WorldWideScience

Sample records for doppler-shifted cyclotron resonance

  1. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-01-01

    The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  2. Computer simulations of upper-hybrid and electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.C.

    1983-01-01

    A 2 1/2 -dimensional relativistic electromagnetic particle code is used to investigate the dynamic behavior of electron heating around the electron cyclotron and upper-hybrid layers when an extraordinary wave is obliquely launched from the high-field side into a magnetized plasma. With a large angle of incidence most of the radiation wave energy converts into electrostatic electron Bernstein waves at the upper-hybrid layer. These mode-converted waves propagate back to the cyclotron layer and deposit their energy in the electrons through resonant interactions dominated first by the Doppler broadening and later by the relativistic mass correction. The line shape for both mechanisms has been observed in the simulations. At a later stage, the relativistic resonance effects shift the peak of the temperature profile to the high-field side. The heating ultimately causes the extraordinary wave to be substantially absorbed by the high-energy electrons. The steep temperature gradient created by the electron cyclotron heating eventually reflects a substantial part of the incident wave energy. The diamagnetic effects due to the gradient of the mode-converted Bernstein wave pressure enhance the spreading of the electron heating from the original electron cyclotron layer

  3. Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy.

    Science.gov (United States)

    Henriksen, E A; Cadden-Zimansky, P; Jiang, Z; Li, Z Q; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2010-02-12

    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and nonmonotonic shifts as a function of the LL filling factor, with the energy being largest at half filling of the n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0 level at high magnetic fields. Such interaction effects normally have a limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. 123, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.

  4. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B T = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of ∼1 MW

  5. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R. I.; Baity, F. W.; Bernabei, S.; Greenough, N.; Heidbrink, W. W.; Mau, T. K.; Petty, C. C.; Porkolab, M.

    1999-01-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f=60 MHz, B T =1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (''monster sawteeth''), at relatively low rf power levels of ∼1 MW. (c) 1999 American Institute of Physics

  6. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  7. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    Energy Technology Data Exchange (ETDEWEB)

    Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Sadofyev, Yu. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Drachenko, O. [Laboratoire National des Champs Magn’etiques Intenses (France); Helm, M. [Forschungszentrum Dresden–Rossendorf, Dresden High-Magnetic-Field Laboratory and Institute of Ion-Beam Physics and Materials Research (Germany); Teppe, F.; Knap, W. [GIS-TERALAB Universite Montpellier II, Laboratoire Charles Coulomb UMR CNRS 5221 (L2C) (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  8. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  9. Identification of anomalous Doppler resonance effect during current ramp down in HT-7 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li Erzhong, E-mail: rzhonglee@ipp.ac.c [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Hu Liqun; Ling Bili; Liu Yong; Ti Ang; Zhou Reijie; Lu Hongwei; Gao Xiang [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China)

    2010-09-21

    The abrupt steep jump of electron cyclotron emission (ECE) signals during current ramp-down has been observed and explained by an anomalous Doppler resonance effect (ADR). The identifying process of ADR was presented based on the fast Fourier transform (FFT) technique. The threshold value for triggering a steep jump on ECE signals has been identified under different discharge conditions.

  10. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  11. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  12. The permittivity of a plasma at cyclotron resonance in large amplitude e.m. fields

    NARCIS (Netherlands)

    Schram, D.C.

    1970-01-01

    The permittivity of a collisionless plasma as a function of field parameters is measured in standing and in travelling waves. In both experiments the permittivity remains finite at cyclotron resonance; the resonance is broadened and shifted towards higher values of the magnetic field strength. The

  13. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  14. Ponderomotive force near cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Mitsuo; Sanuki, Heiji

    1987-01-01

    The ponderomotive force, which is involved in the excitation of macroscopic behaviors of plasma caused by wave motion, plays an important role in various non-linear wave motion phenomena. In the present study, equations for the pondermotive force for plasma in a uniform magnetic field is derived using a renormalization theory which is based on the Vlasov equation. It is shown that the pondermotive force, which diverges at the cyclotron resonence point according to adiabatic approximation, can be expressed by a non-divergent equation by taking into account the instability of the cyclotron orbit due to high-order scattering caused by a wave. This is related with chaotic particle behaviors near cyclotron resonance, where the pondermotive force is small and the diffusion process prevails. It is assumed here that the amplitude of the high-frequency electric field is not large and that the broadening of cyclotron levels is smaller than the distance between the levels. A global chaos will be created if the amplitude of the electric field becomes greater to allow the broadening to exceed the distance between the levels. (Nogami, K.).

  15. Inside launch electron cyclotron heating and current drive on DITE

    International Nuclear Information System (INIS)

    Ashraf, M.; Deliyanakis, N.

    1989-01-01

    Electron cyclotron resonance heating at 60 GHz has been carried out on DITE (R = 1.2 m, a = 0.24 m) to investigate heating and current drive using the extraordinary mode launched with finite k parallel from the high field side. The first clear evidence of Doppler shifted resonance absorption in a near-thermal plasma is obtained. The heating efficiency is observed to fall sharply at densities above cut-off for the wave. At lower densities the increment in power to the limiter is measured during ECRH and is compared with that expected from the global power balance. The degradation in particle confinement often associated with ECRH is observed as an increased particle flux at the boundary driven by local electrostatic fluctuations. Initial experiments on the electron cyclotron wave driven current at the second harmonic show effects that are consistent with the low efficiency expected from theory including trapped particle effects. (author). 9 refs, 4 figs

  16. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  17. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  18. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  19. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  20. Doppler Shift Compensation Schemes in VANETs

    Directory of Open Access Journals (Sweden)

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  1. Cyclotron resonant gas breakdown with a 1.22-nm 13CH3F laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Lax, B.; Metz, R.N.; Temkin, R.J.

    1979-01-01

    Cyclotron-resonant laser-induced gas breakdown has been studied for the first time in the transverse geometry, using 1.222-nm 13 CH 3 F laser radiation propagating perpendicular to the magnetic field axis. The line shape of absorbed laser radiation versus magnetic field near electron cyclotron resonance (87.75 kG) indicates a strong dependence of the line shape on the focused laser intensity. This dependence is not predicted by the standard equilibrium theory of high-frequency gas breakdown in a magnetic field. We have developed an analytic theory to explain the observed line shapes. The theory takes into account the laser propagation characteristics, in particular that there is nonuniform ionization due to strong resonant absorption of the laser radiation in a length comparable to or shorter than that of the laser focal volume. The transverse geometry simplifies the theoretical analysis because the observed line shapes are not significantly affected by Doppler broadening. Extensive data have been obtained on the fraction of laser pulse energy absorbed in the gas breakdown volume as a function of magnetic field, helium gas pressure, and incident laser pulse energy. Good quantitative agreement is obtained between the observed laser pulse absorption line shapes and the nonuniform ionization theory

  2. Nonlinear cyclotron-resonance accelerations by a generalized EM wave

    International Nuclear Information System (INIS)

    Akimoto, K.; Hojo, H.

    2004-01-01

    Particle accelerations by a one-dimensional, electromagnetic, dispersive pulse in an external magnetic field are investigated. It is found that the well-known cyclotron resonance may be classified into three regimes as the length and/or the amplitude of the pulse are varied. Namely, as the pulse amplitude increases, the transit-time cyclotron-resonance acceleration (CRA) evolves to phase trapping, and reflect particles. The amplitude and wave dispersion as well as the pulse length strongly affect those accelerations. The interesting phenomena of quantization of resonance velocities in between the two regimes are also investigated. This new mechanism may lead to wave amplification at some discrete frequencies other than the cyclotron frequency. (authors)

  3. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  4. Lorentz invariance and the rotor Doppler shift experiments

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.; Tiomno, J.

    1984-01-01

    It is shown that 'Rotor Doppler shift Experiments' provide a way to distinguish Einstein's Special Relativity (SR) from Lorentz's Aether Theory (LAT). Misconceptions in previous papers involving the Doppler shift experiments are examined. The theoretical and experimental data available on rotor Doppler shift experiments are analysed. Two models of SR violating theories are used to predict the output of a recently proposed experiment by Torr and Kolen. The first one corresponds to (strict) LAT and the other to an extended form of LAT Contrary to the first, the second theory leads to results in agreement with the preliminary experimental data of Torr et al indicating a breakdown both of SR and strict LAT. (Author) [pt

  5. Lorentz invariance and the rotor Doppler shift experiments

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.; Tiomno, J.

    1984-01-01

    It is shown that 'Rotor Doppler shift Experiments' provide a way to distinguish Einstein's Special Relativity (SR) from Lorentz's Aether Theory (LAT). Misconceptions in previous papers involving the Doppler shift experiments are examined. The theoretical and experimental data available on rotor Doppler shift experiments are analysed. Two models of SR violating theories are used to predict the output of a recently proposed experiment by Torr and Kolen. The first one corresponds to (strict) LAT and the other to an extended form of LAT. Contrary to the first, the second theory leads to results in agreement with the preliminary experimental data of Torr et al indicating a breakdown both of SR and strict LAT. (Author) [pt

  6. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  7. Stochasticity of the energy absorption in the electron cyclotron resonance

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1998-01-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  8. Interpretation of the electron cyclotron emission of hot ASDEX upgrade plasmas at optically thin frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Denk, Severin Sebastian; Stroth, Ulrich [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Fischer, Rainer; Poli, Emanuele; Willensdorfer, Matthias; Maj, Omar; Stober, Joerg; Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    The electron cyclotron emission diagnostic (ECE) provides routinely electron temperature (T{sub e}) measurements. ''Kinetic effects'' (relativistic mass shift and Doppler shift) can cause the measured radiation temperatures (T{sub rad}) to differ from T{sub e} at cold resonance position complicating the determination of T{sub e} from the measured radiation temperature profile (T{sub rad}). For the interpretation of such ECE measurements an electron cyclotron forward model solving the radiation transport equation for given T{sub e} and electron density profiles is in use in the framework of Integrated Data Analysis at ASDEX Upgrade. While the original model lead to improved T{sub e} profiles near the plasma edge in moderately hot H-mode discharges, vacuum approximations in the model lead to inaccuracies given large T{sub e}. In hot plasmas ''wave-plasma interaction'', i.e. the dielectric effect of the background plasma onto the electron cyclotron emission, becomes important at optical thin measured frequencies. Additionally, given moderate electron densities and large T{sub e}, the refraction of the line of sight has to be considered for the interpretation of ECE measurements with low optical depth.

  9. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  10. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  11. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  12. Anisotropic distribution function of minority tail ions generated by strong ion-cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Colestock, P.

    1989-05-01

    The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs

  13. Oscillations of Doppler-Raby of two level atom moving in resonator

    International Nuclear Information System (INIS)

    Kozlovskij, A.V.

    2001-01-01

    The interaction of the two-level atom with the quantum mode of the high-quality resonator uniformly moving by the classic trajectory, is considered. The recurrent formula for the probability of the atom transition with the photon radiation is determined through the dressed states method. It is shown, that the ratio between the Doppler shift value of the atom transition and the Raby frequency value of the atom-field system qualitatively effects the dependence of the moving atom transition probability on its position in the resonator, as well as on its value [ru

  14. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  15. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  16. Isomeric shift compensation when using resonance detectors in Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Irkaev, S.M.; Semenkin, V.A.; Sokolov, M.M.

    1981-01-01

    Method for compensation of isomeric shift of lines observed during operation of resonance detectors being part of spectrometers of nuclear gamma resonance is suggested. A flowsheet of device permitting to realize the method described is given. The method is based on using the Doppler effect. A source of resonance radiation is moved at a constant velocity, which is choosen so as to compensate energy shift of lines of the source and convertors of the resonance detector. The absorber under investigation is put in motion with a constant acceleration. The resonance detector signals are amplified selected according to amplitude by a discriminator and come to the input of multichannel analyzer operating in the regime of subsequent scaling. Analysis of experimental spectra obtained at velocities of source movement from 0 to +3 mm/s shows that value of resonance absorption effect drops as increasing energy shift in the source-converter system. It is concluded that application of the method described will permit to considerably extend the field of application of resonance detectors in the Moessbauer spectroscopy and investigate in practice all the isotopes having converted transitions [ru

  17. On the coupling of cyclotron motion to ion internal degrees of freedom

    International Nuclear Information System (INIS)

    Dunbar, R.C.

    1979-01-01

    A possibility of significant coupling between gas-phase ion cyclotron motion and two internal angular momentum terms is explored. The first case, coupling with ion spin, is treated via the relativistic Hamiltonian, and found to produce only relativistic perturbations which are entirely negligible. The second case, coupling with ion rotation, is developed via its equivalence to a Stark effect. Small shifts in the cyclotron resonances frequency , ωsub(c) and the appearance of a weak cyclotron resonance at 2ωsub(c) are predicted, but these effects are negligible in general. If the cyclotron frequency is near an ion rotational transition, however, a shift of 10 -5 in cyclotron frequency may be observed, and could provide a means of investigating low-frequency rotational transitions of ions. (Auth.)

  18. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger.

    Science.gov (United States)

    Schoeppler, Diana; Schnitzler, Hans-Ulrich; Denzinger, Annette

    2018-03-15

    Bats of the Rhinolophidae and Hipposideridae families, and Pteronotus parnellii, compensate for Doppler shifts generated by their own flight movement. They adjust their call frequency such that the frequency of echoes coming from ahead fall in a specialized frequency range of the hearing system, the auditory fovea, to evaluate amplitude and frequency modulations in echoes from fluttering prey. Some studies in hipposiderids have suggested a less sophisticated or incomplete Doppler shift compensation. To investigate the precision of Doppler shift compensation in Hipposideros armiger, we recorded the echolocation and flight behaviour of bats flying to a grid, reconstructed the flight path, measured the flight speed, calculated the echo frequency, and compared it with the resting frequency prior to each flight. Within each flight, the average echo frequency was kept constant with a standard deviation of 110 Hz, independent of the flight speed. The resting and reference frequency were coupled with an offset of 80 Hz; however, they varied slightly from flight to flight. The precision of Doppler shift compensation and the offset were similar to that seen in Rhinolophidae and P. parnellii. The described frequency variations may explain why it has been assumed that Doppler shift compensation in hipposiderids is incomplete.

  19. Magneto-optical and cyclotron resonance studies of semiconductors and their nanostructures in pulsed high magnetic fields

    International Nuclear Information System (INIS)

    Miura, N.

    1999-01-01

    Full text: We present a review on the recent advances in physics of magneto-optical spectroscopy in the visible range and of infrared cyclotron resonance in pulsed high magnetic fields, which are produced by electromagnetic flux compression up to 500T, by the single-turn coil technique up to 200T or by conventional non-destructive long pulse magnets up to 50T. We discuss the recent results on the spectroscopy of low dimensional excitons in quantum wells and short period superlattices. In very high fields up to 500T, we observed anomalous field dependence of the exciton absorption lines and the 2D - 3D cross-over effects in GaAs/AlAs quantum wells. In GaP/AlP short period superlattices, it was found that the exciton photoluminescence intensity shows a dramatic decrease and the diamagnetic shift was negative when high magnetic fields were applied parallel to the growth direction. We observed also remarkable effects of uniaxial stress, which are ascribed to the cross-over effect between the two inequivalent valleys at the X points. Cyclotron resonance was measured by using various molecular gas lasers as radiation sources in the range 5 - 119 m . We present the results of cyclotron resonance in GaAs/AlGaAs quantum wells with tilted magnetic fields from the growth direction. It was found that the resonant field and the peak intensity show many different features depending on the extent of the Landau level-subband coupling and on the relation between the photon energy and the barrier height. A large hysteresis was observed between the rising and the falling sweeps of the magnetic field, when the cyclotron resonance energy became comparable with the subband spacing. In a diluted magnetic semiconductor CdFeS, we observed anomalous temperature dependence of the effective mass, suggestive of the magnetic polaron effect

  20. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  1. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...

  2. Diffusion induced by cyclotron resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.; Hatori, T.; Pfirsch, D.

    1985-09-01

    The wave induced particle transport during the ion cyclotron resonance heating is studied in collisionless toroidal plasmas. It is shown that the previously neglected non-conservation of the toroidal angular momentum IP/sub phi/ caused by the toroidal wave component E/sub phi/ is necessary to allow particle diffusion and yields the leading diffusive contribution. While the induced ion transport for the rf power in contemporary experiments is of the order of the neoclassical value, that of fast alpha particles is quite large if resonance is present

  3. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Sehgal, Akansha

    2014-01-01

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  4. Electron cyclotron current drive at ω approx. = ωc with X-mode launched from the low field side

    International Nuclear Information System (INIS)

    Leuterer, F.; Kubo, S.

    2000-02-01

    The electron cyclotron resonance layer in a tokamak, ω=ω c (r), is not accessible by the extraordinary wave from the low field side, because it is shielded by a cutoff layer. However, a X-mode launched with a nonzero toroidal angle propagates at the cutoff parallel to the magnetic field and has a circular polarization. Therefore it can already at the cutoff layer interact efficiency with electrons via the Doppler shifted resonance. The driven current can be substantially higher than that driven by the second harmonic X-mode. The applicability of this current drive scheme is limited to rather low values of ω p 2 /ω c 2 , but may be of interest for high magnetic field devices. (author)

  5. Optically detected cyclotron resonance in a single GaAs/AlGaAs heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Gregor

    2011-09-23

    Optically detected far-infrared cyclotron resonance (FIR-ODCR) in GaAs/AlGaAs HJs is interpreted in the frame of an exciton-dissociation mechanism. It is possible to explain the ODR mechanism by an exciton drag, mediated by ballistically propagating phonons. Furthermore, very narrow resonances are presented and realistic electron mobility values can be calculated. The exceptionally narrow ODCRs allow to measure conduction-band nonparabolicity effects and resolve satellite resonances, close to the main cyclotron resonance line.

  6. On Resonant Heating Below the Cyclotron Frequency

    International Nuclear Information System (INIS)

    Chen, Liu; Lin, Zhihong; White, R.

    2001-01-01

    Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency

  7. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  8. Resonance cones below the ion cyclotron frequency: theory and experiment

    International Nuclear Information System (INIS)

    Bellan, P.

    1976-03-01

    The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves

  9. MM-wave cyclotron auto-resonance maser for plasma heating

    Science.gov (United States)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  10. Gas breakdown at cyclotron resonance with a submillimeter laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Temkin, R.J.; Lax, B.

    1976-01-01

    A pulsed 496-μm CH 3 F laser is used to produce gas breakdown in He at pressures between 1 and 300 Torr in an intense longitudinal magnetic field. Breakdown is detected by the observation of visible light when the electron cyclotron frequency (eB/m) equals the laser frequency, which occurs at B=216 kG for lambda=496 μm. At the lowest helium pressures and near cyclotron resonance, the focused laser intensity of 40 kW/cm 2 gives rise to very large electron heating rates, well beyond the limit of validity of conventional equilibrium breakdown theory. The observed result is an intensity-dependent resonant linewidth, much larger than predicted by equilibrium theories

  11. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  12. Doppler and time-travel broadening in ICR plasma isotope separation

    International Nuclear Information System (INIS)

    Karchevskii, A.I.; Potanin, E.P.

    1994-01-01

    Isotopically-selective ion-cyclotron resonance (ICR) heating is one of the most promising plasma isotope separation methods. The separation degree of ICR separation in a plasma depends on the resonance heating selectivity. The selectivity is due to the isotopically-adjacent accelerated ions resonance curve overlapping and therefore, is determined by the width of the resonance curves. In the case of a collisionless plasma in an ideal homogeneous longitudinal magnetic field, the line broadening is mainly determined by Doppler and time-travel effects. These effects differ in nature, and one has some difficulties in distinguishing them when interpreting the resonance curves because both broadenings depend on ion axial velocities. We consider the simplest case: the extrenal heating alternating electric field does not depend on the axial coordinate (the wave number γ = 0). Hence, in this case the Doppler effect does not occur

  13. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  14. Gyrokinetic theory of perpendicular cyclotron resonance in a nonuniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1989-01-01

    The extension of gyrokinetic theory to arbitrary frequencies by Chen and Tsai [Phys. Fluids 26, 141 (1983); Plasma Phys. 25, 349 (1983)] is used to study cyclotron absorption in a straight magnetic field with a perpendicular, linear gradient in strength. The analysis includes the effects of magnetic field variation across the Larmor orbit and is restricted to propagation perpendicular to the field. It yields the following results for propagation into the field gradient. The standard optical depths for the fundamental O-mode and second harmonic X-mode resonances are obtained from the absorption profiles given in this paper, without invoking relativistic mass variation [see also Antonsen and Manheimer, Phys. Fluids 21, 2295 (1978)]. The compressional Alfven wave is shown to undergo perpendicular cyclotron damping at the fundamental minority resonance in a two-ion species plasma and at second harmonic resonance in a single-ion species plasma. Ion Bernstein waves propagating into the second harmonic resonance are no longer unattenuated, but are increasingly damped as they approach the resonance. It is shown how the kinetic power flow affects absorption profiles, yielding information previously obtainable only from full-wave theory. In all cases, the perpendicular cyclotron damping arises from the inclusion of magnetic field variation across the Larmor orbit

  15. Nonlinear self-precession and wavenumber shift of electromagnetic waves under resonance and of Alfven waves in plasmas

    International Nuclear Information System (INIS)

    Bhattacharyya, B.; Chakraborty, B.

    1979-01-01

    Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)

  16. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  17. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  18. Power deposition for ion cyclotron heating in large tokamaks

    International Nuclear Information System (INIS)

    Hellsten, T.; Villard, L.

    1988-01-01

    The power deposition profiles during minority ion cyclotron heating are analysed in large tokamaks by using the global, toroidal wave code LION. For tokamaks with large aspect ratio and with circular cross-section, the wave is focused on the magnetic axis and can be absorbed there by cyclotron absorption when the cyclotron resonance passes through the magnetic axis. The power deposition profile is then essentially determined by the Doppler broadening of the ion cyclotron resonance. For equilibria either non-circular or with a small aspect ratio the power deposition profile depends also on the strength of the damping. In this case the power deposition profile can be expressed as a sum of two power deposition profiles. One is related to the power absorbed in a single pass, and its shape is similar to that obtained for large aspect ratio and circular cross-section. The other profile is obtained by calculating the power deposition in the limit of weak damping, in which case the wave electric field is almost constant along the cyclotron resonance layer. A heuristic formula for the power deposition is given. The formula includes a number of calibration curves and functions which has been calculated with the LION code for JET relevant equilibria. The formula enables calculation of the power deposition profile in a simple way when the launched wave spectrum and damping coefficients are known. (author). 7 refs, 11 figs

  19. Experimental investigation on electron cyclotron absorption at down-shifted frequency in the PLT tokamak

    International Nuclear Information System (INIS)

    Mazzucato, E.; Fidone, I.; Cavallo, A.; von Goeler, S.; Hsuan, H.

