WorldWideScience

Sample records for doppler velocity measurements

  1. Doppler velocity measurements from large and small arteries of mice

    Science.gov (United States)

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  2. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  3. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  4. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  5. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  6. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  7. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    Science.gov (United States)

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  8. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  9. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  10. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  11. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  12. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    1996-08-01

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  13. Laser Doppler measurements in two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.; Zare, M.

    1976-01-01

    Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows

  14. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  15. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  16. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  17. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  18. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  19. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  20. Analysis of placenta vascularization in patients with uterine altered artery Doppler flow velocity exams.

    Science.gov (United States)

    Gilio, Daniel Bruno; Miranda Corrêa, Rosana Rosa; Souza de Oliveira Guimarães, Camila; Peres, Luiz Cesar; Marques Salge, Ana Karina; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; Costa da Cunha Castro, Eumenia

    2009-08-01

    One of the frequent questions in obstetric practice is to determine placental vascular changes that may account for abnormal Doppler flow velocity alterations in maternal uterine vessels from women and fetuses without pregnancy pathology. A retrospective morphometric study was realized using 27 placentas from patients submitted for Doppler flow velocity exam during pregnancy. The placentas were morphologically examined using hematoxylin-eosin staining. Measurements of villi were made with the use of a video camera coupled to a common light microscope and a computer with automatic image analyzing software. Of the 27 placentas, 13 (48%) were of patients showing unaltered Doppler and 14 (52%) showing altered Doppler. The number of stem villi vessels was significantly larger in the placentas of patients with Doppler exam alterations (P = 0.003). This group also presented greater stem villi vessel thickness, although without significant difference. The number of intermediary and terminal villi vessels was greater in the placentas of patients with altered Doppler exams (P < 0.001), and a greater terminal villi area was observed in these cases (P < 0.001). The morphological proof that uterine artery Doppler flow velocity exam alterations are associated with placental vascular alterations demonstrates the importance of this exam during prenatal care, even in the absence of maternal-fetal alterations.

  1. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  2. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  3. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  4. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  5. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  6. Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    Science.gov (United States)

    Anan, T.; Ichimoto, K.; Hillier, A.

    2017-05-01

    Context. In astrophysical systems with partially ionized plasma, the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field's Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes such as magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims: This paper aims to investigate the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods: We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory. We compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results: There are instances when the difference in velocities between neutral atoms and ions is significant, for example 1433 events ( 3% of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions: We interpreted the difference of Doppler velocities as being a result of the motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma. The movie attached to Fig. 1 is available at http://www.aanda.org

  7. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    Science.gov (United States)

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  8. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  9. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  10. Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color M-mode Doppler echocardiography in first myocardial infarction

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Seward, J B

    2000-01-01

    OBJECTIVES: To determine the ability of the ratio of peak E-wave velocity to flow propagation velocity (E/Vp) measured with color M-mode Doppler echocardiography to predict in-hospital heart failure and cardiac mortality in an unselected consecutive population with first myocardial infarction (MI...

  11. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  12. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  13. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  14. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  15. Carotid near-occlusion frequently has high peak systolic velocity on Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Khangure, Simon R.; Machnowska, Matylda; Fox, Allan J.; Hojjat, Seyed-Parsa; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Division of Neuroimaging, Toronto (Canada); Benhabib, Hadas [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); Groenlund, Christer [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Herod, Wendy [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); Maggisano, Robert [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); University of Toronto, Division of Vascular Surgery, Department of Surgery, Toronto (Canada); Sjoeberg, Anders [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Wester, Per [Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden); Karolinska Institutet Danderyds Hospital, Department of Clinical Sciences, Stockholm (Sweden); Hopyan, Julia [University of Toronto, Division of Neurology, Department of Medicine, Toronto (Canada); Johansson, Elias [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden)

    2018-01-15

    Carotid near-occlusion is a tight atherosclerotic stenosis of the internal carotid artery (ICA) resulting in decrease in diameter of the vessel lumen distal to the stenosis. Near-occlusions can be classified as with or without full collapse, and may have high peak systolic velocity (PSV) across the stenosis, mimicking conventional > 50% carotid artery stenosis. We aimed to determine how frequently near-occlusions have high PSV in the stenosis and determine how accurately carotid Doppler ultrasound can distinguish high-velocity near-occlusion from conventional stenosis. Included patients had near-occlusion or conventional stenosis with carotid ultrasound and CT angiogram (CTA) performed within 30 days of each other. CTA examinations were analyzed by two blinded expert readers. Velocities in the internal and common carotid arteries were recorded. Mean velocity, pulsatility index, and ratios were calculated, giving 12 Doppler parameters for analysis. Of 136 patients, 82 had conventional stenosis and 54 had near-occlusion on CTA. Of near-occlusions, 40 (74%) had high PSV (≥ 125 cm/s) across the stenosis. Ten Doppler parameters significantly differed between conventional stenosis and high-velocity near-occlusion groups. However, no parameter was highly sensitive and specific to separate the groups. Near-occlusions frequently have high PSV across the stenosis, particularly those without full collapse. Carotid Doppler ultrasound does not seem able to distinguish conventional stenosis from high-velocity near-occlusion. These findings question the use of ultrasound alone for preoperative imaging evaluation. (orig.)

  16. Blood flow velocity in migraine attacks - a transcranial Doppler study

    International Nuclear Information System (INIS)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D.

    1991-01-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs

  17. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  18. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  19. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  20. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  1. Evaluation of Portal Venous Velocity with Doppler Ultrasound in Patients with Nonalcoholic Fatty Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulusan, Serife; Yakar, Tolga; Koc, Zafer [Baskent University Faculty of Medicine, Adana (Turkmenistan)

    2011-08-15

    We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.

  2. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  3. Assessment of the Influence Factors on Nasal Spray Droplet Velocity Using Phase-Doppler Anemometry (PDA)

    OpenAIRE

    Liu, Xiaofei; Doub, William H.; Guo, Changning

    2011-01-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box–Behnken design of experiments (DOE) methodology were applied to investigate the influences of actua...

  4. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  5. Is the measurement of inferior thyroid artery blood flow velocity by color-flow Doppler ultrasonography useful for differential diagnosis between gestational transient thyrotoxicosis and Graves' disease? A prospective study.

    Science.gov (United States)

    Zuhur, Sayid Shafi; Ozel, Alper; Velet, Selvinaz; Buğdacı, Mehmet Sait; Cil, Esra; Altuntas, Yüksel

    2012-01-01

    To determine the role of peak systolic velocity, end-diastolic velocity and resistance indices of both the right and left inferior thyroid arteries measured by color-flow Doppler ultrasonography for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. The right and left inferior thyroid artery-peak systolic velocity, end-diastolic velocity and resistance indices of 96 patients with thyrotoxicosis (41 with gestational transient thyrotoxicosis, 31 age-matched pregnant patients with Graves' disease and 24 age- and sex-matched non-pregnant patients with Graves' disease) and 25 age and sex-matched healthy euthyroid subjects were assessed with color-flow Doppler ultrasonography. The right and left inferior thyroid artery-peak systolic and end-diastolic velocities in patients with gestational transient thyrotoxicosis were found to be significantly lower than those of pregnant patients with Graves' disease and higher than those of healthy euthyroid subjects. However, the right and left inferior thyroid artery peak systolic and end-diastolic velocities in pregnant patients with Graves' disease were significantly lower than those of non-pregnant patients with Graves' disease. The right and left inferior thyroid artery peak systolic and end-diastolic velocities were positively correlated with TSH-receptor antibody levels. We found an overlap between the inferior thyroid artery-blood flow velocities in a considerable number of patients with gestational transient thyrotoxicosis and pregnant patients with Graves' disease. This study suggests that the measurement of inferior thyroid artery-blood flow velocities with color-flow Doppler ultrasonography does not have sufficient sensitivity and specificity to be recommended as an initial diagnostic test for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy.

  6. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  7. Using embedded fibers to measure explosive detonation velocities

    Energy Technology Data Exchange (ETDEWEB)

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  8. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  9. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  10. Influence of immune-mediated hemolytic anemia on flow velocities in the portal vein and caudal vena cava measured by use of pulsed-wave Doppler ultrasonography in dogs.

    Science.gov (United States)

    Smith, Rachel Policelli; Koenigshof, Amy M; Smith, Daniel J; Strom, Phillip R; Nelson, Nathan C

    2018-05-01

    OBJECTIVE To compare blood flow velocities of the portal vein (PV) and caudal vena cava (CVC) measured by use of pulsed-wave Doppler ultrasonography in clinically normal dogs and dogs with primary immune-mediated hemolytic anemia (IMHA). ANIMALS 11 client-owned dogs admitted to a veterinary teaching hospital for management of primary IMHA and 21 staff- or student-owned clinically normal dogs. PROCEDURES Flow velocities in the PV and CVC at the porta hepatis were evaluated in conscious unsedated dogs with concurrent ECG monitoring; evaluations were performed before dogs with IMHA received heparin or blood transfusions. Three measurements of peak velocity at end expiration were obtained for each vessel, and the mean was calculated. Results were compared between IMHA and control groups. RESULTS Mean ± SD blood flow velocity in the CVC differed between control (63.0 ± 18.6 cm/s) and IMHA (104 ± 36.9 cm/s) groups. Variance in dogs with IMHA was significantly greater than that for the clinically normal dogs. No significant difference in blood flow velocity in the PV was detected between IMHA and control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Higher blood flow velocities were detected by use of pulsed-wave Doppler ultrasonography in the CVC of dogs with naturally occurring IMHA and may be used to predict anemia in patients suspected of having IMHA.

  11. Techniques for obtaining velocity distributions of atoms or ions from Doppler-broadened spectral line profiles

    International Nuclear Information System (INIS)

    Moran, T.G.

    1986-12-01

    Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined

  12. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  13. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  14. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  15. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  16. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    International Nuclear Information System (INIS)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio

    2016-01-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  17. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar; Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil); Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona (Spain)

    2016-06-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  18. Effects of respiratory manoeuvres on hepatic vein Doppler waveform and flow velocities in a healthy population

    International Nuclear Information System (INIS)

    Altinkaya, Naime; Koc, Zafer; Ulusan, Serife; Demir, Senay; Gurel, Kamil

    2011-01-01

    Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V max ) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P max were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.

  19. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2010-03-30

    To determine aerosol deposition during the inhalation drug delivery, it is important to understand the combination of velocity and droplet size together. In this study, phase Doppler anemometry (PDA) was used to simultaneously characterize the aerosol velocity and droplet size distribution (DSD) of three nasal spray pumps filled with water. Thirteen sampling positions were located in the horizontal cross-sectional area of the nasal spray plumes at a distance of 3cm from the pump orifice. The results showed droplet velocities near the center of the spray plume were higher and more consistent than those near the edge. The pumps examined showed significant differences in their aerosol velocity at the center of the spray plume, which suggest that this metric might be used as a discriminating parameter for in vitro testing of nasal sprays. Droplet size measurements performed using PDA were compared with results from laser light scattering measurements. The ability of PDA to provide simultaneous measurements of aerosol velocity and size makes it a powerful tool for the detailed investigation of nasal spray plume characteristics. Published by Elsevier B.V.

  20. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  1. Estimating Radar Velocity using Direction of Arrival Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  2. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  3. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...

  4. Evaluation of metered dose inhaler spray velocities using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2012-02-28

    Droplet velocity is an important parameter which can significantly influence inhalation drug delivery performance. Together with the droplet size, this parameter determines the efficiency of the deposition of MDI products at different sites within the lungs. In this study, phase Doppler anemometry (PDA) was used to investigate the instantaneous droplet velocity emitted from MDIs as well as the corresponding droplet size distribution. The nine commercial MDI products surveyed showed significantly different droplet velocities, indicating that droplet velocity could be used as a discriminating parameter for in vitro testing of MDI products. The droplet velocity for all tested MDI products decreased when the testing distance was increased from 3 cm to 6 cm from the front of mouthpiece, with CFC formulations showing a larger decrease than HFA formulations. The mean droplet diameters of the nine MDIs were also significantly different from one-another. Droplet size measurements made using PDA (a number-based technique) could not be directly compared to results obtained using laser light scattering measurements (a volume-based technique). This work demonstrates that PDA can provide unique information useful for characterizing MDI aerosol plumes and evaluating MDI drug delivery efficiency. PDA could also aid the evaluation of in vitro equivalence in support of formulation or manufacturing changes and in evaluation of abbreviated new drug applications (ANDAs) for MDIs. Published by Elsevier B.V.

