenance of mitochondrial membrane potential.

  18. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  19. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  20. RARE PRESENTATION OF RUPTURED RUDIMENTARY HORN PREGNANCY

    Directory of Open Access Journals (Sweden)

    Shergill Harbhajan K, Grover Suparna, Chhabra Ajay

    2015-10-01

    Full Text Available It is a rare occurrence for the rudimentary horn of uterus to harbour a pregnancy and the usual outcome is devastating leading to a spontaneous rupture in second trimester with the patient presenting in shock with massive intra-peritoneal haemorrhage and if appropriate management is not instituted in time it may lead to high rate of mortality. We report an unusual case of rupture rudimentary horn pregnancy who presented as a chronic ectopic with an adnexal mass and surprisingly with no sign of shock. Diagnosis is often difficult in such a situation which puts the treating gynaecologist in dilemma. High clinical suspicion supplemented with radiological findings helped clinch the diagnosis and laparotomy was performed followed by resection of the rudimentary horn to prevent future complications.

  1. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice

    DEFF Research Database (Denmark)

    Jo, Seung; Danscher, Gorm; Schrøder, Henrik

    2008-01-01

    to neuropathic pain we applied Chung's rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic......Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related...... of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have...

  2. Actions of endomorphins on synaptic transmission of Adelta-fibers in spinal cord dorsal horn neurons.

    Science.gov (United States)

    Yajiri, Y; Huang, L Y

    2000-01-01

    The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.

  3. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    OpenAIRE

    Song, Bingbing; Marvizón, Juan Carlos G.

    2003-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β...

  4. Neutrophilic dermatosis of dorsal hands

    Directory of Open Access Journals (Sweden)

    S Kaur

    2015-01-01

    Full Text Available Sweet′s syndrome is characterized by erythematous tender nodules and plaques over face and extremities. Fever, leukocytosis with neutrophilia, and a neutrophilic infiltrate in the dermis are characteristic features. Neutrophilic dermatosis of dorsal hands is a rare localized variant of Sweet′s syndrome occurring predominantly over dorsa of hands. Various degrees of vascular damage may be observed on histopathology of these lesions. Both Sweet′s syndrome and its dorsal hand variant have been reported in association with malignancies, inflammatory bowel diseases, and drugs. We report a patient with neutrophilic dermatoses of dorsal hands associated with erythema nodosum. He showed an excellent response to corticosteroids and dapsone.

  5. AA, Inner Conductor of Magnetic Horn

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.

  6. Planck LFI flight model feed horns

    CERN Document Server

    Villa, F; Pecora, M; Figini, L; Nesti, R; Simonetto, A; Sozzi, C; Sandri, M; Battaglia, P; Guzzi, P; Bersanelli, M; Butler, R C; Mandolesi, N; 10.1088/1748-0221/4/12/T12004

    2010-01-01

    this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst The Low Frequency Instrument is optically interfaced with the ESA Planck telescope through 11 corrugated feed horns each connected to the Radiometer Chain Assembly (RCA). This paper describes the design, the manufacturing and the testing of the flight model feed horns. They have been designed to optimize the LFI optical interfaces taking into account the tight mechanical requirements imposed by the Planck focal plane layout. All the eleven units have been successfully tested and integrated with the Ortho Mode transducers.

  7. Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    David Harry McDougal

    2013-12-01

    Full Text Available Glucose homeostasis is maintained through interplay between central and peripheral control mechanisms which are aimed at storing excess glucose following meals and mobilizing these same stores during periods of fasting. The nucleus of the solitary tract (NST in the dorsal medulla has long been associated with the central detection of glucose availability and the control of glucose homeostasis. Recent evidence has emerged which supports the involvement of astrocytes in glucose homeostasis. The aim of the present study was to investigate whether NST-astrocytes respond to physiologically relevant decreases in glucose availability, in vitro, as well as to the presence of the glucoprivic compound 2-deoxy-D-Glucose. This report demonstrates that some NST-astrocytes are capable of responding to low glucose or glucoprivation by increasing cytoplasmic calcium; a change that reverses with restoration of normal glucose availability. While some NST-neurons also demonstrate an increase in calcium signaling during low glucose availability, this effect is smaller and somewhat delayed compared to those observed in adjacent astrocytes. TTX did not abolish these hypoglycemia mediated responses of astrocytes, suggesting that NST-astrocytes may be directly sensing low glucose levels as opposed to responding to neuronal detection of hypoglycemia. Thus, chemodetection of low glucose by NST-astrocytes may play an important role in the autonomic regulation of glucose homeostasis.

  8. Presumptive keratoglobus in a great horned owl (Bubo virginianus).

    Science.gov (United States)

    Lau, Rachael K; Moresco, Anneke; Woods, Sarah J; Reilly, Christopher M; Hawkins, Michelle G; Murphy, Christopher J; Hollingsworth, Steven R; Hacker, Dennis; Freeman, Kate S

    2016-07-31

    A juvenile to young adult, male, great horned owl (Bubo virginianus,GHOW) was presented to the wildlife rehabilitation hospital at Lindsay Wildlife Museum (WRHLWM) due to trauma to the right patagium from barbed wire entanglement. On presentation, both corneas were irregular, dry, and no movement of the third eyelid was noted. A severe corneal enlargement/globoid appearance was the predominant ophthalmic feature. The fundus was normal in both eyes (OU). Over the course of several days, both corneas developed edema combined with further dessication at the ocular surface associated with diffuse dorsal fluorescein stain uptake. Repeated ophthalmic examinations found normal intraocular pressures and an inability to move the third eyelid over the enlarged corneas. The bird was deemed nonreleasable due to severe wing damage and poor prognosis associated with eye abnormalities and was humanely euthanized. Postmortem CT, enucleation, and histopathology were performed to evaluate the ocular anatomical abnormality and confirm the suspected diagnosis of keratoglobus. This GHOW represents the first reported case of presumptive keratoglobus in a raptor.

  9. Astrocyte loss and astrogliosis in neuroinflammatory disorders

    NARCIS (Netherlands)

    Hostenbach, Stephanie; Cambron, Melissa; D'haeseleer, Miguel; Kooijman, Ron; De Keyser, Jacques

    2014-01-01

    Neuroinflammation can lead to either damage of astrocytes or astrogliosis. Astrocyte loss may be caused by cytotoxic T cells as seen in Rasmussen encephalitis, auto-antibodies such as in neuromyelitis optica (aquaporin-4 antibodies), or cytokines such as TNF-alpha in major depressive disorder. Inter

  10. Dorsal Augmentation with Septal Cartilage

    OpenAIRE

    Murrell, George L.

    2008-01-01

    Deficiency of nasal dorsal projection may be inherent or acquired. Repair is most commonly performed with an onlay graft. When nasal septal cartilage is available, it is the author's preferred source for graft material. It is important to realize that dorsal augmentation is an operation performed for aesthetic not functional reasons. As such, patients understandably scrutinize their postoperative result, and attention to detail in all aspects of the surgery is critical in achieving a favorabl...

  11. The horn bases of the Reedbuck Redunca arundinum

    Directory of Open Access Journals (Sweden)

    H. Jungius

    1975-07-01

    Full Text Available The structure and function of the horn bases of the reedbuck Redunca arundinum are discussed. It is shown that the white colouration which often occurs is not caused by glandular secretion but by small horn particles which are shed, exposing the lighter coloured material underneath. The shining horn base probably plays a role in the display behaviour of males.

  12. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  13. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  14. Assembly of the magnetic horns under way

    CERN Multimedia

    2003-01-01

    One of the key components of the CNGS facility is the system of magnetic lenses, known as horns, which are to point the pions and kaons that will decay into muons and muon-neutrinos in the direction of the Gran Sasso Laboratory. Positioned at the end of the target, which produces the pions and kaons, the system comprises two of these horns. The first focuses the positively charged pions and kaons, which have an energy of approximately 35 GeV, and defocuses the negative particles. Unfortunately, it has a tendency to cause excessive deflection of particles that have energies of less than 35 GeV and insufficient deflection of those with energies of more than 35 GeV. These negative effects are corrected by the second horn (also known as the reflector), which is positioned 40 metres from the first. Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metre...

  15. Profilin isoforms modulate astrocytic morphology and the motility of astrocytic processes.

    Directory of Open Access Journals (Sweden)

    Stefanie K Schweinhuber

    Full Text Available The morphology of astrocytic processes determines their close structural association with synapses referred to as the 'tripartite synapse'. Concerted morphological plasticity processes at tripartite synapses are supposed to shape neuronal communication. Morphological changes in astrocytes as well as the motility of astrocytic processes require remodeling of the actin cytoskeleton. Among the regulators of fast timescale actin-based motility, the actin binding protein profilin 1 has recently been shown to control the activity-dependent outgrowth of astrocytic processes. Here, we demonstrate that cultured murine astrocytes in addition to the ubiquitous profilin 1 also express the neuronal isoform profilin 2a. To analyze the cellular function of both profilins in astrocytes, we took advantage of a shRNA mediated isoform-specific downregulation. Interestingly, consistent with earlier results in neurons, we found redundant as well as isoform-specific functions of both profilins in modulating cellular physiology. The knockdown of either profilin 1 or profilin 2a led to a significant decrease in cell spreading of astrocytes. In contrast, solely the knockdown of profilin 2a resulted in a significantly reduced morphological complexity of astrocytes in both dissociated and slice culture astrocytes. Moreover, both isoforms proved to be crucial for forskolin-induced astrocytic stellation. Furthermore, forskolin treatment resulted in isoform-specific changes in the phosphorylation level of profilin 1 and profilin 2a, leading to a PKA-dependent phosphorylation of profilin 2a. In addition, transwell assays revealed an involvement of both isoforms in the motility of astrocytic processes, while FRAP analysis displayed an isoform-specific role of profilin 1 in the regulation of actin dynamics in peripheral astrocytic processes. Taken together, we suggest profilin isoforms to be important modulators of astrocytic morphology and motility with overlapping as well as

  16. Penile cutaneous horn: An enigma-newer insights and perspectives

    Directory of Open Access Journals (Sweden)

    Kaliaperumal Karthikeyan

    2015-01-01

    Full Text Available Cutaneous horn refers to unusually cohesive keratinized material and not a true pathologic diagnosis. Though cutaneous horn has been described at various sites, horn over the penis is very rare and represents the most unusual site. The role of chronic irritation, phimosis, surgical trauma and radiotherapy have been implicated in penile horn formation. Penile horns present as elongated, keratinous, white or yellowish projections that range from a few millimeters to centimeters in size arising from the glans penis. Histopathology of the keratotic mass reveals nothing but keratin. The underlying mass may vary from verruca vulgaris to squamous cell carcinoma. The treatment is based on the pathology.

  17. Origin and central projections of rat dorsal penile nerve: possible direct projection to autonomic and somatic neurons by primary afferents of nonmuscle origin.

    Science.gov (United States)

    Núñez, R; Gross, G H; Sachs, B D

    1986-05-22

    Cell number, size, and somatotopic arrangement within the spinal ganglia of the cells of origin of the rat dorsal penile nerve (DPN), and their spinal cord projections, were studied by loading the proximal stump of the severed DPN with horseradish peroxidase (HRP). The DPN sensory cells were located entirely in the sixth lumbar (L6) dorsal root ganglia (DRG), in which a mean of 468 +/- 78 cells per side were observed, measuring 26.7 +/- 0.8 microns in their longest axis (range 10-65 microns) and distributed apparently randomly within the ganglia. Within the spinal cord, no retrograde label was found, i.e., no motoneurons were labeled, indicating that in the rat the DPN is formed exclusively of sensory nerve fibers. Although labeled fibers entered the cord only through L6, transganglionically transported HRP was evident in all spinal segments examined, i.e., T13-S2. Labeled fibers projected along the inner edge of the dorsal horn (medial pathway) throughout their extensive craniosacral distribution. However, laminar distribution varied with spinal segment. In the dorsal horn, terminals or preterminal axons were found in the dorsal horn marginal zone (lamina I), the substantia gelatinosa (lamina II), the nucleus proprius (laminae III and IV--the most consistent projection), Clarke's column (lamina VI), and the dorsal gray commissure. In the ventral horn, terminals were found in lamina VII and lamina IX. Label apposed to cell somas and dendrites in lamina VII may represent direct primary afferent projections onto sympathetic autonomic neurons. In lamina IX, labeled terminals delineated the somas and dendrites of cells that appeared to be motoneurons. This is the first description of an apparently monosynaptic contact onto motoneurons by a primary afferent of nonmuscle origin.

  18. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  19. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    Science.gov (United States)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  20. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord.

    Science.gov (United States)

    Haas, Christopher; Fischer, Itzhak

    2013-06-15

    Cellular transplantation using neural stem cells and progenitors is a promising therapeutic strategy that has the potential to replace lost cells, modulate the injury environment, and create a permissive environment for the regeneration of injured host axons. Our research has focused on the use of human glial restricted progenitors (hGRP) and derived astrocytes. In the current study, we examined the morphological and phenotypic properties of hGRP prepared from the fetal central nervous system by clinically-approved protocols, compared with astrocytes derived from hGRP prepared by treatment with ciliary neurotrophic factor or bone morphogenetic protein 4. These differentiation protocols generated astrocytes that showed morphological differences and could be classified along an immature to mature spectrum, respectively. Despite these differences, the cells retained morphological and phenotypic plasticity upon a challenge with an alternate differentiation protocol. Importantly, when hGRP and derived astrocytes were transplanted acutely into a cervical dorsal column lesion, they survived and promoted regeneration of long ascending host sensory axons into the graft/lesion site, with no differences among the groups. Further, hGRP taken directly from frozen stocks behaved similarly and also supported regeneration of host axons into the lesion. Our results underscore the dynamic and permissive properties of human fetal astrocytes to promote axonal regeneration. They also suggest that a time-consuming process of pre-differentiation may not be necessary for therapeutic efficacy, and that the banking of large quantities of readily available hGRP can be an appropriate source of permissive cells for transplantation.

  1. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region...

  2. Delayed olfactory ensheathing cell transplants reduce nociception after dorsal root injury.

    Science.gov (United States)

    Wu, Ann; Lauschke, Jenny L; Gorrie, Catherine A; Cameron, Nicholas; Hayward, Ian; Mackay-Sim, Alan; Waite, Phil M E

    2011-05-01

    Injury to cervical dorsal roots mimics the deafferentation component of brachial plexus injury in humans, with intractable neuropathic pain in the deafferented limb being a common consequence. Such lesions are generally not amenable to surgical repair. The use of olfactory ensheathing cells (OECs) for dorsal root repair, via acute transplantation, has been successful in several studies. From a clinical point of view, delayed transplantation of OECs would provide a more realistic timeframe for repair. In this study we investigated the effect of delayed OEC transplantation on functional recovery of skilled forepaw movements and amelioration of neuropathic pain, using a C7 and C8 dorsal root injury rat model previously established in our lab. We found that OEC transplantation to the dorsal horn 1 week after root injury effectively attenuated neuropathic disturbances associated with dorsal root injury, including spontaneous pain behavior, tactile allodynia and thermal hyperalgesia. The sensory controls of complex, goal-oriented skilled reaching and ladder walking, however, were not improved by delayed OEC transplantation. We did not detect any significant influence of transplanted OECs on injury-induced central reorganisation and afferent sprouting. The anti-nociceptive effect mediated by OEC transplants may therefore be explained by alternative mechanisms such as modification of inflammation and astrogliosis. The significant effect of OEC transplants in mitigating neuropathic pain may be clinically useful in intractable pain syndromes arising from deafferentation. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.