    1986-05-01

    The absorption of 60 GHz electron cyclotron waves, with the extraordinary mode and an oblique angle of propagation, has been investigated in the PLT tokamak in the regime of down-shifted frequencies. The production of energetic electrons, with energies of up to 300 to 400 keV, peaks at values of toroidal field (approx. =29 kG) for which the wave frequency is significantly smaller than the electron cyclotron frequency in the whole plasma region. The observations are consistent with the predictions of the relativistic theory of electron cyclotron damping at down-shifted frequency. Existing rf sources make this process a viable method for assisting the current ramp-up, and for heating the plasma of present large tokamaks

  20. Electron-cyclotron-resonant-heated electron distribution functions

    International Nuclear Information System (INIS)

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-01-01

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions

  1. Doppler interpretation of quasar red shifts.

    Science.gov (United States)

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  2. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  3. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  4. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Chang, C.S.

    1994-11-01

    The temperature anisotropy generated by cyclotron resonance heating of tokamak plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function of heated particles is solved, assuming a moderate wave power and a constant quasilinear cyclotron resonance diffusion coefficient. The poloidal electrostatic potential variation is found to be proportional to the particle density and the degree of temperature anisotropy of warm species created by cyclotron resonance heating

  5. Ion–Cyclotron Resonance Frequency Interval Dependence on the O ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz.

  6. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  7. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  8. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  9. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  10. The Dependence of the Resonance Integral on the Doppler Effect

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J

    1960-12-15

    The Doppler sensitive contributions to the resonance integral for metal and oxide cylinders have been calculated using tables compiled by Adler, Hinman and Nordheim. The temperatures 20, 200, 350, 500 and 650 deg C have been investigated for the pure metal and 20, 300, 600, 900 and 1200 deg C for the oxide. Contributions from the separate resonances in the resolved region and for certain energies in the unresolved region are accounted for in detail. Integration over adequate statistical distributions has been carried out for the resonance parameters in the unresolved region. The increase in the resonance integral at elevated temperatures due to the Doppler effect is given separately in tables and diagrams.

  11. Cyclotron motion in a microwave cavity: an analog of the Lamb shift

    International Nuclear Information System (INIS)

    Brown, L.S.

    1985-09-01

    The interaction of a bound electron with the radiation field produced by the image charges that represent a surrounding metallic cavity produces a shift in its orbital frequency and in its radiative decay time. This is an analog to the Lamb shift in atomic systems, but it is purely a classical effect. We outline the calculation of the frequency shift and the change in the damping constant for a cyclotron motion at the midpoint of a lossy, cylindrical cavity

  12. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  13. Heavy stable isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.; Compant La Fontaine, A.; Larousse, B.; Patris, M.

    1994-01-01

    The scientific feasibility of the ion cyclotron resonance process (ICR), as well as the technical one, has been investigated carefully for light metallic elements, whose masses lies between 40 and 100/1,2/. The present work deals mainly with the same demonstration for heavier elements such as ytterbium, gadolinium and barium. Recent results, as well as future prospects, are considered here. (authors)

  14. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    Science.gov (United States)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  15. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    International Nuclear Information System (INIS)

    Vlahos, L.; Sprangle, P.

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail. 31 references

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It is argued that most of the emissions are generated during Doppler shifted cyclotron resonance interaction between the whistler mode wave and counter streaming energetic electrons. Resonance energy of the participating electron and interaction length are evaluated to explain the generation mechanism of some of these ...

  17. Modeling of Doppler frequency shift in multipath radio channels

    Directory of Open Access Journals (Sweden)

    Penzin M.S.

    2016-06-01

    Full Text Available We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect. The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase variation in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of variation in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.

  18. Cyclotron resonance in bilayer graphene.

    Science.gov (United States)

    Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2008-02-29

    We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.

  19. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  20. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  2. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  3. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  4. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  5. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  6. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by

  7. Ion cyclotron-resonance heating in a toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1975-01-01

    rf power near the ion cyclotron-resonance frequency has been used to produce a hundredfold increase (from approximately-less-than1 to approx.100 eV) in the ion temperature in a toroidal octupole device. The heating produces no noticeable instabilities or other deleterious effects except for a high reflux of neutrals from the walls. The heating rate is consistent with theory and the limiting ion temperature is determined by charge-exchange losses

  8. Isotope separation in plasma by ion-cyclotron resonance method

    International Nuclear Information System (INIS)

    Dubinov, A.E.; Kornilova, I.Yu.; Selemir, V.D.

    2001-01-01

    Contemporary state of investigation on isotope separation in plasma using selective ion-cyclotron resonance (ICR) heating is considered. The main attention is paid to necessary conditions of heating selectivity, plasma creation methods in isotope ICR-separation facilities, selection of antenna systems for heating, and principles of more-heated component selection. Experimental results obtained at different isotope mixtures separation are presented [ru

  9. Peculiarity of the charged particles dynamics at the cyclotron resonances

    International Nuclear Information System (INIS)

    Buts, V.A.; Kuzmin, V.V.; Tolstoluzhsky, A.P.

    2016-01-01

    In this work the analysis was provided of the discrepancy between thresholds for appearance of the chaotic regime in the conditions of cyclotron resonances, obtained by analytical consideration of the particle dynamics, on the one hand, and by numerical investigation, on the other hand. The explanation is given for these threshold discrepancies.

  10. Ion cyclotron resonance heating in the Wisconsin supported toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1977-01-01

    Ion heating at the fundamental of the cyclotron resonance (1 MHz 12 cm -3 ) with no evidence of parametric decay or enhanced particle loss other than temperature dependent losses such as thermal flow to obstacles. Ion temperatures are limited by charge exchange on the large neutral reflux at the higher rf powers. (author)

  11. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  12. Enormous periodic doppler shifts in SS 433

    International Nuclear Information System (INIS)

    Margon, B.; Ford, H.C.; Grandi, S.A.; Stone, R.P.S.

    1979-01-01

    We have previously reported prominent ''moving' emission lines in the visible spectrum of Stephenson-Sanduleak 433, the optical counterpart of a variable radio and X-ray source. Further observations show that despite the implausible velocities and changes in velocities implied if the moving features are interpreted as Doppler-shifted Balmer lines, this explanation is indeed correct. Spectroscopy of SS 433 on 51 mights in 1978--1979 reveals that the unidentified features are two sets of Balmer and He I lines, one with large and changing redshift, and the other with large and changing blueshift. Combining our data with published earlier observations, we obtain Doppler shifts on 80 nights in the period 1978 June to 1979 June. These data indicate that the velocity variations are cyclical, repeating in both the blueshift and redshift systems with a period of 164 +- 3 days. The two systems have thus far been observed to reach maximum positive and negative radial velocities of +50,000 and -35,000 km s -1 , respectively, are always symmetric about redshift z=0.04, and follow roughly sinusoidal velocity curves. We discuss in addition a variety of interesting short-term spectroscopic details, including minor but highly significant deviations of the radial velocity from the sinusoid, and nightly line profile changes, sometimes appearing as mirror-image events in the redshift and blueshift systems. The behavior of SS 433 is unprecedented

  13. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  14. Stochastic heating in the cyclotron resonance of electrons

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1999-01-01

    The study of the different schemes of plasma heating by radiofrequency waves is a very actual problem related with the plasma heating in different machines and the particle acceleration mechanisms. In this work, it is obtained the expression for the temporal evolution of the energy absorbed in the cyclotron resonance of electrons where it is showed the stochastic character of the energy absorption. It is obtained the stochastic criteria in a magnetic configuration of an Ecr type plasma source. (Author)

  15. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  16. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  17. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  18. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  19. Reducing the first-order Doppler shift in a Sagnac interferometer

    NARCIS (Netherlands)

    Hannemann, S.; Salumbides, E.J.; Ubachs, W.M.G.

    2007-01-01

    We demonstrate a technique to reduce first-order Doppler shifts in crossed atomic/molecular and laser beam setups by aligning two counterpropagating laser beams as part of a Sagnac interferometer. Interference fringes on the exit port of the interferometer reveal minute deviations from perfect

  20. Measurement of portal blood flow in healthy individuals: a comparison between magnetic resonance imaging and Doppler ultrasound

    International Nuclear Information System (INIS)

    Costa, Juliana Dantas da; Sebastiane, Patricia Moreno; Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; D'Ippolito, Giuseppe

    2008-01-01

    Objective: To evaluate the inter-observer agreement between Doppler ultrasonography and magnetic resonance imaging in the quantification of portal blood flow in healthy individuals, as well as evaluating the reproducibility of both methods. Materials and methods: A prospective, transverse, observational and self-paired study was developed evaluating 20 healthy volunteers whose portal blood flow was measured by means of Doppler ultrasonography and magnetic resonance imaging performed by two independent observers. Interobserver and inter method agreements were calculated using the intra class and Pearson's correlation coefficients. Results: The agreement between Doppler ultrasonography and magnetic resonance imaging was low (intra class coefficient: 1.9%-18.2%; Pearson's coefficient: 0.1%-13.7%; p=0.565). Mean values for the portal blood flow measured by Doppler ultrasonography and magnetic resonance imaging were respectively 0.768 l/min and 0.742 l/min. Interobserver agreement for quantification of the portal blood flow by Doppler ultrasonography and magnetic resonance imaging was respectively reasonable (intra class coefficient: 43.3%; Pearson's coefficient: 43.0%) and excellent (intra class coefficient: 91.4%; Pearson's coefficient: 93.4%). Conclusion: In the present study, magnetic resonance imaging demonstrated to be a reliable method for quantifying the portal blood flow, with a higher interobserver agreement than Doppler ultrasonography. The inter method agreement was low. (author)

  1. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a 3 He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs

  2. Permanent magnet electron cyclotron resonance plasma source with remote window

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1995-01-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved

  3. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  4. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  5. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Javan, Ali; Kocharovskaya, Olga; Lee Hwang; Scully, Marlan O.

    2002-01-01

    We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving field the EIT linewidth is proportional to the square root of intensity and is independent of the Doppler width, similar to the laser-induced line narrowing effect described by Feld and Javan. In the limit of high intensity we recover the usual power-broadening case where the EIT linewidth is proportional to the intensity and inversely proportional to the Doppler width

  6. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    Science.gov (United States)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  7. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN

    International Nuclear Information System (INIS)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Melanie

    2008-01-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of 61 Fe daughter nuclides from the decay of 61 Mn nuclides. Preliminary results are given

  8. Maximisation of the Doppler effect in thermal reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1998-03-01

    Increase of the fuel temperature in a nuclear reactor leads, or can lead, to (1) A Doppler broadening of the resonances of the nuclides in the fuel; (2) An expansion of the fuel; and (3) A shift of the Maxwellian part of the spectrum to higher energies. These processes together introduce a certain amount of reactivity, which can be expressed in the so-called fuel temperature reactivity coefficient. The reactivity effect of the third process is very small, because the Maxwell spectrum is to a major extent determined by the moderator temperature. Moreover, the reactivity effect due to an expansion of the fuel is small too, for most thermal systems. When the second and third processes can be neglected, the fuel temperature reactivity effect is fully determined by the Doppler effect. The fuel temperature reactivity coefficient is then called the Doppler coefficient of reactivity. The Doppler broadening of the resonances causes an increase of resonance absorption, due to a decrease of self-shielding. The competition between resonance fission at the one hand and resonance capture at the other hand determines the sign and magnitude of the reactivity induced by an increase of the fuel temperature. In well-designed nuclear reactors the Doppler effect due to resonance capture by fertile nuclides exceeds the Doppler effect due to resonance fission, which implies that an increase of the fuel temperature causes a negative reactivity effect and a correspondingly negative Doppler coefficient. Since the Doppler effect is a prompt effect, occurring simultaneously with the dissipation of kinetic energy of the fission products into temperature, it is very important in the study of rapid power transients. In this report, the Doppler coefficient of reactivity is defined in chapter 2. Chapter 3 discusses the geometry of the unit-cell for which the calculations are performed and describes the fuel types that have been investigated. In chapter 4 the 'Doppler efficiency' is introduced and

  9. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  10. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  11. Mode converter for electron cyclotron resonance heating of toroidal plasmas

    International Nuclear Information System (INIS)

    Motley, R.W.; Hsuan, H.; Glanz, J.

    1980-09-01

    A method is proposed for improving the efficiency of cyclotron resonance heating of a toroidal plasma by ordinary mode radiation from the outside of the torus. Radiation not absorbed in the first pass is reflected from the inside of the torus by a corrugated surface which rotates the polarization by 90 0 , so that a secondary source of extraordinary waves is created in the high field, accessible region of the plasma

  12. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    Science.gov (United States)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  13. Introduction to ECR [electron cyclotron resonance] sources in electrostatic machines

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1989-01-01

    Electron Cyclotron Resonance (ECR) ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the possible use of ECR heavy-ion sources in the terminals of electrostatic machines is discussed. The basic concepts of ECR sources are reviewed in the next section using the ORNL source as a model. The possible advantages of ECR sources over conventional negative ion injection and foil stripping are discussed in Section III. The last section describes the possible installation of an ECR source in a large machine such as the HHIRF 25-MV Pelletron. 6 refs., 4 figs., 1 tab

  14. Stochasticity of the energy absorption in the electron cyclotron resonance; Estocasticidad de la absorcion de energia en la resonancia electron-ciclotronica

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C. [Departamento de Fisica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Hernandez A, O

    1998-07-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  15. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  16. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  17. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  18. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  19. Doppler ultrasound and magnetic resonance for evaluation of patients treated surgically for aortic coarctation

    International Nuclear Information System (INIS)

    Canteli, B.; Saez, F.; Garcia, F.; Cabrera, A.; Galdeano, J.M.; Rodriguez, O.

    1994-01-01

    Doppler ultrasound and magnetic resonance were performed in a series of 39 patients who had been treated surgically for aortic coarctation. The purpose was to assess the different Doppler gradients, comparing the findings with morphological data disclosed by magnetic resonance. The aortic caliber in the operative field was pathological in 7 patients (ratio between the caliber at the level of the lesion and that of descending aorta of less than 0.7). When the patients were considered as a group. Doppler ultrasound did not show satisfactory sensitivity (29%-43%), specificity (74%) or positive predictive value (17%-23%). Only the negative predictive value (85%-88%) presented more favorable results. When the Subgroup of patients without associated cardiac abnormalities or collateral circulation was studied alone, the following results were found: sensitivity, 100%; specificity, 81%-90%, positive predictive value, 33%-50%, negative predictive value, 100%, similar to those reported in the literature. Thus, we consider that Doppler ultrasound is a harmless and low cost diagnostic method that is highly suitable for follow-up of these patients, within certain limits. Magnetic resonance is the method of choice for the noninvasive assessment of aortic morphology. (Author)

  20. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  1. Parallel gradient effects on ICRH (Ion Cyclotron Resonance Heating) in Tokamaks

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1987-01-01

    This dissertation examines the effects on Ion Cyclotron Resonance Heating of parallel nonuniformity in the magnetic field which arises from the poloidal field in a tokamak and the universal (major radius)/sup /minus/1/ scaling of the cyclotron frequency. The goal of the analysis is the macroscopic warm plasma current including temperature in the sense of the finite Larmor radius expansion and the quasilocal approximation of the parallel guiding center motion. A 1-D numerical application of the fully nonlocal integral dielectric is performed. Parallel gradient effects are studied for He-3 minority, 2nd harmonic deuterium, and hydrogen minority heating in tokamaks. The results show quite significant alteration of the toroidal wavenumber absorption spectrum, and a wealth of new behavior on the local propagation scale. 95 refs., 37 figs

  2. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  3. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  4. Nonlinear narrow Doppler-free resonances for optical transitions and annihilation radiation of a positronium atom

    International Nuclear Information System (INIS)

    Letokhov, V.S.; Minogin, V.G.

    1976-01-01

    The possibilities of obtaining narrow resonances without the Doppler broadening for transition between the fine structure levels of the ground and first excited states of a positronium atom are considered. An analysis is carried out of the conditions required for observation of the narrow resonances of saturation of single quantum absorption in the 1S-2P transitions and observation of narrow two-photon absorption resonances in the 1S-2S transitions. It is shown that narrow 2γ annihilation radiation lines of a positronium atom may be obtained with a width much smaller than the Doppler one

  5. ''LIFETIME'': a computer program for analyzing Doppler-shift recoil-distance nuclear lifetime data

    International Nuclear Information System (INIS)

    Wells, J.C.; Fewell, M.P.; Johnson, N.R.

    1985-10-01

    The program LIFETIME is designed to extract lifetimes of nuclear levels from Doppler-shift recoil-distance experiments by performing a least-square fit to the experimental data (shifted and unshifted photopeak intensities and branching ratios). Initial populations of levels and transition rates between levels are treated as variable parameters. In terms of these parameters the population of each level as a function of time is determined by the Bateman equations, and the shifted and unshifted intensities are calculated. 19 refs., 5 figs

  6. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  7. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    Science.gov (United States)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  8. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  9. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  10. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Wu, Jennifer W.

    2008-01-01

    Computer simulations using the 2D code 'POSINST' were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam

  11. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  12. KEKCB electron cyclotron resonance charge breeder at TRIAC

    International Nuclear Information System (INIS)

    Imai, N.; Jeong, S. C.; Oyaizu, M.; Arai, S.; Fuchi, Y.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Tanaka, M. H.; Okada, M.; Watanabe, Y. X.; Ichikawa, S.; Kabumoto, H.; Osa, A.; Otokawa, Y.; Sato, T. K.

    2008-01-01

    The KEKCB is an electron cyclotron resonance (ECR) ion source for converting singly charged ions to multicharged ones at Tokai Radioactive Ion Accelerator Complex. By using the KEKCB, singly charged gaseous and nongaseous ions were converted to multicharged ones of A/q≅7 with efficiencies of 7% and 2%, respectively. The conversion efficiency was found to be independent of the lifetime of the radioactive nuclei having lifetimes of the order of one second. Three collimators located at the entrance and the exit of the KEKCB defined the beam axis and facilitated beam injection. Grinding and washing the surfaces of aluminum electrode and plasma chamber dramatically reduced impurities originating from the ECR plasma of the KEKCB

  13. Ion cyclotron instability saturation and turbulent plasma heating in the presence of ions moving across the magnetic field

    International Nuclear Information System (INIS)

    Mikhajlenko, V.S.; Stepanov, K.N.

    1981-01-01

    Ion cyclotron instability saturation is considered in terms of the turbulence theory when there is a beam of heavy ions with large thermal longitudinal velocity spread. The instability excitation is due to a cyclotron interaction with ions of the beam under the anomalous Doppler effect. The instability is shown to be saturated due to an induced plasma ion scattering of ion cyclotron waves when the beam ion charge number Zsub(b) is approximately 1. Decay processes, wave scattering by virtual wave polarization clouds and resonance broadening due to random walk of plasma ions in turbulent instability fields appear to be unimportant. For Zsub(b)>>1 the induced wave scattering by the beam ions is the main process determining the nonlinear stage of the instability. Estimates are given for the oscillation energy density in the instability saturation state and for the turbulent heating rate of plasma and beam ions [ru

  14. Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1985-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)

  15. A Note on the Role of Mean Flows in Doppler-Shifted Frequencies

    NARCIS (Netherlands)

    Gerkema, T.; Maas, L.R.M.; van Haren, H.

    2013-01-01

    The purpose of this paper is to resolve a confusion that may arise from two quite distinct definitions of "Doppler shifts": both are used in the oceanographic literature but they are sometimes conflated. One refers to the difference in frequencies measured by two observers, one at a fixed position

  16. ECR [electron cyclotron resonance] discharges maintained by radiation in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Bykov, Yu.V.; Golubev, S.V.; Eremeev, A.G.; Zorin, V.G.

    1990-01-01

    It is well known that plasmas formed by microwave breakdown of gases under electron cyclotron resonance (ECR) conditions can serve as an efficient source for ion beams. The major disadvantage of this type of source is relatively low ion beam currents which generally do not exceed 1 A (for an electron density of ∼10 12 cm -3 in the discharge). Raising the current density in the ion beams requires a higher plasma density, which can be obtained by using higher frequencies. Thus, a study has recently been made of the parameters of the plasma formed by ECR breakdown in a linear confinement system employing pulsed radiation at a frequency of 60 GHz. The maximum electron densities obtained in the experiment were 2·10 13 cm -3 at a gas pressure of 3·10 -4 torr. In this paper the authors describe some experiments on the creation of plasmas by means of quasi-cw electromagnetic radiation at a frequency of 100 GHz under electron cyclotron resonance conditions

  17. Wave propagation near cyclotron resonance in the presence of large Larmor radius particles

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.; Holt, H.; McDonald, D.C.

    1995-02-01

    Absorption of waves propagating across an inhomogeneous magnetic field is of crucial importance for cyclotron resonance heating. When the Larmor radius of the resonant particles is small compared to the wavelength, then the propagation can be described by differential equations. These have been derived by a considerable number of authors, but a comparatively simple method of obtaining them has recently been given by Cairns et al [Phys. Fluids B3, 2953 (1991)] and, for the relativistic case which is relevant to electron cyclotron heating, by McDonald et al [Phys. Plasmas 1, 842 (1994)]. In a fusion plasma there may be a significant number of hot ions for which the Larmor radius is comparable to or larger than the perpendicular wavelength. It is important to be able to calculate the effect of these ions on ion cyclotron phenomena. In this case the system is described by integro-differential equations, the structure of which is essentially determined by the fact that the response at a given position is determined by the wave amplitude over a region whose width is of the order of a Larmor radius. The equations describing this situation have been obtained by Sauter and Vaclavik [Theory of Fusion Plasmas, Editrice Compositori, Bologna (1990) p. 403] and by Brambilla [Plasma Physics and Controlled Fusion 33, 1029 (1991)]. Here we show how the simplified method referred to above can be adapted to this case and used to find various alternative forms for the equations. (author)

  18. Quasi-linear theory for a tokamak plasma in the presence of cyclotron resonance

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.

    1993-01-01

    Quasi-linear diffusion equations for the distribution function of trapped and circulating particles interacting with waves in a tokamak by means of cyclotron resonance are derived. The resulting equations reveal new features of quasi-linear diffusion and are of two kinds, one which involves bounce resonances overlapping in velocity space and one with well separated bounce resonances. These two cases correspond to situations where the phase of the wave-particle interaction between successive resonances can be considered as random or deterministic, respectively. An analysis of the conditions of applicability of the new equations is carried out and previous well-known forms of the quasi-linear diffusion equations are shown to be recovered in the proper limits. (10 refs., 3 figs.)

  19. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  20. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  1. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    Science.gov (United States)

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  2. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Analysis of Large Polymerases Chain Reaction Products

    International Nuclear Information System (INIS)

    Wunschel, David S.; Pasa Tolic, Ljiljana; Feng, Bingbing; Smith, Richard D.