  5. Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction

    Science.gov (United States)

    Nikitin, N P; Loh, P H; de Silva, R; Ghosh, J; Khaleva, O Y; Goode, K; Rigby, A S; Alamgir, F; Clark, A L; Cleland, J G F

    2006-01-01

    Objective To assess the prognostic value of various conventional and novel echocardiographic indices in patients with chronic heart failure (CHF) caused by left ventricular (LV) systolic dysfunction. Methods 185 patients with a mean (SD) age of 67 (11) years with CHF and LV ejection fraction < 45% despite optimal pharmacological treatment were prospectively enrolled. The patients underwent two dimensional echocardiography with tissue harmonic imaging to assess global LV systolic function and obtain volumetric data. Transmitral flow was assessed with conventional pulse wave Doppler. Systolic (Sm), early, and late diastolic mitral annular velocities were measured with the use of colour coded Doppler tissue imaging. Results During a median follow up of 32 months (range 24–38 months in survivors), 34 patients died and one underwent heart transplantation. Sm velocity (hazard ratio (HR) 0.648, 95% confidence interval (CI) 0.463 to 0.907, p  =  0.011), diastolic arterial pressure (HR 0.965, 95% CI 0.938 to 0.993, p  =  0.015), serum creatinine (HR 1.006, 95% CI 1.001 to 1.011, p  =  0.023), LV ejection fraction (HR 0.945, 95% CI 0.899 to 0.992, p  =  0.024), age (HR 1.035, 95% CI 1.000 to 1.071, p  =  0.052), LV end systolic volume index (HR 1.009, 95% CI 0.999 to 1.019, p  =  0.067), and restrictive pattern of transmitral flow (HR 0.543, 95% CI 0.278 to 1.061, p  =  0.074) predicted the outcome of death or transplantation on univariate analysis. On multivariate analysis, only Sm velocity (HR 0.648, 95% CI 0.460 to 0.912, p  =  0.013) and diastolic arterial pressure (HR 0.966, 95% CI 0.938 to 0.994, p  =  0.016) emerged as independent predictors of outcome. Conclusions In patients with CHF and LV systolic dysfunction despite optimal pharmacological treatment, the strongest independent echocardiographic predictor of prognosis was Sm velocity measured with quantitative colour coded Doppler tissue

  6. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-10-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment.

  7. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    International Nuclear Information System (INIS)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-01-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment

  8. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.

    Science.gov (United States)

    Fontaine, A A; Heinrich, R S; Walker, P G; Pedersen, E M; Scheidegger, M B; Boesiger, P; Walton, S P; Yoganathan, A P

    1996-01-01

    The non-invasive, in-vivo assessment of prosthetic valve function is compromised by the lack of accurate measurements of the transvalvular flow fields or hemodynamics by current techniques. Short echo time magnetic resonance imaging (MRI) may provide a method for the non-invasive, in vivo assessment of prosthetic valve function by accurately measuring changes in the transvalvular flow fields associated with normal and dysfunctional prosthetic valves. The objectives of these in vitro experiments were to investigate the potential for using MRI as a tool to measure the complex flow fields distal to replacement heart valves, and to assess the accuracy of MRI velocity measurements by comparison with Laser Doppler Anemometry (LDA), a gold standard. The velocity fields downstream of tilting disc, bileaflet, ball and cage, and pericardial tissue valves were measured using both three-component LDA and MRI phase velocity encoding under a steady flow rate of 22.8 l/min, simulating peak systolic flow. The valves were tested under normal and stenotic conditions to assess the MRI capabilities under a wide range of local flow conditions, velocities and turbulence levels. A new short echo time MRI technique (FAcE), which allowed velocity measurements in stenotic jets with high turbulence, was tested. Good overall agreement was obtained between the MRI velocity measurements and the LDA data. The MRI velocity measurements adequately reproduced the spatial structure of the flow fields. In most cases peak velocities were accurately measured to within 15%. The results indicate that the FAcE MRI method has the potential to be used as a diagnostic tool to assess prosthetic valve function.

  9. Editorial special issue on "Laser Doppler vibrometry"

    Science.gov (United States)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  10. The Coincident Coherence of Extreme Doppler Velocity Events with p-mode Patches in the Solar Photosphere.

    Science.gov (United States)

    McClure, Rachel Lee

    2018-06-01

    Observations of the solar photosphere show many spatially compact Doppler velocity events with short life spans and extreme values. In the IMaX spectropolarimetric inversion data of the first flight of the SUNRISE balloon in 2009 these striking flashes in the intergranule lanes and complementary outstanding values in the centers of granules have line of sight Doppler velocity values in excess of 4 sigma from the mean. We conclude that values outside 4 sigma are a result from the superposition of the granulation flows and the p-modes.To determine how granulation and p-modes contribute to these outstanding Doppler events, I separate the two components using the Fast Fourier Transform. I produce the power spectrum of the spatial wave frequencies and their corresponding frequency in time for each image, and create a k-omega filter to separate the two components. Using the filtered data, test the hypothesis that extreme events occur because of strict superposition between the p-mode Doppler velocities and the granular velocities. I compare event counts from the observational data to those produced by random superposition of the two flow components and find that the observational event counts are consistent with the model event counts in the limit of small number statistics. Poisson count probabilities of event numbers observed are consistent with expected model count probability distributions.

  11. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  12. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    Science.gov (United States)

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  13. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  14. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  15. Direct measurement of Lorentz transformation with Doppler effects

    Science.gov (United States)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q

  16. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  17. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  18. High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography

    NARCIS (Netherlands)

    van Leeuwen, T. G.; Kulkarni, M. D.; Yazdanfar, S.; Rollins, A. M.; Izatt, J. A.

    1999-01-01

    Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on

  19. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  20. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    International Nuclear Information System (INIS)

    Thomas, T.D.; Harpold, G.J.

    1990-01-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO 2 , evidenced by an increase in middle cerebral artery blood flow velocity of 47% ± 15% compared to 28% ± 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO 2 inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs

  1. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  2. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  3. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  4. Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2011-03-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box-Behnken design of experiments (DOE) methodology were applied to investigate the influences of actuation parameters and formulation properties on nasal spray droplet velocity using a set of placebo formulations. The DOE study shows that all four input factors (stroke length, actuation velocity, concentration of the gelling agent, and concentration of the surfactant) have significant influence on droplet velocity. An optimized quadratic model generated from the DOE results describes the inherent relationships between the input factors and droplet velocity thus providing a better understanding of the input factor influences. Overall, PDA provides a new in vitro characterization method for the evaluation of inhalation drugs through assessment of spray velocity and may assist in product development to meet drug delivery equivalency requirements. © 2011 American Association of Pharmaceutical Scientists

  5. Gas and particle velocity measurements in an induction plasma

    International Nuclear Information System (INIS)

    Lesinski, J.; Gagne, R.; Boulos, M.I.

    1981-08-01

    Laser doppler anemometry was used for the measurements of the plasma and particle velocity profiles in the coil region of an inductively coupled plasma. Results are reported for a 50 mm ID induction torch operated at atmospheric pressure with argon as the plasma gas. The oscillator frequency was 3 MHz and the power in the coil was varied between 4.6 and 10.5 kW. The gas velocity measurements were made using a fine carbon powder as a tracer (dp approx. = 1 μm). Measurements were also made with larger silicon particles (dp = 33 μm and sigma = 13 μm) centrally injected in the plasma under different operating conditions

  6. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    International Nuclear Information System (INIS)

    Kim, D; Winkler, M; Muste, M

    2015-01-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats. (paper)

  7. Carotid stenosis measurement on colour Doppler ultrasound: Agreement of ECST, NASCET and CCA methods applied to ultrasound with intra-arterial angiographic stenosis measurement

    International Nuclear Information System (INIS)

    Wardlaw, Joanna M.; Lewis, Steff

    2005-01-01

    Purpose: Carotid stenosis is usually determined on Doppler ultrasound from velocity readings. We wondered if angiography-style stenosis measurements applied to ultrasound images improved accuracy over velocity readings alone, and if so, which measure correlated best with angiography. Materials and methods: We studied prospectively patients undergoing colour Doppler ultrasound (CDU) for TIA or minor stroke. Those with 50%+ symptomatic internal carotid artery (ICA) stenosis had intra-arterial angiography (IAA). We measured peak systolic ICA velocity, and from the ultrasound image, the minimal residual lumen, the original lumen (ECST), ICA diameter distal (NASCET) and CCA diameter proximal (CCA method) to the stenosis. The IAAs were measured by ECST, NASCET and CCA methods also, blind to CDU. Results: Amongst 164 patients (328 arteries), on CDU the ECST, NASCET and CCA stenosis measures were similarly related to each other (ECST = 0.54 NASCET + 46) as on IAA (ECST = 0.6 NASCET + 40). Agreement between CDU- and IAA-measured stenosis was similar for ECST (r = 0.51), and CCA (r = 0.48) methods, and slightly worse for NASCET (r = 0.41). Adding IAA-style stenosis to the peak systolic ICA velocity did not improve agreement with IAA over peak systolic velocity alone. Conclusion: Angiography-style stenosis measures have similar inter-relationships when applied to CDU, but do not improve accuracy of ultrasound over peak systolic ICA velocity alone

  8. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.D.; Harpold, G.J. (Alabama Univ., Birmingham, AL (USA). School of Medicine); Troost, B.T. (Bowman Gray School of Medicine, Winston-Salem, NC (USA))

    1990-04-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO{sub 2}, evidenced by an increase in middle cerebral artery blood flow velocity of 47% {plus minus} 15% compared to 28% {plus minus} 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO{sub 2} inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs.

  9. Optical-fiber interferometer for velocity measurements with picosecond resolution

    International Nuclear Information System (INIS)

    Weng Jidong; Tan Hua; Wang Xiang; Ma Yun; Hu Shaolou; Wang Xiaosong

    2006-01-01

    The conventional Doppler laser-interference velocimeters are made up of traditional optical elements such as lenses and mirrors and will generally restrict its applications in multipoint velocity measurements. By transfering the light from multimode optical fiber to single-mode optical fiber and using the currently available conventional telecommunications elements, the authors have constructed a velocimeter called all-fiber displacement interferometer system for any reflector. The unique interferometer system is only made up of fibers or fiber-coupled components. The viability of this technique is demonstrated by measuring the velocity of an interface moving at velocity of 2133 m/s with 50 ps time resolution. In addition, the concept of optical-fiber mode conversion would provide a way to develop various optical-fiber sensors

  10. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    Science.gov (United States)

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  11. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    Science.gov (United States)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  12. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  13. De-Dopplerization of Acoustic Measurements

    Science.gov (United States)

    2017-08-10

    accurate measurement of aircraft location to resample the time signal to account for the compression and expansion of acoustic wavefronts. Correcting...AFRL-RH-WP-TR-2017-0043 DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS Frank Mobley, PhD 711 HPW/RHCB Wright-Patterson AFB OH...TITLE AND SUBTITLE DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  14. Transcranial Doppler velocities in a large, healthy population.