  3. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  4. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  5. LS1 Report: Thank you magnetic horn!

    CERN Multimedia

    Antonella Del Rosso & Katarina Anthony

    2014-01-01

    Experiments at the Antimatter Decelerator (AD) have been receiving beams since the beginning of this week. There is a crucial element at the heart of the chain that prepares the antiproton beam: the so-called magnetic horn, a delicate piece of equipment that had to be refurbished during LS1 and that is now showing just how well it can perform.   View from the top of the target and horn trolley, along the direction of the beam. Antiprotons for the AD are produced by smashing a beam of protons from the PS onto an iridium target. However, the particles produced by the nuclear interactions are emitted at very wide angles; without a focussing element, all these precious particles would be lost. “A magnetic horn is placed at the exit of the target to focus back a large fraction of the negative particles, including antiprotons, parallel to the beam line and with the right momentum,” explains Marco Calviani, physicist in the EN Department and the expert in charge of the AD targe...

  6. Astrocytes generate Na+-mediated metabolic waves.

    Science.gov (United States)

    Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves

    2004-10-12

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  7. Modulation of polymorphonuclear neutrophil functions by astrocytes

    Directory of Open Access Journals (Sweden)

    Xie Luokun

    2010-09-01

    Full Text Available Abstract Background Neuroinflammation is a complex process involving cells from the immune system and the central nerve system (CNS. Polymorphonuclear neutrophils (PMN are the most abundant class of white blood cells, and typically the first type of leukocyte recruited to sites of inflammation. In the CNS, astrocytes are the most abundant glial cell population and participate in the local innate immune response triggered by a variety of insults. In the present study, we investigated the impacts of astrocytes on PMN function. Methods Primary astrocyte cultures were derived from postnatal C57BL/6 mice and primary neutrophils were isolated from 8 to 12 weeks old C57BL/6 mice. PMNs respiratory burst was analyzed by H2DCFDA assay. For phagocytosis assay, neutrophils were incubated with FITC-labeled E. coli and the phagocytosis of E coli was determined by flow cytometer. PMNs degranulation was determined by myeloperoxidase assay. Cytokine expression was determined by real-time PCR. To determine the involvement of different signaling pathway, protein lysates were prepared and western blots were conducted to assess the activation of Akt, Erk1/2, and p38. Results Using ex vivo neutrophils and primary astrocyte cultures, our study demonstrated that astrocytes differentially regulate neutrophil functions, depending upon whether the interactions between the two cell types are direct or indirect. Upon direct cell-cell contact, astrocytes attenuate neutrophil apoptosis, respiratory bust, and degranulation, while enhancing neutrophil phagocytic capability and pro-inflammatory cytokine expression. Through indirect interaction with neutrophils, astrocytes attenuate apoptosis and enhance necrosis in neutrophils, augment neutrophil phagocytosis and respiratory burst, and inhibit neutrophil degranulation. In addition, astrocytes could augment Akt, Erk1/2, and p38 activation in neutrophils. Conclusions Astrocytes differentially regulate neutrophil functions through

  8. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  9. Astrocytic vesicle mobility in health and disease.

    Science.gov (United States)

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  10. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  11. Modulation of Matrix Metalloproteinases Activity in the Ventral Horn of the Spinal Cord Re-stores Neuroglial Synaptic Homeostasis and Neurotrophic Support following Peripheral Nerve Injury.

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    Full Text Available Modulation of extracellular matrix (ECM remodeling after peripheral nerve injury (PNI could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS. Inhibition of matrix metalloproteinases (MMPs and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI of the sciatic nerve and how the intrathecal (i.t. administration of GM6001 (a MMPs inhibitor or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1 and astrocytic (GFAP response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1, increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI.

  12. Orexin A and Orexin Receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface

    Directory of Open Access Journals (Sweden)

    Damien eColas

    2014-02-01

    Full Text Available Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn at the interface with the peripheral nervous system (PNS. We show that in the dorsal horn OXA fibers colocalize with substance P (SP positive afferents of dorsal root ganglia (DRG neurons known to mediate sensory processing. Further, OR1 is expressed in p75NTR and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons, allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. This molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.

  13. An astrocyte regenerative response from vimentin-containing cells in the spinal cord of amyotrophic lateral sclerosis's disease-like transgenic (G93A SOD1) mice.

    Science.gov (United States)

    Zhou, Yiyi; Lu, Yi; Fang, Xin; Zhang, Jie; Li, Jiao; Li, Shujuan; Deng, Xia; Yu, Yaqing; Xu, Renshi

    2015-01-01

    The reason for regeneration in the adult spinal cord during motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains largely unknown. To this end, we studied the alteration of vimentin (a neural precursor cells marker in CNS)-containing cells (VCCs) in spinal cord during different stages of ALS used C57BL/6J G93A SOD1 transgenic mice mimicking ALS. Results showed that VCCs were mostly distributed in the ependymal zone (EZ) surrounding the central canal of spinal cord in SOD1 wild type mice; a few of VCCs were sparsely distributed in other regions. However, the number of VCCs significantly increased in the spinal cord during the onset and progression stages of ALS. They were extensively distributed in the EZ, the anterior, the lateral and the posterior horn of grey matter, particularly in the posterior horn region at the progression stage. A majority of VCCs in the anterior, the lateral and the posterior horn of grey matter (outside of EZ) generated astrocytes, but no neurons, oligodendrocytes and microgliocytes. Our results suggested that there was a potential astrocyte regenerative response to motor neuron degeneration in motor neurons-degenerated regions in the adult spinal cord during the onset and progression stages of ALS-like disease. The regenerative responses in the adult spinal cord of ALS-like mice may be a potential pathway in attempting to repair the degenerated motor neurons and restore the dysfunctional neural circuitry.

  14. Rostrocaudal distribution of motoneurones and variation in ventral horn area within a segment of the feline thoracic spinal cord

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Ford, Tim W; Road, Jeremy D;

    2004-01-01

    Retrograde transport of horseradish peroxidase, applied to cut peripheral nerves, was used to determine the rostrocaudal distribution of motoneurones supplying different branches of the ventral ramus for a single mid- or caudal thoracic segment in the cat. The motoneurones occupied a length...... of spinal cord equal to the segmental length but displaced rostrally from the segment as defined by the dorsal roots, with the number of motoneurones per unit length of cord higher in the rostral part of a segment (close to the entry of the most rostral dorsal root) than in the caudal part. The cross......-sectional area of the ventral horn showed a rostrocaudal variation that closely paralleled the motoneurone distribution. The ratio between the number of motoneurones per unit length in the caudal and rostral regions of a segment (0.70) was similar to the ratio previously reported for the strength of functional...

  15. The same dorsal root ganglion neurons innervate uterus and colon in the rat.

    Science.gov (United States)

    Chaban, Victor; Christensen, Amy; Wakamatsu, Micah; McDonald, Michelle; Rapkin, Andrea; McDonald, John; Micevych, Paul

    2007-02-12

    The purpose of this study was to determine whether primary sensory neurons that innervate the uterus receive convergent input from the colon. To test this, in the rat, cell bodies of colonic and uterine dorsal root ganglia were retrogradely labeled with fluorescent tracer dyes microinjected into the colon/rectum and bilaterally into the uterine horns. Ganglia were harvested, cryoprotected and cut into 20 microm slices to identify positively stained cells for fluorescent microscopy. Up to 5% of neurons were colon-specific or uterus-specific, and 10-15% of labeled ganglion neurons innervate both viscera in the L1, L2, L6 and S1-S3 levels. These results suggest a novel form of visceral sensory integration in the dorsal root ganglion that may underlie comorbidity of many functional pain syndromes.

  16. When ontogeny reveals what phylogeny hides: gain and loss of horns during development and evolution of horned beetles.

    Science.gov (United States)

    Moczek, Armin P; Cruickshank, Tami E; Shelby, Andrew

    2006-11-01

    How ecological, developmental and genetic mechanisms interact in the genesis and subsequent diversification of morphological novelties is unknown for the vast majority of traits and organisms. Here we explore the ecological, developmental, and genetic underpinnings of a class of traits that is both novel and highly diverse: beetle horns. Specifically, we focus on the origin and diversification of a particular horn type, those protruding from the pronotum, in the genus Onthophagus, a particularly speciose and morphologically diverse genus of horned beetles. We begin by documenting immature development of nine Onthophagus species and show that all of these species express pronotal horns in a developmentally transient fashion in at least one or both sexes. Similar to species that retain their horns to adulthood, transient horns grow during late larval development and are clearly visible in pupae. However, unlike species that express horns as adults, transient horns are resorbed during pupal development. In a large number of species this mechanisms allows fully horned pupae to molt into entirely hornless adults. Consequently, far more Onthophagus species appear to possess the ability to develop pronotal horns than is indicated by their adult phenotypes. We use our data to expand a recent phylogeny of the genus Onthophagus to explore how the widespread existence of developmentally transient horns alters our understanding of the origin and dynamics of morphological innovation and diversification in this genus. We find that including transient horn development into the phylogeny dramatically reduces the number of independent origins required to explain extant diversity patters and suggest that pronotal horns may have originated only a few times, or possibly only once, during early Onthophagus evolution. We then propose a new and previously undescribed function for pronotal horns during immature development. We provide histological as well as experimental data that

  17. A CUTANEOUS HORN MIMICKING POLYDACTYLY: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Funda Tamer

    2015-04-01

    Full Text Available A cutaneous horn is a general name for cornified material protruding from skin. On the other hand, polydactyly is a common congenital anomaly of the hand and foot which is characterized by extra finger or toe. A cutaneous horn might mimick polydactyly by resembling an extra toe. Hereby, we present a 72-year-old white Caucasian male with an extra toe-like projection on his fourth toe. Initially, polydactyly was suspected, however a cutaneous horn was also considered. The lesion was surgically removed. The histopathological examination of the specimen revealed hyperkeratosis, and thus confirmed the  lesion to be a cutaneous horn

  18. Facial cutaneous horn and skin cancer: Report of two cases

    Directory of Open Access Journals (Sweden)

    Bilal Sula

    2010-05-01

    Full Text Available Cornu cutaneum horn is a lesion with hyperkeratosis resembling that of an animal horn and its length varies from a few millimeters to several centimeters. The horn is most commonly located in the face, ears and other sun exposed areas. Cornu cutaneum occurs in association with, or as a response to a wide variety of underlying benign, pre-malignant, and malignant cutaneous diseases. Two cases with facial cutaneous horn with underlying squamous cell carcinoma and basal cell carcinoma is reported.

  19. Intense selective hunting leads to artificial evolution in horn size.

    Science.gov (United States)

    Pigeon, Gabriel; Festa-Bianchet, Marco; Coltman, David W; Pelletier, Fanie

    2016-04-01

    The potential for selective harvests to induce rapid evolutionary change is an important question for conservation and evolutionary biology, with numerous biological, social and economic implications. We analyze 39 years of phenotypic data on horn size in bighorn sheep (Ovis canadensis) subject to intense trophy hunting for 23 years, after which harvests nearly ceased. Our analyses revealed a significant decline in genetic value for horn length of rams, consistent with an evolutionary response to artificial selection on this trait. The probability that the observed change in male horn length was due solely to drift is 9.9%. Female horn length and male horn base, traits genetically correlated to the trait under selection, showed weak declining trends. There was no temporal trend in genetic value for female horn base circumference, a trait not directly targeted by selective hunting and not genetically correlated with male horn length. The decline in genetic value for male horn length stopped, but was not reversed, when hunting pressure was drastically reduced. Our analysis provides support for the contention that selective hunting led to a reduction in horn length through evolutionary change. It also confirms that after artificial selection stops, recovery through natural selection is slow.

  20. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  1. Astrocytes derived from glial-restricted precursors promote spinal cord repair

    Directory of Open Access Journals (Sweden)

    Mayer-Proschel Margot

    2006-04-01

    Full Text Available Abstract Background Transplantation of embryonic stem or neural progenitor cells is an attractive strategy for repair of the injured central nervous system. Transplantation of these cells alone to acute spinal cord injuries has not, however, resulted in robust axon regeneration beyond the sites of injury. This may be due to progenitors differentiating to cell types that support axon growth poorly and/or their inability to modify the inhibitory environment of adult central nervous system (CNS injuries. We reasoned therefore that pre-differentiation of embryonic neural precursors to astrocytes, which are thought to support axon growth in the injured immature CNS, would be more beneficial for CNS repair. Results Transplantation of astrocytes derived from embryonic glial-restricted precursors (GRPs promoted robust axon growth and restoration of locomotor function after acute transection injuries of the adult rat spinal cord. Transplantation of GRP-derived astrocytes (GDAs into dorsal column injuries promoted growth of over 60% of ascending dorsal column axons into the centers of the lesions, with 66% of these axons extending beyond the injury sites. Grid-walk analysis of GDA-transplanted rats with rubrospinal tract injuries revealed significant improvements in locomotor function. GDA transplantation also induced a striking realignment of injured tissue, suppressed initial scarring and rescued axotomized CNS neurons with cut axons from atrophy. In sharp contrast, undifferentiated GRPs failed to suppress scar formation or support axon growth and locomotor recovery. Conclusion Pre-differentiation of glial precursors into GDAs before transplantation into spinal cord injuries leads to significantly improved outcomes over precursor cell transplantation, providing both a novel strategy and a highly effective new cell type for repairing CNS injuries.

  2. Gemelligraviditet i et horn af bicorn uterus

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Langhoff-Roos, Jens

    2009-01-01

    Bicornuate uterus is associated with early foetal loss and extremely preterm delivery. A patient with dichorionic twins in a single horn of a bicornuate uterus was admitted in week 24 + 6 with preterm labour. Long-term treatment with a combination of tocolytics, atosiban and diclofenac inhibited ...... labour until week 26 + 3 where both babies were born. Both babies are still alive. Longterm tocolytic treatment may be successful in specific cases, but there is no evidence for a general use of long-term tocolysis in preterm labour. Udgivelsesdato: 2009-Mar-9...

  3. Constraint Specialisation in Horn Clause Verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2015-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top......-down and propagate answer constraints bottom-up. Our approach does not unfold the clauses at all; we use the constraints from the model to compute a specialised version of each clause in the program. The approach is independent of the abstract domain and the constraints theory underlying the clauses. Experimental...

  4. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  5. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.

  6. Astrocytes: a central element in neurological diseases.

    Science.gov (United States)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin-Moo; Parpura, Vladimir; Hol, Elly M; Sofroniew, Michael V; Verkhratsky, Alexei

    2016-03-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.

  7. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  8. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  9. Isolation and characterization of ischemia-derived astrocytes (IDA with ability to transactivate quiescent astrocytes

    Directory of Open Access Journals (Sweden)

    Alejandro eVillarreal

    2016-06-01

    Full Text Available Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDA were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation (OGD. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis.

  10. Planar rotary motor using ultrasonic horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Chang, Zensheu; Geiyer, Daniel; Allen, Phillip; Ostlund, Patrick; Bar-Cohen, Yoseph

    2011-04-01

    One of the first piezoelectric motor designs with significant rotational speeds was outlined by Barth. This device used extensional piezoelectric elements to produce a time varying force at a distance r from the center of a centrally supported disk. These extensional actuators produced micro-steps at a high frequency with the end result being macroscopic rotation of the disk and high torque. The rotation direction is controlled by the choice of the actuators and the direction of the extension about the rotor center. A recent advancement in producing pre-stressed power ultrasonic horns using flexures allows for the development of high torque ultrasonic motors based on the Barth's idea that can be fabricated in a 2D plate or in more complicated 3D structures. In addition to the pre-stress flexures the design also allows for the use of flexures to produce the rotor/horn normal force. The torque can be controlled by the number of actuators in the plane and the amplitude of the normal force. This paper will present analytical and experimental results obtained from testing prototype planar motors.