    2000-01-01

    We have attempted to expand the size range of PCR products that can be analyzed by electroscopy ionization (ESI) Fourier transformion cyclotron resonance (FTICR) mass spectrometry. The mass measurement accuracy obtained illustrates that a signel base substitution could be identified at the size of PCR product with a 7 tesla ESI-FTICR

  3. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim; Andersson, Jan T.; Mö ller, Isabelle; Amad, Maan H.; Witt, Matthí as; Sarathy, Mani

    2013-01-01

    oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same

  4. Design of a resonator for a flat-top acceleration system in the RIKEN AVF cyclotron

    International Nuclear Information System (INIS)

    Kohara, Shigeo; Miyazawa, Yoshitoshi; Kamigaito, Osamu; Goto, Akira

    1997-01-01

    A resonator for a flat-top acceleration system in the RIKEN AVF cyclotron is designed to improve the extraction efficiency and the energy spread of a beam. In order to generate the flat-top accelerating voltage on the dee, an additional resonator or a transmission line is capacitively coupled to the AVF resonator with a coupling capacitor. The flat-top accelerating voltage is obtained by the superimposition of the fundamental frequency and the fifth-harmonic-frequency voltages. Length of the additional resonator is 90 cm and capacitance of the coupling capacitor 30 pF. The frequency range of the AVF resonator is from 12 to 23 MHz. Structure and rf characteristics of the resonator designed for the flat-top acceleration system is described. (author)

  5. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  6. Improved algorithms for the calculation of resolved resonance cross sections with applications to the structural Doppler effect in fast reactors

    International Nuclear Information System (INIS)

    Hwang, R.N.; Toppel, B.J.; Henryson, H. II.

    1980-10-01

    Motivated by a need for an economical yet rigorous tool which can address the computation of the structural material Doppler effect, an extremely efficient improved RABANL capability has been developed utilizing the fact that the Doppler broadened line shape functions become essentially identical to the natural line shape functions or Lorentzian limits beyond about 100 Doppler widths from the resonance energy, or when the natural width exceeds about 200 Doppler widths. The computational efficiency has been further enhanced by preprocessing or screening a significant number of selected resonances during library preparation into composition and temperature independent smooth background cross sections. The resonances which are suitable for such pre-processing are those which are either very broad or those which are very weak. The former contribute very little to the Doppler effect and their self-shielding effect can readily be averaged into slowly varying background cross section data, while the latter contribute very little to either the Doppler or to self-shielding effects. To illustrate the accuracy and efficiency of the improved RABANL algorithms and resonance screening techniques, calculations have been performed for two systems, the first with a composition typical of the STF converter region and the second typical of an LMFBR core composition. Excellent agreement has been found for RABANL compared to the reference Monte Carlo solution obtained using the code VIM, and improved results have also been obtained for the narrow resonance approximation in the ultra-fine-group option of MC 2 -2

  7. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  8. Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas

    International Nuclear Information System (INIS)

    Arunasalam, V.; Efthimion, P.C.; Hosea, J.C.; Hsuan, H.; Taylor, G.

    1983-11-01

    A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy and the other describing the time evolution of the electron distribution function is presented. The wave damping is mainly determined by T/sub parallel/ while the radiative equilibrium is mainly an equipartition with T/sub perpendicular/. The time rate of change of T/sub perpendicular/, T/sub parallel/, particle (N 0 ), and current (J/sub parellel/) densities are examined for finite k/sub parallel/ electron-cyclotron-resonance heating of plasmas

  9. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2014-10-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires the joint estimation of spatial location and Doppler shift, which is a two dimensional search problem. Therefore, the computational complexity of ML estimation is prohibitively high. In this work, to estimate the parameters of a target, a reduced complexity optimum performance algorithm is proposed, which allow two dimensional fast Fourier transform to jointly estimate the spatial location and Doppler shift. To asses the performances of the proposed estimators, the Cramér-Rao-lower-bound (CRLB) is derived. Simulation results show that the mean square estimation error of the proposed estimators achieve the CRLB. © 2014 IEEE.

  10. Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Hellsten, T.; Alava, M.J.

    1991-01-01

    For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab

  11. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  12. Program for computing inhomogeneous coaxial resonators and accelerating systems of the U-400 and ITs-100 cyclotrons

    International Nuclear Information System (INIS)

    Gul'bekyan, G.G.; Ivanov, Eh.L.

    1987-01-01

    The ''Line'' computer code for computing inhomogeneous coaxial resonators is described. The results obtained for the resonators of the U-400 cyclotron made it possible to increase the energy of accelerated ions up to 27 MeV/nucl. The computations fot eh ITs-100 cyclic implantator gave the opportunity to build a compact design with a low value of consumed RF power

  13. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  14. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  15. Lamb shift of Rydberg atoms in a resonator

    International Nuclear Information System (INIS)

    Belov, A.A.; Lozovik, Yu.E.; Pokrovsky, V.L.

    1988-08-01

    The Lamb shift of a Rydberg atom in a cavity is shown to be enhanced with the resonance interaction of a virtual atomic transition and cavity modes. The dependence of the Lamb shift on quantum numbers and atomic number changes drastically. Shifting cavity walls and scanning the atomic beam one can vary the Lamb shift. The value of the Lamb shift in a cavity may exceed a typical magnitude of the fine structure energy. For a rough resonance tuning the Coulumb multiplet occurs to be strongly mixed and a novel classification is necessary. (author). 8 refs, 2 figs

  16. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  17. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Yong-Ming [Information Science and Engineering College, XinJiang University, Urumqi XinJiang 830046 (China); Jing, Jian, E-mail: jingjian@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-03-15

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  18. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    Science.gov (United States)

    Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.

    2014-10-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.

  19. Spatial Steering of Cyclotron-Resonance Maser Array Antenna by Magnetic Fields

    International Nuclear Information System (INIS)

    Kesar, A.; Jerby, E.

    2001-01-01

    The novel concept of radiation lobe generation and steering by cyclotron-resonance maser (CRM) array is presented. In this scheme the gain and phase of each CRM-element in the array are tuned by magnetic fields which control the cyclotron synchronism condition and the pitch-ratio of each CRM-element. These operating parameters are controlled by the magnetic fields of the solenoid and the kicker, respectively. A numerical example of a CRM-array operating in a gyro-TWT mode is presented. The radiation pattern of a 10-element CRM phased array (15 kV, 1A each) is calculated. The radiation lobe steering by the magnetic field controls is demonstrated in this analysis. A 40 lobe steering range is shown for the 10-element CRM-array at 7.3 GHz. An experimental device is built in our laboratory to demonstrate the active CRM-array antenna concept. Preliminary experimental results of gain and phase-delay of a single CRM-element, as function of electron-beam parameters are presented. These results are compared to the numerical model

  20. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    International Nuclear Information System (INIS)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-01-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s –1 directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 ± 1 km s –1 blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of ∼2 km s –1 and that lower Doppler shifts of ∼1 km s –1 are found for the higher drag cases, results consistent with—but not yet strongly constrained by—the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  1. Apparatus for measuring speed through the Doppler frequency shift of sound

    Science.gov (United States)

    Schier, Walter

    2011-04-01

    The Doppler frequency shift of sound apparatus is based on a one meter diameter rotary table with a "button" speaker at its outer edge. A semicircular waveguide encloses half the periphery and has a microphone pickup on its wall at the midpoint. The tangential speed of the button speaker can be determined two ways for comparison. One method calculates speed from the frequency shift of sound, the other uses the repeat sound pattern. Agreement to one percent is possible at speeds of about 25 mph. In the lab the microphone output is fed successively to pairs of students at ten computer stations. Students must also perform an exercise in their lab report that introduces them to the red shifted wavelengths of receding galaxies at determined distances from the earth thus introducing them to Hubble's law, the concept of the "Big Bang", and their estimate of the age of the universe.

  2. Self-consistent Study of Fast Particle Redistribution by Alfven Eigenmodes During Ion Cyclotron Resonance Heating

    International Nuclear Information System (INIS)

    Bergkvist, T.; Hellsten, T.; Johnson, T.

    2006-01-01

    Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)

  3. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  4. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  5. Enhanced confinement in electron cyclotron resonance ion source plasma.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  6. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  7. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current-drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1989-01-01

    Efficiency of current drive by electron cyclotron waves is investigated numerically by a bounce-averaged Fokker-Planck code to ellucidate the effects of momentum transfer from resonant to bulk-electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. (author)

  8. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  9. Ion cyclotron wave excitation by double resonance coupling

    International Nuclear Information System (INIS)

    Fasoli, A.; Good, T.N.; Paris, P.J.; Skiff, F.; Tran, M.Q.

    1990-07-01

    A modulated high frequency wave is used to remotely excite low frequency oscillations in a linear, strongly magnetized plasma column. An electromagnetic wave is launched as an extraordinary mode across the plasma by an external waveguide in the Upper Hybrid frequency regime f=f UH =f ce =8 GHz, with P≤2 W. By frequency modulating (at f FM =1-60 kHz, with f ci ≅30 kHz) the pump wave, the resonant layer is swept radially across the profile and perpendicularly to the field lines at f=f FM . The resulting radial oscillation of the electron linear and non linear pressure can be considered to act as a source term for the ion wave. A localized virtual antenna is thereby created inside the plasma. Measurements of the ion dielectric response (interferograms and perturbed distribution functions) via laser induced fluorescence identify the two branches (forward, or ion-acoustic-like, and backward, or Bernstein, modes) of the electrostatic dispersion relation in the ion cyclotron frequency range. By changing the modulation bandwidth, and thus the spatial excursion of the oscillating resonant layer, a control on the perpendicular wavelength of the excited mode can be exerted. In particular, the possibility of selective excitation of the ion Bernstein wave is demonstrated experimentally. (author) 38 refs., 13 figs

  10. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  11. Characteristics of possible beam losses in superconducting cyclotron

    International Nuclear Information System (INIS)

    Pradhan, J.; Paul, Santanu; Debnath, Jayanta; Dutta, Atanu; Bhunia, Uttam; Naser, Md. Zamal Abdul; Singh, Vinay; Agrawal, Ankur; Dey, Malay Kanti

    2015-01-01

    In a compact superconducting cyclotron large coherent oscillation and off-centering of the beam may cause large amount of beam loss. The off-centered beam may hit the beam chamber wall prohibiting extraction of the beam. Or it may hit the RF liner surfaces due to vertical blow-up across various resonances during acceleration. The vertical shift of beam caused by the mis-alignment gradually moves the beam out of geometrical median plane eventually leading to internal beam losses. The loss of isochronisms results the reduction of beam intensity depending on the particle phase history. Small field perturbations generated by trim coils have been used to identify the beam loss mechanisms in the superconducting cyclotron at out centre. Besides, the beam loss due to interaction of accelerating ions with residual gases is also discussed. The beam profile obtained from differential and three finger probes gives a clear insight of the loss-mechanism. The paper describes different beam losses observed in the cyclotron with corresponding beam profiles under different field perturbations, Special emphasis is given on characteristics features of beam-current profile to identify the cause of beam loss. (author)

  12. Spatial profiling of ion and neutral excitation in noble gas electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Rhoades, R.L.; Gorbatkin, S.M.

    1994-01-01

    Optical emission from neutrals and ions of several noble gases has been profiled in an electron cyclotron resonance plasma system. In argon plasmas with a net microwave power of 750 W, the neutral (696.5-nm) and ion (488-nm) emission profiles are slightly center peaked at 0.32 mTorr and gradually shift to a hollow appearance at 2.5 mTorr. Neon profiles show a similar trend from 2.5 to 10.0 mTorr. For the noble gases, transition pressure scales with the ionization potential of the gas, which is consistent with neutral depletion. Studies of noble gas mixtures, however, indicate that neutral depletion is not always dominant in the formation of hollow profiles. For Kr/Ar, Ar/Ne, and Ne/He plasmas, the majority gas tends to set the overall shape of the profile at any given pressure. For the conditions of the current system, plasma density appears to be more dominant than electron temperature in the formation of hollow profiles. The general method described is also a straightforward, inexpensive technique for measuring the spatial distribution of power deposited in plasmas, particularly where absolute scale can be calibrated by some other means

  13. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  14. Ion cyclotron resonance study of reactions of ions with hydrogen atoms

    International Nuclear Information System (INIS)

    Karpas, Z.; Anicich, V.; Huntress, W.T. Jr.

    1979-01-01

    Reactions of H 2 + , HeH + , and CO 2 + ions with hydrogen atoms, and the reactions of D 2 + , CO 2 + , CO + , N 2 + and HCN + with deuterium atoms, were studied using ion cyclotron resonance techniques. These reactions proceed predominantly via a charge transfer mechanism. The rate constants measured are: 6.4, 9.1, 1.1, 5.0, 0.84, 0.90, 1.2, and 0.37 x 10 -10 cm 3 /sec, respectively. Hydrocarbon ions of the types CH/sub n/ + and C 2 H/sub n/ + , where n=2--4, do not react with H or D atoms

  15. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, H.H.; Lee, S.G.; Seol, J.; Aydemir, A.Y.; Bae, C.; Woo, M.H.; Kim, J.; Joung, M.; You, K.I.; Park, B.H.; Yoo, J.W.; Na, Y.S.; Kim, H.S.

    2014-01-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation. (paper)

  16. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1988-01-01

    Efficiency of current drive by electron-cyclotron waves is investigated numerically by a bounce-average Fokker-Planck code to elucidate the effects of momentum transfer from resonant to bulk electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. 4 refs., 4 figs

  17. Cross effects on electron-cyclotron and lower-hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Krivenski, V.; Mazzucato, E.; Ziebell, L.F.

    1986-11-01

    Electron cyclotron resonance current drive in a tokamak plasma in the presence of a lower hybrid tail is investigated using a 2D Fokker-Planck code. For an extraordinary mode at oblique propagation and down-shifted frequency it is shown that the efficiency of electron cyclotron current drive becomes, i) substantially greater than the corresponding efficiency of a Maxwellian plasma at the same bulk temperature, ii) equal or greater than that of the lower hybrid waves, iii) comparable with the efficiency of a Maxwellian plasma at much higher temperature. This enhancement results from a beneficial cross-effect of the two waves on the formation of the current carrying electron tail. (5 fig; 17 refs)

  18. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  19. Anomalous Doppler effects in bulk phononic crystal

    International Nuclear Information System (INIS)

    Cai Feiyan; He Zhaojian; Zhang Anqi; Ding Yiqun; Liu Zhengyou

    2010-01-01

    Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.

  20. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  1. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  2. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  3. A numerical model of the mirror electron cyclotron resonance MECR source

    International Nuclear Information System (INIS)

    Hellblom, G.

    1986-03-01

    Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)

  4. High-power ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    1983-05-01

    Ion cyclotron resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two component ion energy distribution is produced (300 eV and 50 eV) with the application of 500 kW of rf power into a 5 x 10 12 cm -3 density plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun injected plasmas

  5. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  6. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  7. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lamb, D.Q.; Wang, J.C.L.; Loredo, T.J.; Wasserman, I.; Fenimore, E.E.

    1989-01-01

    Data on the GB880205 gamma-ray bursts are presented that have implications for the nature of gamma-ray burst sources. It is shown that cyclotron resonant scattering and Raman scattering account well for the positions, strengths, and shapes of the relative strengths of the first and second harmonics and their narrow widths. These results imply the existence of a superstrong (B of about 2 x 10 to the 12th G) magnetic field in the vicinity of the X-ray emission region of GB880205. Such a superstrong magnetic field points to a strongly magnetic neutron star as the origin of gamma-ray bursts, and to the fact that the gamma-ray sources belong to the Galaxy. 59 refs

  8. CH4/H2/Ar electron cyclotron resonance plasma etching for GaAs-based field effect transistors

    NARCIS (Netherlands)

    Hassel, van J.G.; Es, van C.M.; Nouwens, P.A.M.; Maahury, J.H.; Kaufmann, L.M.F.

    1995-01-01

    Electron cyclotron resonance (ECR) plasma etch processes with CH4/H2/AR have been investigated on different III–Vsemiconductor materials (GaAs, AlGaAs, InGaAs, and InP). The passivation depth as a function of the GaAs carrierconcentration and the recovery upon annealing at different temperatures

  9. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  10. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures

    International Nuclear Information System (INIS)

    Schachter, L.; Dobrescu, S.; Stiebing, K. E.

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut fuer Kernphysik der Universitaet Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the 'MD source' as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an ''all stainless steel'' ECRIS.

  11. Direct and resonance processes of nucleus disintegration by hadrons at intermediate energies (Doppler effect)

    International Nuclear Information System (INIS)

    Balashov, V.V.; Dolinov, V.K.; Korotkikh, V.L.; Lanskoj, D.E.

    1986-01-01

    The possibilities to use coincidence method of scattered particle and daughter nucleus γ-quantum in A+a → a'+b+B[Jπ) B[Jπ) → B(J'π')+γ reaction with doppler line shape measurement to study nucleus disintegration mechanism are investigated. The main idea of the method resides in the fact that if B* state lifetime is small as compared to nucleus slowing-down time in target substance, all changes in emitted particle distributions are directly manifested in respective changes of Doppler line shape corresponding to γ-transition B[Jπ) → γ+B(J'π') in a daughter nucleus. It is concluded that investigation into Doppler line shape may become sensitive method of studying angular distribution of nucleus disintegration products and in solving problem on correlation between direct and resonance processes of nuclei disinegration

  12. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  13. Fast wave heating of two-ion plasmas in the Princeton large torus through minority cyclotron resonance damping

    International Nuclear Information System (INIS)

    Hosea, J.; Bernabei, S.; Colestock, P.

    1979-07-01

    Strong minority proton heating is produced in PLT through ion cyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker--Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels

  14. Diamagnetic (cyclotron) resonance in semiconductors using strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sosniak, J

    1962-07-01

    Diamagnetic (cyclotron) resonance experiments have been carried out in the semiconductors indium-antimonide (InSb), the indium-arsenide (InAs). Pulsed magnetic fields up to 300,000 gauss and monochromatic infrared radiation of 9 to 13.5 microns wavelength were used to measure the effective mass of the conduction electrons in those materials. The samples were n-type single crystals, with a room temperature electron concentration of 1.9 x 10{sup 16} and 6 x 10{sup 16} per cm{sup 3} in InSb and InAs respectively. Both the InSb and InAs samples showed a strong dependence of the effective mass on the magnetic field. The results show that the conduction bands in those solids are highly non-parabolic. Measurements were also made of the resonance absorption coefficients, which were found to be considerably smaller than the values obtained from simple theory. The effect is explained by assuming that the magnetic field reduces the intrinsic electron density, and that the absorption coefficient depends on the shape of the conduction band. It is postulated as a consequence that the relaxation time of diamagnetic energy levels at high magnetic fields does not differ appreciably from the relaxation time used in the description of conduction processes. (author)

  15. Monte Carlo simulation of electron behavior in an electron cyclotron resonance microwave discharge sustained by circular TM11 mode fields

    International Nuclear Information System (INIS)

    Kuo, S.C.; Kuo, S.P.

    1996-01-01

    Electron behavior in an electron cyclotron resonance microwave discharge sustained by TM 11 mode fields of a cylindrical waveguide has been investigated via a Monte Carlo simulation. The time averaged, spatially dependent electron energy distribution is computed self-consistently. At low pressures (∼0.5 mTorr), the temperature of the tail portion of the electron energy distribution exceeds 40 eV, and the sheath potential is about -250 V. These results, which are about twice as high as the previous results for TM 01 mode fields [S. C. Kuo, E. E. Kunhardt, and S. P. Kuo, J. Appl. Phys. 73, 4197 (1993)], suggest that TM 11 mode fields have a stronger electron cyclotron resonance effect than TM 01 mode fields in a cylindrical waveguide. copyright 1996 American Institute of Physics

  16. Characterization of electron cyclotron resonance hydrogen plasmas

    International Nuclear Information System (INIS)

    Outten, C.A.

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V p ), electron density (N e ), electron temperature (T e ), ion energy (T i ), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V p = 30 ± 5 eV, N e = 1 x 10 8 cm -3 , and T e = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T i ≤ 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 x 10 16 /cm 2 -sec. at a pressure of 1 x 10 -4 Torr and for 50 Watts of absorbed power. 19 refs

  17. Study of selective heating at ion cyclotron resonance for the plasma separation process

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Pashkovsky, V.G.

    1995-01-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number k z is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the k z spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field B 0 , and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44 Ca heating measurements, made with an energy analyzer. copyright 1995 American Institute of Physics

  18. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan); Muramatsu, M.; Kitagawa, A.; Drentje, A. G. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  19. Field-aligned plasma-potential structure formed by local electron cyclotron resonance

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi

    2001-01-01

    The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)

  20. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Huang, J.; Tang, C. J.; Chen, S. Y.

    2016-01-01

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  1. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-05-15

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  2. A phase-imaging ion-cyclotron-resonance technique for mass measurements of short-lived nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, Sergey; Blaum, Klaus; Doerr, Andreas; Eronen, Tommi; Goncharov, Mikhail; Hoecker, Martin; Ketter, Jochen; Ramirez, Enrique Minaya; Simon, Vanessa [Max-Planck Institute for Nuclear Physics (Germany); Block, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Chenmarev, Stanislav; Filjanin, Pavel; Nesterenko, Dmitriy; Novikov, Yuri [Petersburg Nuclear Physics Institute (Russian Federation); Droese, Christian; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt-University (Germany)

    2014-07-01

    A novel approach to mass measurements on the sub-ppb level even for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position sensitive detector. Compared to the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. With the new technique low-lying isomeric states with excitation energy on the 10-keV level can be separated from the ground state. Moreover, the new technique possesses a substantially higher sensitivity since just two ions are sufficient to determine the ion cyclotron frequency. A measurement of the mass difference of singly charged ions of {sup 132}Xe and {sup 131}Xe with an uncertainty of 25 eV has demonstrated the great potential of the new approach.

  3. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  4. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  5. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  6. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  7. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    Science.gov (United States)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  8. Shifting of the resonance location for planets embedded in circumstellar disks

    Science.gov (United States)

    Marzari, F.

    2018-03-01

    Context. In the early evolution of a planetary system, a pair of planets may be captured in a mean motion resonance while still embedded in their nesting circumstellar disk. Aims: The goal is to estimate the direction and amount of shift in the semimajor axis of the resonance location due to the disk gravity as a function of the gas density and mass of the planets. The stability of the resonance lock when the disk dissipates is also tested. Methods: The orbital evolution of a large number of systems is numerically integrated within a three-body problem in which the disk potential is computed as a series of expansion. This is a good approximation, at least over a limited amount of time. Results: Two different resonances are studied: the 2:1 and the 3:2. In both cases the shift is inwards, even if by a different amount, when the planets are massive and carve a gap in the disk. For super-Earths, the shift is instead outwards. Different disk densities, Σ, are considered and the resonance shift depends almost linearly on Σ. The gas dissipation leads to destabilization of a significant number of resonant systems, in particular if it is fast. Conclusions: The presence of a massive circumstellar disk may significantly affect the resonant behavior of a pair of planets by shifting the resonant location and by decreasing the size of the stability region. The disk dissipation may explain some systems found close to a resonance but not locked in it.