    Science.gov (United States)

    Tegeler, Charles H; Crutchfield, Kevin; Katsnelson, Michael; Kim, Jongyeol; Tang, Rong; Passmore Griffin, Leah; Rundek, Tanja; Evans, Greg

    2013-07-01

    Transcranial Doppler (TCD) ultrasonography has been extensively used in the evaluation and management of patients with cerebrovascular disease since the clinical application was first described in 1982 by Aaslid and colleagues TCD is a painless, safe, and noninvasive diagnostic technique that measures blood flow velocity in various cerebral arteries. Numerous commercially available TCD devices are currently approved for use worldwide, and TCD is recognized to have an established clinical value for a variety of clinical indications and settings. Although many studies have reported normal values, there have been few recently, and none to include a large cohort of healthy subjects across age, race, and gender. As more objective, automated processes are being developed to assist with the performance and interpretation of TCD studies, and with the potential to easily compare results against a reference population, it is important to define stable normal values and variances across age, race, and gender, with clear understanding of variability of the measurements, as well as the yield from various anatomic segments. To define normal TCD values in a healthy population, we enrolled 364 healthy subjects, ages 18-80 years, to have a complete, nonimaging TCD examination. Subjects with known or suspected cerebrovascular disorders, systemic disorders with cerebrovascular effects, as well as those with known hypertension, diabetes, stroke, coronary artery disease, or myocardial infarction, were excluded. Self-reported ethnicity, handedness, BP, and BMI were recorded. A complete TCD examination was performed by a single experienced sonographer, using a single gate nonimaging TCD device, and a standardized protocol to interrogate up to 23 arterial segments. Individual Doppler spectra were saved for each segment, with velocity and pulsatility index (PI) values calculated using the instrument's automated waveform tracking function. Descriptive analysis was done to determine the mean

  15. Prediction of delayed neurological deficit after subarachnoid haemorrhage: a CT blood load and Doppler velocity approach

    International Nuclear Information System (INIS)

    Grosset, D.G.; McDonald, I.; Cockburn, M.; Straiton, J.; Bullock, R.R.

    1994-01-01

    The predictive value of cranial computed tomography (CT) blood load and serial transcranial Doppler sonography for the development of delayed ischaemic neurological deficit was assessed in 121 patients following subarachnoid haemorrhage. Of the 121 patients, 81 (67 %) had thick layers of blood or haematoma, including intraventricular bleeding. The proportion of patients who developed delayed deficit was higher with increasing amounts of subarachnoid blood on the admission CT (51 % of 53 cases in Fisher grade 3; 35 % of 33 cases in grade 2; 28 % of 7 cases in grade 1, P < 0.01). Doppler velocities obtained from readings at least every 2 days following admission were higher in patients with delayed neurological deficit (peak velocity for grade 3 patients 176 ± 6 cm/s (mean ± SE), versus grade 2: 164 ± 7 cm/s; grade 4 149 ± 9, both P = 0.04, Mann-Whitney). Peak velocity and maximal 24-h rise tended to be higher within different CT grades in patients with a deficit than in those without; this difference was significant for grade 3 patients (P < 0.01). We conclude that a combined approach with CT and Doppler sonography provides greater predictive value for the development of delayed ischaemic neurological deficit than either test considered independently. The value of Doppler sonography may be greatest for patients with Fisher grade 3 blood, in whom the risk of delayed ischaemia is greatest. (orig.)

  16. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Science.gov (United States)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  17. Secondary benefit of maintaining normal transcranial Doppler velocities when using hydroxyurea for prevention of severe sickle cell anemia.

    Science.gov (United States)

    Ghafuri, Djamila Labib; Chaturvedi, Shruti; Rodeghier, Mark; Stimpson, Sarah-Jo; McClain, Brandi; Byrd, Jeannie; DeBaun, Michael R

    2017-07-01

    In a retrospective cohort study, we tested the hypothesis that when prescribing hydroxyurea (HU) to children with sickle cell anemia (SCA) to prevent vaso-occlusive events, there will be a secondary benefit of maintaining low transcranial Doppler (TCD) velocity, measured by imaging technique (TCDi). HU was prescribed for 90.9% (110 of 120) of children with SCA ≥5 years of age and followed for a median of 4.4 years, with 70% (n = 77) receiving at least one TCDi evaluation after starting HU. No child prescribed HU had a conditional or abnormal TCDi measurement. HU initiation for disease severity prevention decreases the prevalence of abnormal TCDi velocities. © 2016 Wiley Periodicals, Inc.

  18. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  19. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  20. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas

    2009-01-01

    BACKGROUND: Myocardial velocities can be measured with both pulsed-wave tissue Doppler (PWTD) and color tissue Doppler (CTD) echocardiography. We aimed to (A) to explore which of the two methods better approximates true tissue motion and (B) to examine the agreement and the reproducibility...... of the two methods in a routine clinical setting. METHODS: For Study A, the displacements of 63 basal myocardial segments from 13 patients were examined with M-mode and compared with the velocity-time integral of PWTD and CTD velocities. For Study B, the basal lateral segments from 58 patients were examined...... with PWTD and CTD, and the peak myocardial velocities during systole (Sm), early diastole (Em), and late diastole (Am) were measured. RESULTS: Study A: CTD-based measurements of displacement were 12% lower than M-mode measurements (95% CI: -18%; -6%). PWTD velocity-time integrals measured at the outer edge...

  1. Glare Spot Phase Doppler Anemometry

    OpenAIRE

    Hespel, Camille; Ren, Kuan Fang; Gréhan, Gérard; Onofri, Fabrice

    2006-01-01

    International audience; The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index is also necessary since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemo...

  2. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  3. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation.

    Science.gov (United States)

    Garcia, M J; Smedira, N G; Greenberg, N L; Main, M; Firstenberg, M S; Odabashian, J; Thomas, J D

    2000-01-01

    To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  4. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  5. Pulmonary branch arterial flow can be measured with cine MR velocity mapping

    International Nuclear Information System (INIS)

    Caputo, G.R.; Kondo, C.; Masui, T.; Foster, E.; Geraci, S.J.; O'Sullivan, M.; Higgins, C.B.

    1990-01-01

    This paper assesses the capability of cine MR phase velocity mapping (CVM) to measure main, right-sided, and left-sided pulmonary arterial (PA) blood flow. The authors examined a constant-flow phantom and nine healthy volunteers with use of 1.5-T MR imaging system (GE Signa) with phase velocity cine sequences. CVM correctly measured constant-flow phantom velocities (range, 20-190 cm/sec; r = .998, SEE = 4.2 cm/sec), and velocity with use of angulated planes to section the phantom tube perpendicularly. CVM peak systolic main PA velocity (79 cm/sec ± 10) correlated well with Doppler US measurements (80 cm/sec ± 7). CVM main PA flow correlated well with conventional cine MR LV stroke volume measurements (r = .98, SEE = 4.8 mL). Left and right PA flow on the angulated planes were 29 mL ± 7 and 34 mL ± 10, respectively

  6. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  7. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  8. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  9. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  10. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    Science.gov (United States)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  11. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  12. Intraoperative changes of transcranial Doppler velocity: relation to arterial oxygen content and whole-blood viscosity

    NARCIS (Netherlands)

    Schuurman, P. R.; Albrecht, K. W.

    1999-01-01

    The association of arterial oxygen content (CaO2) and viscosity with transcranial Doppler (TCD) blood flow velocity in the middle cerebral artery was studied in 20 adults without cerebrovascular disease undergoing abdominal surgery associated with significant fluctuations in hematology. TCD

  13. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  14. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  15. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  16. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  17. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    DEFF Research Database (Denmark)

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously...... developed mathematical model of the anemometer in combination with a large database of representative room flows measured with a 3-D Laser Doppler anemometer (LDA). A direct comparison between measurements with a thermal anemometer and a 3-D LDA in flows of varying velocity and turbulence intensity shows...... good agreement not only between the two instruments but also between the thermal anemometer and its mathematical model. The differences in the measurements performed with the two instruments are all well within the measurement uncertainty of both anemometers....

  18. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  19. Minimally destructive Doppler measurement of a quantized, superfluid flow

    Science.gov (United States)

    Anderson, Neil; Kumar, Avinash; Eckel, Stephen; Stringari, Sandro; Campbell, Gretchen

    2016-05-01

    Ring shaped Bose-Einstein condensates are of interest because they support the existence of quantized, persistent currents. These currents arise because in a ring trap, the wavefunction of the condensate must be single valued, and thus the azimuthal velocity is quantized. Previously, these persistent current states have only been measured in a destructive fashion via either interference with a phase reference or using the size of a central vortex-like structure that appears in time of flight. Here, we demonstrate a minimally destructive, in-situ measurement of the winding number of a ring shaped BEC. We excite a standing wave of phonon modes in the ring BEC using a perturbation. If the condensate is in a nonzero circulation state, then the frequency of these phonon modes are Doppler shifted, causing the standing wave to precess about the ring. From the direction and velocity of this precession, we can infer the winding number of the flow. For certain parameters, this technique can detect individual winding numbers with approximately 90% fidelity.

  20. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  1. MEASUREMENTS IN A LIQUID ATOMISER SPRAY USING THE PHASE-DOPPLER PARTICLE ANALYSER

    Directory of Open Access Journals (Sweden)

    R HADEF

    2000-12-01

    Full Text Available Experiments have been carried out at atmospheric conditions using a water atomiser spray. A phase Doppler anemometry was used to perform the measurements of the droplets size, their velocity and concentration, and photographs were taken.  The results showed that the small particles with low turbulence occupied the central core of the jet displaying a Gaussian profile for the axial velocity component.  The large particles were defected towards the outer edges of the jet, due to their higher initial momentum, and displayed relatively high levels of turbulence. The variables measured show that their spatial distributions were nearly symmetrical about the x-axis and although the number density of the droplets is very high in the centred region, most of the pulverised liquid was present in the edges of the spray.

  2. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... is a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels. Multimodal...

  3. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...

  4. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  5. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  6. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  7. Doppler sonographic evaluation of ophthalmic arterial flow pattern in hypertensive patients

    International Nuclear Information System (INIS)

    Ryu, Dae Sik; Kim, Young Goo

    1994-01-01

    To compare the Doppler velocity waveform pattern of ophthalmic artery of hypertensive patients with that of normotensive subjects. Doppler velocity waveform was obtained from ophthalmic artery in 45 hypertensive patients and 60 normotensive subjects. Both hypertensives and normotensive subjects were classified according to age into those younger than and those older than 45 years. Doppler indices(pulsatility index(PI), resistance index(RI), the first systolic peak/the second systolic peak(S1/S2), the first systolic peak/diastolic peak(S1/D)) measured in hypertensive patients were compared with normotensive subjects. Among the various doppler indices, only S1/S2 showed significant difference(P < 0.05) between the hypertensive patients and normotensive subjects younger than 45 years. Doppler velocity waveform of hypertensive patients older than 45 years showed no significant difference from that of normotensive subjects with corresponding age. Doppler velocity waveform of ophthalmic artery in hypertensive patients younger than 45 years shows pattern with S2 higher than that of normotensive subjects. High S2 component(reflective-wave) may represent increased vascular impedance due to vasococonstriction of retinal arterioles in hypertensive patients

  8. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1994-01-01

    Transcranial Doppler (TCD) examinations are increasingly being used in studies of headache pathophysiology. Because blood velocity is highly dependent on PCO2, these parameters should be measured simultaneously. The most common way of performing measurements during TCD examinations is as end......-tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  9. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  10. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  11. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain, Position-Velocity-Measured (α-β-η-θ Tracking Filter

    Directory of Open Access Journals (Sweden)

    Kenshi Saho

    2017-07-01

    Full Text Available We present a strategy for designing an α - β - η - θ filter, a fixed-gain moving-object tracking filter using position and velocity measurements. First, performance indices and stability conditions for the filter are analytically derived. Then, an optimal gain design strategy using these results is proposed and its relationship to the position-velocity-measured (PVM Kalman filter is shown. Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance improvement over the traditional position-only-measured α - β filter. Moreover, we apply an α - β - η - θ filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations. We verify that the proposed strategy can easily design the gains for an α - β - η - θ filter based on the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the position-velocity-measured Kalman filter is also demonstrated.

  12. Doppler coefficient measurements in Zebra Core 5

    International Nuclear Information System (INIS)

    Baker, A.R.; Wheeler, R.C.

    1965-11-01

    Measurements using a central hot loop in Zebra Core 5 are described. Results are given for the Doppler coefficients found in a number of assemblies with PuO 2 and 16% PuO 2 /84% depleted UO 2 pins, loaded with different combinations of steel, sodium or void pins. The mixed oxide results are in general about 20% more negative than was calculated using the FD2 data set, but agreement is good if the plutonium contributions in the calculations are omitted. The small positive Doppler coefficient calculated for Pu239 was not observed, and two measurements indicated instead a small negative effect. The Doppler effect in the mixed oxide systems was found to vary approximately as 1/T. The results from the empty loop and non-fissile assemblies indicate either a small negative Doppler effect in steel or alternatively the presence of an unexplained expansion effect. (author)

  13. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  14. Measurement of ventricular function using Doppler ultrasound

    International Nuclear Information System (INIS)

    Teague, S.M.