  11. Diagnostic findings in 132 great horned owls

    Science.gov (United States)

    Franson, J.C.; Little, S.E.

    1996-01-01

    We reviewed diagnostic findings for 132 great horned owl (Bubo virginianus) carcasses that were submitted to the National Wildlife Health Center from 1975-93. The carcasses were collected in 24 states but most came from Colorado (N = 21), Missouri (N = 12), Oregon (N = 12), Wyoming (N = 11), Illinois (N = 10), and Wisconsin (N = 9). Forty-two birds were emaciated but presumptive causes of emaciation, including old injuries, chronic lesions in various organs, and exposure to dieldrin, were found in only 16. A greater proportion of juveniles (56%) than adults (29%) were emaciated. Twelve owls were shot and 35 died from other traumatic injuries. Poisonings were diagnosed in 11 birds, including five associated with hydrogen sulfide exposure in oil fields and six cases of agricultural pesticide poisonings. Electrocution killed nine birds and infectious diseases were found in six. Miscellaneous conditions, including egg impaction, drowning, and visceral gout were diagnosed in three of the birds and the cause of death was undetermined in 14 owls. While this review identifies major diagnostic findings in great horned owls, sample bias prevents definitive conclusions regarding actual proportional causes of mortality.

  12. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  13. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which......Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key...... generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current...

  14. Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling.

    Science.gov (United States)

    Habbas, Samia; Santello, Mirko; Becker, Denise; Stubbe, Hiltrud; Zappia, Giovanna; Liaudet, Nicolas; Klaus, Federica R; Kollias, George; Fontana, Adriano; Pryce, Christopher R; Suter, Tobias; Volterra, Andrea

    2015-12-17

    The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.

  15. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Science.gov (United States)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  16. Cryptographic protocol verification using tractable classes of horn clauses

    DEFF Research Database (Denmark)

    Seidl, Helmut; Neeraj Verma, Kumar

    2007-01-01

    We consider secrecy problems for cryptographic protocols modeled using Horn clauses and present general classes of Horn clauses which can be efficiently decided. Besides simplifying the methods for the class of flat and onevariable clauses introduced for modeling of protocols with single blind...

  17. Idiopathic prolapse of 1 uterine horn in a yearling filly

    Science.gov (United States)

    2004-01-01

    Abstract A yearling filly was presented for protrusion of a mass at the vulvar margins. A diagnosis of prolapse of the right uterine horn was made after vaginoscopy, transrectal palpation, and ultrasonography. It was confirmed later by biopsy of the tissue. Recovery was uneventful after easy replacement of the uterine horn. PMID:15317392

  18. From stem cell to astrocyte: Decoding the regulation of GFAP

    NARCIS (Netherlands)

    R. Kanski

    2014-01-01

    The research presented in this thesis focuses on glial fibrillary acidic protein (GFAP), the main intermediate filament (IF) in astrocytes and astrocyte subpopulations such as neural stem cells (NSCs). In neurodegenerative diseases or upon brain damage, astrocytes respond to an injury with an upregu

  19. Probe impedance measurements for millimeter-wave integrated horn antennas

    Science.gov (United States)

    Guo, Yong; Chiao, Jung-Chih; Potter, Kent A.; Rutledge, David B.

    1993-01-01

    In order to achieve an impedance-matched millimeter-wave integrated horn antenna mixer array, the characteristics of the antenna probes inside the horn must be known. This paper describes impedance measurements for various probes in low-frequency model horns of two different types: (1) a 3 x 3 array made of aluminum by electric discharge machining and (2) a half horn made of copper sheet placed on a big copper-clad circuit board that was used as an image plane. The results of measurements indicate that the presence of the horn increases the effective length of the probe element, in agreement with reports of Guo et al. (1991) and theoretical analysis of Eleftheriades et al. (1991). It was also found that the resonant frequencies can be controlled by changing the length of the probes or by loading the probes.

  20. A rat uterine horn model of genital tract wound healing.

    Science.gov (United States)

    Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A

    1987-11-01

    A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.

  1. Giant cutaneous horn in an African woman: a case report

    Directory of Open Access Journals (Sweden)

    Nthumba Peter M

    2007-12-01

    Full Text Available Abstract Introduction A cutaneous horn is a conical projection of hyperkeratotic epidermis. Though grossly resembling an animal horn, it lacks a bony core. These lesions have been well described in Caucasian patients, as well as in a number of Arabic and Asian patients. Case presentation A young female presented with a large 'horn' of five-year duration, arising from a burn scar. Excision and scalp reconstruction were performed. Histology was reported as verrucoid epidermal hyperplasia with cutaneous horn. Conclusion This may be the first documentation of this lesion in a black African. Although likely rare, it should be considered in the differential diagnosis of dermatologic lesions. Up to 40% of cutaneous horns occur as part of a premalignant or malignant lesion, and surgical extirpation with histological examination is thus more important than the curiosity surrounding these lesions.

  2. Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Quiroz-Romero Héctor

    2011-02-01

    Full Text Available Abstract Background The horn fly, Haematobia irritans (Linnaeus, 1758 (Diptera: Muscidae is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST analysis and RNA interference (RNAi. Results A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160 were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group, reduced oviposition (vitellogenin, ferritin and vATPase groups or both (immune response and 5'-NUC groups when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls. Conclusions These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

  3. Chronic infusion of SOD1(G93A) astrocyte-secreted factors induces spinal motoneuron degeneration and neuromuscular dysfunction in healthy rats.

    Science.gov (United States)

    Ramírez-Jarquín, Uri N; Rojas, Fabiola; van Zundert, Brigitte; Tapia, Ricardo

    2017-01-27

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease and studies in vitro show that motoneuron degeneration is triggered by non-cell-autonomous mechanisms. However, whether soluble toxic factor(s) released by mutant superoxide dismutase 1 (SOD1) expressing astrocytes induces death of motoneurons and leads to motor dysfunction in vivo is not known. To directly test this, healthy adult rats were treated with conditioned media derived from primary mouse astrocytes (ACM) that express human (h) SOD1(G93A) (ACM-hG93A) via chronic osmotic pump infusion in the lumbar spinal cord. Controls included ACM derived from transgenic mice expressing hSOD1(WT) (ACM-hWT) or non-transgenic mouse SOD1(WT) (ACM-WT) astrocytes. Rats chronically infused with ACM-hG93A started to develop motor dysfunction at 8 days, as measured by rotarod performance. Additionally, immunohistochemical analyses at day 16 revealed reactive astrogliosis and significant loss of motoneurons in the ventral horn of the infused region. Controls did not show significant motor behavior alterations or neuronal damage. Thus, we demonstrate that factors released in vitro from astrocytes derived from ALS mice cause spinal motoneuron death and consequent neuromuscular dysfunction in vivo.

  4. Dorsal variant blister aneurysm repair.

    Science.gov (United States)

    Couldwell, William T; Chamoun, Roukoz

    2012-01-01

    Dorsal variant proximal carotid blister aneurysms are treacherous lesions to manage. It is important to recognize this variant on preoperative angiographic imaging, in anticipation of surgical strategies for their treatment. Strategies include trapping the involved segment and revascularization if necessary. Other options include repair of the aneurysm rupture site directly. Given that these are not true berry aneurysms, repair of the rupture site involves wrapping or clip-grafting techniques. The case presented here was a young woman with a subarachnoid hemorrhage from a ruptured dorsal variant blister aneurysm. The technique used is demonstrated in the video and is a modified clip-wrap technique using woven polyester graft material. The patient was given aspirin preoperatively as preparation for the clip-wrap technique. It is the authors' current protocol to attempt a direct repair with clip-wrapping and leaving artery sacrifice with or without bypass as a salvage therapy if direct repair is not possible. Assessment of vessel patency after repair is performed by intraoperative Doppler and indocyanine green angiography. Intraoperative somatosensory and motor evoked potential monitoring is performed in all cases. The video can be found here: http://youtu.be/crUreWGQdGo.

  5. Agenesis of the dorsal pancreas

    Institute of Scientific and Technical Information of China (English)

    Wolfgang J Schnedl; Claudia Piswanger-Soelkner; Sandra J Wallner; Robert Krause; Rainer W Lipp

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al ( World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal panc reas in humans . Agenes i s of the dor sal pancreas, a rare congenital pancreatic malformation,is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation,hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families,more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease.

  6. On the origin of Ammon's horn.

    Science.gov (United States)

    Iniesta, I

    2014-10-01

    Greek and Roman worship of their gods and myths go back to Ancient Egyptian times. Images engraved in Greco-Roman coinage range from references to the assassination of Caesar and legendary stories like the arrival of a snake shaped demi-god Aesculapius to save the Romans from the plague, to invocations of major deities including Apollo the physician or Ammon the protector. Depicted with the horns of a ram, Ammon was adopted by the Greeks as an epithet of Zeus and later incorporated by the Romans as Jupiter. References to the cult of Ammon appear on tetradrachms minted for Alexander The Great and on provincial Roman coins struck under Claudius. It is thrilling to hold a coin depicting Marcus Aurelius with Salus on the reverse and think that it could have been handed to Galen in payment for his services. However, it is rare to find figures other than rulers on coins and the physician of Pergamum is no exception. Inspired by the Renaissance school of Padua, French anatomists in the Enlightenment (Garengeot in 1742 and Flurant in 1752) continued reviving ancient myths and named the curve-shaped-inner portion of the temporal lobe Ammon's horn. Outstanding scholars who studied this primitive structure of the brain included Lorente de Nó and his mentor Cajal, whose portrait appeared on fifty-pesetas notes issued in 1935. As primary sources of great archaeological and artistic value, Greco-Roman coins provide information about the origins of the myths and gods of classical antiquity and continue to inspire the arts and sciences to this day. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M;

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...

  8. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity.

  9. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.|info:eu-repo/dai/nl/F-1891-2013; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  10. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  11. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  12. New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca!

    Science.gov (United States)

    Horner, Philip J; Palmer, Theo D

    2003-11-01

    Like a newly popular nightspot, the biology of adult stem cells has emerged from obscurity to become one of the most lively new disciplines of the decade. The neurosciences have not escaped this trendy pastime and, from amid the noise and excitement, the astrocyte emerges as a beguiling companion to the adult neural stem cell. A once receding partner to neurons and oligodendrocytes, the astrocyte even takes on an alter ego of the stem cell itself (S. Goldman, this issue of TINS). Putting ego aside, the 'astrocyte' is also (and perhaps more importantly) an integral component of neural progenitor hotspots, where the craziness or 'la vida loca' of the nightlife might not be so wild when compared with our traditional understanding of the astrocyte. Here, astrocytes contribute to the instructive confluence of location, atmosphere and cellular neighbors that define the daily 'vida local' or everyday local life of an adult stem cell. This review discusses astrocytes as influential components in the local stem cell niche.

  13. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  14. The computational power of astrocyte mediated synaptic plasticity.

    Science.gov (United States)

    Min, Rogier; Santello, Mirko; Nevian, Thomas

    2012-01-01

    Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  15. Spatial organization of astrocytes in ferret visual cortex

    Science.gov (United States)

    López‐Hidalgo, Mónica; Hoover, Walter B.

    2016-01-01

    ABSTRACT Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27072916

  16. The computational power of astrocyte mediated synaptic plasticity

    Science.gov (United States)

    Min, Rogier; Santello, Mirko; Nevian, Thomas

    2012-01-01

    Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways. PMID:23125832

  17. Mash1 efifciently reprograms rat astrocytes into neurons

    Institute of Scientific and Technical Information of China (English)

    Daofang Ding; Leqin Xu; Hao Xu; Xiaofeng Li; Qianqian Liang; Yongjian Zhao; Yongjun Wang

    2014-01-01

    To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuro-nal characteristics. Moreover,β-tubulin expression levels were signiifcantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.

  18. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2010-10-06

    Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter release at CA3-CA1 synapses. This synaptic potentiation is due to CB1R-induced Ca(2+) elevations in astrocytes, which stimulate the release of glutamate that activates presynaptic metabotropic glutamate receptors. While endocannabinoids induce synaptic depression in the stimulated neuron by direct activation of presynaptic CB1Rs, they indirectly lead to synaptic potentiation in relatively more distant neurons by activation of CB1Rs in astrocytes. Hence, astrocyte calcium signal evoked by endogenous stimuli (neuron-released endocannabinoids) modulates synaptic transmission. Therefore, astrocytes respond to endocannabinoids that then potentiate synaptic transmission, indicating that astrocytes are actively involved in brain physiology.

  19. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  20. Dorsal penile nerves and primary premature ejaculation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; ZHANG Chun-ying; LI Xing-hua; FU Zhong-ze; CHEN Zhao-yan

    2009-01-01

    Background Based on our clinical experience, the number of dorsal penile nerves in patients with primary premature ejaculation (PPE) is not consistent with the average number (2 branches). In this study, we evaluated the number and distribution of dorsal penile nerves among healthy Chinese adults and patients with PPE.Methods The dorsal nerve of the penis, the deep dorsal vein of the penis, and the dorsal artery of the penis between the deep fascia of the penis and the albuginea penis were carefully educed, observed, and counted in 38 adult autopsy specimens. The number and distribution of the dorsal penile nerve in 128 surgical patients with PPE were determined. Results The numbers of dorsal penile nerves of the 38 cases were as follows:7 branches in 1 case; 6 branches in 1 case; 5 branches in 6 cases; 4 branches in 9 cases; 3 branches in 14 cases; and 2 branches in 7 cases. Most of the dorsal nerves were parallel to each other and in the dorsum of the penis. In only 8 cases, the branches were connected by some communicating branches. In 4 cases, 1 or 2 thin dorsal nerves continued their pathway over the ventral aspect of the penis. The average number of branches of the dorsal penile nerve in patients with PPE was 7.16. Conclusions Based on the study of 38 cases, the average number of dorsal penile nerves was 3.55 branches and that of patients with PPE was greater. These preliminary results suggest that the excessive dorsal penile nerves may have an impact on PPE via increased sensitivity and provide topographic data for the possible treatment of PPE.

  1. EST and microarray analysis of horn development in Onthophagus beetles

    Directory of Open Access Journals (Sweden)

    Tang Zuojian

    2009-10-01

    Full Text Available Abstract Background The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. Results We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. Conclusion We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.

  2. Excitement tem-horn antenna by impulsive relativistic electron beam

    CERN Document Server

    Balakirev, V A; Egorov, A M; Lonin, Y F

    2000-01-01

    In the given operation the opportunity of reception powerful electromagnetic irradiation (EMI) is observationally explored by excitation by a impulsive relativistic electronic beam (IREB) of a TEM-horn antenna. It is revealed, that at such expedient of excitation of the TEM-horn antenna, the signal of radiation of the antenna contains three various components caused by oscillation of radiation by forward front IREB, high-voltage discharge between plates irradiation of TEM-horn antenna a and resonant properties of the antenna devices.

  3. Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles

    Directory of Open Access Journals (Sweden)

    Sophie Valena

    2012-01-01

    Full Text Available All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms.