  9. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    International Nuclear Information System (INIS)

    Geldzahler, B.J.; Share, G.H.; Kinzer, R.L.; Magura, J.; Chupp, E.L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system. 19 refs

  10. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    Science.gov (United States)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  11. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  12. Strain-Induced Spin-Resonance Shifts in Silicon Devices

    Science.gov (United States)

    Pla, J. J.; Bienfait, A.; Pica, G.; Mansir, J.; Mohiyaddin, F. A.; Zeng, Z.; Niquet, Y. M.; Morello, A.; Schenkel, T.; Morton, J. J. L.; Bertet, P.

    2018-04-01

    In spin-based quantum-information-processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin linewidths, and it is therefore important to study, understand, and model such effects in order to better predict device performance. We investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminum microresonator is fabricated. The on-chip resonator provides two functions: it produces local strain in the silicon due to the larger thermal contraction of the aluminum, and it enables sensitive electron spin-resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations, we are able to reconstruct key features of our experiments, including the electron spin-resonance spectra. Our results are consistent with a recently observed mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.

  13. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  14. Two-ion hybrid resonances and ion cyclotron absorption in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.; Ottaviani, M.

    1983-11-01

    The behaviour of IC waves near resonances in tokamak geometry is investigated in details. For this purpose, a one-dimensional model is proposed, which takes into account the orientation of the incident wavefronts with respect both to the singular layer and to the magnetic surfaces. The differential equations describing the waves are derived again from Vlasov-Maxwell equations in the finite Larmor radius approximation; they are shown to conserve the wave power flux in the absence of dissipation, and to reproduce the local dispersion relation in the WKB limit. These equations are solved exactly in some important situations, and with the Green-function technique in the general case. The amount of power coupled to Bernstein waves and absorbed by cyclotron damping is explicitly evaluated. (orig.)

  15. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  16. Cyclotron resonance study of the two-dimensional electron layers and double layers in tilted magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Kučera, Jan

    2004-01-01

    Roč. 22, - (2004), s. 590-593 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : single layer * double layer * two-dimensional electron system * cyclotron resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  17. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  18. The Quadrumafios electron cyclotron resonance ion source: presentation and analysis of the results

    International Nuclear Information System (INIS)

    Girard, A.; Briand, P.; Gaudart, G.; Klein, J.P.; Bourg, F.; Debernardi, J.; Mathonnet, J.M.; Melin, G.; Su, Y.

    1993-01-01

    The Quadrumafios electron cyclotron resonance ion source (ECRIS) has been especially designed to permit physical studies of the plasma; this paper describes the source itself (which has been operated at 10 GHz in a first step), its preliminary performances, and the different diagnostics involved, which mainly concern the electron population (ECE, X rays, diamagnetism, microwave interferometer, and electron analyser). The results are presented and discussed: there is of course a close relationship between the parameters of the plasma and the performances of the source; this point will be discussed in the article. (authors). 5 refs., 9 figs

  19. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    Science.gov (United States)

    Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA

    2013-06-01

    13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion

  20. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    International Nuclear Information System (INIS)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field

  1. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    Science.gov (United States)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field.

  2. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    Science.gov (United States)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  3. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  4. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  5. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  6. Generation of auroral hectometer radio emission at the laser cyclotron resonance (ωp≥ωH)

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma (ω p ≥ω H ) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission

  7. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    International Nuclear Information System (INIS)

    Krasilnikov, A V; Amosov, V N; Kaschuck, Yu A; Van Eester, D; Lerche, E; Ongena, J; Bonheure, G; Biewer, T; Crombe, K; Ericsson, G; Giacomelli, L; Hellesen, C; Hjalmarsson, A; Esposito, B; Marocco, D; Jachmich, S; Kiptily, V; Leggate, H; Mailloux, J; Kallne, J

    2009-01-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ∼25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T i ∼ 4.0 keV and T e ∼ 4.5 keV (NBI-only phase) to T i ∼ 5.5 keV and T e ∼ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and γ-ray spectroscopy.

  8. Electron-cyclotron-resonance ion sources (review)

    International Nuclear Information System (INIS)

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs

  9. Cyclotron resonant scattering feature simulations. II. Description of the CRSF simulation process

    Science.gov (United States)

    Schwarm, F.-W.; Ballhausen, R.; Falkner, S.; Schönherr, G.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Fürst, F.; Marcu-Cheatham, D. M.; Hemphill, P. B.; Sokolova-Lapa, E.; Dauser, T.; Klochkov, D.; Ferrigno, C.; Wilms, J.

    2017-05-01

    Context. Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons off quantized plasma electrons in the strong magnetic field (of the order 1012 G) close to the surface of an accreting X-ray pulsar. Due to the complex scattering cross-sections, the line profiles of CRSFs cannot be described by an analytic expression. Numerical methods, such as Monte Carlo (MC) simulations of the scattering processes, are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems. Aims: A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time. Methods: The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time-consuming simulations possible on convenient time scales. Furthermore, it can generate responses to monoenergetic photon injections, producing Green's functions, which can be used later to generate spectra for arbitrary continua. Results: We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Green's function tables are available online (see link in footnote, page 1).

  10. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  11. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  12. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  13. Nearly perpendicular wave propagation at the fundamental electron-cyclotron resonance

    International Nuclear Information System (INIS)

    Imre, K.; Weitzner, H.

    1985-01-01

    Waves propagating nearly perpendicular to the equilibrium magnetic field across the fundamental cyclotron resonance layer are studied by a boundary layer analysis for a weakly relativistic, inhomogeneous Vlasov plasma. The plasma is assumed to be perpendicularly stratified. It is found that the wave energy associated with the ordinary mode transmitted through the layer is independent of the relativistic corrections and is given by a geometrical optics formula. It is also found that there is no reflected energy associated with this mode when it is incident from the high-field side. These results are the same as the nonrelativistic case with purely perpendicular propagation. Relativistic effects produce a significant reduction of the reflection coefficient for low-field side incidence from the nonrelativistic value. Correspondingly, for this mode there is a considerable increase in the absorption rate for sufficiently high, but moderate, electron density and temperature

  14. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  15. Plasma heating in the TM-3 Tokamak at electron-cyclotron resonance with magnetic fields up to 25 ke

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Bobrovskii, G.A.; Poznyak, V.I.; Razumova, K.A.; Sannikov, V.V.; Sokolov, Yu.A.; Shmarin, A.A.

    Experiments were conducted in heating plasma at electron-cyclotron resonance (ECR) with longitudinal magnetic fields up to 25 ke. It was shown by the aid of laser diagnosis that the temperature of the basic component of the electrons increases in accordance with the classical mechanism of heating at ECR in the process of electron-cyclotron heating (ECH). The distribution of the temperature of electrons with respect to radius was measured. The relationship of energetic lifetime in the Tokamak and electron temperature was obtained and the magnitude of energetic lifetime of accelerated electrons in the function of their energy was estimated. The value β/sub tau/ approximately equal to 2.2 was obtained by the aid of ECH in a regime with small discharge currents

  16. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  17. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    International Nuclear Information System (INIS)

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.

    2012-01-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  18. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    Science.gov (United States)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  19. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

    Science.gov (United States)

    Krasovitskiy, V. B.; Turikov, V. A.

    2018-05-01

    The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

  20. New procedures for analyzing Doppler-shift attenuation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, P., E-mail: petkov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria); Dewald, A. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Tonev, D.; Goutev, N.; Asova, G.; Dimitrov, B.; Gavrilov, G.; Mineva, M.N.; Yavahchova, M.S. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria)

    2015-05-21

    A generalization of an earlier proposed version of the Differential decay curve method is presented for the analysis of Doppler-shift attenuation lifetime measurements. The lifetime is derived directly from the line shapes of the depopulating and feeding transitions without any assumptions about or fitting of the time dependence of the population of the corresponding levels except for unobserved feeding when relevant. Fitting of the line shapes is also not necessary. The only approximation involved is related to the continuous treatment of the nuclear scattering events in the Monte Carlo simulation needed. Tests with simulated and real data reveal good reliability of this method. We propose also a new precise procedure where the lifetime is derived by fitting the time dependence of the population of the level of interest using the line shape of the depopulating transition and the difference of the spectra of the depopulating and feeding transitions. Practical application to simulated and real data proves the applicability of the new procedure.

  1. An elementary approach to the gravitational Doppler shift

    International Nuclear Information System (INIS)

    Wörner, C H; Rojas, Roberto

    2017-01-01

    In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes. (paper)

  2. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  3. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  4. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  5. Ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.; Sprott, J.C.; Strait, E.J.

    1983-06-01

    Ion-cyclotron-resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two-component ion energy distribution is produced (300 eV and 50 eV) with 500 kW of rf power coupled into a 5 x 10 12 cm -3 plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun-injected plasmas. Most of the theortical work presented deals with a calculation that predicts the plasma loading. A slab model is used, and the questions of accessibility, polarization, and damping of the radio-frequency electromagnetic fields are addressed. It is found that cold-plasma theory cannot account for the heating and, therefore, hot-plasma theory is invoked to explain the results. The loading measurements and theoretical predictions are found to be in reasonable agreement

  6. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  7. Project of positron source at the U-120 Cyclotron, Bucharest. Status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Popa Simil, L.; Voiculescu, Dana; Miron, N.

    1999-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line and on-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (eg. 48 V), or a cyclotron on-line intense positron beam (eg. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 KeV peak for different materials (copper, lead, indium). This research is carrier out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron sources produced in the cyclotron (eg. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy), to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line production of positrons with the cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtain detailed information about the electronic structure of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials etc. (authors)

  8. Project of positron source at the U-120 cyclotron Bucharest status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Simil Popa, L.; Voiculescu, Dana; Miron, N.

    2000-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (e.g. 48 V), or a cyclotron on-line intense positron beam (e.g. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from a few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 keV peak for different materials (copper, lead, indium). This research is carried out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron source produced in the cyclotron (e.g. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy) to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line positron production by cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtained detailed information about electronic structures of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials, etc. (authors)

  9. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  10. Effects of frequency mismatch on a self-consistent arbitrary amplitude cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Pakter, R.; Schneider, R.S.; Rizzato, F.B.

    1993-01-01

    The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)

  11. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  12. On the parametric cyclotron heating of a toroidal plasma

    International Nuclear Information System (INIS)

    Golovanivsky, K.C.; Punithavelu, A.M.

    1976-01-01

    The possibility of heating the ionic component of a dense plasma at the parametric cyclotron resonance, using a section of the conducting toroidal chamber of a large scale Tokamak as a resonance cavity, is considered. It is suggested to use the mode TE 011 to overcome the difficulties with the penetration of HF fields into such a dense plasma. The experimental investigation of parametric cyclotron heating of electrons in a overdense plasma (n/nsub(cut off)=10 2 ) on such a model has given hopeful results

  13. Plasma heating by radiofrequency in the electron cyclotron resonance (ECR)

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da; Aihara, S.; Universidade Estadual de Campinas

    1982-01-01

    The characteristics of the experimental set-up mounted in the Physical Institute of UFF (Brazil) to produce the gas ionization by radio-frequency are shown and its behaviour when confined by a mirror-geometry magnetic field is studied. The diagnostic is made by a langmuir probe and a prisme spectrogaph is used in order to verify the nature of the ionized helium gas and the degree of purity through its spectral lines. The argon ionization by R.f. is produced in the 'LISA' machine obtain a plasma column of approximatelly 60 cm length and with the Langmuir probe the study of the profile distribution of the plasma parameters such as: electron temperature and density and floating potencial in function of the magnetic field variation is made. The main focus is given to the fundamental electron cyclotron resonance (ECR). A new expression on the ion saturation current (I sub(is)) produced by radiofrequency is developed. (L.C.) [pt

  14. The Electron Cyclotron Resonance Light Source Assembly of PTB - ELISA

    CERN Document Server

    Gruebling, P; Ulm, G

    1999-01-01

    In the radiometry laboratory of the Physikalisch-Technische,Bundesanstalt at the Berlin electron storage ring BESSY I, radiation sources for radiometric applications in industry and basic research in the vacuum ultraviolet (VUV) spectral range are developed, characterized and calibrated. Established sources such as deuterium lamps, Penning and hollow cathode discharge sources have limited spectral ranges and in particular their stability and life time suffers from the erosion of the cathode material. To overcome these limitations we have developed a radiation source based on the principle of the electron cyclotron resonance ion source. ELISA is a 10 GHz monomode source with a compact design featuring a tunable cavity and axially positionable permanent magnets. The radiation emission of the source can be detected simultaneously in the VUV and X-ray spectral range via a toroidal grating monochromator and a Si(Li)-detector. The special design of the source allows spectroscopic investigations of the plasma in dep...

  15. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  16. Plasma potential in a magnetic mirror with electron-cyclotron-resonance heating

    International Nuclear Information System (INIS)

    Smith, P.K.

    1983-01-01

    Experimental and theoretical studies of the ECRH plasma in the University of Wisconsin DE Machine magnetic mirror have been undertaken. Typical plasma parameters in these experiments were T/sub e/ - 10 to 30 eV, T/sub i/ - 4 eV, V/sub po/ (plasma potential at midplane) - 20 to 50 V, midplane plasma density n 0 - 10 16 m - 3 , B 0 (magnetic field strength on axis at midplane) - .005 to .01 T, mirror ratio R - 5 to 20. The principal experimental findings were the appearance of strong density peaks (approx. 2 x background) and notable V/sub f/ dips (approx. kT/sub e//e) in a narrow (approx. 1 cm) region near the axial positions of cyclotron resonance. The properties of these dips do not change greatly over the range of operating parameters, but are narrower at higher pressures

  17. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires

  18. Studies of gas phase ion/molecule reactions by Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Kleingeld, J.C.

    1984-01-01

    An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H 3 O - and NH 4 - ions are described whereas the other chapters deal with larger organic complexes. (Auth.)

  19. Poloidal field effects on fundamental minority ion cyclotron resonance heating in a tokamak plasma

    International Nuclear Information System (INIS)

    Jun, S. C.; Imre, Kaya; Stevens, D. C.; Weitzner, Harold; Chang, C. S.

    2000-01-01

    Minority ion fundamental cyclotron resonance is studied in a large tokamak in which the geometrical optics approximation applies off resonance and the minority average speed is less than the wave phase speeds. Poloidal equilibrium magnetic field effects are included, which lead to nontrivially nonlocal integrodifferential equations for the wave fields. Exact reciprocity relation is given as well as explicit analytic solutions for the transmission coefficients for both the high and low field side incidences. Numerical solutions are needed only for the high field side incident reflection coefficient. Numerical schemes are described and numerical results are presented together with a reliable error bound. Typically, energy absorption increases with poloidal field. The energy absorption increases with minority density at low values of minority density. However, it decreases at high minority density. Poloidal field effects weaken the dependence of energy absorption on the toroidal wave number. (c) 2000 American Institute of Physics

  20. Propagation of electromagnetic waves in the plasma near electron cyclotron resonance: Undulator-induced transparency

    International Nuclear Information System (INIS)

    Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.

    2005-01-01

    Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations

  1. Red shift, blue shift: investigating Doppler shifts, blubber thickness, and migration as explanations of seasonal variation in the tonality of Antarctic blue whale song.

    Directory of Open Access Journals (Sweden)

    Brian S Miller

    Full Text Available The song of Antarctic blue whales (Balaenoptera musculus intermedia comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1 vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2 long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.

  2. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  3. Microwave power coupling with electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    600 W microwave power with an average electron density of ∼ 6 × 1011 cm. −3 ... the angular frequency of the cyclotron motion, e is the electron charge, m is the mass of .... is also suitable for ECR plasma-based applications like high-quality ...

  4. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    Energy Technology Data Exchange (ETDEWEB)

    Remya, B.; Reddy, R. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, Kalamboli Highway, New Panvel, Navi Mumbai, Maharashtra (India); Tsurutani, B. T.; Falkowski, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Echer, E. [Instituto Nacional de Pesquisas Espaciais (INPE), Avenida Astronautas, 1758, P.O. Box 515, Sao Jose dos Campos, SP (Brazil); Glassmeier, K.-H., E-mail: remyaphysics@gmail.com [Institute for Geophysics and Extraterrestrial Physics (IGEP), Mendelssohnstr.3, D-38106, Braunschweig (Germany)

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  5. New sub-Doppler absorption resonances in a thin gas cell produced by means of a running monochromatic wave

    International Nuclear Information System (INIS)

    Tajalli, H; Ahmadi, S; Izmailov, A Ch

    2002-01-01

    A theoretical investigation is carried out through the interaction of the plane running monochromatic light wave, having an arbitrary intensity, with atoms (molecules) of a rarefied gas in the plane cell (at the normal incidence of the wave). Cases of closed and open resonance transitions from the non-degenerate ground (or metastable) quantum level are considered. Possible sub-Doppler resonances are analysed in the wave absorption, caused by the transient establishment of the optical coherence on the transition, Rabi oscillations between its levels, and optical pumping during the free flights of particles between the walls of the cell. Results of the previous works on given problems are generalized, which were obtained at definite restrictions on the wave intensity and cell length. Moreover, non-trivial sub-Doppler spectral structures, resulting as a consequence of the dependence of the absorption saturation on the transit relaxation of particles, have been established and investigated. Such structures may consist of a number of peaks and dips caused by Rabi oscillations between the transition levels. The results obtained can be used in sub-Doppler spectroscopy and for the stabilization of laser frequencies in thin gas cells

  6. New approximations for the Doppler broadening function applied to the calculation of resonance self-shielding factors

    International Nuclear Information System (INIS)

    Palma, Daniel A.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C.

    2008-01-01

    The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function ψ(x,ξ) to determine the resonance self-shielding factors in the epithermal range G epi (τ,ξ). Two new analytical approximations for the Doppler broadening function ψ(x,ξ) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the ψ(x,ξ) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G epi (τ,ξ). The results obtained provided satisfactory accuracy. (authors)

  7. New approximations for the Doppler broadening function applied to the calculation of resonance self-shielding factors

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A. [CEFET QUIMICA de Nilopolis/RJ, Rio de Janeiro (Brazil); Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)

    2008-07-01

    The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function psi(x,xi) to determine the resonance self-shielding factors in the epithermal range G{sub epi} (tau,xi). Two new analytical approximations for the Doppler broadening function psi(x,xi) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the psi(x,xi) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G{sub epi} (tau,xi). The results obtained provided satisfactory accuracy. (authors)

  8. Small-sized cyclotron for studies of physical processes in accelerators

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Voronin, A.M.; Gerasimov, V.I.; Gor'kovets, M.S.; Gromov, D.D.; Zavezionov, V.P.; Kruglov, V.G.

    1979-01-01

    A description is given of a cyclotron intended for studying physical processes taking place in the accelerator central part, for investigating various ion sources and also for optimizing the elements and systems of the U-150M isochronous cyclotron. The accelerator uses a hot-cathode slit ion source. The resonance system constitutes a quarter-wave nonaxial resonator excited at a frequency of 11.2 MHz. Investigations of beam time characteristics showed that the beam axial size constituted 11 mm, its radial size 5 mm. Displacement of the beam with respect to the median plane does not exceed 2 mm. In the cyclotron H + ions have been accelerated to an energy of 1 MeV. The integrated beam current constituted 250 μA

  9. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  10. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  11. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  12. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  13. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  14. First plasma of the A-PHOENIX electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Thuillier, T.; Lamy, T.; Latrasse, L.; Angot, J.

    2008-01-01

    A-PHOENIX is a new compact hybrid electron cyclotron resonance ion source using a large permanent magnet hexapole (1.92 T at the magnet surface) and high temperature superconducting Solenoids (3 T) to make min-vertical bar B vertical bar structure suitable for 28 GHz cw operation. The final assembly of the source was achieved at the end of June 2007. The first plasma of A-PHOENIX at 18 GHz was done on the 16th of August, 2007. The technological specificities of A-PHOENIX are presented. The large hexapole built is presented and experimental magnetic measurements show that it is nominal with respect to simulation. A fake plasma chamber prototype including thin iron inserts showed that the predicted radial magnetic confinement can be fulfilled up to 2.15 T at the plasma chamber wall. Scheduled planning of experiments until the end of 2008 is presented

  15. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  16. Impedance matching network systems using stub-lines of 20 kW CW RF amplifier for SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Song, Ho Seung; Kim, Jeong Hwan; Cong, Truong Van; Kim, Hui Su; Yeon, Yeong Heum; Lee, Yong seok; Chai, Jong Seo

    2015-01-01

    The SKKUCY-9 is a compact cyclotron for radioactive isotopes (RI) production of positron emission tomography (PET). Charged particles such as H-ions are accelerated azimuthally within a high intensity electric field (E-field) generated from a radio frequency (RF) system in cyclotron. A high power RF signal is transmitted from an RF amplifier to an RF resonating cavity. The RF system of the SKKUCY-9 operates in continuous wave (CW) mode. If an ion beam were accelerated in the cyclotron, the vacuum level and permittivity would be changed because of beam loading. It causes an impedance shift of the RF resonating cavity. This impedance mismatch generates reflected power that decreases the RF transmitting power. To prevent this situation, an impedance matching system is necessary. This paper describes the impedance matching system of a 20 kW RF amplifier in an SKKUCY-9 compact cyclotron. The impedance matching circuit was designed using both an input stage and output stage, which are divided between the cathode and anode in a vacuum tube that is used as an amplifying device. The equivalent circuit of the matching system is made of passive elements. The characteristic results of designed circuit were calculated using a Smith chart. In assembling, the inductors were replaced by movable stub-line structures. The dimensions of the stub-line structures were optimized with equations and the measurement results. The experiment was performed to find the result values of matching circuit impedance and RF power amplitude

  17. Cyclotron radiation by a multi-group method

    International Nuclear Information System (INIS)

    Chu, T.C.

    1980-01-01

    A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions

  18. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Boldin, Ivan A; Nikolaev, Eugene N

    2009-10-01

    Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  20. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  1. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  2. Stochastic heating in the cyclotron resonance of electrons; Calentamiento estocastico en la resonancia ciclotronica de los electrones

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Hernandez A, O. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The study of the different schemes of plasma heating by radiofrequency waves is a very actual problem related with the plasma heating in different machines and the particle acceleration mechanisms. In this work, it is obtained the expression for the temporal evolution of the energy absorbed in the cyclotron resonance of electrons where it is showed the stochastic character of the energy absorption. It is obtained the stochastic criteria in a magnetic configuration of an Ecr type plasma source. (Author)

  3. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  4. Investigation and application of microwave electron cyclotron resonance plasma physical vapour deposition

    International Nuclear Information System (INIS)

    Ren Zhaoxing; Sheng Yanya; Shi Yicai; Wen Haihu; Cao Xiaowen

    1991-06-01

    The evaporating deposition of Ti film and Cu film by using microwave electron cyclotron resonance (ECR) technique was investigated. It deposition rate was about 50 nm/min and the temperature of the substrate was 50∼150 deg C. The thin amorphous films with strong adherent force were obtained. The sputtering deposition with ECR plasma was studied by employing higher plasma density and ionicity and negative substrate potential to make YBaCuO superconducting film. Its film was compact and amorphous with a thickness of 1.0 μm and the deposition rate was about 10 nm/min. The results show that this technique can initiate a high density and high ionicity plasma at lower gas pressure (10 -2 ∼10 -3 Pa). This plasma is the most suitable plasma source in thin film deposition process and surface treatment technique

  5. Fourier Transfrom Ion Cyclotron Resonance Mass Spectrometry at High Magnetic Field

    Science.gov (United States)

    Marshall, Alan G.