    1986-01-01

    Doppler has wide application in the evaluation of valvular heart disease. The need to know ventricular function is a much more common reason for an echocardiographic evaluation. Interestingly, Doppler examinations can assess ventricular function from many perspectives. Description of ventricular function entails measurement of the timing, rate and volume of ventricular filling and ejection. Doppler ultrasound examination reveals all of these aspects of ventricular function noninvasively, simply, and without great expense or radiation exposure, as described in this chapter

  15. Experimental and biological variation of three-dimensional transcranial Doppler measurements

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1993-01-01

    A new transcranial Doppler system (3-D Transscan, Eden Medizinische Elektronik) was evaluated in relation to sex, age, intersubject, interobserver, side-to-side, and day-to-day variation. Fifty-eight healthy volunteers participated (aged 18-80 yr). Mean velocity was higher in females than in male...

  16. Laser doppler velocimetry and confined flows

    Directory of Open Access Journals (Sweden)

    Ilić Jelena T.

    2017-01-01

    Full Text Available Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

  17. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  18. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    Science.gov (United States)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  19. New Insights from Inside-Out Doppler Tomography

    Directory of Open Access Journals (Sweden)

    E. J. Kotze

    2015-02-01

    Full Text Available We present preliminary results from our investigation into using an “inside-out” velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.

  20. Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry.

    Science.gov (United States)

    Alatrash, Abubaker; Matida, Edgar

    2016-12-01

    Particle size and velocity are two of the most significant factors that impact the deposition of pressurized metered-dose inhaler (pMDI) sprays in the mouth cavity. pMDIs are prominently used around the world in the treatment of patients suffering from a variety of lung diseases such as asthma and chronic obstructive pulmonary disease. Since their introduction in the field, and as a result of their effectiveness and simplicity of usage, pMDIs are considered to be the most widely prescribed medical aerosol delivery system. In the current study, particle velocity and size distribution were measured at three different locations along the centerline of a pMDI spray using Phase Doppler Anemometry. pMDIs from four different pharmaceutical companies were tested, each using salbutamol sulfate as the medication. Measurements along at the pMDI centerline (at 0, 75, and 100 mm downstream of the inhaler mouthpiece) showed that the spray velocities were bimodal in time for all four pMDI brands. The first peak occurred as the spray was leaving the mouthpiece, while the second peak (at the same location, 0 mm) occurred at around 60, 95, 95, and 115 milliseconds later, respectively, for the four tested inhalers, with a drop in the velocity between the two peaks. Three probability density functions (PDFs) were tested, and the Rosin-Rammler PDF best fit the empirical data, as determined using a chi-squared test. These results suggest that there is a difference in the mean particle velocities at the centerline for the tested pMDIs and the diameter of released particles varied statistically for each brand.

  1. The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Fardin Mirbolouk

    2012-03-01

    Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.

  2. Influence of the measuring condition on vibrocardiographic signals acquired on the thorax with a laser Doppler vibrometer

    Science.gov (United States)

    Mignanelli, L.; Bauer, G.; Klarmann, M.; Wang, H.; Rembe, C.

    2017-07-01

    Velocity signals acquired with a Laser Doppler Vibrometer on the thorax (Optical Vibrocardiography) contain important information, which have a relation to cardiovascular parameters and cardiovascular diseases. The acquired signal results in a superimposition of vibrations originated from different sources of the human body. Since we study the vibration generated by the heart to reliably detect a characteristic time interval corresponding to the PR interval in the ECG, these disturbance have to be removed by filtering. Moreover, the Laser Doppler Vibrometer measures only in the direction of the laser beam and, thus, the velocity signal is only a projection of the tridimensional movement of the thorax. This work presents an analysis of the influences of the filters and of the measurement direction on the characteristic time interval in Vibrocardiographic signals. Our analysis results in recommended settings for filters and we demonstrate that reliable detection of vibrocardiographic parameters is possible within an angle deviation of 30° in respect to the perpendicular irradiation on the front side of the subject.

  3. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  4. Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry

    Science.gov (United States)

    Gu, Yan

    2017-06-01

    Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.

  5. Laser Doppler measurement and CFD validation in 3 × 3 bundle flow

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbiao, E-mail: xiongjinbiao@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Yang [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Nan; Fu, Xiaoliang [State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China); Wang, Hongyan [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Cheng, Xu [Karlsruhe Institute of Technology (Germany); Yang, Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China)

    2014-04-01

    Highlights: • Five-beam LDV is operated in the three-beam mode to measure 3 × 3 bundle flow. • Correlation and FFT techniques are applied to analyze the flow structure. • Large coherent structure is observed in gaps between different subchannels. • The Reynolds stress models predict weak mixing between different subchannels. - Abstract: The five-beam three-component laser Doppler system is operated in the three-beam two-component mode to measure the 3 × 3 bundle flow with simple grid spacer. Experiment has been conducted at Re = 15,200 and 29,900. According to the experiment result, the root mean square (RMS) of axial velocity fluctuation shows large value in the gap and the near-wall region of the edge sub-channel which is induced by the axial velocity gradient. Significant intensity of lateral velocity fluctuation is observed which indicates the strong lateral mixing in a 3 × 3 rod bundle. Through the correlation analysis coherent structures have been observed in the gap region. The spectral analysis shows that the LDV measurement complies to the Komogorov spectrum law, f{sup −5/3}, well. The low-frequency peak spectral density of the axial velocity fluctuation has been observed in the gap region connecting sub-channels with velocity difference. The performance of the SSG model and the baseline Reynolds stress model are investigated based on the experiment result. The models predict higher axial velocity in the interior sub-channel and lower in the edge and corner ones than the experiment result. Large discrepancy between the calculated and measured axial flow velocity is resulted from failure in calculating the strong negative u{sup ′}w{sup ′¯} in the gap region connecting different sub-channels.

  6. Experimental validation of alternate integral-formulation method for predicting acoustic radiation based on particle velocity measurements.

    Science.gov (United States)

    Ni, Zhi; Wu, Sean F

    2010-09-01

    This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.

  7. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Directory of Open Access Journals (Sweden)

    R. Sailer

    2002-01-01

    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  8. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension.

    Science.gov (United States)

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2006-04-01

    We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.

  9. New phase method of measuring particle size with laser Doppler radar

    Science.gov (United States)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  10. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  11. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  12. Evaluation of postoperative pulmonary regurgitation after surgical repair of tetralogy of Fallot: comparison between Doppler echocardiography and MR velocity mapping

    Energy Technology Data Exchange (ETDEWEB)

    Grothoff, Matthias; Spors, Birgit; Gutberlet, Matthias [Charite Campus Virchow Klinikum, Department of Radiology and Nuclear Medicine, Berlin (Germany); Abdul-Khaliq, Hasim [Deutsches Herzzentrum, Department of Congenital Heart Disease/Pediatric Cardiology, Berlin (Germany)

    2008-02-15

    Pulmonary regurgitation is a common finding in patients after correction of tetralogy of Fallot (TOF). Right ventricular impairment and even ventricular arrhythmia have been ascribed to pulmonary valve insufficiency (PI), which is therefore an important issue in follow-up examinations. To compare PI measured by echocardiography (ECHO) with data provided by cardiac MRI (CMR). We studied 54 selected patients (18 female; median age 14.0 years, range 3.8-53.4 years) after surgical correction of TOF. To quantify pulmonary regurgitant fraction (PRF) by CMR, flow velocity mapping was performed. On Doppler ECHO, length, width and localization of regurgitant flow was measured. The severity of PI was categorized as mild, moderate or severe and compared to the data obtained by CMR. On CMR the mean PRF was 29.2 {+-} 13.4%. Patients with a transannular patch had a significantly higher PRF (39.9 {+-} 11.6%) than patients with an intact annular ring (23.6 {+-} 11.4%). Differentiation by Doppler ECHO between the categories mild, moderate and severe PI was confirmed by significant differences in PRF measured by CMR (mild vs. moderate P < 0.04; moderate vs. severe P < 0.014; mild vs. severe P < 0.001). Furthermore, PRF correlated with right ventricular end diastolic volume index (r = 0.45, P < 0.01) and right ventricular end systolic volume index (r = 0.39, P < 0.01). Doppler ECHO can estimate the severity of PI after repair of TOF with acceptable results compared to CMR flow measurement. In univariate analysis there is only a weak influence of PRF on right ventricular volume. (orig.)

  13. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  14. [Changes of renal blood flow during organ-associated foot reflexology measured by color Doppler sonography].

    Science.gov (United States)

    Sudmeier, I; Bodner, G; Egger, I; Mur, E; Ulmer, H; Herold, M

    1999-06-01

    Using colour Doppler sonography blood flow changes of the right kidney during foot reflexology were determined in a placebo-controlled, double-blind, randomised study. 32 healthy young adults (17 women, 15 men) were randomly assigned to the verum or placebo group. The verum group received foot reflexology at zones corresponding to the right kidney, the placebo group was treated on other foot zones. Before, during and after foot reflexology the blood flow of three vessels of the right kidney was measured using colour Doppler sonography. Systolic peak velocity and end diastolic peak velocity were measured in cm/s, and the resistive index, a parameter of the vascular resistance, was calculated. The resistive index in the verum group showed a highly significant decrease (p foot reflexology. There was no difference between men and women and no difference between smokers and non-smokers. Verum and placebo group significantly differed concerning alterations of the resistive index both between the measuring points before versus during foot reflexology (p = 0.002) and those during versus after foot reflexology (p = 0.031). The significant decrease of the resistive index during foot reflexology in the verum group indicates a decrease of flow resistance in renal vessels and an increase of renal blood flow. These findings support the hypothesis that organ-associated foot reflexology is effective in changing renal blood flow during therapy.

  15. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    Science.gov (United States)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  16. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  17. Evaluation and accuracy of the local velocity data measurements in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Kysela Bohuš

    2014-03-01

    Full Text Available Velocity measurements of the flow field in an agitated vessel are necessary for the improvement and better understanding of the mixing processes. The obtained results are used for the calculations of the impeller pumping capacity, comparison of the power consumption etc. We performed various measurements of the local velocities in an agitated vessel final results of which should be processed for several purposes so it was necessary to make an analysis of the obtained data suitability and their quality. Analysed velocity data were obtained from the LDA (Laser Doppler Anemometry and PIV (Particle Image Velocimetry measurements performed on a standard equipment where the flat bottomed vessel with four baffles was agitated by the six-blade Rushton turbine. The results from both used methods were compared. The frequency analyses were examined as well as the dependency of the data rates, time series lengths etc. The demands for the data processed in the form of the ensemble-averaged results were also established.

  18. Glare Spot Phase Doppler Anemometry

    Science.gov (United States)

    Hespel, Camille; Ren, Kuanfang; Gréhan, Gérard; Onofri, Fabrice

    2007-06-01

    The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index would be also interesting since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemometry which uses two large beams. In this case, the images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes in the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences between two signals, the distance and the intensity ratio of reflected and refracted parts can be obtained and they provide rich information about the particle diameter and its refractive index, as well as its velocity. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  19. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    Energy Technology Data Exchange (ETDEWEB)

    Pekindil, Goekhan [Department of Radiology, Trakya University School of Medicine, 22030 Edirne (Turkey); Varol, Fuesun G. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Ali Yuece, M. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Yardim, Turgut [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey)

    1999-03-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period.