  4. Complete agenesis of dorsal pancreas

    Directory of Open Access Journals (Sweden)

    Malwinder Singh

    2014-04-01

    Full Text Available Introduction: Complete agenesis of body and tail of pancreas is a very rare type of developmental anomaly of pancreas. It is important regarding its presentations of diabetes mellitus, pancreatitis, and exocrine insufficiency. Case Report: An old man had presented with atypical symptoms of obstructive jaundice with exocrine insufficiency. CECT helped to reveal the complete absence of the body and tail of pancreas with radiologically normal head with no signs of pancreatitis or mass lesion. Conclusions: The cause of agenesis of the dorsal pancreas is currently not well understood. It can also present lately as the presenting case. The presentations are usually related to secretory malfunctions. CECT is an initial investigation for diagnosis

  5. Liposarcome dorsal: aspect clinique rare

    Science.gov (United States)

    Agbessi, Odry; Arrob, Adil; Fiqhi, Kamal; Khalfi, Lahcen; Nassih, Mohammed; El Khatib, Karim

    2015-01-01

    Décrit la première fois par Virchow en 1860, le liposarcome est une tumeur mésenchymateuse rare. Cette rareté est relative car les liposarcomes représentent quand même 14 à 18% de l'ensemble des tumeurs malignes des parties molles et ils constituent le plus fréquent des sarcomes des parties molles. Pour la majorité des auteurs, il ne se développerait jamais sur un lipome ou une lipomatose préexistant. Nous rapportons un cas de volumineux liposarcome de la face dorsale du tronc. L'histoire de la maladie, l'aspect clinique inhabituel « de tumeur dans tumeur », l'aspect de la pièce opératoire nous fait évoquer la possibilité de la transformation maligne d'un lipome bénin préexistant. PMID:26113914

  6. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  7. Variant attachments of the anterior horn of the medial meniscus.

    Science.gov (United States)

    Jakubowicz, Marian; Ratajczak, Wojciech; Pytel, Andrzej

    2003-01-01

    The purpose of this study was to analyse the occurrence of variants of anomalous insertions of the anterior horn of the medial meniscus in human knee joints. The study was carried out on 78 human lower limbs of both sexes (42 males and 36 females). Out of 78 knee joints, 10 knee joints (12.82%) presented atypical attachments of the anterior horn of the medial meniscus. In 9 cases we found that the anterior horn of the medial meniscus was attached to the transverse ligament of the knee and in 1 case it was attached to the coronary ligament. In the remaining cases the anterior horn of the medial meniscus was attached to the anterior intercondylar area of the tibia.

  8. Integrated horn antennas for millimeter-wave applications

    Science.gov (United States)

    Rebeiz, Gabriel M.; Katehi, Linda P. B.; Ali-Ahmad, Walid Y.; Eleftheriades, George V.; Ling, Curtis C.

    1992-02-01

    The development of integrated horn antennas since their introduction in 1987 is reviewed. The integrated horn is fabricated by suspending a dipole antenna, on a thin dielectric membrane, in a pyramidal cavity etched in silicon. Recent progress has resulted in optimized low- and high-gain designs, with single and double polarization for remote-sensing and communication applications. A full-wave analysis technique has resulted in an integrated antenna with performance comparable to that of waveguide-fed corrugated-horn antennas. The integrated horn design can be extended to large arrays, for imaging and phased-array applications, while leaving plenty of room for the RF and IF processing circuitry. Theoretical and experimental results at microwave frequencies and at 90 GHz, 240 GHz, and 802 GHz are presented.

  9. A comparative study of corrugated horn design by evolutionary techniques

    Science.gov (United States)

    Hoorfar, A.

    2003-01-01

    Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.

  10. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis.

    Science.gov (United States)

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-08-01

    Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection.

  11. Design and layout of rectangular waveguide horns antennas

    Science.gov (United States)

    Fasold, D.; Pecher, H.

    Theoretical basis of waveguide horn antennas (WHA) is outlined. Applicable design curves, such as nomograms for determining gain and a diagram for laying out necessary waveguide dimensions, are given. Use of WHA designs in satellite radio and television systems is discussed. Antenna radiation pattern calculations are treated and optimization problems are dealt with. Based on design feasibility results, a laboratory model of a transmitter antenna for TV-SAT was built. The equipment, an elliptical waveguide horn design, demonstrates satisfactory performance.

  12. Quantum Information Measurements for Garfinkle-Horne Dilaton Black Holes

    Institute of Scientific and Technical Information of China (English)

    GE Xian-Hui; SHEN You-Gen

    2004-01-01

    @@ The quantum non-cloning theorem is discussed for Garfinkle-Horne dilaton black holes. It is found that if the black hole complementarity principle is correct, then it will be questioned whether the quantum non-cloning theorem is well established inside the inner horizon. It is also found that another complementarity principle may be needed inside the inner horizon of the Garfinkle-Horne dilaton black hole.

  13. Combating Rhino Horn Trafficking: The Need to Disrupt Criminal Networks

    Science.gov (United States)

    Haas, Timothy C.; Ferreira, Sam M.

    2016-01-01

    The onslaught on the World’s wildlife continues despite numerous initiatives aimed at curbing it. We build a model that integrates rhino horn trade with rhino population dynamics in order to evaluate the impact of various management policies on rhino sustainability. In our model, an agent-based sub-model of horn trade from the poaching event up through a purchase of rhino horn in Asia impacts rhino abundance. A data-validated, individual-based sub-model of the rhino population of South Africa provides these abundance values. We evaluate policies that consist of different combinations of legal trade initiatives, demand reduction marketing campaigns, increased anti-poaching measures within protected areas, and transnational policing initiatives aimed at disrupting those criminal syndicates engaged in horn trafficking. Simulation runs of our model over the next 35 years produces a sustainable rhino population under only one management policy. This policy includes both a transnational policing effort aimed at dismantling those criminal networks engaged in rhino horn trafficking—coupled with increases in legal economic opportunities for people living next to protected areas where rhinos live. This multi-faceted approach should be the focus of the international debate on strategies to combat the current slaughter of rhino rather than the binary debate about whether rhino horn trade should be legalized. This approach to the evaluation of wildlife management policies may be useful to apply to other species threatened by wildlife trafficking. PMID:27870917

  14. Physiopathologic dynamics of vesicle traffic in astrocytes.

    Science.gov (United States)

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  15. Thirty years of collaboration with Gabriel Horn.

    Science.gov (United States)

    Bateson, Patrick

    2015-03-01

    All the collaborative work described in this review was on the process of behavioural imprinting occurring early in the life of domestic chicks. Finding a link between learning and a change in the brain was only a first step in establishing a representation of the imprinting object. A series of overlapping experiments were necessary to eliminate alternative explanations. Once completed, a structure, the intermediate and medial mesopallium (IMM), was found to be strongly linked to the formation of a neural representation of the object used for imprinting the birds. With the site identified, lesion experiments showed that it was necessary for imprinting but not associative learning. Also the two sides of the brain responded differently with the left IMM acting as a permanent store and the right side acting as a way station to other parts of the brain. The collaborative work led to many studies by Gabriel Horn with others on the molecular and cellular bases of imprinting, and also to neural net modelling and behavioural studies with me on the nature of category formation in intact animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Restoration of the Golden Horn Estuary (Halic).

    Science.gov (United States)

    Coleman, Heather M; Kanat, Gurdal; Aydinol Turkdogan, F Ilter

    2009-12-01

    Restoration of the iconic Golden Horn Estuary in Istanbul, Turkey was a substantial political, logistical, ecological, and social challenge. Forty years of uncontrolled industrial and urban growth resulted in thick layers of anoxic sediment, toxic bacteria, strong hydrogen sulfide odor, and ecologically unlivable conditions. The major components of restoration, spanning two decades, have included (1) demolition and relocation of industries and homes along the shore, (2) creation of wastewater infrastructure, (3) removal of anoxic sludge from the estuary, (4) removal of a floating bridge that impeded circulation, and (5) creation of cultural and social facilities. Although Turkey is not known as an environmental leader in pollution control, the sum of these efforts was largely successful in revitalizing the area through dramatic water quality improvement. Consequently, the estuary is once again inhabitable for aquatic life as well as amenable to local resource users and foreign visitors, and Istanbul has regained a lost sense of cultural identity. This paper focuses on literature review and personal interviews to discuss the causes of degradation, solutions employed to rehabilitate the estuary, and subsequent physicochemical, ecological, and social changes.

  17. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material

    Directory of Open Access Journals (Sweden)

    Rebecca A. Russell

    2017-02-01

    Full Text Available HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

  18. Astrocyte glutamine synthetase: pivotal in health and disease.

    Science.gov (United States)

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  19. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  20. Taurine biosynthesis by neurons and astrocytes.

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K; Banerjee, Ruma

    2011-09-16

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [(35)S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87 MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [(35)S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons.

  1. Redox state alteration modulates astrocyte glucuronidation.

    Science.gov (United States)

    Heurtaux, T; Benani, A; Bianchi, A; Moindrot, A; Gradinaru, D; Magdalou, J; Netter, P; Minn, A

    2004-10-01

    We have investigated the effects of mild oxidative conditions on drug-metabolizing enzyme activity in rat cultured astrocytes. These experimental conditions promoting an oxidative environment were obtained by short exposure to a low concentration of menadione (5 microM) for a short duration (15 min). This resulted in the rapid and transient production of reactive oxygen species (+130%), associated with a decrease in GSH cellular content (-24%), and an increase in total protein oxidation (+26%), but promoted neither PGE(2) nor NO production. This treatment induced a rapid and persistent decrease in astrocyte glucuronidation activities, which was totally prevented by N-acetyl-l-cysteine. These oxidative conditions also affected the specific UGT1A6 activity measured in transfected V79-1A6 cells. Finally, the subsequent recovery of astrocyte glucuronidation activity may result from upregulation of UGT1A6 expression (+62%) as shown by RT-PCR and gene reporter assay. These results show that the catalytic properties and expression of cerebral UGT1A6 are highly sensitive to the redox environment. The protective effect of N-acetyl-l-cysteine suggests both a direct action of reactive oxygen species on the protein and a more delayed action on the transcriptional regulation of UGT1A6. These results suggest that cerebral metabolism can be altered by physiological or pathological redox modifications.

  2. Mechanisms of Astrocyte-Mediated Cerebral Edema

    Science.gov (United States)

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  3. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  4. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  5. Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K(+) Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization.

    Science.gov (United States)

    Hertz, Leif; Chen, Ye; Song, Dan

    2017-01-01

    Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K(+) concentrations and for Ca(2+) homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg's laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K(+) uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K(+) effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.

  6. Dorsal spinal epidural cavernous hemangioma

    Directory of Open Access Journals (Sweden)

    Darshana Sanghvi

    2010-01-01

    Full Text Available A 61-year-old female patient presented with diffuse pain in the dorsal region of the back of 3 months duration. The magnetic resonance imaging showed an extramedullary, extradural space occupative lesion on the right side of the spinal canal from D5 to D7 vertebral levels. The mass was well marginated and there was no bone involvement. Compression of the adjacent thecal sac was observed, with displacement to the left side. Radiological differential diagnosis included nerve sheath tumor and meningioma. The patient underwent D6 hemilaminectomy under general anesthesia. Intraoperatively, the tumor was purely extradural in location with mild extension into the right foramina. No attachment to the nerves or dura was found. Total excision of the extradural compressing mass was possible as there were preserved planes all around. Histopathology revealed cavernous hemangioma. As illustrated in our case, purely epidural hemangiomas, although uncommon, ought to be considered in the differential diagnosis of spinal epidural soft tissue masses. Findings that may help to differentiate this lesion from the ubiquitous disk prolapse, more common meningiomas and nerve sheath tumors are its ovoid shape, uniform T2 hyperintense signal and lack of anatomic connection with the neighboring intervertebral disk or the exiting nerve root. Entirely extradural lesions with no bone involvement are rare and represent about 12% of all intraspinal hemangiomas.

  7. Dorsal spinal epidural cavernous hemangioma.

    Science.gov (United States)

    Sanghvi, Darshana; Munshi, Mihir; Kulkarni, Bijal; Kumar, Abhaya

    2010-07-01

    A 61-year-old female patient presented with diffuse pain in the dorsal region of the back of 3 months duration. The magnetic resonance imaging showed an extramedullary, extradural space occupative lesion on the right side of the spinal canal from D5 to D7 vertebral levels. The mass was well marginated and there was no bone involvement. Compression of the adjacent thecal sac was observed, with displacement to the left side. Radiological differential diagnosis included nerve sheath tumor and meningioma. The patient underwent D6 hemilaminectomy under general anesthesia. Intraoperatively, the tumor was purely extradural in location with mild extension into the right foramina. No attachment to the nerves or dura was found. Total excision of the extradural compressing mass was possible as there were preserved planes all around. Histopathology revealed cavernous hemangioma. As illustrated in our case, purely epidural hemangiomas, although uncommon, ought to be considered in the differential diagnosis of spinal epidural soft tissue masses. Findings that may help to differentiate this lesion from the ubiquitous disk prolapse, more common meningiomas and nerve sheath tumors are its ovoid shape, uniform T2 hyperintense signal and lack of anatomic connection with the neighboring intervertebral disk or the exiting nerve root. Entirely extradural lesions with no bone involvement are rare and represent about 12% of all intraspinal hemangiomas.

  8. Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes

    Directory of Open Access Journals (Sweden)

    J. Bento-Torres

    2017-01-01

    Full Text Available Because enriched environment (EE and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A. Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.

  9. Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes

    Science.gov (United States)

    Bento-Torres, J.; Sobral, L. L.; de Oliveira, R. B.; Anthony, D. C.; Vasconcelos, P. F. C.

    2017-01-01

    Because enriched environment (EE) and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A). Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.

  10. Development of a method for the purification and culture of rodent astrocytes.

    Science.gov (United States)

    Foo, Lynette C; Allen, Nicola J; Bushong, Eric A; Ventura, P Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D; Daneman, Richard; Zong, Hui; Ellisman, Mark H; Barres, Ben A

    2011-09-08

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here, we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation.

  11. Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Clark Robinson

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is a widespread epidemic with severe cognitive, affective, and behavioral consequences. TBIs typically result in a relatively rapid inflammatory and neuroinflammatory response. A major component of the neuroinflammatory response is astrocytes, a type of glial cell in the brain. Astrocytes are important in maintaining the integrity of neuronal functioning, and it is possible that astrocyte hypertrophy after TBIs might contribute to pathogenesis. The hippocampus is a unique brain region, because neurogenesis persists in adults. Accumulating evidence supports the functional importance of these newborn neurons and their associated astrocytes. Alterations to either of these cell types can influence neuronal functioning. To determine if hypertrophied astrocytes might negatively influence immature neurons in the dentate gyrus, astrocyte and newborn neurons were analyzed at 30 days following a TBI in mice. The results demonstrate a loss of radial glial-like processes extending through the granule cell layer after TBI, as well as ectopic growth and migration of immature dentate neurons. The results further show newborn neurons in close association with hypertrophied astrocytes, suggesting a role for the astrocytes in aberrant neurogenesis. Future studies are needed to determine the functional significance of these alterations to the astrocyte/immature neurons after TBI.

  12. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    Science.gov (United States)

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  13. Wave power plant at Horns Rev. Screening[Denmark]; Boelgekraftanlaeg ved Horns Rev. Screening

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Hans C.; Nielsen, Kim; Steenstrup, P.R.; Friis-Madsen, E.; Wigant, L.