    1998-03-01

    At high magnetic field (9.4 tesla at NHMFL), Fourier transform ion cyclotron resonance mass spectrometry performance improves dramatically: mass resolving power, axialization efficiency, and scan speed (each proportional to B), maximum ion mass, dynamic range, ion trapping period, kinetic energy, and electron self-cooling rate for sympathetic cooling (each proportional to B^2), and ion coalescence tendency (proportional 1/B^2). These advantages may apply singly (e.g., unit mass resolution for proteins of >100,000 Da), or compound (e.g., 10-fold improvement in S/N ratio for 9.4 T vs. 6 T at the same resolving power). Examples range from direct determination of molecular formulas of diesel fuel components by accurate mass measurement (=B10.1 ppm) to protein structure and dynamics probed by H/D exchange. This work was supported by N.S.F. (CHE-93-22824; CHE-94-13008), N.I.H. (GM-31683), Florida State University, and the National High Magnetic Field Laboratory in Tallahassee, FL.

  6. Poloidal rotation driven by electron cyclotron resonance wave in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available The poloidal electric filed, which is the drive field of poloidal rotation, has been observed and increases obviously after the injection of electron cyclotron resonance wave in HL-2A experiment, and the amplitude of the poloidal electric field is in the order of 103 V/m. Through theoretical analysis using Stringer rotation model, the observed poloidal electric field is of the same order as the theoretical calculation value. In addition, the magnetic pump damping which would damp the poloidal rotation is calculated numerically and the calculation results show that the closer to the core plasmas, the stronger the magnetic pump damping will be. Meanwhile, according to the value of the calculated magnetic pump damping, the threshold of the poloidal electric field which could overcome magnetic pump damping and drive poloidal rotation in tokamak plasmas is given out. Finally, the poloidal rotation velocity over time at different minor radius is studied theoretically.

  7. Chemisorption-Induced Resonance Frequency Shift of a Microcantilever

    International Nuclear Information System (INIS)

    Zhang Ji-Qiao; Feng Xi-Qiao; Yu Shou-Wen; Huang Gan-Yun

    2012-01-01

    The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)

  8. Progress report on the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Acerbi, E.; Alessandria, F.; Baccaglioni, G.; Bellomo, G.; Birattari, C.; Bosotti, A.; Broggi, F.; Cortesi, G.; DeMartinis, C.; Fabrici, E.; Ferrari, A.; Giove, D.; Giussani, A.; Giussani, W.; Michelato, P.; Pagani, C.; Rivoltella, G.; Rossi, L.; Serafini, L.; Sussetto, A.; Torri, V.; Varisco, G.; Cuttone, G.; Raia, G.; Kai, L.

    1988-01-01

    This paper reports on the construction of the K800 superconducting cyclotron at the University of Milan underway since February 1981. The delay in the construction of the new building and a defect of the weldings of the helium vessel have caused a shift in the project schedule of about two years. Currently, the cyclotron magnet and the cryogenic plant have been completed and installed. First operation of the magnet and magnetic field mapping are to begin shortly

  9. Operation of a quasioptical electron cyclotron maser

    International Nuclear Information System (INIS)

    Morse, E.C.; Pyle, R.V.

    1984-12-01

    The electron cyclotron maser or gyrotron concept has been developed to produce sources producing 200 kW at 28 GHz continuously, and higher power outputs and frequencies in pulsed mode. These sources have been useful in electron cyclotron resonance heating (ECRH) in magnetically confined fusion devices. However, higher frequencies and higher power levels will be required in reactor-grade fusion plasmas, with likely requirements of 1.0 MW or more per source at 140 GHz. Conventional gyrotrons follow a trend of decreasing power for increasing frequency. In order to circumvent this problem, the quasioptical electron cyclotron maser was proposed. In this device, the closed resonator of the conventional gyrotron is replaced with an open, Fabry-Perot type resonator. The cavity modes are then the TEM-type modes of an optical laser. The advantage of this configuration is that the cavity size is not a function of frequency, since the length can be any half-integer number of wavelengths. Furthermore, the beam traverses across the cavity transverse to the direction of radiation output, and thus the rf window design is less complicated than in conventional tubes. The rf output, if obtained by diffraction coupling around one of the mirrors, could be in a TEM mode, which would allow for quasioptical transmission of the microwaves into the plasma in fusion devices. 4 references, 1 figure

  10. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-01-01

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission

  11. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  12. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    Science.gov (United States)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  13. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  14. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  15. ECE Measurements using Doppler-shifted observations

    International Nuclear Information System (INIS)

    Rodriguez, L.; Auge, N.; Giruzzi, G.; Javon, C.; Laurent, L.; Talvard, M.

    1991-01-01

    Experimental evidence is reported for asymmetries in Electron Cyclotron Emission (ECE) spectra measured along oblique lines of sight during Ohmic discharges. These could be attributed to small deviations from the Maxwellian distribution, due either to anomalous transport or to an energetic electron population. A clear interpretation of such asymmetries requires further experimental investigation. During Lower Hybrid Current Drive experiments, intense peaks appear in the optically thin low-frequency region of the ECE spectrum in windows between cut-off layers. The effects of the inductive electric field and RF power on ECE spectra have been investigated using a Fokker-Planck code. The interpretation is consistent with observations at different power levels

  16. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  17. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    International Nuclear Information System (INIS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.

    2016-01-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10 12  cm −2 and 9000 cm 2 V −1  s −1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m 0 .

  18. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.

    1996-01-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. copyright 1996 American Institute of Physics

  19. New developments of the recoil distance doppler-shift method

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, Christoph; Blazhev, Andrey; Braunroth, Thomas; Dewald, Alfred; Goldkuhle, Alina; Jolie, Jan; Litzinger, Julia; Mueller-Gatermann, Claus; Woelk, Dorothea; Zell, Karl-Oskar [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    The recoil distance Doppler-shift (RDDS) method is a very valuable technique for measuring lifetimes of excited nuclear states in the picosecond range to deduce absolute transition strengths between nuclear excitations independent on the reaction mechanism. Dedicated plunger devices were built by our group for measurements with this method for a broad range of beam energies ranging from few MeV/u up to relativistic energies of the order of 100 MeV/u. Those were designed to match the constraints defined by state-of-the art γ-ray spectrometers like AGATA, Galileo, Gammasphere. Here we give an overview about recent experiments of our group to determine transition strengths from level lifetimes in exotic nuclei where also recoil separators or mass spectrographs were used for an identification of the recoiling reaction products. The aim is to learn about phenomena like shape phase coexistence in exotic regions and the evolution of the shell structure far from the valley of stability. We also review new plunger devices that are developed by our group for future experimental campaigns with stable and radioactive beams in different energy regimes, e.g., a plunger for HIE-ISOLDE.

  20. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  1. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Science.gov (United States)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  2. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e μA of 129 Xe 43+ , 22 e μA of 209 Bi 41+ , and 1.5 e μA of 209 Bi 50+ . To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e μA of 129 Xe 27+ and 152 e μA of 129 Xe 30+ , although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and 129 Xe 27+ , 78 Kr 19+ , 209 Bi 31+ , and 58 Ni 19+ beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development

  3. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  4. Pitch-angle diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves in planetary magnetospheres

    Directory of Open Access Journals (Sweden)

    A. K. Tripathi

    2011-02-01

    Full Text Available Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.

  5. ECRH [electron-cyclotron resonance heating]-heated distributions in thermal-barrier tandem mirrors

    International Nuclear Information System (INIS)

    Cohen, R.H.; LoDestro, L.L.

    1987-01-01

    The distribution function is calculated for electrons subjected to strong electron-cyclotron resonance heating (ECRH) at the plug and barrier in a tandem-mirror thermal-barrier cell. When ECRH diffusion locally dominates over collisions and a boundary condition (associated with electrons passing to the center cell) imposes variations on the distribution function rapid compared to the variation of the ECRH and collisional diffusion coefficients, the kinetic equation can be reduced approximately to Laplace's equation. For the typical case where velocity space is divided into distinct regions in which plug and barrier ECRH dominate, the solution in each region can be expressed in terms of the plasma dispersion function or exponential integrals, according to whether the passing electrons are dominated by collisions or ECRH, respectively. The analytic results agree well with Fokker-Planck code results, in terms of both velocity-space structure and values of moments. 10 refs., 4 figs

  6. Tokamak startup with electron cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed

  7. Tokamak startup with electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  8. Clinically low-risk prostate cancer: evaluation with transrectal doppler ultrasound and functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Maria Inês Novis

    2011-01-01

    Full Text Available OBJECTIVES: To evaluate transrectal ultrasound, amplitude Doppler ultrasound, conventional T2-weighted magnetic resonance imaging, spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in localizing and locally staging low-risk prostate cancer. INTRODUCTION: Prostate cancer has been diagnosed at earlier stages and the most accepted classification for low-risk prostate cancer is based on clinical stage T1c or T2a, Gleason score <6, and prostate-specific antigen (PSA <10 ng/ml. METHODS: From 2005 to 2006, magnetic resonance imaging was performed in 42 patients, and transrectal ultrasound in 26 of these patients. Seven patients were excluded from the study. Mean patient age was 64.94 years and mean serum PSA was 6.05 ng/ml. The examinations were analyzed for tumor identification and location in prostate sextants, detection of extracapsular extension, and seminal vesicle invasion, using surgical pathology findings as the gold standard. RESULTS: Sixteen patients (45.7% had pathologically proven organ-confined disease, 11 (31.4% had positive surgical margin, 8 (28.9% had extracapsular extension, and 3 (8.6% presented with extracapsular extension and seminal vesicle invasion. Sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV and accuracy values for localizing low-risk prostate cancer were 53.1%, 48.3%, 63.4%, 37.8% and 51.3% for transrectal ultrasound; 70.4%, 36.2%, 65.1%, 42.0% and 57.7% for amplitude Doppler ultrasound; 71.5%, 58.9%, 76.6%, 52.4% and 67.1% for magnetic resonance imaging; 70.4%, 58.7%, 78.4%, 48.2% and 66.7% for magnetic resonance spectroscopy; 67.2%, 65.7%, 79.3%, 50.6% and 66.7% for dynamic contrast-enhanced magnetic resonance imaging, respectively. Sensitivity, specificity, PPV, NPV and accuracy values for detecting extracapsular extension were 33.3%, 92%, 14.3%, 97.2% and 89.7% for transrectal ultrasound and 50.0%, 77.6%, 13.7%, 95.6% and 75.7% for magnetic resonance imaging

  9. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Beck, M.; Bartels, A. [Laser Quantum GmbH, Max-Stromeyer-Str. 116, 78467 Konstanz (Germany); Guiney, I.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.

  10. A Comparison Study of Vector Velocity, Spectral Doppler and Magnetic Resonance of Blood Flow in the Common Carotid Artery

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hansen, Kristoffer Lindskov; Ewertsen, Caroline

    2018-01-01

    Magnetic resonance phase contrast angiography (MRA) is the gold standard for blood flow evaluation. Spectral Doppler ultrasound (SDU) is the first clinical choice, although the method is angle dependent. Vector flow imaging (VFI) is an angle-independent ultrasound method. The aim of the study...

  11. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  12. Fundamental harmonic electron cyclotron emission for hot, loss-cone type distributions

    International Nuclear Information System (INIS)

    Bornatici, M.; Ruffina, U.; Westerhof, E.

    1988-01-01

    Electron cyclotron emission (ECE) is an important diagnostic tool for the study of hot plasmas. ECE can be used not only to measure the electron temperature but also to obtain information about non-thermal characteristics of the electron distribution function. One such a nonthermal characteristic is a loss-cone anisotropy. Loss-cone anisotropy can give rise to unstable growth of electro-magnetic waves around the harmonics of the electron cyclotron resonance and to increased emissivity of electron cyclotron waves. In case of high electron temperatures, also the dispersion properties of the extraordinary (X-) mode arond the fundamental electron cyclotron resonance are changed due to loss-cone anisotropy. The consequences of these dispersion properties for the emissivity of the fundamental harmonic X-mode are analyzed for perpendicular propagation. The emissivity, is calculated for two types of distribution functions having a loss-cone anisotropy. These distribution functions are a relativistic Dory-Guest-Harris type distribution function and modified relativistic Maxwellian distribution having a loss-cone with rounded edges (author). 9 refs.; 2 figs

  13. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  14. Lifetimes in {sup 94}Zr extracted via the doppler-shift attenuation method using pγ coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Sarah; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Spieker, Mark; Vielmetter, Vera; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2016-07-01

    Lifetimes of excited states in {sup 94}Zr were previously measured applying the Doppler-shift attenuation method (DSAM) following the (n,n'γ) reaction.Since the two measurements were in conflict with each other, we remeasured 14 lifetimes of excited states in {sup 94}Zr in a (p,p'γ) experiment utilizing the DSAM technique. Centroid-energy shifts were extracted from proton-gated γ-ray spectra, yielding lifetime values that are independent of feeding contributions. The results were compared to the previously measured lifetimes and found to be in good agreement with the values reported, thus confirming the correction procedure introduced for the (n,n'γ) data. This contribution features our new results and introduces the (p,p'γ) DSAM technique, which is now available in Cologne.

  15. Spectroscopy of collective cyclotron and intersubband resonances of Quantum Hall systems in GaAs; Spektroskopie kollektiver Zyklotron- und Intersubband-Resonanzen von Quanten-Hall-Systemen in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Manger, Matthias

    2008-07-01

    This thesis is dedicated to the long wavelength collective excitations of quasi two-dimensional electron systems (Q2DEG) in GaAs under the influence of high magnetic fields. These excitations, which are classified into cyclotron resonances and magneto intersubband resonances, were experimentally investigated by means of far infrared Fourier spectroscopy. Cyclotron resonances were studied in a magnetic field range 0cyclotron resonance in the presence of polaron coupling, bands nonparabolicity, and disorder under the combined influence of electronic screening and electron-electron coupling. The magneto intersubband resonances were investigated in the regime of the Integral Quantum Hall Effect. The grating coupler technique was used in order to couple the electromagnetic field to these collective excitations. Self consistent calculations of the subband structure and the collective modes were performed in the framework of the Hartree-Fock approximation scheme. These calculations were used for an interpretation of the experimental observations. (orig.)

  16. Resonant cyclotron scattering in pulsar magnetospheres and its application to isolated neutron stars

    International Nuclear Information System (INIS)

    Tong Hao; Peng Qiuhe; Xu, Ren-Xin; Song Liming

    2010-01-01

    Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model. (letters)

  17. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  18. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  19. Ray-tracing analysis of electron-cyclotron-resonance heating in straight stellarators

    International Nuclear Information System (INIS)

    Kato, K.

    1983-05-01

    A ray-tracing computer code is developed and implemented to simulate electron cyclotron resonance heating (ECRH) in stellarators. A straight stellarator model is developed to simulate the confinement geometry. Following a review of ECRH, a cold plasma model is used to define the dispersion relation. To calculate the wave power deposition, a finite temperature damping approximation is used. 3-D ray equations in cylindrical coordinates are derived and put into suitable forms for computation. The three computer codes, MAC, HERA, and GROUT, developed for this research, are described next. ECRH simulation is then carried out for three models including Heliotron E and Wendelstein VII A. Investigated aspects include launching position and mode scan, frequency detuning, helical effects, start-up, and toroidal effects. Results indicate: (1) an elliptical waveguide radiation pattern, with its long axis oriented half-way between the toroidal axis and the saddle point line, is more efficient than a circular one; and (2) mid-plane, high field side launch is favored for both O- and X-waves

  20. Generation of a auroral kilometer radiowaves at a maser cyclotron resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1991-01-01

    A linear mechanism of auroral kilometer radiowave (AKR) generation at a maser cyclotron resonance (MCR) in non-homogeneous non-monodimensional plasma is developed. Model distribution functions introduced for longitudinal and transverse electron beasms allow one to obtain x- and o-mode increments in the form of elementary functions. The key concept of work consists in MCR time, taking account of the complex of all processes leading to wave outlet from the MCR. It is shown that MCR time can be sufficient for AKR generation only in certain region of auroral plasma. For x-mode these are such plasma sections where the longitudinal geomagnetic field gradient is compensated by plasma density gradient. O-mode is generated only in those local regions where the plasma density longitudinal gradient is very low. The theoretical minimal width of AKR spectrum line obtained coincides with the minimal measured line width equal to 5Hz. A conclusion is made that the discrete AKR spectrum appears to be the reflection of the auroral plasma inhomogeneous structure

  1. Generation of auroral kilometric radio emission at the cyclotron maser resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    A linear mechanism of auroral kilometric radiation (AKR) generation at the maser cyclotron resonance (MCR) in an inhomogeneous multidimensional plasma is developed. The model distribution functions introduced by the author for longitudinal and transverse electron beams allow one to obtain x- and O-mode growth rates in the form of elementary functions. The key idea of the study is the MCR time taking into account all processes leading to the emission of waves from the MCR. It is shown that the MCR time can be sufficient for AKR generation in isolated regions of the auroral plasma. For the X-mode these are the parts of the plasma where the longitudinal gradient of the geomagnetic field is compensated by the plasma density gradient. The O-mode is generated only in those local regions where there is an extremely small longitudinal plasma density gradient. The theoretical minimum width of the AKR spectral line obtained coincides with the minimal measured line width of 5 Hz. It is concluded that the discrete AKR spectrum is related to the inhomogeneous structure of the auroral plasma

  2. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  5. Science Court on ICRH [ion cyclotron resonance heating] modeling of tokamak plasmas

    International Nuclear Information System (INIS)

    Hively, L.M.; Sadowski, W.L.

    1987-10-01

    The Applied Plasma Physics (APP) Theory program in the Office of Fusion Energy is charged with supporting the development of advanced physics models for fusion research. One such effort is ion cyclotron resonance heating (ICRH), which has seen substantial progress recently. However, due to serious questions about the adequacy of present models for CIT (Compact Ignition Tokamak), a Science Court was formed to assess ICRH models, including: validity of theoretical and computational approximations; underlying physics assumptions and corresponding limits on the results; self-consistency; any subsidiary issues needing resolution (e.g., new computer tools); adequacy of the models in simulating experiments (especially CIT); and new or improved experiments to validate and refine the models. The Court did not review work by specific individuals, institutions, or programs, thereby avoiding any biases along these lines. Rather, the Science Court was carefully structured as a technical review of ICRH theory and modeling in the US. This paper discusses the Science Court process, findings, and conclusions

  6. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  7. Radar observations of ion cyclotron waves associated with two barium shaped-charge releases

    International Nuclear Information System (INIS)

    Providakes, J.; Swartz, W.E.; Kelley, M.C.; Djuth, F.T.; Noble, S.; Jost, R.J.

    1990-01-01

    A 50-MHz Doppler radar interferometer and a 138-MHz Doppler radar were operated from Kennedy Space Center to study 3-m and 1-m plasma waves associated with two shaped-charged barium releases from Wallops Island, Virginia, on May 13, 1986. During the first release, interferometer and Doppler power spectral studies showed the existence of short-lived ( + EIC waves were unstable for field-aligned electron drifts greater than 0.7υ the at the altitude of 510 km in a multispecies (O + , NO + , or similarly O 2 + ) ionospheric plasma. The authors interpret the 30-Hz waves seen by the two radars far above the release as strong electrostatic ion cyclotron waves generated by intense field-aligned currents associated with the barium stream acting like an MHD generator coupled to the ionospheres

  8. Grey-scale and colour Doppler ultrasound versus magnetic resonance imaging for the prenatal diagnosis of placenta accreta.

    Science.gov (United States)

    Rezk, Mohamed Abd-Allah; Shawky, Mohamed

    2016-01-01

    To assess the effectiveness of grey-scale and colour Doppler ultrasound (US) versus magnetic resonance imaging (MRI) for the prenatal diagnosis of placenta accreta. A prospective observational study including a total of 74 patients with placenta previa and previous uterine scar (n = 74). Grey-scale and colour Doppler US was done followed by MRI by different observers to diagnose adherent placenta. Test validity of US and MRI were calculated. Maternal morbidity and mortality were also assessed. A total of 53 patients confirmed to have placenta accreta at operation. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of US was 94.34, 91.67, 96.15 and 88% compared to 96.08, 87.50, 94.23 and 91.3% for MRI, respectively. The most relevant US sign was turbulent blood flow by colour Doppler, while dark intra-placental band was the most sensitive MRI sign. Venous thromboembolism (1.3%), bladder injury (29.7%), ureteric injury (18.9%), postoperative fever (10.8%), admission to ICU (50%) and re-operation (31.1%). Placenta accreta can be successfully diagnosed by grey-scale and colour Doppler US. MRI would be more likely suggested for either posteriorly or laterally situated placenta previa in order to exclude placental invasion.

  9. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    The power mode conversion efficiency is estimated to be ... has also found application in electron cyclotron current drive (ECCD) in fusion ... (few GHz) of microwave sources, a small linear ECR plasma system can also serve ..... References.

  10. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  11. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutron up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.

  12. Research of isolated resonances using the average energy shift method for filtered neutron beam

    International Nuclear Information System (INIS)

    Gritzay, O.O.; Grymalo, A.K.; Kolotyi, V.V.; Mityushkin, O.O.; Venediktov, V.M.

    2010-01-01

    This work is devoted to detailed description of one of the research directions in the Neutron Physics Department (NPD), namely, to research of resonance parameters of isolated nuclear level at the filtered neutron beam on the horizontal experimental channel HEC-8 of the WWR-M reactor. Research of resonance parameters is an actual problem nowadays. This is because there are the essential differences between the resonance parameter values in the different evaluated nuclear data library (ENDL) for many nuclei. Research of resonance parameter is possible due to the set of the neutron cross sections received at the same filter, but with the slightly shifted filter average energy. The shift of the filter average energy is possible by several processes. In this work this shift is realized by neutron energy dependence on scattering angle. This method is provided by equipment.