  20. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    International Nuclear Information System (INIS)

    Pekindil, Goekhan; Varol, Fuesun G.; Ali Yuece, M.; Yardim, Turgut

    1999-01-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period

  1. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  2. Study of the Myocardial Contraction and Relaxation Velocities through Doppler Tissue Imaging Echocardiography: A New Alternative in the Assessment of the Segmental Ventricular Function

    Directory of Open Access Journals (Sweden)

    Silva Carlos Eduardo Suaide

    2002-01-01

    Full Text Available OBJECTIVE: Doppler tissue imaging (DTI enables the study of the velocity of contraction and relaxation of myocardial segments. We established standards for the peak velocity of the different myocardial segments of the left ventricle in systole and diastole, and correlated them with the electrocardiogram. METHODS: We studied 35 healthy individuals (27 were male with ages ranging from 12 to 59 years (32.9 ± 10.6. Systolic and diastolic peak velocities were assessed by Doppler tissue imaging in 12 segments of the left ventricle, establishing their mean values and the temporal correlation with the cardiac cycle. RESULTS: The means (and standard deviation of the peak velocities in the basal, medial, and apical regions (of the septal, anterior, lateral, and posterior left ventricle walls were respectively, in cm/s, 7.35(1.64, 5.26(1.88, and 3.33(1.58 in systole and 10.56(2.34, 7.92(2.37, and 3.98(1.64 in diastole. The mean time in which systolic peak velocity was recorded was 131.59ms (±19.12ms, and diastolic was 459.18ms (±18.13ms based on the peak of the R wave of the electrocardiogram. CONCLUSION: In healthy individuals, maximum left ventricle segment velocities decreased from the bases to the ventricular apex, with certain proportionality between contraction and relaxation (P<0.05. The use of Doppler tissue imaging may be very helpful in detecting early alterations in ventricular contraction and relaxation.

  3. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  4. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    Science.gov (United States)

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  5. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  6. Material properties identification using ultrasonic waves and laser Doppler vibrometer measurements: a multi-input multi-output approach

    International Nuclear Information System (INIS)

    Longo, R; Vanlanduit, S; Guillaume, P

    2013-01-01

    In this paper a multi-input multi-output approach able to determine the material properties of homogeneous materials is presented. To do so, an experimental set-up which combines the use of multi harmonic signals with interleaved frequencies and laser Doppler vibrometer measurements has been developed. A modeling technique, based on transmission and reflection measurements, allowed the simultaneous determination of longitudinal wave velocity, density and thickness of the materials under test with high levels of precision and accuracy. (paper)

  7. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  8. Evaluation of postoperative pulmonary regurgitation after surgical repair of tetralogy of Fallot: comparison between Doppler echocardiography and MR velocity mapping

    International Nuclear Information System (INIS)

    Grothoff, Matthias; Spors, Birgit; Gutberlet, Matthias; Abdul-Khaliq, Hasim

    2008-01-01

    Pulmonary regurgitation is a common finding in patients after correction of tetralogy of Fallot (TOF). Right ventricular impairment and even ventricular arrhythmia have been ascribed to pulmonary valve insufficiency (PI), which is therefore an important issue in follow-up examinations. To compare PI measured by echocardiography (ECHO) with data provided by cardiac MRI (CMR). We studied 54 selected patients (18 female; median age 14.0 years, range 3.8-53.4 years) after surgical correction of TOF. To quantify pulmonary regurgitant fraction (PRF) by CMR, flow velocity mapping was performed. On Doppler ECHO, length, width and localization of regurgitant flow was measured. The severity of PI was categorized as mild, moderate or severe and compared to the data obtained by CMR. On CMR the mean PRF was 29.2 ± 13.4%. Patients with a transannular patch had a significantly higher PRF (39.9 ± 11.6%) than patients with an intact annular ring (23.6 ± 11.4%). Differentiation by Doppler ECHO between the categories mild, moderate and severe PI was confirmed by significant differences in PRF measured by CMR (mild vs. moderate P < 0.04; moderate vs. severe P < 0.014; mild vs. severe P < 0.001). Furthermore, PRF correlated with right ventricular end diastolic volume index (r = 0.45, P < 0.01) and right ventricular end systolic volume index (r = 0.39, P < 0.01). Doppler ECHO can estimate the severity of PI after repair of TOF with acceptable results compared to CMR flow measurement. In univariate analysis there is only a weak influence of PRF on right ventricular volume. (orig.)

  9. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  10. Velocity slip of gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  11. Preload dependence of color M-mode Doppler flow propagation velocity in controls and in patients with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Møller, J E; Poulsen, S H; Søndergaard, E

    2000-01-01

    The purpose of this study was to assess the effects of preload alterations on color M-mode flow propagation velocity (Vp) in volunteers with normal left ventricular (LV) function and in patients with depressed LV function. Color M-mode Doppler echocardiography was performed during Valsalva maneuv...

  12. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    Directory of Open Access Journals (Sweden)

    Mergheni Ali Mohamed

    2008-01-01

    Full Text Available For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

  14. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    International Nuclear Information System (INIS)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-01-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  15. Doppler evaluation of valvular stenosis

    International Nuclear Information System (INIS)

    Kisslo, J.; Krafchek, J.; Adams, D.; Mark, D.B.

    1986-01-01

    One of the reasons why use of Doppler echocardiography is growing rapidly is because of its utility in detecting the presence of valvular stenosis and in estimating its severity. Detection of the presence of stenotic valvular heart disease using Doppler echocardiography was originally described over 10 years ago. It has been demonstrated that Doppler blood velocity data could be used to estimate the severity of a stenotic lesion. This chapter discusses the evaluation of valvular stenois using Doppler

  16. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  17. Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets.

    Science.gov (United States)

    Onofri, F; Bergougnoux, L; Firpo, J L; Misguich-Ripault, J

    1999-07-20

    The principle of an optical technique for simultaneous velocity, size, and concentration in suspension measurements of spherical droplets and cylindrical jets is proposed. This technique is based on phase Doppler anemometry working in the dual burst technique configuration. The particle size and velocity are deduced from the reflected signal phase and frequency, whereas the amplitude ratio between the refracted and the reflected signals is used for measuring the concentration of small scatterers inside the particles. Numerical simulations, based on geometrical optics and a Monte Carlo model, and an experimental validation test on cylindrical jets made of various suspensions, are used to validate the principle of the proposed technique. It is believed that this new technique could be useful in investigating processes in which liquid suspensions are sprayed for surface coating, drying, or combustion applications.

  18. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    OpenAIRE

    Mergheni Ali Mohamed; Ben Ticha Hmaied; Sautet Jen-Charles; Godard Gille; Ben Nasrallah Sassi

    2008-01-01

    For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near t...

  19. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  20. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  1. Doppler time-of-flight imaging

    KAUST Repository

    Heidrich, Wolfgang

    2017-02-16

    Systems and methods for imaging object velocity are provided. In an embodiment, at least one Time-of-Flight camera is used to capture a signal representative of an object in motion over an exposure time. Illumination and modulation frequency of the captured motion are coded within the exposure time. A change of illumination frequency is mapped to measured pixel intensities of the captured motion within the exposure time, and information about a Doppler shift in the illumination frequency is extracted to obtain a measurement of instantaneous per pixel velocity of the object in motion. The radial velocity information of the object in motion can be simultaneously captured for each pixel captured within the exposure time. In one or more aspects, the illumination frequency can be coded orthogonal to the modulation frequency of the captured motion. The change of illumination frequency can correspond to radial object velocity.

  2. Use of TRIGA-pulsed irradiations for high-temperature Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W K; Cashwell, R J; Bhattacharyya, S K [Argonne National Laboratory, Argonne, IL (United States); Russell, G J [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1974-07-01

    Conventional activation and reactivity measurements of the nuclear Doppler Effect have been limited to temperatures of about 2000{sup o}K because of problems with furnace equipment. There is a need for Doppler data at higher temperatures for design of reactors and analysis of reactor accidents. To fill this need, a novel technique using pulsed-mode operation of a TRIGA reactor has been developed at the University of Wisconsin. This new method, the Pulsed Activation Doppler (PAD) technique, has been used successfully for high temperature Doppler measurements of UO{sub 2} fuel pellets. In the PAD technique, UO{sub 2} test pellets were doped with varying amounts of U-235, with fissile enrichments varying from 0.22% to 12% by weight. The pellets were encapsulated in individual irradiation cells and electrically preheated to predetermined temperatures. Pyrofoam-graphite heaters were used to give preheat temperatures of up to 1720 deg. K. The cells were then positioned in the University of Wisconsin TRIGA reactor core and pulse-irradiated. During the rapid irradiation, adiabatic fission energy deposition occurred in the pellets and very high temperatures (over 3115 deg, K) were attained. Corresponding resonance neutron captures occurred at the elevated temperatures. The Doppler Ratio was deduced from the gamma activities of the Np-239 in the heated and unheated reference pellets. UO{sub 2} pellets of two nominal diameters, 210 mils (a surface-to-mass ratio, s/m = 1.1 cm{sup 2} /gm) and 360 mils (s/m = 0.63 cm{sup 2}/gm), were used for the experiments. For the 210 mil diameter pellets there was very good agreement between experimental results and Doppler ratios predicted both from extrapolations of the Hellstrand low-temperature resonance integral correlations and from GAROL calculations. Significantly, the agreement was good even for those pellets which experienced extensive melting. For the 360 mil diameter pellets the theoretical predictions were 10-15% lower than

  3. Does the application of gadolinium-DTPA have an impact on magnetic resonance phase contrast velocity measurements? Results from an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Heverhagen, J.T. E-mail: heverhag@post.med.uni-marburg.de; Hoppe, M.; Klose, K.-J.; Wagner, H.-J

    2002-10-01

    Introduction/objective: To evaluate the potential influence of various concentrations of gadolinium (Gd)-DTPA on magnetic resonance phase contrast (MR PC) velocimetry. Material and methods: Imaging was done with a 1.0 T scanner using a standard Flash 2D sequence and a circular polarized extremity coil. In a validated flow phantom with a defined 75% area stenosis different concentrations of Gd-DTPA, diluted in a 10:1 water-yogurt mixture, MR PC measurements were correlated with a Doppler guide wire as gold standard. Results: MR PC measurements correlated well with the Doppler derived data (r=0.99; P<0.01; maximum pre-stenotic velocity: 21.6{+-}0.5 cm/s; maximum intra-stenotic velocity: 81.7{+-}0.6 cm/s). Following Gd-DTPA administration no significant (P>0.05; Student's t-test) flow measurement changes were noted (maximum pre-stenotic velocity: 21.3{+-}1.3 cm/s; maximum intra-stenotic velocity: 84.0{+-}3.6 cm/s). However, delineation of the perfused lumen was enhanced after the application of Gd-DTPA. Discussions and conclusion: The application of Gd-DTPA does not affect MR PC velocimetry. However, the application of contrast media allowed a more accurate vessel segmentation. MR PC measurements can be reliably carried out after application of Gd-DTPA.

  4. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  5. Numerical stud of glare spot phase Doppler anemometry

    OpenAIRE

    Hespel , Camille; Ren , Kuan Fang; Gréhan , Gérard; Onofri , Fabrice

    2008-01-01

    International audience; The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The i...

  6. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Science.gov (United States)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  7. Velocity Statistics and Spectra in Three-Stream Jets

    Science.gov (United States)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.; Henderson, Brenda; Leib, Stewart

    2016-01-01

    Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.

  8. Measurement of turbulent flow fields in a agitated vessel with four baffles by laser-doppler velocimetry. Mean velocity fields and flow pattern; Buffle tsuki heiento kakuhan sonai nagare no LDV ni yoru keisoku. Heikin sokudoba to flow pattern

    Energy Technology Data Exchange (ETDEWEB)

    Suzukawa, K [Ube Industries, Ltd., Tokyo (Japan); hashimoto, T [Yamaguchi University, Yamaguchi (Japan); Osaka, H [Yamaguchi University, Yamaguchi (Japan). Faclty of Engineering

    1997-12-25

    The three dimensional complex turbulent flow fields induced by a four flat blade paddle impeller in agitated vessel were measured by laser Doppler velocimetry. Mixing vessel used was a closed cylindrical tank of 490 mm diameter with a flat bottom and four vertical buffles, giving water volumes of about 1001. The impellers were at the midnight of the water level in the tank. A height of liquid (water) was equal to the vessel diameter. Three components of mean velocity were measured at three vertical sections {theta}=7.5deg, 45deg and 85deg, in several horizontal planes. Mixing Reynolds number NRe was 1.2 times 10{sup 5}. It can be found from the results that circumferential mean velocity profiles show the symmetrical shape in the upper and lower sides of impeller. Secondary velocity components, such as axial and radial velocities, however, were not in symmetry. For this reason, the ratio of circulation flow volume which enter in upper and lower sides of impeller was roughly 7/3. In both the middle and buffle regions, mean flow velocities (flow patterns) were different, dependent of three vertical planes with different circumferential angle measured from buffle. 10 refs., 8 figs., 1 tab.