    2005-12-15

    The objective for the analysis has been to establish data for the sea at Horns Rev wind farm in the North Sea in order to assess the opportunity for using the site as test site for demonstration of wave energy devices exemplified by three different devices under development in Denmark. For comparison alternative sites like Hanstholm, Samsoe and Nissum Bredning are also assessed as well as the test centre EMEC at the Orkney Islands and the proposed test site Wave Hub at the north coast of Cornwall. The analysis shows that it is possible without major technical problems to connect 2-4 MW power generated by 3 different wave energy devices (AquaBuOY, Wave Star Energy and Wave Dragon) to the wind farm at Horns Rev (www.hornsrev.dk). The expenses for connection and regulation within the wind farm is about 200,000 DKK (30,00 EURO). On top of this comes the cost for individual sub sea cable connection to the wave devices, pull in of the sub sea cable through the existing J-tube in turbine T04 and the necessary regulation/control system in the individual wave devices to avoid damaging the power system in case of too high production. The analysis of the co-production of wind and wave power is dealt with in a separate report which shows that over a time period of half to one hour the time variation for wind generated electricity is 3 times as large as for wave energy generated power based on the actual measurement at Horns Rev. Further on the analysis shows that the wave generated power is more predictable than wind energy generated power as the power from the waves first is present about 2 hours after the wind is acting and last for 3 to 6 hours after the wind dies out; 6 to 12 hours with wind from west. The time is off course strongly depending of the direction of the wind i.e. the fetch. As this special report has a more general scope than the analysis as such it is reported in English (Annex Report II). The analysis shows that it is up to the individual device developer

  14. Piracy around the Horn of Africa

    Directory of Open Access Journals (Sweden)

    Joshua Ho

    2009-09-01

    Full Text Available Piracy around the Horn of Africa has risen to a level serious enough for the international community to take concerted action to secure an international sea lane. However, the efforts so far have been initiated mainly by the international community while regional efforts are only just beginning. In the short term, more action will have to be taken at the operational level like dispatching more ships and integrating the operations of ships already deployed to the area. In the longer term, the root causes of piracy and the grievances of the Somali people have to be addressed. In particular, there is a need to restore law and order in Somalia by supporting moderate leaders in their attempts to create a representative government.La piraterie au large de la Corne de l’Afrique a augmenté à un degré tel que la communauté internationale a décidé d’agir de concert pour sécuriser cette voie maritime. Néanmoins, si les efforts entrepris sont principalement ceux de la communauté internationale, les démarches régionales ne sont qu’à leur commencement. Dans le court terme, davantage d’initiatives devront être prises au niveau opérationnel, comme l’envoi de bateaux supplémentaires et la coordination des actions menées. Dans le plus long terme, il faudra s’attaquer aux racines de la piraterie et aux difficultés auxquelles doivent faire face les Somaliens. Il s’agit en particulier de restaurer l’état de droit en supportant les chefs de file modérés dans leur tentative de créer un gouvernement représentatif.

  15. Family Bovidae (Hollow-horned Ruminants)

    Science.gov (United States)

    Groves, Colin P.; Leslie, David M.; Huffman, Brent A.; Valdez, Raul; Habibi, Khushal; Weinberg, Paul; Burton, James; Jarman, Peter; Robichaud, William

    2015-01-01

    Probably the single most eye-catching aspect of the current volume is the explosion of species recognized in the family Bovidae (Hollow-horned Ruminants). In 2005, the third edition of Mammal Species of the World listed 143 species in 50 genera of Bovidae. That list, prepared by the late Peter Grubb, was somewhat traditional and provisional, as he was engaged with his long-time colleague, Colin Groves, in a substantial revision of ungulate taxonomy. Their work, which will be published later this year, is the culmination of years of study of this important and wide-ranging family by these two venerable authorities. Colin Groves is the lead author for Bovidae in this volume of HMW, and in it we recognize all 279 species in 54 genera that are documented in his and Peter Grubb’s ground-breaking work.At the root of this expanded number of recognized species is our changing view of the modern species concept. Like a growing number of taxonomists, Groves favors a phylogenetic species concept, which he defines as the smallest population or aggregation of populations that has fixed heritable differences from other such populations or aggregations. This is in contrast to the traditional biological species concept, which requires reproductive isolation between such populations. The difficulty in determining that reproductive isolation led to an underrepresentation of the number of species in many groups. Clearly there remain problems in determining which differences between populations are heritable, and the system used here undoubtedly will continue to be tweaked as our understanding grows. For now, this greatly expanded version of Bovidae species limits seems the best answer. One of the goals of HMW is to provide an up-to-date summary of the conservation status for every species of mammal, and this expanded species concept better enables us to explore the true conservation situation of each.

  16. Millimeter and Submillimeter-Wave Integrated Horn Antenna Schottky Receivers.

    Science.gov (United States)

    Ali-Ahmad, Walid Youssef

    1993-01-01

    Fundamental Schottky-diode mixers are currently used in most millimeter-wave receivers above 100GHz. The mixers use either a whisker-contacted diode or a planar Schottky diode suspended in a machined waveguide with an appropriate RF matching network. However, waveguide mounts are very expensive to machine for frequencies above 200GHz. Also, the whisker-contacted structure is not compatible with integrated mixers which represent the leading technology used for millimeter- and submillimeter-wave applications such as plasma diagnostics imaging arrays, radiometers, and anti-collision radars. In this work, a novel quasi-integrated horn antenna has been used for the receiver antenna. This antenna has a high gain and a high Gaussian coupling efficiency (97%), similar to machined scalar feed horns, but with the advantage of being easily fabricated up to at least 1.5THz. The quasi-integrated horn antenna is based on the integrated horn antenna structure. The integrated horn antenna consists of a pyramidal cavity with a 70^circ flare angle etched anisotropically in silicon. The cavity focuses the incoming energy on dipole-probe suspended on a membrane inside the horn. The integrated horn antenna does not suffer from dielectric losses or substrate mode losses since the feeding dipole antenna is integrated on a very thin dielectric layer. The mixer circuit, along with the feed dipole, are both integrated on the membrane wafer. The mixer diode is the University of Virginia surface channel planar diode which has a low parasitic capacitance. The diode is epoxied directly at the dipole apex without the need for an RF matching network, and with no mixer tuning required. At 92GHz,the DSB antenna-mixer conversion loss and noise temperature are 5.5dB and 770K, respectively. This represents the best reported results to this date for a quasi-optical mixer with a planar diode, at room temperature. At 335GHz, the DSB antenna-mixer noise temperature is 1750K and it is within 1dB of the

  17. Syntactic processing depends on dorsal language tracts.

    Science.gov (United States)

    Wilson, Stephen M; Galantucci, Sebastiano; Tartaglia, Maria Carmela; Rising, Kindle; Patterson, Dianne K; Henry, Maya L; Ogar, Jennifer M; DeLeon, Jessica; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2011-10-20

    Frontal and temporal language areas involved in syntactic processing are connected by several dorsal and ventral tracts, but the functional roles of the different tracts are not well understood. To identify which white matter tract(s) are important for syntactic processing, we examined the relationship between white matter damage and syntactic deficits in patients with primary progressive aphasia, using multimodal neuroimaging and neurolinguistic assessment. Diffusion tensor imaging showed that microstructural damage to left hemisphere dorsal tracts--the superior longitudinal fasciculus including its arcuate component--was strongly associated with deficits in comprehension and production of syntax. Damage to these dorsal tracts predicted syntactic deficits after gray matter atrophy was taken into account, and fMRI confirmed that these tracts connect regions modulated by syntactic processing. In contrast, damage to ventral tracts--the extreme capsule fiber system or the uncinate fasciculus--was not associated with syntactic deficits. Our findings show that syntactic processing depends primarily on dorsal language tracts.

  18. An Unexpected Near Term Pregnancy in a Rudimentary Uterine Horn

    Directory of Open Access Journals (Sweden)

    Elisabete Gonçalves

    2013-01-01

    Full Text Available Unicornuate uterus occurs due to a complete or partial nondevelopment of one Mullerian duct; sometimes it is associated with a rudimentary horn, which can communicate or not with uterine cavity or contain functional endometrium. Pregnancy in a rudimentary horn is rare and the outcome almost always unfavorable, usually ending in rupture during the first or second trimester with significant morbidity and mortality. Despite the availability and advances on imagiologic procedures, recognition of this ectopic pregnancy is frequently made at laparotomy after abdominal pain and collapse. The authors describe a case of a primigravida with 34 weeks of gestation admitted with a preeclampsia with severity criteria. A cesarean for fetal malpresentation was done and, unexpectedly, a rudimentary horn pregnancy was found with a live newborn. In the literature, few reports of a horn pregnancy reaching the viability with a live newborn are described, enhancing the clinical importance of this case. A review of literature concerning the epidemics, clinical presentation, and appropriate management of uterine horn pregnancies is made.

  19. Detection of outliers in reference distributions: performance of Horn's algorithm.

    Science.gov (United States)

    Solberg, Helge Erik; Lahti, Ari

    2005-12-01

    Medical laboratory reference data may be contaminated with outliers that should be eliminated before estimation of the reference interval. A statistical test for outliers has been proposed by Paul S. Horn and coworkers (Clin Chem 2001;47:2137-45). The algorithm operates in 2 steps: (a) mathematically transform the original data to approximate a gaussian distribution; and (b) establish detection limits (Tukey fences) based on the central part of the transformed distribution. We studied the specificity of Horn's test algorithm (probability of false detection of outliers), using Monte Carlo computer simulations performed on 13 types of probability distributions covering a wide range of positive and negative skewness. Distributions with 3% of the original observations replaced by random outliers were used to also examine the sensitivity of the test (probability of detection of true outliers). Three data transformations were used: the Box and Cox function (used in the original Horn's test), the Manly exponential function, and the John and Draper modulus function. For many of the probability distributions, the specificity of Horn's algorithm was rather poor compared with the theoretical expectation. The cause for such poor performance was at least partially related to remaining nongaussian kurtosis (peakedness). The sensitivity showed great variation, dependent on both the type of underlying distribution and the location of the outliers (upper and/or lower tail). Although Horn's algorithm undoubtedly is an improvement compared with older methods for outlier detection, reliable statistical identification of outliers in reference data remains a challenge.

  20. Modeling zero-lag synchronization of dorsal horn neurons during the traveling of electrical waves in the cat spinal cord.

    Science.gov (United States)

    Kato, Hideyuki; Cuellar, Carlos A; Delgado-Lezama, Rodolfo; Rudomin, Pablo; Jimenez-Estrada, Ismael; Manjarrez, Elias; Mirasso, Claudio R

    2013-07-01

    The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spinal segments, but they appear almost simultaneously at different spinal segments. The aim of this study was to provide experimental data and a mathematical model to explain the simultaneous occurrence of traveling waves and the zero-lag synchronization of some CDPs.

  1. Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat.

    Science.gov (United States)

    Almarestani, L; Waters, S M; Krause, J E; Bennett, G J; Ribeiro-da-Silva, A

    2007-09-20

    Many Rexed's lamina I neurons are nociceptive and project to the brain. Lamina I projection neurons can be classified as multipolar, fusiform, or pyramidal, based on cell body shape and characteristics of their proximal dendrites in the horizontal plane. There is also evidence that both multipolar and fusiform cells are nociceptive and pyramidal neurons nonnociceptive. In this investigation we identified which types of lamina I neurons belong to the spinoparabrachial tract in the rat and characterized them regarding the presence or absence of neurokinin-1 receptor (NK-1r) immunoreactivity. For this, cholera toxin subunit B (CTb), conjugated to a fluorescent marker was injected unilaterally into the parabrachial nucleus. Sections were additionally stained for the detection of NK-1r immunoreactivity and were examined using fluorescence and confocal microscopy. Serial confocal optical sections and 3D reconstructions were obtained for a considerable number of neurons per animal. Using immunofluorescence, we assessed the proportion of lamina I neurons belonging to the spinoparabrachial (SPB) tract and/or expressing NK-1r. The relative distribution of neurons belonging to the SPB tract was: 38.7% multipolar, 36.8% fusiform, 22.7% pyramidal, and 1.9% unclassified. Most of the SPB neurons expressing NK-1r were either multipolar or fusiform. Pyramidal SPB neurons were seldom immunoreactive for NK-1r, an observation that provides further support to the concept that most lamina I projection neurons of the pyramidal type are nonnociceptive. In addition, our study provides further evidence that these distinct morphological types of neurons differ in their phenotypic properties, but not in their projection patterns.

  2. Modeling zero-lag synchronization of dorsal horn neurons during the traveling of electrical waves in the cat spinal cord

    Science.gov (United States)

    Kato, Hideyuki; Cuellar, Carlos A; Delgado-Lezama, Rodolfo; Rudomin, Pablo; Jimenez-Estrada, Ismael; Manjarrez, Elias; Mirasso, Claudio R

    2013-01-01

    The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spinal segments, but they appear almost simultaneously at different spinal segments. The aim of this study was to provide experimental data and a mathematical model to explain the simultaneous occurrence of traveling waves and the zero-lag synchronization of some CDPs. PMID:24303110

  3. Modeling zero-lag synchronization of dorsal horn neurons during the traveling of electrical waves in the cat spinal cord

    OpenAIRE

    2013-01-01

    The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spin...

  4. Superficial Dorsal Vein Injury/Thrombosis Presenting as False Penile Fracture Requiring Dorsal Venous Ligation

    Directory of Open Access Journals (Sweden)

    Arash Rafiei, MD

    2014-12-01

    Conclusion: Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation. Sex Med 2014;2:182–185.

  5. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes.

    Science.gov (United States)

    Malik, Nasir; Wang, Xiantao; Shah, Sonia; Efthymiou, Anastasia G; Yan, Bin; Heman-Ackah, Sabrina; Zhan, Ming; Rao, Mahendra

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.

  6. Neuroimmunological Implications of AQP4 in Astrocytes

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  7. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  8. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release.

    Science.gov (United States)

    Santello, M; Volterra, A

    2009-01-12

    In the past 15 years the classical view that astrocytes play a relatively passive role in brain function has been overturned and it has become increasingly clear that signaling between neurons and astrocytes may play a crucial role in the information processing that the brain carries out. This new view stems from two seminal observations made in the early 1990s: 1. astrocytes respond to neurotransmitters released during synaptic activity with elevation of their intracellular Ca2+ concentration ([Ca2+]i); 2. astrocytes release chemical transmitters, including glutamate, in response to [Ca2+]i elevations. The simultaneous recognition that astrocytes sense neuronal activity and release neuroactive agents has been instrumental for understanding previously unknown roles of these cells in the control of synapse formation, function and plasticity. These findings open a conceptual revolution, leading to rethink how brain communication works, as they imply that information travels (and is processed) not just in the neuronal circuitry but in an expanded neuron-glia network. In this review we critically discuss the available information concerning: 1. the characteristics of the astrocytic Ca2+ responses to synaptic activity; 2. the basis of Ca2+-dependent glutamate exocytosis from astrocytes; 3. the modes of action of astrocytic glutamate on synaptic function.