  13. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  14. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  15. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  16. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Quan Haiyong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States); Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States)]. E-mail: guo@jove.rutgers.edu

    2005-06-15

    Finite element analyses are made of the shifts of resonance frequencies of whispering-gallery-mode (WGM) for a fiber-microsphere coupling miniature sensor. The time-domain Maxwell's equations were adopted to describe the near-field radiation transport and solved by the in-plane TE waves application mode of the FEMLAB. The electromagnetic fields as well as the radiation energy distributions can be easily obtained by the finite element analysis. The resonance intensity spectrum curves in the frequency range from 213 to 220THz were studied under different biosensing conditions. Emphasis was put on the analyses of resonance shift sensitivity influenced by changes of the effective size of the sensor resonator (i.e., microsphere) and/or the refractive index of the medium surrounding the resonator. It is estimated that the WGM biosensor can distinguish molecular size change to the level of 0.1nm and refractive index change in the magnitude of {approx}10{sup -3} even with the use of a general optical spectrum analyzer of one GHz linewidth. Finally, the potential of the WGM miniature biosensor for monitoring peptide growth is investigated and a linear sensor curve is obtained.

  17. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Hillairet, Julien, E-mail: julien.hillairet@cea.fr; Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  18. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  19. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  20. Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause

    International Nuclear Information System (INIS)

    Foster, J.C.; Rosenberg, T.J.

    1976-01-01

    Correlated bursts of bremsstrahlung X rays and VLF emissions were recorded for approx.25 min at Siple Station, Antarctica, on January 2, 1971. The burst occurred quasi-periodically with spectral power predominantly in the period range 4--12 s. A typical VLF burst consisted of 3--5 rising elements of approx.0.1-s duration separated by approx.0.15 s and was confined to the frequency range 1.5--3.8 kHz. Evidence is presented to show that the bursts were triggered by the low-frequency tail of whistlers propagating from the northern hemisphere. The interpretation of the observations in terms of an equatorial cyclotron resonance interaction occurring at the outer edge of the plasmapause on the L=4.2 field line, offered initially by Rosenberg et al. (1971), is given further support by the more extensive analysis presented here of the electron energy-wave frequency relationship in the bursts and the propagation times for the resonant waves and electrons. It is inferred from the X ray data that the equatorial flux of trapped electrons was probably anisotropic and near the stable trapping limit at the time of this event. It is suggested that an important effect of the trigger signal is the increase of the anisotropy of the resonant electrons. Wave growth rates calculated in the random phase approximation for electron pitch angle distributions that might apply in this event can explain certain features of the VLF and precipitation data during and between the bursts

  1. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  2. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    International Nuclear Information System (INIS)

    Zito, Pietro; Maffia, Giuseppe; Lampasi, Alessandro

    2015-01-01

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  3. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Zito, Pietro, E-mail: pietro.zito@enea.it; Maffia, Giuseppe; Lampasi, Alessandro

    2015-10-15

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  4. Electron cyclotron resonance (ECR) ion sources

    International Nuclear Information System (INIS)

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  5. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    Science.gov (United States)

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  6. Cardiovascular assessment of patients with Ullrich-Turner's Syndrome on Doppler echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Castro Ana Valéria Barros de

    2002-01-01

    Full Text Available OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta. Their ages ranged from 10 to 28 (mean of 16.7 years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%; 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7, mosaics (n=5, and deletions (n=3. No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively. This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

  7. Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas

    International Nuclear Information System (INIS)

    Vershkov, V.A.; Shelukhin, D.A.; Soldatov, S.V.; Urazbaev, A.O.; Grashin, S.A.; Eliseev, L.G.; Melnikov, A.V.

    2005-01-01

    This report summarizes the results of experimental turbulence investigations carried out at T-10 for more than 10 years. The turbulence characteristics were investigated using correlation reflectometry, multipin Langmuir probe (MLP) and heavy ion beam probe diagnostics. The reflectometry capabilities were analysed using 2D full-wave simulations and verified by direct comparison using a MLP. The ohmic and electron cyclotron resonance heated discharges show the distinct transition from the core turbulence, having complex spectral structure, to the unstructured one in the scrape-off layer. The core turbulence includes 'broad band, quasi-coherent' features, arising due to the excitation of rational surfaces with high poloidal m-numbers, with a low frequency near zero and specific oscillations at 15-30 kHz. All experimentally measured properties of low frequency and high frequency quasi-coherent oscillations are in good agreement with predictions of linear theory for the ion temperature gradient/dissipative trapped electron mode instabilities. Significant local changes in the turbulence characteristics were observed at the edge velocity shear layer and in the core near q = 1 radius after switching off the electron cyclotron resonance heating (ECRH). The local decrease in the electron heat conductivity and decrease in the turbulence level could be evidence of the formation of an electron internal transport barrier. The dynamic behaviour of the core turbulence was also investigated for the case of fast edge cooling and the beginning phase of ECRH

  8. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  9. Shifts and widths of p-wave confinement induced resonances in atomic waveguides

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor; Melezhik, Vladimir S; Schmelcher, Peter

    2015-01-01

    We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40 K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible. (paper)

  10. The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators

    International Nuclear Information System (INIS)

    Jin, Ke; Kou, Yong; Zheng, Xiaojing

    2012-01-01

    This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems. (paper)

  11. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-01-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I FC by the mobile plate tuner. The I FC is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I FC and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I FC when we change the position of the mobile plate tuner.

  12. Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry

    NARCIS (Netherlands)

    Kong, H.; Wang, M.; Venema, K.; Maathuis, A.; Heijden, R. van der; Greef, J. van der; Xu, G.; Hankemeier, T.

    2009-01-01

    A high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR-MS) method was developed to investigate the metabolism of ginsenosides in in vitro models of the gastro-intestinal tract. The metabolites were identified by

  13. Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide

    Science.gov (United States)

    Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.

    1976-01-01

    The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.

  14. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  15. Electron cyclotron resonance ion stream etching of tantalum for x-ray mask absorber

    International Nuclear Information System (INIS)

    Oda, Masatoshi; Ozawa, Akira; Yoshihara, Hideo

    1993-01-01

    Electron cyclotron resonance ion stream etching of Ta film was investigated for preparing x-ray mask absorber patterns. Ta is etched by the system at a high rate and with high selectivity. Using Cl 2 as etching gas, the etch rate decreases rapidly with decreasing pattern width below 0.5 μm and large undercutting is observed. The problems are reduced by adding Ar or O 2 gas to the Cl 2 . Etching with a mixture of Cl 2 and O 2 produces highly accurate Ta absorber patterns for x-ray masks. The pattern width dependence of the etch rate and the undercutting were simulated with a model that takes account of the angular distribution of active species incident on the sample. The experimental results agree well with those calculated assuming that the incidence angles are distributed between -36 degrees and 36 degrees. The addition of O 2 or Ar enhances ion assisted etching. 16 refs., 16 figs

  16. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  17. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    International Nuclear Information System (INIS)

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations

  18. Phase and gain measurements in a distributed-loss cyclotron-resonance maser amplifier

    International Nuclear Information System (INIS)

    Kesar, Amit; Jerby, Eli

    2002-01-01

    The control of gain and phase delay in a cyclotron-resonance maser (CRM) amplifier is essential for a variety of applications. In this experiment, the gain and phase-delay variations are measured with respect to controlling parameters; the electron-beam current and the axial magnetic field. Following Chu et al. [Phys. Rev. Lett. 74, 1103 (1995)], the CRM amplifier comprises of a distributed-loss waveguide to enable high gain without oscillations. Our experiment yields an amplification up to 26 dB, and a phase-delay control range of 360 deg. In order to keep a fixed gain with the varying phase delay, the two controlling parameters (i.e., the solenoid field and the beam current) are operated together in a compensating mode. The experiment is conducted in a frequency of 7.3 GHz, with an electron beam of 18-kV voltage and 0.25-0.4-A current. The experimental results are compared with a theoretical model. Practical implementations of gain and phase control in CRM devices are discussed

  19. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  20. A mobile superconducting cyclotron for PET and neutron radiography

    International Nuclear Information System (INIS)

    Griffiths, R.

    1988-01-01

    The report addresses the development of a mobile superconducting cyclotron for PET (positron emission tomography) and neutron radiography. Proposals for an ultralight cyclotron were made by Finlan et al., who suggested a novel technique of utilising a superconducting magnet with RF acceleration and iron sectors contained within the room temperature bore of the magnet. Detailed design of a cyclotron based on this concept has progressed well at Oxford Instruments. The main design priorities were to minimise the weight and power consumption of the cyclotron. The cyclotron required a large amount of shielding to reduce either radiation background levels or stray magnetic field. Thus low background levels of radiation and magnetic field are key design criteria. The superconducting magnet has a mean field of 2.35 Tesla and a room temperature bore diameter of 500 mm. Three pairs of profiled iron sectors placed in the center of the warm bore of the magnet provide an azimuthally varying magnetic field. This permits the use of high beam currents with low background. A novel technique is incorporated to reduce the stray magnetic field and radiation from the cyclotron. The RF system consists of three pairs of resonators mounted within the warm bore of the magnet between the iron sectors. (Nogami, K.)

  1. Radio frequency system of the RIKEN ring cyclotron

    International Nuclear Information System (INIS)

    Fujisawa, T.; Ogiwara, K.; Kohara, S.; Oikawa, Y.; Yokoyama, I.; Nagase, M.; Takeshita, I.; Chiba, Y.; Kumata, Y.

    1987-01-01

    The radio-frequency(RF) system of the RIKEN ring cyclotron(K = 540) is required to work in a frequency range of 20 to 45 MHz and to generate the maximum acceleration voltage 250 kV. A new movable box type variable frequency resonator was designed for that purpose. The final amplifier is capable to deliver 300 kW. The resonators and the amplifiers have been installed at RIKEN and the performances are studied. The result shows the movable box type resonator and the power amplifier system satisfy the design aim. (author)

  2. Manufacturing on the radiopharmaceuticals produced by cyclotron

    International Nuclear Information System (INIS)

    Ueda, Nobuo

    1994-01-01

    Radiopharmaceutical (RP) produced by cyclotrons are widely used for the in vivo diagnosis of various diseases such as cancer, cerebral vascular disorders and cardiac diseases. The nuclides used as RPs and their nuclear reactions, and the quantity of RPs supplied in Japan in the last five years are shown. These RPs are delivered to about 1,100 hospitals in Japan. Thallium-201 and iodine-123 showed very high growth rate. Recently, two new I-123 RPs, BMIPP and MIBG which are heart-imaging agents, have been supplied. It suggests that the quantity of I-123 will increase much more in future. The image diagnostic method using RPs is called in vivo nuclear medicine, and has become the indispensable means for medical institutions together with X-ray CT, nuclear magnetic resonance imaging and ultrasonic diagnosis. The RPs for in vivo diagnosis generally used at present are classified into those labeled with the RIs produced with cyclotrons and those labeled with Tc-99m formed by the decay of Mo-99. The quantity being used is overwhelmingly more in the latter, but the former shows the tendency of growth. The commercial production of cyclotron RIs for medical use, the chemical forms and the diagnostic purposes of the RPs using cyclotron RIs, and the state of use of the cyclotron-produced RPs are reported. (K.I.)

  3. The Efficacy of Magnetic Resonance Imaging and Color Doppler Ultrasonography in Diagnosis of Salivary Gland Tumors

    Directory of Open Access Journals (Sweden)

    Behrooz Davachi

    2014-12-01

    Full Text Available Background and aims. Although salivary gland tumors are not very common, early diagnosis and treatment is crucial because of their proximity to vital organs, and therefore, determining the efficacy of new imaging procedures becomes important. This study aimed to evaluate the efficacy of magnetic resonance imaging (MRI and color doppler ultrasonography parameters in the diagnosis and differentiation of benign and malignant salivary gland tumors. Materials and methods. In this cross-sectional study, color doppler ultrasonography and MRI were performed for 22 patients with salivary gland tumor. Demographic data as well as MRI, color doppler ultrasonography, and surgical parameters including tumor site, signal in MRI images, ultrasound echo, tumor border, lymphadenopathy, invasion, perfusion, vascular resistance index (RI, vascular pulse index (PI were analyzed using Chi-square test, Fisher’s exact test, and independent ttest. Results. The mean age of patients was 46.59±13.97 years (8 males and 14 females. Patients with malignant tumors were older (P < 0.01. The most common tumors were pleomorphic adenoma (36.4%, metastasis (36.4%, and mucoepidermoid carcinoma (9%. Nine tumors (40.9% were benign and 13 (59.1% were malignant. The overall accuracy of MRI and color doppler ultrasonography in determining tumor site was 100% and 95%, respectively. No significant difference observed between RI and PI and the diagnosis of tumor. Conclusion. Both MRI and ultrasonography have high accuracy in the localization of tumors. Well-identified border was a sign of benign tumors. Also, invasion to adjacent structures was a predictive factor for malignancy.

  4. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  5. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS).

    Science.gov (United States)

    Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten

    2008-07-01

    We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.

  6. Nonlinear Cyclotron absorption of a hole doppleron in cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, I.F.; Bugal' ter, G.A.; Demikhovskii, V.Y.; Fisher, L.M.; Yudin, V.A.

    1977-10-01

    We investigated experimentally the nonlinear behavior of the impedance of a cadmium plate in the region of existence of the hole doppleron. It is shown theoretically that this phenomenon can be attributed to nonlinear cyclotron absorption of the wave in the metal. A theory of nonlinear cyclotron absorption of a hole doppleron in cadmium is constructed. The nonlinearity is due to the influence of the wave magnetic field H that alters the trajectories of the resonant electrons responsible for the cyclotron asorption. The Lorentz force connected with the field H modulates the particle velocity along the magnetic field at a characteristic frequency ..omega../sub 0/ proportional to the square root of the wave amplitude. The modulation of the longitudinal particle velocity leads to violation of the condition of their resonant interaction with the wave, as a result of which the absorption coefficient decreases. The nonlinearity is significant when the frequency ..omega../sub 0/ is large compared with the electron-collision frequency. A decrease of the cyclotron absorption changes radically the picture of the surface-impedance oscillations of the plate in the magnetic field. We studied in the experiment the influence of the temperature, of the angle of inclination of the magnetic field, and of the frequency on the nonlinear-effect threshold field that separates the regions of linear and nonlinear behavior of the sample impedance. The measurement results are in qualitative agreement with the conclusions of the theory.

  7. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  8. Application of lanthanide-shift reagents in pulsed Fourier-transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Zektzer, A.S.

    1986-01-01

    The application of lanthanide-shift reagents (LSR's) to pulsed NMR is presented. Several areas were investigated in which the information content of the data was enhanced through the use of an LSR. The problem first investigated combines the ability of LSR's to influence both the shift and relaxation times of the substrate nuclei. Adamantan-2-ol which has a second-order proton spectra was simplified to first-order by the addition of Eu(fod) 3 at which time the T 1 -relaxation times of each resonance were measured at several ratios of [LSR]/[sub] in order to calculate the T 1 's of the bound species by multiple linear regression. The second application involved using LSR's to cause shift changes in compounds not usually accessible to LSR's. Sulfur heterocycles, which show little if any shift with LSR's, were found to exhibit large shifts when silver organic salts were used in combination with an LSR such as Dy(fod) 3 or Ho(fod) 3 . The last application was the assignment of the 1 H and 13 C resonances of a thieno-pyridine and the comparison of these assignments to those from high-field two-dimensional NMR techniques

  9. Arm locking with Doppler estimation errors

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yinan; Wand, Vinzenz; Mitryk, Shawn; Mueller, Guido, E-mail: yinan@phys.ufl.ed [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2010-05-01

    At the University of Florida we developed the University of Florida LISA Interferometer Simulator (UFLIS) in order to study LISA interferometry with hardware in the loop at a system level. One of the proposed laser frequency stabilization techniques in LISA is arm locking. Arm locking uses an adequately filtered linear combination of the LISA arm signals as a frequency reference. We will report about experiments in which we demonstrated arm locking using UFLIS. During these experiments we also discovered a problem associated with the Doppler shift of the return beam. The initial arm locking publications assumed that this Doppler shift can perfectly be subtracted inside the phasemeter or adds an insignificant offset to the sensor signal. However, the remaining Doppler knowledge error will cause a constant change in the laser frequency if unaccounted for. Several ways to circumvent this problem have been identified. We performed detailed simulations and started preliminary experiments to verify the performance of the proposed new controller designs.

  10. Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas

    International Nuclear Information System (INIS)

    Bruno, R.

    1981-12-01

    Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt

  11. Doppler-shift assisted fast ion spectroscopy: a case study for X-ray emission from 277 MeV/u Pb[81+] ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Stachura, Z.; Warczak, A.

    1994-09-01

    Utilizing the different information from spatially separated segments of high-granular photon detectors the measured (LAB) energy of photons emitted by fast moving ions can be corrected individually for the Doppler effect according to the particular observation angles of each detector segment. By a redundant fitting procedure the center of mass photon energy can be determined with high precision. This new Doppler-shift assisted spectroscopy is explained for the case study of 277.4 MeV/u Pb 82+ ions colliding with a N 2 -gas target at the heavy ion storage ring ESR. Spectroscopic information for hydrogenic Pb 81+ ions is given for the ground-state transitions, for the Balmer transitions, as well as for the total K-binding energy. (orig.)

  12. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    International Nuclear Information System (INIS)

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-01-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data

  13. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  14. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  15. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  16. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  17. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  18. Power Doppler ultrasonography for assessment of synovitis in the metacarpophalangeal joints of patients with rheumatoid arthritis: a comparison with dynamic magnetic resonance imaging

    DEFF Research Database (Denmark)

    Szkudlarek, Marcin; Court-Payen, M; Strandberg, C

    2001-01-01

    OBJECTIVE: To evaluate the effectiveness of power Doppler ultrasonography (PDUS) for assessing inflammatory activity in the metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA), using dynamic magnetic resonance imaging (MRI) as a reference method. METHODS: PDUS and dynamic ...

  19. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.

    Science.gov (United States)

    Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan

    2009-11-09

    We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.

  20. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  1. Response of a Doppler canceling system to plane gravitational waves

    International Nuclear Information System (INIS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-canceled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences

  2. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  3. Control of neoclassical tearing mode by electron cyclotron current drive and non-resonant helical field application in ITER

    International Nuclear Information System (INIS)

    Taniguchi, Satoshi; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2010-01-01

    On tokamak plasmas like ITER, it is necessary to stabilize neoclassical tearing mode (NTM) because the NTM reduces plasma temperature and fusion power output. For the analysis of stabilizing NTM in fusion plasmas, the electron cyclotron current drive (ECCD) and the non-resonant external helical field (NRHF) application are simulated using the 1.5-dimensional equilibrium/transport simulation code (TOTAL code). The 3/2 NTM is stabilized by only external helical field, but the 2/1 mode is not stabilized by only external helical field in the present model. The stabilization time becomes shorter by the combination of ECCD and NRHF than that by ECCD alone. (author)

  4. Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies

    International Nuclear Information System (INIS)

    Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.

    2003-01-01

    The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered

  5. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    Science.gov (United States)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  6. Medical Cyclotrons

    Science.gov (United States)

    Friesel, D. L.; Antaya, T. A.

    Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.

  7. Acoustic loss and frequency stability studies of gamma- and proton-irradiated alpha-quartz crystal resonators

    International Nuclear Information System (INIS)

    Suter, J.J.

    1988-01-01

    This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation

  8. Calculation of the Doppler broadening function using Fourier analysis;Calculo da funcao de alargamento Doppler utilizando analise de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da Cruz

    2010-07-01

    An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function {psi}(x,{zeta}) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for {psi}(x,{zeta}), enables to obtain a simple analytic solution for the Doppler broadening function. (author)

  9. First results with the yin-yang type electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Suominen, P.; Ropponen, T.; Koivisto, H.

    2007-01-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented

  10. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation—and Doppler signature—of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ∼2 km s –1 blueshift inferred on HD 209458b may require drag time constants as short as 10 4 -10 6 s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  11. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  12. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  13. Thermal effects on the cyclotron line formation process in X-ray pulsars

    International Nuclear Information System (INIS)

    Kirk, J.G.; Meszaros, P.

    1980-01-01

    We derive expressions for the scattering and absorption cross sections in a hot plasma including the effects of vacuum polarisation. These expressions are then used in a radiative transfer calculation for frequencies in the neighbourhood of the cyclotron resonance using a simplified model atmosphere for accreting magnetised X-ray pulsars. Cyclotron emission and absorption line model fits are discussed, the conclusion being that an emission line interpretation appears at this stage more likely. (orig.)

  14. Calculation results and experimental testing of doppler feedback coefficients

    International Nuclear Information System (INIS)

    Yang Shunhai

    1989-01-01

    The Doppler feedback coefficients are calculated by the interpolation and group collapsing method from multigroup self-shielding factors and infinite dilution cross sections rather than effective resonance integrals by using resonance data base. Since many updated sets of multigroup data are in existence to be selected, the calculation process can be simplified. The heterogeneous effects are taken into account by equivalence relation. The computer code of Doppler feedback coefficients is created on computer CYBER-825 and PDP-11. The results calculated are in good agreement with the experiments

  15. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  16. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  17. The influence of ambipolarity on plasma confinement and on the performance of electron cyclotron resonance ion sources.

    Science.gov (United States)

    Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T

    2008-02-01

    Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.

  18. Detection of a stochastic background of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.; Grishchuk, L.P.

    1980-01-01

    The possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft is considered. In the geometrical optics limit, the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field is discussed, and it is shown to be gauge (or rather Lie) independent. A detailed examination of the propagation of a free electromagnetic wave in a gravitational radiation field shows that no resonance phenomena can be expected. Thus, the results valid in the geometrical optics limit are also approximately valid for any gravitational radiation spectrum dominated by wavelengths large compared to that of the electromagnetic signal. The ''Doppler noise'' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the aradiation spectrum and the detection system used. A background gravitational radiation with an energy density comparable to the electromagnetic (approx.3 K) background and a spectrum dominated by wavelengths > or approx. =1 AU may be detectable in the near future by the Doppler tracking of interplanetary spacecraft

  19. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  20. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    Science.gov (United States)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  1. On the Fly Doppler Broadening Using Multipole Representation

    International Nuclear Information System (INIS)

    Khassenov, Azamat; Choi, Sooyoung; Lee, Deokjung

    2015-01-01

    On the Fly Doppler broadening is the technique to avoid pre-generation of the microscopic cross section, in other words, reduce the amount of storage. Currently, there are different types of formalisms used by NJOY code to generate reaction cross section and accomplish its Doppler broadening. Single-Level Breit-Wigner (SLBW) formalism is limited to well-separated resonances, in other words, it does not consider interference between energy levels. Multi-Level Breit- Wigner formalism (MLBW) was tested as the candidate for the cross section generation in the Monte Carlo code, which is under development in UNIST. According to the results, MLBW method requires huge amount of computational time to produce cross section at certain energy point. Reich-Moore (RM) technique can generate only 0K cross section, which means that it cannot produce broaden cross section directly from resonance parameters. The first step was to convert resonance parameters given in nuclear data file into multipoles. MPR shows very high potential to be used as the formalism in the on-the-fly Doppler broadening module of MCS. One of the main reasons is that comparison of the time cost shown in Table IV supports application of multipole representation

  2. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  3. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  4. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15 0 and accounting for up to 30% of the extracted power

  5. Experimental Study of an ion cyclon resonance accelerator presentation of his thesis

    CERN Document Server

    Ramsell, C T

    1999-01-01

    The Ion Cyclotron Resonance Accelerator (ICRA) uses the operating principles of cyclotrons and gyrotrons. The novel geometry of the ICRA allows an ion beam to drift axially while being accelerated in the azimuthal direction. Previous work on electron cyclotron resonance acceleration used waveguide modes to accelerate an electron beam [5]. This research extends cyclotron resonance acceleration to ions by using a high field superconducting magnet and an rf driven magnetron operating at a harmonic of the cyclotron frequency. The superconducting solenoid provides an axial magnetic field for radial confinement and an rf driven magnetron provides azimuthal electric fields for acceleration. The intent of the ICRA concept is to create an ion accelerator which is simple, compact, lightweight, and inexpensive. Furthermore, injection and extraction are inherently simple since the beam drifts through the acceleration region. However, use of this convenient geometry leads to an accelerated beam with a large energy spread....