  9. Ultrasonic Doppler color in glaucoma: Concordance study

    International Nuclear Information System (INIS)

    Uriza, Felipe; Useche, Nicolas

    2005-01-01

    Our study demonstrates that US color Doppler is a non invasive, reliable and reproducible method for the evaluation of the orbitary flow in normal and glaucomatous patients. However is suggested that every group evaluates the inter and intraobserver variability because of the lack of universal reference velocity measurements

  10. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    Science.gov (United States)

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Superimposed noninterfering probes to extend the capabilities of phase Doppler anemometry.

    Science.gov (United States)

    Onofri, Fabrice; Lenoble, Anne; Radev, Stefan

    2002-06-20

    We propose using multiple superimposed noninterfering probes (SNIPs) of the same wavelength but different beam angles to extend the capabilities of phase Doppler anemometry. When a particle is moving in a SNIP the Doppler signals that are produced exhibit multiple Doppler frequencies and phase shifts. The resolution of the measurements of particle size (i.e., by fringe spacing and Doppler frequency) increases with beam angle. Then, with the solution proposed, even with only two detectors several measurements of size can be obtained for the same particle with increasing resolution if we consider higher frequencies in the signal. Several optical solutions to produce SNIPs as well as a signal-processing algorithm to treat the multiple-frequency Doppler signals are proposed. Experimental validations of the sizing of spherical and cylindrical particles demonstrate the applicability of this technique for particle measurement. We believe that this new technique can be of great interest when high resolution of size, velocity, and even refractive index is required.

  12. Study on time-varying velocity measurement with self-mixing laser diode based on Discrete Chirp-Fourier Transform

    International Nuclear Information System (INIS)

    Zhang Zhaoyun; Gao Yang; Zhao Xinghai; Zhao Xiang

    2011-01-01

    Laser's optical output power and frequency are modulated when the optical beam is back-scattered into the active cavity of the laser. By signal processing, the Doppler frequency can be acquired, and the target's velocity can be calculated. Based on these properties, an interferometry velocity sensor can be designed. When target move in time-varying velocity mode, it is difficult to extract the target's velocity. Time-varying velocity measurement by self-mixing laser diode is explored. A mathematics model was proposed for the time-varying velocity (invariable acceleration) measurement by self-mixing laser diode. Based on this model, a Discrete Chirp-Fourier Transform (DCFT) method was applied, DCFT is analogous to DFT. We show that when the signal length N is prime, the magnitudes of all the side lobes are 1, whereas the magnitudes of the main lobe is √N, And the coordinates of the main lobe shows the target's velocity and acceleration information. The simulation results prove the validity of the algorithm even in the situation of low SNR when N is prime.

  13. Doppler ultrasonographic measurement of short-term effects of valsalva maneuver on retrobulbar blood flow.

    Science.gov (United States)

    Kimyon, Sabit; Mete, Ahmet; Mete, Alper; Mete, Duçem

    2017-11-12

    To investigate the effects of Valsalva maneuver (VM) on retrobulbar blood flow parameters in healthy subjects. Participants without any ophthalmologic or systemic pathology were examined in supine position with color and pulsed Doppler imaging for blood flow measurement, via a paraocular approach, in the ophthalmic artery (OA), central retinal artery (CRA), central retinal vein (CRV), nasal posterior ciliary artery (NPCA), and temporal posterior ciliary artery (TPCA), 10 seconds after a 35- to 40-mm Hg expiratory pressure was reached. Peak systolic velocity (PSV), end-diastolic velocity (EDV), pulsatility index (PI), and resistivity index (RI) values were recorded for each artery. PSV and EDV values were recorded for CRV. There were significant differences between resting and VM values of PSV and EDV of CRA, RI of NPCA, and PI, RI, and EDV of TPCA. Resting CRA-EDV, CRV-PSV, and CRV-EDV were positively correlated whereas resting OA-PSV and CRA-PI, and OA-PSV, CRA-PSV, and CRA-EDV during VM, were negatively correlated with age. VM induces a short-term increase in CRA blood flow and a decrease in NPCA and TPCA RI. Additional studies with a longer Doppler recording during VM, in a larger population sample, are required to allow definitive interpretation. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 45:551-555, 2017. © 2017 Wiley Periodicals, Inc.

  14. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  15. Changes in Doppler flow velocity waveforms and fetal size at 20 weeks gestation among cigarette smokers.

    Science.gov (United States)

    Kho, E M; North, R A; Chan, E; Stone, P R; Dekker, G A; McCowan, L M E

    2009-09-01

    To compare umbilical and uterine artery Doppler waveforms and fetal size at 20 weeks between smokers and nonsmokers. Prospective cohort study. Auckland, New Zealand and Adelaide, Australia. Nulliparous participants in the Screening for Pregnancy Endpoints (SCOPE) study. Self-reported smoking status was determined at 15 +/- 1 weeks' gestation. At the 20 +/- 1 week anatomy scan, uterine and umbilical Doppler resistance indices (RI) and fetal measurements were compared between smokers and nonsmokers. Umbilical and mean uterine artery Doppler RI values, abnormal umbilical and uterine Doppler (RI > 90th centile) and fetal biometry. Among the 2459 women, 248 (10%) were smokers. Smokers had higher umbilical RI [0.75 (SD 0.06) versus 0.73 (0.06), P gestation, women who smoke have higher umbilical artery RI, a surrogate measure for an abnormal placental villous vascular tree. This may contribute to later fetal growth restriction among smokers. Further research is needed to explore the clinical significance of these findings.

  16. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Ovandir Bazan

    2013-12-01

    Full Text Available INTRODUCTION: In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. OBJECTIVE: To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. METHODS: To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. RESULTS: It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. CONCLUSIONS: Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM is superior to the 21 AJ - 501 model (Master Series. Based on the results, future studies can choose to focus on specific regions of the these valves.

  17. Doppler spectroscopic measurements of sheath ion velocities in radio-frequency plasmas

    International Nuclear Information System (INIS)

    Woodcock, B.K.; Busby, J.R.; Freegarde, T.G.; Hancock, G.

    1997-01-01

    We have measured the distributions of N 2 + ion velocity components parallel and perpendicular to the electrode in the sheath of a radio-frequency nitrogen reactive ion etching discharge, using pulsed laser-induced fluorescence. Parallel to the electrode, the ions have throughout a thermal distribution that is found to be consistent with the rotational temperature of 355 K. In the perpendicular direction, we see clearly the acceleration of the ions towards the electrode, and our results agree well with theoretical predictions although an unexpected peak of unaccelerated ions persists. We have also determined the absolute ion concentrations in the sheath, which we have calibrated by analyzing the decay in laser-induced fluorescence in the plasma bulk after discharge extinction. At 20 mTorr, the bulk concentration of 1.0x10 10 cm -3 falls to around 2x10 8 cm -3 at 2 mm from the electrode. copyright 1997 American Institute of Physics

  18. The velocity measurement by LDV at the simulated plate fuel assembly

    International Nuclear Information System (INIS)

    Tae Sung Ha

    2001-01-01

    For a more accurate safety analysis for McMaster Nuclear Reactor (MNR), local velocity measurements in a mock-up of the 18-plate fuel assembly are conducted over the range of M=2.0kg/s to 5.0kg/s (u=0.59m/s to 1.48m/s). To enable the measurement of the mass flow distribution through the channels by Laser Doppler Velocimeter(LDV), the curved fuel plate assembly is modified to flat fuel plates. The experimental result shows that the velocity profile is fairly symmetric for the 1st channel to the 17th subchannel at its center. The velocity in the peripheral area is slightly decreased while that directly above the circular pipe is correspondingly increased due to the effect of blockage by the exit endfitting. The mass flow rate fraction is fairly well distributed from the 1st to the 9th channels; at the outmost channels (1st and 3rd subchannels) the flow is approximately 95-97% of the average channel flow and at the central channels (4th and 8th subchannels) the flow is about 102-105% of the average channel mass flow rate. It is shown that the measured mass flow distribution is consistent with the results of the numerical calculation except 1st and 17th channels. (author)

  19. Doppler effect measurement in FCA assemblies X-3 and XI-1

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko

    1984-05-01

    Doppler reactivity worths were measured in FCA assemblies X-3 (mock-up core for JOYO Mark II) and XI-1 (mock-up core for large scale LMFBR) for U-238 and stractural materials of core (iron, stainless steel and nickel). The sample oscillation technique was used to measure the Doppler effect when a sample is heated up to 800 0 C from room temperature. The analysis was made using the 70 group JFS-3-J2 data set, and compared with the measured results. For U-238 samples, the calculation underestimates Doppler effects by 10%, on the other hand for other samples, the agreement between calculated values and measured values is quite good. (author)

  20. Principles of doppler tomography

    International Nuclear Information System (INIS)

    Juhlin, P.

    1992-08-01

    This paper shows how the radon transform can be used to determine vector fields. A scheme to determine the velocity field of a moving fluid by measurements with a continuous doppler signal is suggested. When the flow is confined to a bounded domain, as is the case in most applications, it can be uniquely decomposed into one gradiental and one rotational part. The former vanishes if the fluid is incompressible and source-free, and the latter can be completely reconstructed by the methods proposed in this paper if the domain is simply connected. Special attention is paid to laminar flow in a long cylindrical vessel with circular cross-section. Under such conditions the flow profile becomes parabolic, which makes the vessel recognizable as a typical 'N-shaped' pattern in an image describing the rotation of the velocity field. The vessel yields the same doppler tomographic pattern, no matter how it is sectioned. The ideas presented should be applicable also when studying the flow in blood vessels, even if the flow profile in these is not quite parabolic. The discrepancies only make the 'N-shape' somewhat distorted

  1. [Doppler ultrasound evaluation of aortic insufficiency using half-pressure time. Absence of arterial rigidity influence].

    Science.gov (United States)

    Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y

    1989-02-01

    In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.

  2. On the measurement of the neutrino velocity applying the standard time of the Global Positioning System

    International Nuclear Information System (INIS)

    Skeivalas, J; Parseliunas, E

    2013-01-01

    The measurement of the neutrino velocity applying the standard time of the Global Positioning System (GPS) is presented in the paper. The practical data were taken from the OPERA experiment, in which neutrino emission from the CERN LHC accelerator to Gran Sasso detector was investigated. The distance between accelerator and detector is about 730 km. The time interval was measured by benchmark clocks, which were calibrated by the standard GPS time signals received from GPS satellites. The calculation of the accuracy of the GPS time signals with respect to changes of the signals' frequencies due to the Doppler effect is presented. It is shown that a maximum error of about 200 ns could occur when GPS time signals are applied for the calibration of the clocks for the neutrino velocity measurements. (paper)

  3. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography. Comparison with thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Fujimoto, Kohei; Watanabe, Hiroyuki; Hozumi, Takeshi; Otsuka, Ryo; Hirata, Kumiko; Yamagishi, Hiroyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2004-01-01

    The usefulness of coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography to detect myocardial ischemia was compared with exercise thallium-201 single photon emission computed tomography (SPECT). Transthoracic Doppler echocardiography was performed in 110 patients with suspected coronary artery disease. Color Doppler signals of the left circumflex coronary artery flow in the apical four-chamber view were identified, and the velocities at rest and during hyperemia recorded for calculation of coronary flow reserve by the pulsed Doppler method. All patients underwent SPECT within 1 week of the transthoracic Doppler echocardiographic study. Coronary flow reserve in the left circumflex coronary artery was measured in 79 (72%) of 110 patients. SPECT revealed reversible perfusion defect in the left circumflex coronary artery territories in 12 of 69 patients excluding those with multivessel disease. Coronary flow reserve <2.0 had a sensitivity of 92% and specificity of 96% for reversible perfusion defect detected by SPECT. Noninvasive coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography can estimate myocardial ischemia in the left ventricular lateral regions. (author)

  4. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  5. Pressure drop ana velocity measurements in KMRR fuel rod bundles

    International Nuclear Information System (INIS)

    Yagn, Sun Kyu; Chung, Heung June; Chung, Chang Whan; Chun, Se Young; Song, Chul Wha; Won, Soon Yeun; Chung, Moon Ki

    1990-01-01

    The detailed hydraulic characteristic measurements in subchannels of longitudinally finned rod bundles using one-component LDV(Laser Doppler Velocimeter) were performed. Time mean axial velocity, turbulent intensity, and turbulent micro scales, such as time auto-correlation, Eulerian integral and micro scale, Kolmogorov length and time scale, and Taylor micro length scale were measured. The signals from LDV are inherently more or less discontinuous. The spectra of signals having such intermittent defects can be obtained by the fast Fourier transformation (FFT) of the auto-correlation function. The turbulent crossflow mixing rate between neighboring subchannels and dominant frequencies were evaluated from the measured data. Pressure drop data were obtained for the typical 36-element and 18-element fuel rod bundles fabricated by the design requirement of KMRR fuel and for other type of fuels assembled with 6-fin rods to investigate the fin effects on the pressure drop characteristics

  6. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  7. Parametric Investigation of Laser Doppler Microphones

    Science.gov (United States)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  8. Transcranial Doppler ultrasonography in children with sickle cell anemia: Clinical and laboratory correlates for elevated blood flow velocities.