  9. Motor neuron death in ALS – programmed by astrocytes?

    Science.gov (United States)

    Pirooznia, Sheila K.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Motor neurons in ALS die via cell-autonomous and non-cell autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al (2014) discover that familial and sporadic ALS derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue. PMID:24607221

  10. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    Y. He; T.B.M. Hakvoort; J.L.M. Vermeulen; W.T. Labruyere; D.R. de Waart; W.S. van der Hel; J.M. Ruijter; H.B.M. Uylings; W.H. Lamers

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocyte

  11. Astrocyte plasticity: implications for synaptic and neuronal activity.

    Science.gov (United States)

    Pirttimaki, Tiina M; Parri, H Rheinallt

    2013-12-01

    Astrocytes are increasingly implicated in a range of functions in the brain, many of which were previously ascribed to neurons. Much of the prevailing interest centers on the role of astrocytes in the modulation of synaptic transmission and their involvement in the induction of forms of plasticity such as long-term potentiation and long-term depression. However, there is also an increasing realization that astrocytes themselves can undergo plasticity. This plasticity may be manifest as changes in protein expression which may modify calcium activity within the cells, changes in morphology that affect the environment of the synapse and the extracellular space, or changes in gap junction astrocyte coupling that modify the transfer of ions and metabolites through astrocyte networks. Plasticity in the way that astrocytes release gliotransmitters can also have direct effects on synaptic activity and neuronal excitability. Astrocyte plasticity can potentially have profound effects on neuronal network activity and be recruited in pathological conditions. An emerging principle of astrocyte plasticity is that it is often induced by neuronal activity, reinforcing our emerging understanding of the working brain as a constant interaction between neurons and glial cells.

  12. [Amyotrophic lateral sclerosis: is the astrocyte the cell primarily involved?].

    Science.gov (United States)

    Sica, Roberto E

    2013-01-01

    So far, amyotrophic lateral sclerosis (ALS) is thought as due to a primary insult of the motor neurons. None of its pathogenic processes proved to be the cause of the illness, nor can be blamed environmental agents. Motor neurons die by apoptosis, leaving the possibility that their death might be due to an unfriendly environment, unable to sustain their health, rather than being directly targeted themselves. These reasons justify an examination of the astrocytes, because they have the most important role controlling the neurons' environment. It is known that astrocytes are plastic, enslaving their functions to the requirements of the neurons to which they are related. Each population of astrocytes is unique, and if it were affected the consequences would reach the neurons that it normally sustains. In regard to the motor neurons, this situation would lead to a disturbed production and release of astrocytic neurotransmitters and transporters, impairing nutritional and trophic support as well. For explaining the spreading of muscle symptoms in ALS, correlated with the type of spreading observed at the cortical and spinal motor neurons pools, the present hypotheses suggests that the illness-causing process is spreading among astrocytes, through their gap junctions, depriving the motor neurons of their support. Also it is postulated that a normal astrocytic protein becomes misfolded and infectious, inducing the misfolding of its wild type, travelling from one protoplasmatic astrocyte to another and to the fibrous astrocytes encircling the pyramidal pathway which joints the upper and lower motoneurones.

  13. A critical role for astrocytes in hypercapnic vasodilation in brain

    DEFF Research Database (Denmark)

    Howarth, C; Sutherland, B A; Choi, H B

    2017-01-01

    increases in astrocyte calcium signaling which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator, PgE2, is critically dependent on brain levels of the antioxidant, glutathione. These data suggest a novel...

  14. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  15. Foreign aid and extremism in the Horn of Africa

    DEFF Research Database (Denmark)

    Farah, Abdulkadir Osman

    2014-01-01

    This paper discusses foreign aid complexities and understanding the war on terrorism. In the past decade the US strategically integrated foreign aid with the fight against extremism, particularly in war torn regions like the Horn of Africa. In analysing the Somali case the paper contends the 911...... terror attacks inaugurated new form of foreign aid explicitly focusing on security. The “statelessness” condition in Somalia intensified intermingling of foreign aid with terrorism combatting programs in the Horn of Africa. In addition the collapse of the Somali military regime in 1991 empowered non...... claiming suspicious allegiance to the US gained momentum. In response extremists mobilized alternative partners and platforms. Consequently the declared war on terror had serious implications for the Horn of Africa. Foreign aid, external actors and extremism- the legacy of 911- made people in the region...

  16. Detecting flaws in Portland cement concrete using TEM horn antennae

    Science.gov (United States)

    Al-Qadi, Imad L.; Riad, Sedki M.; Su, Wansheng; Haddad, Rami H.

    1996-11-01

    To understand the dielectric properties of PCC and better correlate them with type and severity of PCC internal defects, a study was conducted to evaluate PCC complex permittivity and magnetic permeability over a wideband of frequencies using both time domain and frequency domain techniques. Three measuring devices were designed and fabricated: a parallel plate capacitor, a coaxial transmission line, and transverse electromagnetic (TEM) horn antennae. The TEM horn antenna covers the microwave frequencies. The measurement technique involves a time domain setup that was verified by a frequency domain measurement. Portland cement concrete slabs, 60 by 75 by 14 cm, were cast; defects include delamination, delamination filled with water, segregation, and chloride contamination. In this paper, measurements using the TEM horn antennae and the feasibility of detecting flaws at microwave frequency are presented.

  17. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease.

    Science.gov (United States)

    Khakh, Baljit S; Beaumont, Vahri; Cachope, Roger; Munoz-Sanjuan, Ignacio; Goldman, Steven A; Grantyn, Rosemarie

    2017-07-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  19. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  20. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  1. Designs and Development of Multimode Horns for ASTRO-G/VSOP-2 Satellite

    Science.gov (United States)

    Ujihara, H.

    2009-08-01

    The antenna optics of VSOP-2 satellite require low cross polarization, and the volume of the receiver box is limited. Thus, instead of conventional corrugated horns, multimode horns were proposed and designed in order to reduce the axial length and weight of the horns but still compatible with a low cross polarization. These multimode horns were designed for three observational bands of VSOP-2 at 8GHz, 22GHz, 43GHz, all with about the same antenna illumination size. However, the ratio of waveguide and wavelength are slightly different. The 22GHz-horn was designed at first, and the other horns were arranged around it. The properties of the horns were improved by controlling the complex amplitude of higher modes and by fitting the beam width to the antenna optics. The BBM models of horns were tested, and their measured beam patterns agree well with numerical simulations.

  2. Thyroid hormone action: Astrocyte-neuron communication.

    Directory of Open Access Journals (Sweden)

    Beatriz eMorte

    2014-05-01

    Full Text Available Thyroid hormone action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase, expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by type 2 deiodinase. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local thyroid hormone action during development.

  3. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-03-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  4. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  5. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  6. Sex differences in hypothalamic astrocyte response to estradiol stimulation

    Directory of Open Access Journals (Sweden)

    Kuo John

    2010-11-01

    Full Text Available Abstract Background Reproductive functions controlled by the hypothalamus are highly sexually differentiated. One of the most dramatic differences involves estrogen positive feedback, which leads to ovulation. A crucial feature of this positive feedback is the ability of estradiol to facilitate progesterone synthesis in female hypothalamic astrocytes. Conversely, estradiol fails to elevate hypothalamic progesterone levels in male rodents, which lack the estrogen positive feedback-induced luteinizing hormone (LH surge. To determine whether hypothalamic astrocytes are sexually differentiated, we examined the cellular responses of female and male astrocytes to estradiol stimulation. Methods Primary adult hypothalamic astrocyte cultures were established from wild type rats and mice, estrogen receptor-α knockout (ERKO mice, and four core genotype (FCG mice, with the sex determining region of the Y chromosome (Sry deleted and inserted into an autosome. Astrocytes were analyzed for Sry expression with reverse transcription PCR. Responses to estradiol stimulation were tested by measuring free cytoplasmic calcium concentration ([Ca2+]i with fluo-4 AM, and progesterone synthesis with column chromatography and radioimmunoassay. Membrane estrogen receptor-α (mERα levels were examined using surface biotinylation and western blotting. Results Estradiol stimulated both [Ca2+]i release and progesterone synthesis in hypothalamic astrocytes from adult female mice. Male astrocytes had a significantly elevated [Ca2+]i response but it was significantly lower than in females, and progesterone synthesis was not enhanced. Surface biotinylation demonstrated mERα in both female and male astrocytes, but only in female astrocytes did estradiol treatment increase insertion of the receptor into the membrane, a necessary step for maximal [Ca2+]i release. Regardless of the chromosomal sex, estradiol facilitated progesterone synthesis in astrocytes from mice with ovaries

  7. 9 CFR 95.12 - Bones, horns, and hoofs; importations permitted subject to restrictions.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bones, horns, and hoofs; importations... ENTRY INTO THE UNITED STATES § 95.12 Bones, horns, and hoofs; importations permitted subject to restrictions. Bones, horns, and hoofs offered for importation which do not meet the conditions or...

  8. 9 CFR 95.11 - Bones, horns, and hoofs for trophies or museums; disinfected hoofs.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bones, horns, and hoofs for trophies..., OFFERED FOR ENTRY INTO THE UNITED STATES § 95.11 Bones, horns, and hoofs for trophies or museums; disinfected hoofs. (a) Clean, dry bones, horns, and hoofs, that are free from undried pieces of hide,...

  9. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia.

    Science.gov (United States)

    Churchill, Melissa J; Wesselingh, Steven L; Cowley, Daniel; Pardo, Carlos A; McArthur, Justin C; Brew, Bruce J; Gorry, Paul R

    2009-08-01

    Astrocyte infection with human immunodeficiency virus (HIV) is considered rare, so astrocytes are thought to play a secondary role in HIV neuropathogenesis. By combining double immunohistochemistry, laser capture microdissection, and highly sensitive multiplexed polymerase chain reaction to detect HIV DNA in single astrocytes in vivo, we showed that astrocyte infection is extensive in subjects with HIV-associated dementia, occurring in up to 19% of GFAP+ cells. In addition, astrocyte infection frequency correlated with the severity of neuropathological changes and proximity to perivascular macrophages. Our data indicate that astrocytes can be extensively infected with HIV, and suggest an important role for HIV-infected astrocytes in HIV neuropathogenesis.

  10. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea...

  11. Littoral Encounters : The Shore as Cultural Interface in King Horn

    NARCIS (Netherlands)

    Sobecki, Sebastian

    2006-01-01

    1. III * Later Medieval: Excluding Chaucer -- Brown et al., 10.1093 ... ... between the Saracens and the londisse men allied to the protagonist (' Littoral Encounters: the Shore as Cultural Interface in King Horn', Al-Mas a ... www.ywes.oxfordjournals.org/cgi/content/full/man0092 2.Murray, Alan V. “

  12. Wind Farm Wake: The 2016 Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    2017-01-01

    Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development...

  13. Morphological character of crystalline components present in saiga horn.

    Science.gov (United States)

    Hashiguchi, K; Hashimoto, K; Akao, M

    2001-05-01

    The purpose of this study was to investigate the ultrastructure of saiga-antelope (Saiga tatarica) horn for proposing the mechanism of the initial mineralization. Horn is derived from horny tooth of Cyclostomata. The minerals in saiga horn were identified crystallographically using electron microscopy and X-ray diffraction techniques. Soft X-ray photographs revealed the degree of the mineralization pattern. However, the number of rings did not indicate the age of saiga. Mineral deposites were observed among well banded keratin fibers and composed of powder like crystals. This deposited crystals were found by the X-ray diffraction method to be octacalcium phospate (OCP) by comparing these periodic lattice fringes to JCPDS card data. The chemical formula of OCP is Ca8H2(PO4)6.5H2O. Evidences for the presence of OCP in mature hard tissues have never been obtained. This phenomenon described here may be characteristic of saiga horn because we have found no reports on this type of OCP mineralization in any other animal species. It is possible that OCP is the precursor in the initial mineralization step, indicating in a nucleation of mineral on the keratin fibers.

  14. Algebraicity of the Appell-Lauricella and Horn hypergeometric functions

    CERN Document Server

    Bod, Esther

    2010-01-01

    We extend Schwarz' list of irreducible algebraic Gauss functions to the four classes of Appell-Lauricella functions in several variables and the 14 complete Horn functions in two variables. This gives an example of a family of functions such that for any number of variables there are infinitely many algebraic functions, namely the Lauricella $F_C$ functions.

  15. Algebraicity of the Appell-Lauricella and Horn hypergeometric functions

    NARCIS (Netherlands)

    Bod, E.|info:eu-repo/dai/nl/325928983

    2011-01-01

    We extend Schwarz’ list of irreducible algebraic Gauss functions to the four classes of Appell-Lauricella functions in several variables and the 14 complete Horn functions in two variables. This gives an example of a family of functions such that for any number of variables there are infinitely many

  16. Phase-Center Extension for a Microwave Feed Horn

    Science.gov (United States)

    Hartop, R. W.; Manshadi, F.

    1987-01-01

    Corrugated cylindrical tube relocates phase center of Cassegrain antenna feed. Proposed modification increases aperture of Cassegrain antenna from 64 to 70 m. Relatively inexpensive extension moves phase center of feed without incurring cost of redesigning horn and relocating low-noise equipment. Extension does not affect polarization characteristics of feed.

  17. 163 COUNTER-TERRORISM IN THE GREATER HORN OF AFRICA ...

    African Journals Online (AJOL)

    Administrator

    2010-07-11

    Jul 11, 2010 ... serous signals to the defence and national security formations in the Greater Horn of ... provoke a state of terror in the general public, a group of persons or particular persons. ... others using the environment of the Somali collapsed state as a safe haven to ..... They don't know any other way of life but war.

  18. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  19. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  20. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte

    Science.gov (United States)

    Liu, Huan; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation. PMID:28286770

  1. Focal degeneration of astrocytes in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Rossi, D; Brambilla, L; Valori, C F; Roncoroni, C; Crugnola, A; Yokota, T; Bredesen, D E; Volterra, A

    2008-11-01

    Astrocytes emerge as key players in motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS). Whether astrocytes cause direct damage by releasing toxic factors or contribute indirectly through the loss of physiological functions is unclear. Here we identify in the hSOD1(G93A) transgenic mouse model of ALS a degenerative process of the astrocytes, restricted to those directly surrounding spinal motor neurons. This phenomenon manifests with an early onset and becomes significant concomitant with the loss of motor cells and the appearance of clinical symptoms. Contrary to wild-type astrocytes, mutant hSOD1-expressing astrocytes are highly vulnerable to glutamate and undergo cell death mediated by the metabotropic type-5 receptor (mGluR5). Blocking mGluR5 in vivo slows down astrocytic degeneration, delays the onset of the disease and slightly extends survival in hSOD1(G93A) transgenic mice. We propose that excitotoxicity in ALS affects both motor neurons and astrocytes, favouring their local interactive degeneration. This new mechanistic hypothesis has implications for therapeutic interventions.

  2. Astrocytic metabolic and inflammatory changes as a function of age.

    Science.gov (United States)

    Jiang, Tianyi; Cadenas, Enrique

    2014-12-01

    This study examines age-dependent metabolic-inflammatory axis in primary astrocytes isolated from brain cortices of 7-, 13-, and 18-month-old Sprague-Dawley male rats. Astrocytes showed an age-dependent increase in mitochondrial oxidative metabolism respiring on glucose and/or pyruvate substrates; this increase in mitochondrial oxidative metabolism was accompanied by increases in COX3/18SrDNA values, thus suggesting an enhanced mitochondrial biogenesis. Enhanced mitochondrial respiration in astrocytes limits the substrate supply from astrocytes to neurons; this may be viewed as an adaptive mechanism to altered cellular inflammatory-redox environment with age. These metabolic changes were associated with an age-dependent increase in hydrogen peroxide generation (largely ascribed to an enhanced expression of NOX2) and NFκB signaling in the cytosol as well as its translocation to the nucleus. Astrocytes also displayed augmented responses with age to inflammatory cytokines, IL-1β, and TNFα. Activation of NFκB signaling resulted in increased expression of nitric oxide synthase 2 (inducible nitric oxide synthase), leading to elevated nitric oxide production. IL-1β and TNFα treatment stimulated mitochondrial oxidative metabolism and mitochondrial biogenesis in astrocytes. It may be surmised that increased mitochondrial aerobic metabolism and inflammatory responses are interconnected and support the functionality switch of astrocytes, from neurotrophic to neurotoxic with age.