  6. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  7. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    Science.gov (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  8. Development status of electron cyclotron resonance ion sources (ECRIS). Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zakhary, S G [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The present review provides a very brief introduction of the historical development of this recent trend type of ion sources. There are two main types of this source which use the microwave power (2.45 up to 20 GHz). ECR ion sources that can generate substantial currents of very high charge state ions ( for example ions of U with charge state +39, with intensities of a few hundred nano amperes for injection directly into cyclotrons or synchrotrons), and the microwave sources that can generate currents (100-500 mA) for ion implanters and accelerator injectors. In this work, the theory of the microwave discharge and influence of resonance on increasing the power density consumed by the discharge are studied. The power density consumed by the discharge is found to increase with increase of number of electrons in the discharge, and decreases with increase of discharge pressure. The description of the main components and factors affecting the design of the source are declared. Also the factors enhancing source performance such as: plasma cooling by the addition of light ions which absorb energy from the heavy ions thereby increasing the lifetime of the heavy ions, and increasing the extent of highly charged ions. Injection of electrons into the discharge increases the extracted ion current, and the decrease of the magnetic field in the extraction region decreases the beam emittance. 12 figs.

  9. Perturbation analysis of cyclotron resonance in the electromagnetic field of a TE{sub 011} mode; Analyse par perturbation de la resonance cyclotronique dans le champ electromagnetique en mode TE{sub 011} mode

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The motion of an electron orbiting under the combined action of a static magnetic field and the AC azimuthal electric field of a cylindrical TE{sub 011} mode is analyzed with help of a perturbation technique. The first and second order perturbation results indicate that at cyclotron resonance the electron's center of gyration oscillates slowly at right angles to the magnetic field between two turning points. We find that superimposed upon this nearly static Exb drift the electron cyclically undergoes the process of cyclotron absorption and induced emission. Our results indicate that it is possible to insure maser action (i.e. induced emission rather than absorption) without special preparation of the electron's velocity provided that the electron is introduced into the field in certain special regions of space pervaded by the TE mode. This is a case where over-population of the upper state is accomplished through 'pumping' in real space. The relation between an electron cyclotron resonance maser based upon this principle and one based upon the principle of velocity space pumping, due to Twiss, is examined. This treatment provides physical interpretations and verifies the numerical results found earlier by Le Gardeur. (author) [French] Le mouvement d'un electron soumis a l'action combinee d'un champ magnetique statique et d'un champ electrique haute frequence azimutal engendre dans une cavite cylindrique en mode TE{sub 011} est analyse a partir d'une methode de perturbation. Les resultats des perturbations au premier et deuxieme ordre indiquent qu'a la resonance cyclotronique, le centre de giration de l'electron oscille lentement dans le plan perpendiculaire au champ magnetique entre deux points de rebroussement. En plus de la derivee quasi-statique ExB, l'electron passe par des etats d'absorption et emission cyclotronique. Les resultats du calcul confirment la possibilite d'avoir une action maser (c'est-a-dire: emission au lieu d'absorption) sans que la vitesse des

  10. Parallel ion flow velocity measurement using laser induced fluorescence method in an electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Okamoto, Atsushi; Terasaka, Kenichiro; Ogiwara, Kohei; Tanaka, Masayoshi Y.; Aramaki, Mitsutoshi

    2010-01-01

    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model. (author)

  11. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  12. Determination of the rf leakage field in the vacuum tank of the TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Hohback; Dohan, D.; Dutto, G.; Enegren, T.A.; Fong, K.; Pacak, V.

    1983-01-01

    In the TRIUMF cyclotron the dees are partially defined by the two halves of the quasi-circular vacuum chamber, which completely contains the 1 MW resonating cavity. A stray electric field or ''RF leakage'' exists inside the dees and has occasionally caused problems to probes or other tank equipment. In order to understand the nature of this field a precise 1:10 scale metal model of the entire tank and resonator system has been built and is being investigated. Various resonances have been identified: the push-pull mode at 226 MHz and the push-push mode at 233 MHz; cross modes along the dee gap resonate at 243 MHz and 253 MHz. In the quasicircular tank region outside of the main resonating cavity the Tm 310 and Tm 410 modes are mainly responsible for the configuration of the leakage field since they are closer to the operating frequency. The measurements are in reasonable agreement with the results of numerical relaxation calculation and with measurements in the cyclotron tank

  13. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    Science.gov (United States)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  14. Analysis of Doppler effect with JAERI-Fast set

    International Nuclear Information System (INIS)

    Takano, Hideki; Matsui, Yasushi.

    1977-07-01

    Temperature dependence of group cross sections in the JAERI-Fast set versions I, IR, II and IIR has been tested from the analysis of Doppler experiments performed with two different methods. One is Doppler reactivity measurement for the whole core of SEFOR assembly, and the other sample Doppler reactivity measurement for natural UO 2 in FCA assemblies V-1, V-2, VI-1 and VI-2, ZPR-6-7, ZPR-3-47, and ZPPR-2 and 3. Doppler effects were calculated with one- and two-dimensional diffusion 1-st order perturbation code DOPP2D. The results calculated with the JAERI-Fast set versions II and IIR are in good agreement with the experimental ones. In these calculation, resonance heterogeneity effect, stainless-stell buffer effect and plate heterogeneity effect are considered, and these effects contribute significantly to Doppler effect. (auth.)

  15. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  16. Phosphorus Doping Using Electron Cyclotron Resonance Plasma for Large-Area Polycrystalline Silicon Thin Film Transistors

    Science.gov (United States)

    Kakinuma, Hiroaki; Mohri, Mikio; Tsuruoka, Taiji

    1994-01-01

    We have investigated phosphorus doping using an electron cyclotron resonance (ECR) plasma, for application to the poly-Si driving circuits of liquid crystal displays or image sensors. The PH3/He was ionized and accelerated to poly-Si and c-Si substrates with a self bias of -220 V. The P concentration, as detected by secondary ion mass spectroscopy (SIMS), is ˜5×1021 cm-3 at the surface, which decayed to ˜1017 cm-3 within 50 100 nm depth. The surface is found to be etched during doping. The etching is restored by adding a small amount of SiH4 and the sheet resistance R s decreases. The optimized as-irradiated R s is ˜ 1× 105 Ω/\\Box and 1.7× 102 Ω/\\Box for poly-Si and (110) c-Si, respectively. The dependence of R s on the substrates and the anomalous diffusion constants derived from SIMS are also discussed.

  17. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    Science.gov (United States)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  18. Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification.

    Science.gov (United States)

    Ohta, Daisaku; Kanaya, Shigehiko; Suzuki, Hideyuki

    2010-02-01

    Metabolomics, as an essential part of genomics studies, intends holistic understanding of metabolic networks through simultaneous analysis of a myriad of both known and unknown metabolites occurring in living organisms. The initial stage of metabolomics was designed for the reproducible analyses of known metabolites based on their comparison to available authentic compounds. Such metabolomics platforms were mostly based on mass spectrometry (MS) technologies enabled by a combination of different ionization methods together with a variety of separation steps including LC, GC, and CE. Among these, Fourier-transform ion cyclotron resonance MS (FT-ICR/MS) is distinguished from other MS technologies by its ultrahigh resolution power in mass to charge ratio (m/z). The potential of FT-ICR/MS as a distinctive metabolomics tool has been demonstrated in nontargeted metabolic profiling and functional characterization of novel genes. Here, we discuss both the advantages and difficulties encountered in the FT-ICR/MS metabolomics studies.

  19. Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi.

    1993-11-01

    Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields is investigated by the variational treatment. It is shown that both the cyclotron resonant frequency ω * c+ due to the 1s-p+ hydrogenic transition and the cyclotron resonant frequency ω * c- due to the 1s-p - hydrogenic transition increase with the decrease of the dot size. The cyclotron resonant frequency ω * c+ is always larger than the bulk LO-phonon frequency ω LO , while the cyclotron resonant frequency ω * c- is lower than ω LO for larger quantum dots (l 0 > 2.0.r 0 , r 0 is the polaron radius). The results also show that the Coulomb interaction effect on the resonant frequencies is significant. (author). 26 refs, 3 figs

  20. Ion heating at the cyclotron resonance in plasmas magnetically confined in a toroidal octupole field

    International Nuclear Information System (INIS)

    Barter, J.D.

    1976-01-01

    Ion temperatures as high as 600 eV have been produced using rf wave heating at the ion cyclotron resonance frequency in a toroidal octupole magnetic field. Rf is coupled to the plasma with an externally driven ''fifth'' hoop which forms the inductive leg of an oscillator tank circuit. Power levels up to 1 MW at 1 to 3 MHz have been applied for periods up to 2 msec. Plasmas produced either by ECRH or by gun injection are simulated with a computer program in which known particle and energy production and loss mechanisms are used to predict the spatially averaged time behaviour of the plasma in the presence of the applied ion heating. The program can be used to calculate the consequences of the heating model in the presence of many cooling mechanisms which may each have a separate dependence on instantaneous plasma parameters. Experimental quantities compared to computer predictions include density, ion temperature, and loading of the hoop by the plasma, both resistive and reactive, and neutral reflux from the wall by electron and ion impact. Wave penetration to the resonance zone is good up to the highest densities available (6 x 10 12 cm -3 by gun injection) in good agreement with theory. Neutral reflux from the walls and the large charge exchange cooling which results is the dominant loss mechanism at the higher hoop voltages

  1. Daily observations of the development of the ionospheric equatorial anomaly by means of differential Doppler shift method

    International Nuclear Information System (INIS)

    Huang, Y.N.; Cheng, K.; Chen, S.W.

    1987-01-01

    The differential Doppler frequency shifts observed by receiving coherent radio signals at frequencies of 150 and 400 MHz transmitted from the polar orbiting satellites of U.S. Navy Navigation Satellite System have been used to deduce the latitudinal variations of the ionospheric total electron content (TEC) near the ionospheric equatorial anomaly crest region. All latitudinal variations of TEC thus obtained for each passage of an NNSS satellite are used to construct daily contour plots of TEC in a latitude versus local time coordinates. It has been shown that these contour plot of TEC can be used to investigate the behavior of TEC around equatorial anomaly crest region. Some results are presented and discussed. 18 references

  2. A cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Sprangle, P.; Tang, C.M.; Vlahos, L.

    1983-01-01

    A laser acceleration mechanism which utilizes a strong static, almost uniform, magnetic field together with an intense laser pulse is analyzed. The interaction and acceleration mechanism relies on a self resonance effect. Since the laser field is assumed to be diffraction limited, the magnetic field must be spatially varied to maintain resonance. The effective accelerating gradient is shown to scale like 1/√E /SUB b/ , where E /SUB b/ is the electron energy. For a numerical illustration the authors consider a 1 x 10 13 W/cm 2 , CO 2 laser and show that electrons can be accelerated to more than 500 MeV in a distance of 15 m (approximately two Rayleigh lengths)

  3. Third harmonic X-mode electron cyclotron resonance heating on TCV using top launch

    International Nuclear Information System (INIS)

    Porte, L.; Alberti, S.; Arnoux, G.; Martin, Y.; Hogge, J.P.; Goodman, T.P.; Henderson, M.A.; Nelson-Melby, E.; Pochelon, A.; Tran, M.Q.

    2003-01-01

    A third harmonic electron cyclotron resonance heating system (X3) has been installed, commissioned and brought into service on the Tokamak a Configuration Variable (TCV). It comprises three 118 GHz, 0.5 MW gyrotrons designed to produce pulses up to 2 seconds long. In the present configuration, 1.0MW is launched vertically from the top of the vessel into the plasma and the remaining 0.5MW is launched horizontally from the low field side. X3 has been used to heat plasmas at density exceeding the 2 nd harmonic cut-off significantly extending the operational space of additionally heated TCV plasmas. Studies have been performed to determine the optimal plasma/launcher configuration for X3 absorption for various plasma conditions and to find methods for real time feedback control of the X3 launcher. First experiments have been performed aimed at heating H-mode plasmas on TCV. First results show that the ELMs in TCV ohmic H-mode plasmas exhibit all characteristics of Type III ELMs. If, at moderate X3 power ( 0.45MW) the Type III ELMs disappear and the H-mode discharge exhibits different MHD phenomena eventually disrupting. (author)

  4. In vacuo substrate pretreatments for enhancing nanodiamond formation in electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Teii, Kungen; Kouzuma, Yutaka; Uchino, Kiichiro

    2006-01-01

    Substrate pretreatment conditions at low pressures have been examined for enhancing nanocrystalline diamond formation on silicon in electron cyclotron resonance (ECR) plasma. Three kinds of pretreatments (I) exposure to an ECR H 2 plasma with application of a substrate bias from -100 to +30 V (II) hot-filament heating in H 2 gas, and (III) hot-filament heating in vacuum, were used alone or followed by carburization prior to a two-step process of ion-enhanced nucleation in an ECR plasma and subsequent growth in a hot-filament system. The number density of diamond particles after the final growth step was greatly increased up to the order of 10 7 -10 8 cm -2 when applying pretreatment (I) at the bias of 0 V corresponding to the ion-bombardment energy of around 10 eV. In this treatment, a clean and smooth surface with minimal damage was made by the dominance of anisotropic etching by hydrogen ions over isotropic etching by hydrogen atoms. The number density of diamond particles was still more increased when applying pretreatment (II), but the treated surface was unfavorably contaminated and roughened

  5. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  6. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  7. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  8. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  9. Modified multipole structure for electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Suominen, P.

    2006-01-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)

  10. Modified multipole structure for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P.

    2006-07-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)

  11. Re-Normalization Method of Doppler Lidar Signal for Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nakgyu; Baik, Sunghoon; Park, Seungkyu; Kim, Donglyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dukhyeon [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, we presented a re-normalization method for the fluctuations of Doppler signals from the various noises mainly due to the frequency locking error for a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter and an iodine filter as the Doppler frequency discriminator. For the Doppler frequency shift measurement, the transmission ratio using the injection-seeded laser is locked to stabilize the frequency. If the frequency locking system is not perfect, the Doppler signal has some error due to the frequency locking error. The re-normalization process of the Doppler signals was performed to reduce this error using an additional laser beam to an Iodine cell. We confirmed that the renormalized Doppler signal shows the stable experimental data much more than that of the averaged Doppler signal using our calibration method, the reduced standard deviation was 4.838 Χ 10{sup -3}.

  12. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  13. Electron - cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Fidone, I.; Castejon, F.

    1992-01-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs

  14. Electron-cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Filone, I.

    1992-01-01

    A brief summary of the theory and experiments on electron-cyclotron heating and current drive is presented. the general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D-III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (author) 8 fig. 13 ref

  15. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.

    Science.gov (United States)

    Santillan, Arturo O; Cutanda-Henríquez, Vicente

    2008-11-01

    An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green's function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann-Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported.

  16. Vancouver Cyclotron Conference

    International Nuclear Information System (INIS)

    Clark, David J.

    1993-01-01

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  17. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Device Innovation Center, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-06-15

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  18. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    Science.gov (United States)

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  19. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  20. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  1. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  2. Evaluation of Portal Venous Velocity with Doppler Ultrasound in Patients with Nonalcoholic Fatty Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulusan, Serife; Yakar, Tolga; Koc, Zafer [Baskent University Faculty of Medicine, Adana (Turkmenistan)

    2011-08-15

    We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.

  3. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  4. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  5. Calculation of the Doppler broadening function using Fourier analysis

    International Nuclear Information System (INIS)

    Goncalves, Alessandro da Cruz

    2010-01-01

    An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function ψ(x,ζ) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for ψ(x,ζ), enables to obtain a simple analytic solution for the Doppler broadening function. (author)

  6. Radio frequency heating in the ion-cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1985-01-01

    Both the theory of the absorption process in the ion-cyclotron range of frequencies and some of the experiments which slow the promise and problems with radio frequency plasma heating in this range are discussed. It is shown that mode conversion is invariably involved in the process and so an extensive review of mode conversion theory, expecially as it applies to problems with back-to-back cutoff-resonance pairs, is included. This includes a discussion of the tunneling equation with and without absorption effects and with and without energy conservation. The general theory is applied to various ion-cyclotron harmonics, the two-ion hybrid resonance, and to a case where a wave converts to a Bernstein mode at the plasma edge. The results are given analytically for a variety of cases without absorption, and empirical formulas are given for the second and third harmonics of the ion-cyclotron frequency, which include effects of absorption. Various problem areas in the theory are also discussed with some of the limitations caused by the approximations involved. A number of experiments are also discussed which show effective heating, and some show the features of the mode conversion process, indicating that the general processes of absorption are reasonably well understood. Areas where further work is necessary, both in fundamental theory and in comparing theory with experiment, are also discussed

  7. Proposal for a high frequency of cyclotron DC-72 CCSR

    International Nuclear Information System (INIS)

    Hudak, M.

    2009-01-01

    Two half-wave RF systems with vertical resonators tanks located in a yoke of a magnet will be used for acceleration of charged particles in range from H- to Xe +1 8 with energy 72 - 2 MeV/u. The range of frequency from 18.25 MHz up to 32 MHz is provided by changing of the length of resonators. The calculated quality-factor of RF system is equal from 5000 to 6000. At a voltage rating of 60 kV on two dees it is necessary to use the HF generator with an output power about 25 kW. The basic parameters of a HF system of a cyclotron DC - 72 are shown in the given article. The results are obtained on the basis of numerical calculations conducted with the software package POISSON SUPERFISH and MicroCap and they were checked by the series of measurements using the cyclotron built in Joint Institute for Nuclear Research. Measurements of the resonance system confirm the correctness of the new calculation methods and procedures for designing and optimizing various parts of HF circuits used in accelerators technology. By using of these methods it is possible to create a complete model of the entire accelerator HF system. The HF system consists of power generator, transmission lines, resonant system and monitoring and controlling system. (Author)

  8. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  9. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  10. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    Science.gov (United States)

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  11. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  12. Characteristic of slide away discharges in the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Y., E-mail: zychen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Kim, W.C.; Yoon, S.W.; England, A.C.; Lee, K.D.; Yoo, J.W.; Oh, Y.K.; Kwak, J.G.; Kwon, M. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of)

    2012-11-01

    Low density slide away discharges with anomalous Doppler resonance (ADR) effects have been observed in the KSTAR tokamak. When the line averaged electron density was lower than 0.6×10{sup 19} m{sup −3}, the discharges went into the slide-away regime with relaxations in the electron cyclotron emission due to the ADR effects which transferred the runaway electron energy from parallel to perpendicular motion. The suppression of the ADR effects has been achieved by electron cyclotron resonance heating which enhanced the perpendicular energy of electrons and led to an isotropization of the electron distribution function.

  13. The development of technology for the improvement of cyclotron performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jong Seo; Kim, Y. S.; Ha, J. H.; Lee, M. Y.; Lee, H. S

    1999-05-01

    We show the first-order beam optics theory which is a simplified theory that can be used to carry out the initial design of a cyclotron. Based on this, a computer program has been developed to determine main cyclotron parameters such as number of magnet sectors, sector angle, hill and valley fields, and overall size of the cyclotron etc. We then show the result of two-dimensional magnetic field calculation using POISSON program. By using this program, one can determine magnet yoke geometry and the average magnetic fields etc. Finally, the three-dimensional computer program OPERA-3D had been invoked to determine magnet pole tips (i.e. sector). Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this report, we show the results of cyclotron magnet design. And we designed 72 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Our developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion.

  14. Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2010-08-15

    A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.

  15. Deep vein thrombosis of lower extremity: What is the most important finding in duplex Doppler sonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Koh, Byung Hee; Cho, On Koo; Rhim, Hyun Chul; Seo, Heung Suk; Hahm, Chang Kok; Kwak, Jin Young [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    1993-12-15

    The positive findings of deep vein thrombosis on duplex Doppler ultrasonography such as intraluminal clot,non-compressibility of the venous lumen and abnormal or absent Doppler shift signal are well known. However, relatively hypoechoic thrombus is not always seen in sonography, and the vein is frequently compressible in partial thrombosis. In order to evaluate the most common and important findings of deep vein thrombosis, we analysed the findings at duplex Doppler ultrasound in 19 patients and compared the results with those of contrast venography in 11 patients. Duplex Doppler ultrasound examination of the common femoral and popliteal veins was performed for one extremity in 14 patients, and for both extremities in 5 (total 24 extremities). Contrast venography was performed for one extremity in 7 patients, and for both sides in 4 (total 15 extremities).Thrombosis was seen in 45.8%, non-compressibility of lumen in 75%, absent or decreased Doppler signal from common femoral vein in 95.8%. Thrombosis was seen in 41.7%, non-compressibility of lumen in 70.8%, absent or decreased Doppler shift signal from popliteal vein in 95.8%. We conclude that abnormal or absent Doppler shift signal is the most sensitive and important finding of the deep vein thrombosis

  16. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1991-08-01

    This report contains descriptions of research programs carried out by Institute staff, as well as progress on new instrumentation during the period, April 1, 1990, to March 31, 1991. The K500 cyclotron and ECR source provided beam for 4140 hours during the period. The beam was actually available for experiments 1927.50 hours and 1110.50 hours was devoted to developing new beams and exploring cyclotron performance. A wide range of beams from protons to Xe with energies from 2.4 MeV/u to 60 MeV/U have been used in experiments. The highest total energy beam accelerated was 35 MeV/u 63 Cu. The ECR source, made a tremendous improvement in accelerator performance and reliability. Substantial amounts of beam time were devoted to investigations of hot nuclei, electron-positron, giant resonances, atomic effects of high velocity ion beams, astrophysics related reactions and proton and alpha bremsstrahlung. Scientific accomplishments included determination of the heat capacity of nuclei through new insight into the level densities and establishing a lower limit for electron positron resonances a factor of ten better than previous measurements. The proton spectrometer, constructed for studies of the Gamow-Teller interaction is complete, and initial physics measurements will be made in the next few months. All of the BaF 2 crystals have been delivered and acceptance tests are underway. A K=315 MDM spectrometer has been obtained from Oxford University and is scheduled for installation in Spring 1992, after removal of the K=150 Enge split pole spectrometer. Institute groups continue participation in MEGA, instrumentation projects for RHIC, and few nucleon studies at LAMPF and KEK. Reports of these activities are included

  17. Electron cyclotron heating of a tokamak reactor at down-shifted frequencies

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Mazzucato, E.