    Science.gov (United States)

    Lagunju, IkeOluwa; Sodeinde, Olugbemiro; Brown, Biobele; Akinbami, Felix; Adedokun, Babatunde

    2014-02-01

    Transcranial Doppler (TCD) sonography of major cerebral arteries is now recommended for routine screening for stroke risk in children with sickle cell disease (SCD). We performed TCD studies on children with sickle cell anemia (SCA) seen at the pediatric hematology clinic over a period of 2 years. TCD scans were repeated yearly in children with normal flow velocities and every 3 months in children with elevated velocities. Findings were correlated with clinical variables, hematologic indices, and arterial oxygen saturation. Predictors of elevated velocities were identified by multiple linear regressions. We enrolled 237 children and performed a total of 526 TCD examinations. Highest time-averaged maximum flow velocities were ≥170 cm/s in 72 (30.3%) cases and ≥200 cm/s in 20 (8.4%). Young age, low hematocrit, low hemoglobin, and arterial oxygen desaturation <95% showed significant correlations with presence of increased cerebral flow velocities. Low hematocrit, low hemoglobin concentration, young age, and low arterial oxygen desaturation predicted elevated cerebral blood flow velocities and, invariably, increased stroke risk, in children with SCA. Children who exhibit these features should be given high priority for TCD examination in the setting of limited resources. Copyright © 2013 Wiley Periodicals, Inc.

  9. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  10. Validation of Transverse Oscillation Vector Velocity Estimation In-Vivo

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten

    2007-01-01

    Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound (US) beam direction. This implies that a Doppler angle under examination close to 90deg results in unreliable information about the true blood direction and blood velocity. The novel...... the presented angle independent 2-D vector velocity method. The results give reason to believe that the TO method can be a useful alternative to conventional Doppler systems bringing forth new information to the US examination of blood flow....

  11. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  12. Inline Ultrasonic Rheometry by Pulsed Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  13. Hydroxyurea lowers transcranial Doppler flow velocities in children with sickle cell anaemia in a Nigerian cohort.

    Science.gov (United States)

    Lagunju, IkeOluwa; Brown, Biobele J; Sodeinde, Olugbemiro

    2015-09-01

    Sickle cell anaemia (SCA) is the leading genetic disorder in Nigeria. Elevated velocities ≥170 cm/sec occur in about a third of Nigerian children with SCA. Chronic blood transfusion for stroke prevention is faced with a myriad of challenges in our practice. To evaluate the effectiveness of hydroxyurea (HU) in reducing flow velocities in a cohort of Nigerian children with SCA and elevated velocities treated with HU. An observational study was carried out on a cohort of Nigerian children with SCA and elevated velocities identified on routine transcranial Doppler (TCD) screening. HU was recommended in those with TCD velocities ≥ 170cm/sec as stipulated in our hospital protocol. Outcomes were compared after ≥12 months of observation. Fifty children with elevated TCD velocities were studied; 31 consented to HU therapy and 19 declined. Children on HU showed a statistically significant decline in mean velocities from 199.7 [17.1] cm/sec to 165.8 [20.7] cm/sec (P < 0.001) with a significant increase in mean packed cell volume from 21.1 [3.4] to 25.0 [2.8]%. Children without treatment had a significant rise in mean velocities from 190.2 [10.8] cm/sec to 199.7 [14.9] cm/sec (P = 0.003). Children with conditional risk velocities on HU were less likely to convert to abnormal risk (P < 0.001). Two stroke events occurred, one in each group. No adverse effects of HU were recorded in the cohort. HU appears to significantly reduce TCD velocities in Nigerian children with SCA and elevated velocities ≥170 cm/sec with beneficial effect on the haematological profile. HU may provide an effective approach to primary stroke prevention, particularly in Africa. © 2015 Wiley Periodicals, Inc.

  14. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  15. Heart rate and flow velocity variability as determined from umbilical Doppler velocimetry at 10-20 weeks of gestation.

    Science.gov (United States)

    Ursem, N T; Struijk, P C; Hop, W C; Clark, E B; Keller, B B; Wladimiroff, J W

    1998-11-01

    1. The aim of this study was to define from umbilical artery flow velocity waveforms absolute peak systolic and time-averaged velocity, fetal heart rate, fetal heart rate variability and flow velocity variability, and the relation between fetal heart rate and velocity variables in early pregnancy.2.A total of 108 women presenting with a normal pregnancy from 10 to 20 weeks of gestation consented to participate in a cross-sectional study design. Doppler ultrasound recordings were made from the free-floating loop of the umbilical cord.3. Umbilical artery peak systolic and time-averaged velocity increased at 10-20 weeks, whereas fetal heart rate decreased at 10-15 weeks of gestation and plateaued thereafter. Umbilical artery peak systolic velocity variability and fetal heart rate variability increased at 10-20 and 15-20 weeks respectively.4. The inverse relationship between umbilical artery flow velocity and fetal heart rate at 10-15 weeks of gestation suggests that the Frank-Starling mechanism regulates cardiovascular control as early as the late first and early second trimesters of pregnancy. A different underlying mechanism is suggested for the observed variability profiles in heart rate and umbilical artery peak systolic velocity. It is speculated that heart rate variability is mediated by maturation of the parasympathetic nervous system, whereas peak systolic velocity variability reflects the activation of a haemodynamic feedback mechanism.

  16. Screening for stroke in sickle cell anemia: comparison of transcranial Doppler imaging and nonimaging US techniques.

    Science.gov (United States)

    Neish, Ariane S; Blews, David E; Simms, Catherine A; Merritt, Robert K; Spinks, Alice J

    2002-03-01

    To determine whether criteria for screening patients with sickle cell anemia for stroke established with a nonimaging transcranial Doppler ultrasonographic (US) technique are applicable to studies performed with a transcranial Doppler US imaging technique. One hundred sixty-eight examinations in 66 children were performed for sickle cell stroke screening. Children were examined with nonimaging and imaging transcranial Doppler US techniques on the same day, for a total of 84 paired examinations. The time-averaged maximum mean velocity (V(mean)) and resistive index (RI) were calculated in the middle cerebral arteries, bifurcations of the distal internal carotid arteries, distal internal carotid arteries, anterior cerebral arteries, posterior cerebral arteries, and basilar arteries. The maximum systolic velocity (V(max)) was evaluated in the distal internal carotid arteries and middle cerebral arteries. V(mean), V(max), and RI measurements were subjected to repeated-measures multivariate analysis of covariance, and the Pearson product moment correlation was used for middle cerebral artery velocity, age, and hemoglobin. V(mean) measurements obtained with nonimaging and imaging techniques varied substantially for the bifurcation of the distal internal carotid artery, the posterior cerebral artery, and the basilar artery. Substantial differences were found in RIs for every vessel. Examination time was shorter with the nonimaging technique. V(mean) measurements in the middle cerebral artery, distal internal carotid artery, and anterior cerebral artery did not vary substantially between nonimaging and imaging transcranial Doppler US. RI data did not yield comparable measurements.

  17. Sequential motion of the ossicular chain measured by laser Doppler vibrometry.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi

    2017-12-01

    In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.

  18. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  19. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  20. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    Science.gov (United States)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  1. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  2. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  3. Assessment of right ventricular systolic function by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjærgaard, Jesper

    2012-01-01

    This thesis summarizes a series of studies performed in order to assess the clinical usefulness of a novel echocardiographic technology that allows non-invasive assessment of regional right ventricular myocardial velocities and deformation: tissue Doppler echocardiography. While the technology...... is a promising tool for improving our understanding of right ventricular hemodynamics, several aspects of the technology must be evaluated. The accuracy and reproducibility of the technology is evaluated in vitro, and normal values, impact of changes in loading of the right ventricle, response to exercise...... on right ventricular hemodynamics: pulmonary embolism, Arrhythmogenic right ventricular cardiomyopathy and pulmonary regurgitation, the latter in an animal model. The conclusions of the thesis are: Color tissue Doppler echocardiography accurately measures velocities, SR and strain in vitro. No systematic...

  4. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    International Nuclear Information System (INIS)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A.; Kondrat’ev, A. N.; Kuratov, S. E.; Mazanov, V. A.; Rogozkin, D. B.; Stepushkin, S. N.; Khatunkin, V. Yu.

    2016-01-01

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  5. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Andriyash, A. V. [All-Russia Research Institute of Automatics (Russian Federation); Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Kondrat’ev, A. N., E-mail: an.kondratev@physics.msu.ru; Kuratov, S. E. [All-Russia Research Institute of Automatics (Russian Federation); Mazanov, V. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Rogozkin, D. B. [All-Russia Research Institute of Automatics (Russian Federation); Stepushkin, S. N.; Khatunkin, V. Yu. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  6. Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.

  7. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  8. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    Science.gov (United States)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  9. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The EDOP provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The ER-2 Doppler radar (EDOP) is an X-band (9.6...

  10. Doppler broadening measurements in FRX-C/LSM

    International Nuclear Information System (INIS)

    Baron, M.H.; Chrien, R.E.

    1989-01-01

    Measurements obtained in situ during field reversed configuration (FRC) formation show that the Doppler broadening ion temperature T CV is larger by a factor of two or more than the ion temperature T i derived from pressure balance and Thomson scattering. After a time comparable to an ion-ion equilibrium time, T CV and T i come into agreement with each other. An exception to this picture occurs in the lowest fill pressure condition (2 mtorr), for which T CV > T i is maintained throughout the FRC lifetime. Earlier Doppler broadening measurements in FRX-B and FRX-C also showed persistent, anomalously high T CV at low fill pressure. The initially high values of T CV are probably caused by convective motion generated by the radial implosion. The low fill pressure results suggest an enhanced ohmic power input to the carbon ions. 7 refs., 3 figs

  11. Marked Increase in Flow Velocities During Deep Expiration: A Duplex Doppler Sign of Celiac Artery Compression Syndrome

    International Nuclear Information System (INIS)

    Erden, Ayse; Yurdakul, Mehmet; Cumhur, Turhan

    1999-01-01

    Symptoms of chronic mesenteric ischemia develop when the celiac artery is constricted by the median arcuate ligament of the diaphragm. Lateral aortography is the primary modality for diagnosing ligamentous compression of the celiac artery. However, duplex Doppler sonography performed during deep expiration can cause a marked increase in flow velocities at the compressed region of the celiac artery and suggest the diagnosis of celiac arterial constriction due to the diaphragmatic ligament. RID='''' ID='''' Correspondence to: A. Erden, M.D., Hafta sokak. 23/6, Gaziosmanpasa, 06700 Ankara, Turkey

  12. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  13. Reconstruction of Typhoon Structure Using 3-Dimensional Doppler Radar Radial Velocity Data with the Multigrid Analysis: A Case Study in an Idealized Simulation Context

    Directory of Open Access Journals (Sweden)

    Hongli Fu

    2016-01-01

    Full Text Available Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS with multigrid data assimilation developed in Earth System Research Laboratory (ESRL in National Oceanic and Atmospheric Administration (NOAA has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

  14. Demonstration of a Vector Velocity Technique

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa......With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner...