  3. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  4. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  5. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  6. Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization.

    Science.gov (United States)

    Parikh, Vinay; Naughton, Sean X; Shi, Xiangdang; Kelley, Leslie K; Yegla, Brittney; Tallarida, Christopher S; Rawls, Scott M; Unterwald, Ellen M

    2014-09-01

    Recent evidence suggests that diminished ability to control cocaine seeking arises from perturbations in glutamate homeostasis in the nucleus accumbens. However, the neurochemical substrates underlying cocaine-induced neuroadaptations in the dorsal striatum and how these mechanisms link to behavioral plasticity is not clear. We employed glutamate-sensitive microelectrodes and amperometry to study the impact of repeated cocaine administration on glutamate dynamics in the dorsolateral striatum of awake freely-moving rats. Depolarization-evoked glutamate release was robustly increased in cocaine-pretreated rats challenged with cocaine. Moreover, the clearance of glutamate signals elicited either by terminal depolarization or blockade of non-neuronal glutamate transporters slowed down dramatically in cocaine-sensitized rats. Repeated cocaine exposure also reduced the neuronal tone of striatal glutamate. Ceftriaxone, a β-lactam antibiotic that activates the astrocytic glutamate transporter, attenuated the effects of repeated cocaine exposure on synaptic glutamate release and glutamate clearance kinetics. Finally, the antagonism of AMPA glutamate receptors in the dorsolateral striatum blocked the development of behavioral sensitization to repeated cocaine administration. Collectively, these data suggest that repeated cocaine exposure disrupts presynaptic glutamate transmission and transporter-mediated clearance mechanisms in the dorsal striatum. Moreover, such alterations produce an over activation of AMPA receptors in this brain region leading to the sensitized behavioral response to repeated cocaine.

  7. Harbour porpoises on Horns Reef - Effects of the Horns Reef wind farm. Annual status report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Tougaard, J.; Carstensen, J.; Wisz, M.S.; Teilmann, J.; Bech, N.I. [National Environmental Res. Inst., Roskilde (Denmark); Skov, H. [DHI - Water and Environment, Hoersholm (Denmark); Henriksen, Oluf, D. [DDH-Consulting A/S, Roskilde (Denmark)

    2005-07-15

    This report describes the monitoring of harbour porpoises at Horns Reef Offshore Wind Farm, Denmark, with emphasis on data collected in 2004. Three 2-day surveys with line transect observations of porpoises were conducted in 2004 and data from acoustic data loggers (TPODs) were collected from January through July. Although new data from 2004 was included in the analysis there were no significant additions to conclusions from previous years' reports. On the contrary, the general conclusions regarding effects of construction and operation of the wind farm on porpoise abundance inside and outside the wind farm area have been weakened somewhat compared to previous reports. The specific conclusions regarding short-time effects of construction activities (especially pile drivings) has not been changed, however. Modelling of the spatial distribution of porpoises in the area demonstrated very weak correlations with static environmental variables (water depth, change in water depth and distance to 6 m depth contour). This highlights the importance of dynamic environmental variables, in particular tide and salinity, in determining the fine-scale distribution of porpoises and their prey in the area. a strong correlation between tide and porpoise abundance observed in the T-POD data on some parts of the reef (high abundance at high tide, low at low tide) supports the importance of this variable. Tide and salinity will be included in a forthcoming analysis of the entire dataset from the monitoring program. (au)

  8. Harbour porpoises on Horns Reef - Effects of the Horns Reef wind farm. Annual status report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Tougaard, J.; Carstensen, J.; Henriksen, Oluf. D.; Teilmann, J. [National Environmental Research Inst., Roskilde (Denmark); Rye Hansen, J. [DDH Consulting A/S, Roskilde (Denmark)

    2004-06-15

    Occurrence and distribution of harbour porpoises (Phocoena phocoena) in and around the off-shore wind farm on Horns Reef, Denmark, was investigated. This report describes data collected in 2003 as part of an ongoing monitoring program, covering a period before construction of the wind farm (baseline), the construction period in 2002 and one year following construction of the wind farm. Data from acoustic dataloggers (T-PODs) and visual surveys conducted from ships confirmed the presence of harbour porpoises inside the wind farm area during all periods investigated. Comparison with baseline data from 1999-2001 and with control areas outside the wind farm did not show a statistical significant change in sighting rates inside the wind farm area in the first year following construction relative to baseline. T-POD data showed a pronounced effect of the construction of the wind farm on the indicators 'encounter duration' (measure of how long porpoises remain close to the POD) and 'waiting time' (measure of time interval between porpoise encounters). Both parameters seem to indicate higher levels of porpoise activity during construction (encounter duration went up, waiting time went down) compared to baseline. A partial return to baseline levels was seen for these two indicators in 2003. (au)

  9. Carcinoma Buccal Mucosa Underlying a Giant Cutaneous Horn: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2014-01-01

    Full Text Available Cutaneous horn is a conical, dense, and hyperkeratotic protrusion that often appears similar to the horn of an animal. Giant cutaneous horns are rare; no incidence or prevalence has been reported. The significance of cutaneous horns is that they occur in association with, or as a response to, a wide variety of underlying benign, premalignant, and malignant cutaneous diseases. A case of giant cutaneous horn of left oral commissure along with carcinoma left buccal mucosa is reported here as an extremely rare oral/perioral pathology.

  10. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  11. Intercellular synchronization of diffusively coupled astrocytes

    CERN Document Server

    Alam, Md Jahoor; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2010-01-01

    We examine the synchrony of the dynamics of localized [Ca^{2+}]_i oscillations in internal pool of astrocytes via diffusing coupling of a network of such cells in a certain topology where cytosolic Ca^{2+} and inositol 1,4,5-triphosphate (IP3) are coupling molecules; and possible long range interaction among the cells. Our numerical results claim that the cells exhibit fairly well coordinated behaviour through this coupling mechanism. It is also seen in the results that as the number of coupling molecular species is increased, the rate of synchrony is also increased correspondingly. Apart from the topology of the cells taken, as the number of coupled cells around any one of the cells in the system is increased, the cell process information faster.

  12. Review on High Gain Conical Horn Antenna for Short-Range Communications

    Directory of Open Access Journals (Sweden)

    Priyanka Bhagwat

    2013-11-01

    Full Text Available Horn antennas are very popular at UHF (300 MHz-3 GHz and higher frequencies ( as high as 140 GHz. Horn antennas often have a directional radiation pattern with a high antenna gain, which can range up to 25 dB in some cases, with 10-20 dB being typical. Horn antennas have a wide impedance bandwidth, implying that the input impedance is slowly varying over a wide frequency range. The bandwidth for practical horn antennas can be of the order of 20:1 (for instance, operating from 1 GHz-20 GHz, with a 10:1 bandwidth being common. The gain of horn antennas often increases as the frequency of operation is increased. This is because the size of the horn aperture is measured in wavelengths; at higher frequencies the horn antenna is "electrically larger" because high frequency has a smaller wavelength. Horn antennas have very little loss, so the directivity of a horn is roughly equal to its gain. In this paper, we will present review about conical horn antenna which uses hybrid technique and provides high gain at frequencies ranging 3GHz keeping its size within limits. Also, literature survey will demostrate other reference papers will includes horn antennas using different techniques and used for various applications.

  13. Changes in horn size of Stone's sheep over four decades correlate with trophy hunting pressure.

    Science.gov (United States)

    Douhard, Mathieu; Festa-Bianchet, Marco; Pelletier, Fanie; Gaillard, Jean-michel; Bonenfanti, Christophe

    2016-01-01

    Selective harvest may lead to rapid evolutionary change. For large herbivores, trophy hunting removes males with large horns. That artificial selection, operating in opposition to sexual selection, can lead to undesirable consequences for management and conservation. There have been no comparisons of long-term changes in trophy size under contrasting harvest pressures. We analyzed horn measurements of Stone's rams (Ovis dalli stonei) harvested over 37 years in two large regions of British Columbia, Canada, with marked differences in hunting pressure to identify when selective hunting may cause a long-term decrease in horn growth. Under strong selective harvest, horn growth early in life and the number of males harvested declined by 12% and 45%, respectively, over the study period. Horn shape also changed over time: horn length became shorter for a given base circumference, likely because horn base is not a direct target of hunter selection. In contrast, under relatively lower hunting pressure, there were no detectable temporal trends in early horn growth, number of males harvested, or horn length relative to base circumference. Trophy hunting is an important recreational activity and can generate substantial revenues for conservation. By providing a reproductive advantage to males with smaller horns and reducing the availability of desirable trophies, however, excessive harvest may have the undesirable long-term consequences of reducing both the harvest and the horn size of rams. These consequences can be avoided by limiting offtake.

  14. Micro-Horn Arrays for Ultrasonic Impedance Matching

    Science.gov (United States)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    Thin-layered structures containing arrays of micromachined horns, denoted solid micro-horn arrays (SMIHAs), have been conceived as improved means of matching acoustic impedances between ultrasonic transducers and the media with which the transducers are required to exchange acoustic energy. Typically, ultrasonic transducers (e.g., those used in medical imaging) are piezoelectric or similar devices, which produce small displacements at large stresses. However, larger displacements at smaller stresses are required in the target media (e.g., human tissues) with which acoustic energy is to be exchanged. Heretofore, efficiencies in transmission of acoustic energy between ultrasonic transducers and target media have been severely limited because substantial mismatches of acoustic impedances have remained, even when coupling material layers have been interposed between the transducers and the target media. In contrast, SMIHAs can, in principle, be designed to effect more nearly complete acoustic impedance matching, leading to power transmission efficiencies of 90 percent or even greater. The SMIHA concept is based on extension, into the higher-frequency/ lower-wavelength ultrasonic range, of the use of horns to match acoustic impedances in the audible and lower-frequency ultrasonic ranges. In matching acoustic impedance in transmission from a higher-impedance acoustic source (e.g., a piezoelectric transducer) and a lowerimpedance target medium (e.g., air or human tissue), a horn acts as a mechanical amplifier. The shape and size of the horn can be optimized for matching acoustic impedance in a specified frequency range. A typical SMIHA would consist of a base plate, a face plate, and an array of horns that would constitute pillars that connect the two plates (see figure). In use, the base plate would be connected to an ultrasonic transducer and the face plate would be placed in contact with the target medium. As at lower frequencies, the sizes and shapes of the pillars

  15. Transfer of mitochondria from astrocytes to neurons after stroke

    Science.gov (United States)

    Hayakawa, Kazuhide; Esposito, Elga; Wang, Xiaohua; Terasaki, Yasukazu; Liu, Yi; Xing, Changhong; Ji, Xunming; Lo, Eng H.

    2016-01-01

    Recently, it was suggested that neurons can release and transfer damaged mitochondria to astrocytes for disposal and recycling 1. This ability to exchange mitochondria may represent a potential mode of cell-cell signaling in the central nervous system (CNS). Here, we show that astrocytes can also release functional mitochondria that enter into neurons. Astrocytic release of extracellular mitochondria particles was mediated by a calcium-dependent mechanism involving CD38/cyclic ADP ribose signaling. Transient focal cerebral ischemia in mice induced astrocytic mitochondria entry to adjacent neurons that amplified cell survival signals. Suppression of CD38 signaling with siRNA reduced extracellular mitochondria transfer and worsened neurological outcomes. These findings suggest a new mitochondrial mechanism of neuroglial crosstalk that may contribute to endogenous neuroprotective and neurorecovery mechanisms after stroke. PMID:27466127

  16. Correlation of astrocyte elevated gene‑1, basic‑fibroblast growth ...

    African Journals Online (AJOL)

    2015-02-03

    Feb 3, 2015 ... Background: Breast cancer is the second most frequent cancer in the ... Departments of Pathology, 2Biostatistics and 3General Surgery, ..... of the nuclear factor kappaB pathway by astrocyte elevated gene‑1: Implications.

  17. Astrocytes Mediate In Vivo Cholinergic-Induced Synaptic Plasticity

    OpenAIRE

    2012-01-01

    In vivo and in vitro studies reveal that astrocytes, classically considered supportive cells for neurons, regulate synaptic plasticity in the mouse hippocampus and are directly involved in information storage.

  18. Copper handling by astrocytes: insights into neurodegenerative diseases.

    Science.gov (United States)

    Tiffany-Castiglioni, Evelyn; Hong, Sandra; Qian, Yongchang

    2011-12-01

    Copper (Cu) is an essential trace element in the brain that can be toxic at elevated levels. Cu accumulation is a suspected etiology in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and prion-induced disorders. Astrocytes are a proposed depot in the brain for Cu and other metals, including lead (Pb). This article describes the physiological roles of Cu in the central nervous system and in selected neurodegenerative diseases, and reviews evidence that astrocytes accumulate Cu and protect neurons from Cu toxicity. Findings from murine genetic models of Menkes disease and from cell culture models concerning the molecular mechanisms by which astrocytes take up, store, and buffer Cu intracellularly are discussed, as well as potential mechanistic linkages between astrocyte functions in Cu handling and neurodegenerative diseases.

  19. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  20. Calretinin-immunoreactive nerves in the uterus, pelvic autonomic ganglia, lumbosacral dorsal root ganglia and lumbosacral spinal cord.

    Science.gov (United States)

    Papka, R E; Collins, J; Copelin, T; Wilson, K

    1999-10-01

    Nerves containing the calcium-binding protein calretinin have been reported in several organs but not in female reproductive organs and associated ganglia. This study was undertaken to determine if nerves associated with the uterus contain calretinin and the source(s) of calretinin-synthesizing nerves in the rat (are they sensory, efferent, or both?). Calretinin-immunoreactive nerves were present in the uterine horns and cervix where they were associated with arteries, uterine smooth muscle, glands, and the epithelium. Calretinin-immunoreactive terminals were apposed to neurons in the paracervical ganglia; in addition, some postganglionic neurons in this ganglion were calretinin positive. Calretinin perikarya were present in the lumbosacral dorsal root ganglia, no-dose ganglia, and lumbosacral spinal cord. Retrograde axonal tracing, utilizing Fluorogold injected into the uterus or paracervical parasympathetic ganglia, revealed calretinin-positive/Fluorogold-labeled neurons in the dorsal root and nodose ganglia. Also, capsaicin treatment substantially reduced the calretinin-positive fibers in the uterus and pelvic ganglia, thus indicating the sensory nature of these fibers. The presence of calretinin immunoreactivity identifies a subset of nerves that are involved in innervation of the pelvic viscera and have origins from lumbosacral dorsal root ganglia and vagal nodose ganglia. Though the exact function of calretinin in these nerves is not currently known, calretinin is likely to play a role in calcium regulation and their function.