    1985-01-01

    The absorption of electron cyclotron waves in a hot and dense tokamak plasma is investigated for the case of the extraordinary mode for outside launching. It is shown that, for electron temperatures T/sub e/ greater than or equal to 5 keV, strong absorption occurs for oblique propagation at frequencies significantly below the electron gyrofrequency at the plasma center. A new density dependence of the wave absorption is found which is more favorable for plasma heating than the familiar n/sub e/ -1 scaling

  18. Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts

    International Nuclear Information System (INIS)

    Wenzel, T.J.; Zaia, J.

    1987-01-01

    Lanthanide complexes of the formula [Ln(fod) 4 ] - (FOD, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) are effective organic-soluble nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. The shift reagent is formed in solution from Ln(fod) 3 and Ag(fod) or K(fod). The selection of Ag(fod) or K(fod) in forming the shift reagent is dependent on the anion of the organic salt. Ag(fod) is more effective with halide salts, whereas K(fod) is preferred with tetrafluoroborate salts. Resolution of diastereotopic hydrogen atoms was observed in the shifted spectra of certain substrates. Enantiomeric resolution was obtained in the spectrum of sec-butylisothiouronium chloride with a chiral shift reagent. The reagents can be employed in solvents such as chloroform and benzene

  19. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  20. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  1. Atomic stopping-power problems encountered in measurements of nuclear γ-ray lifetimes by the Doppler-shift-attenuation method

    International Nuclear Information System (INIS)

    Latta, B.M.; Scanlon, P.J.

    1976-01-01

    The value of the nuclear lifetime of the 3.34-MeV level in 22 Ne as determined by Broude et al. by the Doppler shift attenuation method exhibits variations depending on the atomic number Z 2 of the slowing down medium. The lifetime has been re-evaluated within the framework of the Lindhard-Winther stopping theory, assuming a simple approximate form for the density of electrons associated with an atom in a solid and an effective point charge for the projectile based on experimental stopping powers. Although there are still variations in the value of the lifetime the variations appear to be systematic through the region of the transition elements. (Auth.)

  2. Fourier transform ion cyclotron resonance mass spectrometry: the analytical tool for heavy oil and bitumen characterization

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Thomas B.P; Brown, Melisa; Hsieh, Ben; Larter, Steve [Petroleum Reservoir Group (prg), Department of Geoscience, University of Calgary, Alberta (Canada)

    2011-07-01

    The Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS), developed in the 1970's by Marshall and Comisarow at the University of British Columbia, has become a commercially available tool capable of analyzing several hundred thousand components in a petroleum mixture at once. This analytical technology will probably usher a dramatic revolution in geochemical capability, equal to or greater than the molecular revolution that occurred when GCMS technologies became cheaply available. The molecular resolution and information content given by the FTICRMS petroleum analysis can be compared to the information in the human genome. With current GCMS-based petroleum geochemical protocols perhaps a few hundred components can be quantitatively determined, but with FTICRMS, 1000 times this number of components could possibly be resolved. However, fluid and other properties depend on interaction of this multitude of hydrocarbon and non-hydrocarbon components, not the components themselves, and access to the full potential of this new petroleomics will depend on the definition of this interactome.

  3. Response of a core coherent density oscillation on electron cyclotron resonance heating in Heliotron J plasma

    Science.gov (United States)

    Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.

    2018-01-01

    We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.

  4. Ion Cyclotron Heating on Proto-MPEX

    Science.gov (United States)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  5. Linear theory of microwave absortion in fusion plasmas. A study of the electron cyclotron resonance and its particularization to a helical axis device for magnetic confinement

    International Nuclear Information System (INIS)

    Castejon M, F.

    1989-01-01

    The study of the Linear Theory microwave propagation and absorption in the the frequency range of electron cyclotron resonance, in a magnetized plasma, is developed. This study is particularized to the flexible heliac TJ-II, whose main characteristics are dsetailed in a memory chapter, as an interesting case example for its peculiar magnetic configuration. As a preliminary phase, a cold plasma model is useds to analyze the resonance accessibility and the approximated density limits which will be obtainable in each electron cyclotron resonance harmonic. This analysis was used to find the suitable positions for the microwave injection in TJ-II. An analytical weakly relativistic model for the dielectric tensor is developed, valid for oblique propagation, that takes account of the effect of superthermal electrons. Second order Larmor radius effects are included, so that the Quasi-Electrostatic branch of X mode can be studied. A numerical study is then presented on the absorption properties of TJ-II. Since the TJ-II geometry is complex and its magnetic field distribution is very different from that of a tokamak, ray tracing calculations are necessary to consider refraction effects. The ray tracing codse RAYS, developed in the Oak Ridge National Laboratory (U.S.A.), was take and adapted to the helical magnetic configuration of the TJ-II. The absorption model described above was then included in RAYS. For completeness, an introduction to the Quasi Linear Theory, natural prolongation of this work, is included at the end of the memory, ands the effects of taking into account the quasi linear evolution of the distribution function are described. (Author)

  6. MICHIGAN: Cyclotron conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead.

  7. ORNL TNS program: microwave start-up of tokamak plasmas near electron cyclotron and upper hybrid resonances

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.

    1977-12-01

    The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10 12 to 10 13 cm -3 can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks

  8. On the problem of negative dissipation of fast waves at the fundamental ion cyclotron resonance and the accuracy of absorption estimates

    International Nuclear Information System (INIS)

    Castejon, F.; Pavlov, S.S.; Swanson, D. G.

    2002-01-01

    Negative dissipation appears when ion cyclotron resonance (ICR) heating at first harmonic in a thermal plasma is estimated using some numerical schemes. The causes of the appearance of such a problem are investigated analytically and numerically in this work showing that the problem is connected with the accuracy with which the absorption coefficient at the first ICR harmonic is estimated. The corrections for the absorption estimation are presented for the case of quasiperpendicular propagation of fast wave in this frequency range. A method to solve the problem of negative dissipation is presented and, as a result, an enhancement of absorption is found for reactor-size plasmas

  9. Development of a flexible Doppler reflectometry system and its application to turbulence characterization in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Troester, Carolin Helma

    2008-04-15

    An essential challenge in present fusion plasma research is the study of plasma turbulence. The turbulence behavior is investigated experimentally on the ASDEX Upgrade tokamak using Doppler reflectometry, a diagnostic technique sensitive to density fluctuations at a specific wavenumber k {sub perpendicular} {sub to}. This microwave radar diagnostic utilizes localized Bragg backscattering of the launched beam (k{sub 0}) by the density fluctuations at the plasma cutoff layer. The incident angle {theta} selects the probed k {sub perpendicular} {sub to} via the Bragg condition k {sub perpendicular} {sub to} {approx} 2k{sub 0}sin{theta}. The measured Doppler shifted frequency spectrum allows the determination of the perpendicular plasma rotation velocity, u {sub perpendicular} {sub to} =v{sub E} {sub x} {sub B}+v{sub turb}, directly from the Doppler frequency shift(f{sub D} = u {sub perpendicular} {sub to} k {sub perpendicular} {sub to} /2{pi}), and the turbulence amplitude from the backscattered power level. This thesis work presents a survey of u {sub perpendicular} {sub to} radial profiles and k {sub perpendicular} {sub to} spectrum measurements for a variety of plasma conditions obtained by scanning the antenna tilt angle. This was achieved by extending the existing V-band Doppler reflectometry system (50 - 75 GHz) with a new W-band system (75 - 110 GHz), which was especially designed for measuring the k {sub perpendicular} {sub to} spectrum and additionally expands the radial coverage into the plasma core region. It consists of a remote steerable antenna with an adjustable line of sight allowing for dynamic wavenumber selection up to 25 cm {sup -1} and a reflectometer with a 'phase locked loop' stabilized transmitter allowing for the precise determination of the instrument response function. The proper system functionality was demonstrated by laboratory testing and benckmarking against the V-band system. The new profile measurements obtained show a

  10. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  11. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  12. A new formulation for the Doppler broadening function relaxing the approximations of Beth–Plackzec

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Gonçalves, Alessandro C.; Martinez, Aquilino S.; Mesquita, Amir Z.

    2016-01-01

    Highlights: • One of the Beth–Placzek approximation were relaxed. • An additional term in the form of an integral is obtained. • A new mathematical formulation for the Doppler broadening function is proposed. - Abstract: In all nuclear reactors some neutrons can be absorbed in the resonance region and, in the design of these reactors, an accurate treatment of the resonant absorptions is essential. Apart from that, the resonant absorption varies with fuel temperature due to the Doppler broadening of the resonances. The thermal agitation movement in the reactor core is adequately represented in the microscopic cross-section of the neutron-core interaction through the Doppler broadening function. This function is calculated numerically in modern systems for the calculation of macro-group constants, necessary to determine the power distribution of a nuclear reactor. It can also be applied to the calculation of self-shielding factors to correct the measurements of the microscopic cross-sections through the activation technique and used for the approximate calculations of the resonance integrals in heterogeneous fuel cells. In these types of application we can point at the need to develop precise analytical approximations for the Doppler broadening function to be used in the calculation codes that calculate the values of this function. However, the Doppler broadening function is based on a series of approximations proposed by Beth–Plackzec. In this work a relaxation of these approximations is proposed, generating an additional term in the form of an integral. Analytical solutions of this additional term are discussed. The results obtained show that the new term is important for high temperatures.

  13. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  14. Magnetic resonance angiography in renal grafts. Comparison with color Doppler echography

    International Nuclear Information System (INIS)

    Yanagisawa, Takayoshi; Otsubo, Osamu; Nozaki, Harushige

    1995-01-01

    We studied relationship between magnetic resonance angiography (MRA) of renal graft and renal graft function in 14 renal transplantations (10 from living donors, 4 from cadaveric donors). MRA was performed on 0.3-T permanent magnet system (MRP 7000, HITACHI, JAPAN) using 2 dimensional time of flight technique (FOV: 350 mm 2 , RT: 60 msec, ET: 10 msec, FA: 90deg, Slice: volumes 60, thickness 4 mm, overlap 1 mm). As for parameters of renal graft function, we evaluated color doppler echography (CD) of transplanted renal artery, renal blood flow (RBF), velocity of interlobar artery (ILA) and serum creatinine level (S-Cr). CD, RBF and velocity of ILA were visualized and measured by duplex color doppler echosystem (EUB-565A, HITACHI, JAPAN). Depending on visualization of transplanted renal artery, MRA was graded into 3 groups (MA Grade 3: visualization of ILA, MA Grade 2: visualization of segmental artery and the first branch but no visualization of ILA, MA Grade 1: visualization of main renal artery only). Likewise, visualization of CD was graded into 3 groups (CD Grade 3: good visualization of arcuate artery (AA) and ILA, CD Grade 2: poor visualization of AA but good visualization of ILA, CD Grade 1: poor visualization of ILA). The MRA grading had a very significant correlation (r=0.79, p<0.001) with the CD grading. As for RBF and velocity of ILA, the RBF of MA Grade 3 group (n=8) was significantly (p<0.05) higher than the MA Grade 2 group (n=4) and the MA Grade 1 group (n=2), and the velocity of ILA of MA Grade 3 group was also higher than the above groups but not significantly. Furthermore, the S-Cr of MA Grade 3 was significantly (p<0.05) lower than the others. These results showed that MRA of renal graft had a qualitative index of renal graft function. (author)

  15. MICHIGAN: Cyclotron conference

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead

  16. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Silze, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  17. R&D activities on RF contacts for the ITER ion cyclotron resonance heating launcher

    Energy Technology Data Exchange (ETDEWEB)

    Hillairet, Julien, E-mail: julien.hillairet@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Argouarch, Arnaud [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bamber, Rob [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Beaumont, Bertrand [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bernard, Jean-Michel; Delaplanche, Jean-Marc [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Durodié, Frédéric [Laboratory for Plasmas Physics, 1000 Brussels (Belgium); Lamalle, Philippe [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lombard, Gilles [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Nicholls, Keith; Shannon, Mark [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vulliez, Karl [Maestral Laboratory, Technetics Group, Pierrelatte (France); Cantone, Vincent; Hatchressian, Jean-Claude; Larroque, Sébastien; Lebourg, Philippe; Martinez, André; Mollard, Patrick; Mouyon, David; Pagano, Marco [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2015-10-15

    Highlights: • CEA have developed a dedicated test-bed for testing RF contact in ITER relevant conditions (vacuum, temperature, RF current). • A prototype of RF contacts have been designed and manufactured, with copper lamellas brazed on a titanium holder. • This RF contact prototype failed at RF current larger than 1.8 kA. • Extensive R&D is foreseen with new RF contact designs. - Abstract: Embedded RF contacts are integrated within the ITER ICRH launcher to allow assembling, sliding and to lower the thermo-mechanical stress. They have to withstand a peak RF current up to 2.5 kA at 55 MHz in steady-state conditions, in the vacuum environment of the machine. The contacts have to sustain a temperature up to 250 °C during several days in baking operations and have to be reliable during the whole life of the launcher without degradation. The RF contacts are critical components for the launcher performance and intensive R&D is therefore required, since no RF contacts have so far been qualified at these specifications. In order to test and validate the anticipated RF contacts in operational conditions, CEA has prepared a test platform consisting of a steady-state vacuum pumped RF resonator. In collaboration with ITER Organization and the CYCLE consortium (CYclotron CLuster for Europe), an R&D program has been conducted to develop RF contacts that meet the ITER ICRH launcher specifications. A design proposed by CYCLE consortium, using brazed lamellas supported by a spring to improve thermal exchange efficiency while guaranteeing high contact force, was tested successfully in the T-resonator up to 1.7 kA during 1200 s, but failed for larger current values due to a degradation of the contacts. Details concerning the manufacturing of the brazed contacts on its titanium holder, the RF tests results performed on the resonator and the non-destructive tests analysis of the contacts are given in this paper.

  18. Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICRMS).

    Science.gov (United States)

    Taguchi, Vince Y; Nieckarz, Robert J; Clement, Ray E; Krolik, Stefan; Williams, Robert

    2010-11-01

    The feasibility of utilizing a gas chromatograph-tandem quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (GC-MS/MS-FTICRMS) to analyze chlorinated-dioxins/furans (CDDs/CDFs) and mixed halogenated dioxins/furans (HDDs/HDFs) was investigated by operating the system in the GC-FTICRMS mode. CDDs/CDFs and mixed HDDs/HDFs could be analyzed at 50,000 to 100,000 resolving power (RP) on the capillary gas chromatographic time scale. Initial experiments demonstrated that 1 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 5 pg of 2-bromo-3,7,8-trichlorodibenzo-p-dioxin (BTrCDD) could be detected. The feasibility of utilizing an FTICRMS for screening of CDDs/CDFs, HDDs/HDFs and related compounds was also investigated by analyzing an extract from vegetation exposed to fall-out from an industrial fire. CDDs/CDFs, chlorinated pyrenes and chlorinated tetracenes could be detected from a Kendrick plot analysis of the ultrahigh resolution mass spectra. Mass accuracies were of the order of 0.5 ppm on standards with external mass calibration and 1 ppm on a sample with internal mass calibration. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  19. High temperature electron cyclotron resonance etching of GaN, InN, and AlN

    International Nuclear Information System (INIS)

    Shul, R.J.; Kilcoyne, S.P.; Hagerott Crawford, M.; Parmeter, J.E.; Vartuli, C.B.; Abernathy, C.R.; Pearton, S.J.

    1995-01-01

    Electron cyclotron resonance etch rates for GaN, InN, and AlN are reported as a function of temperature for Cl 2 /H 2 /CH 4 /Ar and Cl 2 /H 2 /Ar plasmas. Using Cl 2 /H 2 /CH 4 /Ar plasma chemistry, GaN etch rates remain relatively constant from 30 to 125 degree C and then increase to a maximum of 2340 A/min at 170 degree C. The InN etch rate decreases monotonically from 30 to 150 degree C and then rapidly increases to a maximum of 2300 A/min at 170 degree C. This is the highest etch rate reported for this material. The AlN etch rate decreases throughout the temperature range studied with a maximum of 960 A/min at 30 degree C. When CH 4 is removed from the plasma chemistry, the GaN and InN etch rates are slightly lower, with less dramatic changes with temperature. The surface composition of the III--V nitrides remains unchanged after exposure to the Cl 2 /H 2 /CH 4 /Ar plasma over the temperatures studied

  20. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  1. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  2. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui

    2017-08-01

    Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lifetime measurement in {sup 168}Yb using the recoil distance Doppler shift (RDDS) method

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Michael; Moeller, Oliver; Pietralla, Norbert [TU Darmstadt (Germany); Dewald, Alfred; Pissulla, Thomas [Universitaet Koeln (Germany); Petkov, Pavel [Universitaet Koeln (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2009-07-01

    In the analysis of coincidence RDDS experiments one uses the Differential Decay Curve (DDC) Method to determine lifetimes of excited states. Experiments with small recoil velocities, thus small Doppler shifts, enforce the use of narrow coincidence gates to determine peak intensities. This results in a loss of statistics. As an alternative to the application of gates, we present the fit of 2-dimensional functions to the {gamma}{gamma} coincidence data. This approach has been studied on data taken in a RDDS measurement for the ground state band of {sup 168}Yb. The {sup 18}O({sup 154}Sm,4n){sup 168}Yb{sup *} fusion evaporation reaction was induced by an 80 MeV ion beam of the tandem accelerator facility in Cologne. The target was mounted in the Cologne coincidence plunger device. Lifetimes from the 4{sub 1}{sup +} to the 10{sub 1}{sup +} states have been extracted. The method is discussed and the results are compared to the CBS rotor model in the context of centrifugal stretching.

  4. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    Directory of Open Access Journals (Sweden)

    Weiqiang Pan

    2015-03-01

    Full Text Available In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  5. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    Science.gov (United States)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  6. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  7. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  8. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  9. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    F. Søraas

    1994-08-01

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  10. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    K. Aarsnes

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  11. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  12. Development and studies on a compact electron cyclotron resonance plasma source

    Science.gov (United States)

    Ganguli, A.; Tarey, R. D.; Arora, N.; Narayanan, R.

    2016-04-01

    It is well known that electron cyclotron resonance (ECR) produced plasmas are efficient, high-density plasma sources and have many industrial applications. The concept of a portable compact ECR plasma source (CEPS) would thus become important from an application point of view. This paper gives details of such a CEPS that is both portable and easily mountable on a chamber of any size. It uses a fully integrated microwave line operating at 2.45 GHz, up to 800 W, cw. The required magnetic field is produced by a set of suitably designed NdFeB ring magnets; the device has an overall length of  ≈60 cm and weighs  ≈14 kg including the permanent magnets. The CEPS was attached to a small experimental chamber to judge its efficacy for plasma production. In the pressure range of 0.5-10 mTorr and microwave power of  ≈400-500 W the experiments indicate that the CEPS is capable of producing high-density plasma (≈9  ×  1011-1012 cm-3) with bulk electron temperature in the range  ≈2-3 eV. In addition, a warm electron population with density and temperature in the range ≈7  ×  108-109 cm-3 and  ≈45-80 eV, respectively has been detected. This warm population plays an important role at high pressures in maintaining the high-density plasma, when plasma flow from the CEPS into the test chamber is strongly affected.

  13. The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

    CERN Document Server

    Cocolios, T E; Procter, T J; Rothe, S; Garcia Ruiz, R F; Stroke, H H; Rossel, R E; Heylen, H; Franchoo, S; Marsh, B A; Verney, D; Papuga, J; Strashnov, I; Billowes, J; de Groote, R P; Le Blanc, F; Simpson, G S; Fedosseev, V N; Lynch, K M; Wood, R T; Budincevic, I; Mason, P J R; Wendt, K D A; Flanagan, K T; De Schepper, S; Rajabali, M M; Al Suradi, H H; Walker, P M; Smith, A J

    2013-01-01

    The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1\\% experimental efficiency, and as low as a 0.001\\% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  15. Collapse and revival of the Doppler-Rabi oscillations of a moving atom in a cavity

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2008-01-01

    Collapse and revival of the Doppler-Rabi oscillations of a two-level atom moving in a cavity electromagnetic field are analyzed. The coupled atom-field dynamics are predicted accurately by numerical calculation and approximately by using the stationary phase approximation combined with the Poisson summation formula. The collapse and revival patterns are shown to be qualitatively different in the cases of moving atom and atom at rest. In particular, quantum revivals of Doppler-Rabi oscillations occur with a period determined by the Doppler shift of the atomic transition frequency. This regime of Doppler-Rabi oscillations requires that the Rabi frequency and the Doppler shift satisfy the condition Ω R D . Under the inverse relation, the collapse- revival phenomenon generally does not occur. It is shown that even a small amount of atom-cavity detuning eliminates collapse-revival behavior. The analysis is performed for both coherent and thermal cavity fields

  16. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.B.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this heating introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a boundary condition at the separatrix. Second, Monte Carlo calculations show that ion-cyclotron energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts that ion-cyclotron heating will cause a rotational shear layer to develop. The corresponding jump in plasma rotation ΔΩ is found to be negative outwards when the ion-cyclotron surface lies on the low-field side of the magnetic axis and positive outwards with the resonance on the high-field side. The magnitude of the jump ΔΩ=(4q max WJ 2 *) (eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where |J 2 *|≅2-4 is a nondimensional rotation frequency calculated by the Monte Carlo ORBIT code [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)]. For a no-slip boundary condition when the resonance lies on the low-field side of the magnetic axis, the sense of predicted axial rotation is co-current and overall agreement with experiment is good. When the resonance lies on the high-field side, the predicted rotation becomes countercurrent for a no-slip boundary while the observed rotation remains co-current. The rotational shear layer position is controllable and of sufficient magnitude to affect microinstabilities

  17. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  18. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  19. Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar

    OpenAIRE

    Clemente, C.; Balleri, A.; Woodbridge, K.; Soraghan, J. J.

    2013-01-01

    Target motions, other than the main bulk translation of the target, induce Doppler modulations around the main Doppler shift that form what is commonly called a target micro-Doppler signature. Radar micro-Doppler signatures are generally both target and action speci c and hence can be used to classify and recognise targets as well as to identify possible threats. In recent years, research into the use of micro-Doppler signatures for target classi cation to address many defence and security ch...

  20. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results