  1. Age-dependent relationship between horn growth and survival in wild sheep.

    Science.gov (United States)

    Bonenfant, Christophe; Pelletier, Fanie; Garel, Mathieu; Bergeron, Patrick

    2009-01-01

    1. Trade-offs in resource allocation underline the evolution of life-history traits but their expression is frequently challenged by empirical findings. In large herbivores, males with large antlers or horns typically have high mating success. The fitness costs of large horns or antlers have rarely been quantified although they are controversial. 2. Here, using detailed longitudinal data on n = 172 bighorn (Ovis canadensis, Shaw) and the capture-mark-recapture methodology, we tested whether early horn growth leads to a survival cost in rams ('trade-off' hypothesis) or if males that can afford rapid horn growth survive better than males of lower phenotypic quality ('phenotypic quality' hypothesis). We also quantified how hunting increased survival costs of bearing large horns. 3. We found an age-specific relationship between horn growth and survival. In all age classes, natural survival was either weakly related to (lambs, adult rams) or positively associated (yearling rams) with early horn growth. Hunting mortality was markedly different from natural mortality of bighorn rams, leading to an artificial negative association between early horn growth and survival. Beginning at age 4, the yearly harvest rate ranged from 12% for males with the smallest horns up to more than 40% for males with the largest horns. 4. Growing large horns early in life is not related to any consistent survival costs, hence supporting the phenotypic quality hypothesis in males of a dimorphic and polygynous large herbivores. Rapid horn growth early in life is, however, strongly counter selected by trophy hunting. We suggest that horn size is a very poor index of reproductive effort and that males modulate their mating activities and energy allocation to horn growth to limit its impact on survival.

  2. Inhibition or ablation of transglutaminase 2 impairs astrocyte migration.

    Science.gov (United States)

    Monteagudo, Alina; Ji, Changyi; Akbar, Abdullah; Keillor, Jeffrey W; Johnson, Gail V W

    2017-01-22

    Astrocytes play numerous complex roles that support and facilitate the function of neurons. Further, when there is an injury to the central nervous system (CNS) they can both facilitate or ameliorate functional recovery depending on the location and severity of the injury. When a CNS injury is relatively severe a glial scar is formed, which is primarily composed of astrocytes. The glial scar can be both beneficial, by limiting inflammation, and detrimental, by preventing neuronal projections, to functional recovery. Thus, understanding the processes and proteins that regulate astrocyte migration in response to injury is still of fundamental importance. One protein that is likely involved in astrocyte migration is transglutaminase 2 (TG2); a multifunctional protein expressed ubiquitously throughout the brain. Its functions include transamidation and GTPase activity, among others, and previous studies have implicated TG2 as a regulator of migration. Therefore, we examined the role of TG2 in primary astrocyte migration subsequent to injury. Using wild type or TG2(-/-) astrocytes, we manipulated the different functions and conformation of TG2 with novel irreversible inhibitors or mutant versions of the protein. Results showed that both inhibition and ablation of TG2 in primary astrocytes significantly inhibit migration. Additionally, we show that the deficiency in migration caused by deletion of TG2 can only be rescued with the native protein and not with mutants. Finally, the addition of TGFβ rescued the migration deficiency independent of TG2. Taken together, our study shows that transamidation and GTP/GDP-binding are necessary for inhibiting astrocyte migration and it is TGFβ independent. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ionizing radiation induces astrocyte gliosis through microglia activation.

    Science.gov (United States)

    Hwang, So-Young; Jung, Jae-Seob; Kim, Tae-Hyun; Lim, Soo-Jeong; Oh, Eok-Soo; Kim, Joo-Young; Ji, Kyung-Ae; Joe, Eun-Hye; Cho, Kwan-Ho; Han, Inn-Oc

    2006-03-01

    The aim of this study was to investigate the role of microglia in radiation-induced astrocyte gliosis. We found that a single dose of 15 Gy radiation to a whole rat brain increased immunostaining of glial fibrillary acidic protein in astrocytes 6 h later, and even more so 24 h later, indicating the initiation of gliosis. While irradiation of cultured rat astrocytes had little effect, irradiation of microglia-astrocyte mixed-cultures displayed altered astrocyte phenotype into more processed, which is another characteristic of gliosis. Experiments using microglia-conditioned media indicated this astrocyte change was due to factors released from irradiated microglia. Irradiation of cultured mouse microglial cells induced a dose-dependent increase in mRNA levels for cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6, IL-18, tumor necrosis factor-alpha and interferon-gamma-inducible protein-10, which are usually associated with microglia activation. Consistent with these findings, irradiation of microglia activated NF-kappaB, a transcription factor that regulates microglial activation. Addition of prostaglandin E2 (PGE2: a metabolic product of the COX-2 enzyme) to primary cultured rat astrocytes resulted in phenotypic changes similar to those observed in mixed-culture experiments. Therefore, it appears that PGE(2) released from irradiated microglia is a key mediator of irradiation-induced gliosis or astrocyte phenotype change. These data suggest that radiation-induced microglial activation and resultant production of PGE2 seems to be associated with an underlying cause of inflammatory complications associated with radiation therapy for malignant gliomas.

  4. Proteomic modeling for HIV-1 infected microglia-astrocyte crosstalk.

    Directory of Open Access Journals (Sweden)

    Tong Wang

    Full Text Available HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system's microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease.MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species.These observations provide unique insights into glial crosstalk during disease by supporting astrocyte-mediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery and therapeutics that may influence the course of HIV-1-mediated neurodegeneration.

  5. Two-pore Domain Potassium Channels in Astrocytes

    Science.gov (United States)

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  6. Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease.

    Science.gov (United States)

    Cabezas, Ricardo; Avila, Marcos; Gonzalez, Janneth; El-Bachá, Ramon Santos; Báez, Eliana; García-Segura, Luis Miguel; Jurado Coronel, Juan Camilo; Capani, Francisco; Cardona-Gomez, Gloria Patricia; Barreto, George E

    2014-01-01

    The blood-brain barrier (BBB) is a tightly regulated interface in the Central Nervous System (CNS) that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson's Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the ECs and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson's disease (PD) and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  7. Astrocytes, Synapses and Brain Function: A Computational Approach

    Science.gov (United States)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  8. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  9. Novel approaches in astrocytic protection following brain injury

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Astrocytes have gained a broad attention in the last years, as they exert multiple functions for brain maintenance and neuronal protection. Astrocytes are metabolic regulators of the brain, important for the preservation of blood–brain barrier characteristics, clearance of toxic substances and generation of antioxidant molecules and growth factors for neurons and other glial cells. For these reasons, the protection of astrocytes has become of primordial importance for the prevention of neuronal death during pathologies such as Parkinson, Alzheimer, Ischemia, and others. Currently, different approaches are being used for the protection of astrocytes diseases, including the use of growth factors, steroid molecules derivatives, mesenchymal stem cell factors, nicotine and others. Moreover, the combined use of experimental approaches with bioinformatics tools such as the ones obtained through system biology has allowed a broader knowledge in astrocytic protection both in normal and pathological conditions. In this work, we highlight some of these recent approaches in astrocytic protection, and how they could be used for the study of restorative therapies for the brain in pathological conditions.

  10. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  11. Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid.

    Science.gov (United States)

    Kozela, Ewa; Juknat, Ana; Vogel, Zvi

    2017-07-31

    The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.

  12. Unveiling astrocytic control of cerebral blood flow with optogenetics.

    Science.gov (United States)

    Masamoto, Kazuto; Unekawa, Miyuki; Watanabe, Tatsushi; Toriumi, Haruki; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Kanno, Iwao; Matsui, Ko; Tanaka, Kenji F; Tomita, Yutaka; Suzuki, Norihiro

    2015-06-16

    Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8-1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K(+) channel inhibitor (BaCl2; 0.1-0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K(+) signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.

  13. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  14. Superficial Dorsal Vein Injury/Thrombosis Presenting as False Penile Fracture Requiring Dorsal Venous Ligation

    OpenAIRE

    Arash Rafiei, MD; Tariq S. Hakky, MD; Daniel Martinez, MD; Justin Parker, MD; Rafael Carrion, MD

    2014-01-01

    Introduction: Conditions mimicking penile fracture are extremely rare and have been seldom described. Aim: To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. Methods: A 33‐year‐old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, h...

  15. Beam steering and impedance matching of plasmonic horn nanoantennas

    Science.gov (United States)

    Afridi, Adeel; Kocabaş, Şükrü Ekin

    2016-10-01

    In this paper, we study a plasmonic horn nanoantenna on a metal-backed substrate. The horn nanoantenna structure consists of a two-wire transmission line (TWTL) flared at the end. We analyze the effect of the substrate thickness on the nanoantenna's radiation pattern, and demonstrate beam steering in a broad range of elevation angles. Furthermore, we analyze the effect of the ground plane on the impedance matching between the antenna and the TWTL, and observe that the ground plane increases the back reflection into the waveguide. To reduce the reflection, we develop a transmission line model to design an impedance matching section which leads to 99.75% power transmission to the nanoantenna.

  16. The Schur-Horn theorem for operators with finite spectrum

    CERN Document Server

    Bhat, B V Rajarama

    2011-01-01

    The carpenter problem in the context of $II_1$ factors, formulated by Kadison asks: Let $\\mathcal{A} \\subset \\mathcal{M}$ be a masa in a type $II_1$ factor and let $E$ be the normal conditional expectation from $\\mathcal{M}$ onto $\\mathcal{A}$. Then, is it true that for every positive contraction $A$ in $\\mathcal{A}$, there is a projection $P$ in $\\mathcal{M}$ such that $E(P) = A$? In this note, we show that this is true if $A$ has finite spectrum. We will then use this result to prove an exact Schur-Horn theorem for (positive)operators with finite spectrum and an approximate Schur-Horn theorem for general (positive)operators.

  17. Beam steering and impedance matching of plasmonic horn nanoantennas

    CERN Document Server

    Afridi, Adeel

    2016-01-01

    In this paper, we study a plasmonic horn nanoantenna on a metal-backed substrate. The horn nanoantenna structure consists of a two-wire transmission line (TWTL) flared at the end. We analyze the effect of the substrate thickness on the nanoantenna's radiation pattern, and demonstrate beam steering in a broad range of elevation angles. Furthermore, we analyze the effect of the ground plane on the impedance matching between the antenna and the TWTL, and observe that the ground plane increases the back reflection into the waveguide. To reduce the reflection, we develop a transmission line model to design an impedance matching section which leads to 99.75% power transmission to the nanoantenna.

  18. Envenomation by the horned viper (Vipera ammodytes L.).

    Science.gov (United States)

    Radonić, V; Budimir, D; Bradarić, N; Luksić, B; Sapunar, D; Vilović, K

    1997-03-01

    Snake venom poisoning is a medical emergency that requires urgent therapeutic procedures. The treatment of venomous snakebites is still controversial because of unclear therapeutic modalities. Choice of treatment is dictated in part by regional characteristics with regard to patient population and types of venomous snakes. The purpose of the study presented here was to report regional experience with venomous snakebites and to describe first-aid, pre-hospital, and hospital therapeutic procedures for horned viper bite. During a 16-year period, from 1980 to 1996, at the Clinical Hospital Split (Croatia) we collected data on 389 victims of horned viper bite. Incidence of the local and general complications is presented. We also reviewed therapeutic modalities and outcome with special attention to compartment syndromes and the indications for fasciotomy.

  19. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  20. Gene discovery in the horned beetle Onthophagus taurus

    Directory of Open Access Journals (Sweden)

    Yang Youngik

    2010-12-01

    Full Text Available Abstract Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population

  1. The magnetic horn being installed in the CNGS target chamber

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The magnetic system that focuses the beam of particles arising from the graphite target of the CERN Neutrinos to Gran Sasso project (CNGS) has been installed in its final position in the tunnel.The CNGS secondary beam magnetic system consists of two elements: the horn and the reflector, both acting as focusing lenses for the positively-charged pions and kaons produced by proton interactions in the target.

  2. Calibration of the SH134-20 Standard Gain Horn

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav

    This report documents the measurement of the linearly polarized SH134-20 Standard Gain Horn. The measurement comprises on-axis gain, on-axis polarization characteristics, and reflection coefficient at 111 frequencies in the frequency range from 22-33 GHz. The measurement was carried out at the DT......-ESA Spherical Near-Field Antenna Test Facility in December 2012 for SE Laboratories, Santa Clara, CA, USA....

  3. Spatial patterns in the abundance of the coastal horned lizard

    Science.gov (United States)

    Fisher, Robert N.; Suarez, Andrew V.; Case, Ted J.

    2002-01-01

    Coastal horned lizards (   Phrynosoma coronatum) have undergone severe declines in southern California and are a candidate species for state and federal listing under the Endangered Species Act. Quantitative data on their habitat use, abundance, and distribution are lacking, however. We investigated the determinants of abundance for coastal horned lizards at multiple spatial scales throughout southern California. Specifically, we estimated lizard distribution and abundance by establishing 256 pitfall trap arrays clustered within 21 sites across four counties. These arrays were sampled bimonthly for 2–3 years. At each array we measured 26 “local” site descriptors and averaged these values with other “regional” measures to determine site characteristics. Our analyses were successful at identifying factors within and among sites correlated with the presence and abundance of coastal horned lizards. These factors included the absence of the invasive Argentine ant (  Linepithema humile) (and presence of native ant species eaten by the lizards), the presence of chaparral community plants, and the presence of sandy substrates. At a regional scale the relative abundance of Argentine ants was correlated with the relative amount of developed edge around a site. There was no evidence for spatial autocorrelation, even at the scale of the arrays within sites, suggesting that the determinants of the presence or absence and abundance of horned lizard can vary over relatively small spatial scales ( hundreds of meters). Our results suggest that a gap-type approach may miss some of the fine-scale determinants of species abundance in fragmented habitats.

  4. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β.

    Science.gov (United States)

    Jones, Meghan E; Lebonville, Christina L; Paniccia, Jacqueline E; Balentine, Megan E; Reissner, Kathryn J; Lysle, Donald T

    2017-09-26

    Post-traumatic stress disorder (PTSD) is associated with immune dysregulation. We have previously shown that severe stress exposure in a preclinical animal model of the disorder, stress-enhanced fear learning (SEFL), is associated with an increase in hippocampal interleukin-1β (IL-1β) and that blocking central IL-1 after the severe stress prevents the development of SEFL. Here, we tested whether blocking hippocampal IL-1 signaling is sufficient to prevent enhanced fear learning and identified the cellular source of stress-induced IL-1β in this region. Experiment 1 tested whether intra-dorsal hippocampal (DH) infusions of interleukin-1 receptor antagonist (IL-1RA, 1.25µg per hemisphere) 24 and 48 hours after stress exposure prevents the development of enhanced fear learning. Experiment 2 used triple fluorescence immunohistochemistry to examine hippocampal alterations in IL-1β, glial fibrillary acidic protein (GFAP), an astrocyte-specific marker, and ionized calcium binding adaptor molecule -1 (Iba-1), a microglial-specific marker, 48 hours after exposure to the severe stressor of the SEFL paradigm. Intra-DH IL-1RA prevented SEFL and stress-induced IL-1β was primarily colocalized with astrocytes in the hippocampus. Further, hippocampal GFAP immunoreactivity was not altered, whereas hippocampal Iba-1 immunoreactivity was significantly attenuated following severe stress. These data suggest that hippocampal IL-1 signaling is critical to the development of SEFL and that astrocytes are a predominant source of stress-induced IL-1β. Copyright © 2017. Published by Elsevier Inc.

  5. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory.

    Directory of Open Access Journals (Sweden)

    Monika Tadi

    Full Text Available We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4, alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  6. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika

    2015-10-29

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of