  15. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teaghee; Choi, Jong Woon [Department of Information and Communication, Honam University, Seobong-dong 59-1, Gwansan-gu, Gwangju 506-714 (Korea, Republic of); Kim, Yong Pyung [College of Electronics and Information, Kyunghee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  16. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  17. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  18. Doppler Ultrasonographic Parameters for Predicting Cerebral Vascular Reserve in Patients with Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jung, Han Young; Lee, Hui Joong; Kim, Hye Jung; Kim, Yong Sun; Kang, Duk Sik

    2006-01-01

    We investigated Doppler ultrasonographic (US) parameters of patients with acute stroke to predict the cerebral vascular reserve (CVR) measured by SPECT. We reviewed the flow velocity and cross-sectional area of the circular vessel at the common, external, and internal carotid arteries (ICA) and the vertebral arteries (VA) in 109 acute stroke patients who underwent SPECT. Flow volume (FV) of each artery was calculated as the product of the angle-corrected time averaged flow velocity and cross-sectional area of the circular vessel. Total cerebral FV (TCBFV) was determined as the sum of the FVs of the right and left ICA and VA. We compared the Doppler US parameters between 44 cases of preserved and 65 cases of impaired CVR. In the preserved CVR group, ICA FV, anterior circulating FV (ACFV) and TCBFV were higher than in the impaired CVR group (p < 0.05, independent t-test). In the impaired CVR group, the ROC curves showed ACFV and TCBFV were suitable parameters to predict CVR (p < 0.05). Doppler US was helpful for understanding the hemodynamic state of acute stroke. FV measurement by Doppler US was useful for predicting CVR

  19. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  20. Investigation of two-phase bubbly flows using laser doppler anemometry

    OpenAIRE

    Marié , Jean-Louis

    1983-01-01

    International audience; The present work is devoted to the development of an accurate and reliable laser Doppler anemometer technique (L.D.A.) meant for the measurement of the characteristics of twoephase bubbly flows. Most of these characteristics are the various statistical moments of the velocity fluctuations and the Reynolds stress tensor components within the continuous phase but also, under well defined conditions, the mean slip velocity of the dispersed phase. Although this technique w...

  1. Measurement of cylindrical particles with phase Doppler anemometry.

    Science.gov (United States)

    Mignon, H; Gréhan, G; Gouesbet, G; Xu, T H; Tropea, C

    1996-09-01

    Light scattering from cylindrical particles has been described with geometric optics. The feasibility of determining the particle diameter with a planar phase Doppler anemometer has been examined by simulations and experiments. In particular, the influence of particle orientation on measurability and measurement accuracy has been investigated. Some recommendations for realizing a practical-measurement instrument have been presented.

  2. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  3. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  4. In Vivo Validation of a Blood Vector Velocity Estimator with MR Angiography

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten

    2009-01-01

    Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound beam direction. This implies that a Doppler angle under examination close to 90° results in unreliable information about the true blood direction and blood velocity. The novel method...... indicate that reliable vector velocity estimates can be obtained in vivo using the presented angle-independent 2-D vector velocity method. The TO method can be a useful alternative to conventional Doppler systems by avoiding the angle artifact, thus giving quantitative velocity information....

  5. Echobiometrics kidney and renal artery triplex doppler of canine fetuses

    Directory of Open Access Journals (Sweden)

    M.A.R. Feliciano

    2014-04-01

    Full Text Available The aim of this study was to assess the sogographic parameters and biometry of canine fetal kidneys using the B mode, and to determinate the vascular index of the fetal renal arteries using the Doppler Triplex. Twenty four Shi-tzu and Pug, weighting between 4 and 10kg, aging between 4 and 6 years old were evaluated. The B mode, the fetal renal echobiometry and regularity of the renal surface, echotexture and cortex:medular ratio were evaluated during the 5th, 6th, 7th and 8th weeks of pregnancy. At the same time point of the B mode evaluation, the Doppler Triplex was carried out to assess the sistolic peak velocity (SPV, end diastolic velocity (EDV, vascular resistive (RI and pulsatility index (PI. B mode revealed no fetal renal abnormalities and echobiometry showed important measurements during fetal development (P0.05. B mode and Doppler Triplex were important tools for the assessment of fetal renal development, using echobiometry and renal arterial index in canie fetuses.

  6. New Methods for Estimating Water Current Velocity Fields from Autonomous Underwater Vehicles

    Science.gov (United States)

    Kinsey, J. C.; Medagoda, L.

    2016-02-01

    Water current velocities are a crucial component of understanding oceanographic processes and underwater robots, such as autonomous underwater vehicles (AUVs), provide a mobile platform for obtaining these observations. Estimating water current velocities requires both measurements of the water velocity, often obtained with an Acoustic Doppler Current Profiler (ADCP), as well as estimates of the vehicle velocity. Presently, vehicle velocities are supplied on the sea surface with velocity from GPS, or near the seafloor where Doppler Velocity Log (DVL) in bottom-lock is available; however, this capability is unavailable in the mid-water column where DVL bottom-lock and GPS are unavailable. Here we present a method which calculates vehicle velocities using consecutive ADCP measurements in the mid-water using an extended Kalman filter (EKF). The correlation of the spatially changing water current states, along with mass transport and shear constraints on the water current field, is formulated using least square constraints. Results from the Sentry AUV from a mid-water surveying mission at Deepwater Horizon and a small-scale hydrothermal vent flux estimation mission suggest the method is suitable for real-time use. DVL data is denied to simulate mid-water missions and the results compared to ground truth water velocity measurements estimated using DVL velocities. Results show quantifiable uncertainties in the water current velocities, along with similar performance, for the DVL and no-DVL case in the mid-water. This method has the potential to provide geo-referenced water velocity measurements from mobile ocean robots in the absence of GPS and DVL as well as estimate the uncertainty associated with the measurements.

  7. Doppler color flow mapping of peripheral vessels: Comparison of angiodynography with conventional duplex US

    International Nuclear Information System (INIS)

    Merritt, C.R.B.; Bluth, E.I.; Sullivan, M.A.

    1986-01-01

    A new Doppler color flow imager was compared to duplex US in the evaluation of carotid and peripheral vessels in 50 patients. A 7.5-MHz transducer permitted simultaneous high-resolution real-time imaging of Doppler flow and tissue. The system was found to have excellent image quality and Doppler sensitivity. Flow characteristics and velocity measurements obtained with this system correlated well with those obtained using the duplex scanner and were obtained more quickly than with the conventional system, allowing more complete assessment of flow characteristics. Color Doppler flow imaging appears to be an extremely promising method for the rapid and effective evaluation of peripheral vascular flow

  8. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  9. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...

  10. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  11. Does the application of gadolinium-DTPA have an impact on magnetic resonance phase contrast velocity measurements? Results from an in vitro study

    International Nuclear Information System (INIS)

    Heverhagen, J.T.; Hoppe, M.; Klose, K.-J.; Wagner, H.-J.

    2002-01-01

    Introduction/objective: To evaluate the potential influence of various concentrations of gadolinium (Gd)-DTPA on magnetic resonance phase contrast (MR PC) velocimetry. Material and methods: Imaging was done with a 1.0 T scanner using a standard Flash 2D sequence and a circular polarized extremity coil. In a validated flow phantom with a defined 75% area stenosis different concentrations of Gd-DTPA, diluted in a 10:1 water-yogurt mixture, MR PC measurements were correlated with a Doppler guide wire as gold standard. Results: MR PC measurements correlated well with the Doppler derived data (r=0.99; P 0.05; Student's t-test) flow measurement changes were noted (maximum pre-stenotic velocity: 21.3±1.3 cm/s; maximum intra-stenotic velocity: 84.0±3.6 cm/s). However, delineation of the perfused lumen was enhanced after the application of Gd-DTPA. Discussions and conclusion: The application of Gd-DTPA does not affect MR PC velocimetry. However, the application of contrast media allowed a more accurate vessel segmentation. MR PC measurements can be reliably carried out after application of Gd-DTPA

  12. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    Science.gov (United States)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  14. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  15. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  16. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  17. [Comparison between two methods for hemodynamic measurement: thermodilution and oesophageal doppler].

    Science.gov (United States)

    Ferreira, Roberto Manara Victorio; do Amaral, José Luiz Gomes; Valiatti, Jorge Luís dos Santos

    2007-01-01

    Thermodilution (TD) is the "gold standard method" for hemodynamic monitoring. Some parameters can be measured by Oesophageal Doppler (OD), which is simpler and less invasive. To evaluate the accuracy of OD, we compared this method with TD in measurement of cardiac output (CO). One hundred and ninety two simultaneous measurements were made in 10 patients (5 male and 5 female) with different clinical situations, 8 with sepsis using vasoactive drugs and 2 monitored for laryngectomy and liver transplantation. Measurements were taken during 4 hours at 30 minute intervals. The two oesophageal dopplers used DeltexR and ArrowR, were introduced between 35 and 45 cm from the nose and located at the point of largest diameter of the descending aorta. In TD, we used the pulmonary artery catheter (Swan Ganz BaxterR) and the DX- 2001 monitorR positioning was confirmed with support of radiology and of pressures curves. Measurements of CO carried out by means of TD were achieved using an iced saline solution considering the mean of four measurements with less than a 5% difference. The statistical method used was the Bland-Altman scatter plot and dispersion graphic. No statistically significant difference was found between the two methods for hemodyamic measurement with a correlation coefficient of 0.8 for CO (Deltex DopplerR and Baxter Swan GanzR) and a correlation coefficient of 0.99 for CO (Arrow DopplerR and Baxter Swan GanzR). Homodynamic measurements with OD have the same accuracy as those with TD and were easily obtained in the 10 patients.

  18. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  19. Passive emitter location with Doppler frequency and interferometric measurements

    NARCIS (Netherlands)

    Groot, J.S.; Dam, F.A.M.; Theil, A.

    2008-01-01

    Ground based emitters can be located with a receiver installed on an airborne platform. This paper discusses techniques based on Doppler frequency and differential phase measurements (interferometry). Measurements of the first technique are provided, while we discuss and compare the theoretical

  20. A Wearable Transcranial Doppler Ultrasound Phased Array System.

    Science.gov (United States)

    Pietrangelo, Sabino J; Lee, Hae-Seung; Sodini, Charles G

    2018-01-01

     Practical deficiencies related to conventional transcranial Doppler (TCD) sonography have restricted its use and applicability. This work seeks to mitigate several such constraints through the development of a wearable, electronically steered TCD velocimetry system, which enables noninvasive measurement of cerebral blood flow velocity (CBFV) for monitoring applications with limited operator interaction. A highly-compact, discrete prototype system was designed and experimentally validated through flow phantom and preliminary human subject testing. The prototype system incorporates a custom two-dimensional transducer array and multi-channel transceiver electronics, thereby facilitating acoustic beamformation via phased array operation. Electronic steering of acoustic energy enables algorithmic system controls to map Doppler power throughout the tissue volume of interest and localize regions of maximal flow. Multi-focal reception permits dynamic vessel position tracking and simultaneous flow velocimetry over the time-course of monitoring. Experimental flow phantom testing yielded high correlation with concurrent flowmeter recordings across the expected range of physiological flow velocities. Doppler power mapping has been validated in both flow phantom and preliminary human subject testing, resulting in average vessel location mapping times testing. A wearable prototype CBFV measurement system capable of autonomous vessel search and tracking has been presented. Although flow phantom and preliminary human validation show promise, further human subject testing is necessary to compare velocimetry data against existing commercial TCD systems. Additional human subject testing must also verify acceptable vessel search and tracking performance under a variety of subject populations and motion dynamics-such as head movement and ambulation.

  1. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  2. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    International Nuclear Information System (INIS)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D'Ippolito, Giuseppe; Colleoni, Ramiro

    2008-01-01

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  3. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Colleoni, Ramiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Gastroenterologia

    2008-09-15

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  4. Velocity and size distribution measurement of suspension droplets using PDPA technique

    Science.gov (United States)

    Amiri, Shahin; Akbarnozari, Ali; Moreau, Christian; Dolatabadi, Ali

    2015-11-01

    The creation of fine and uniform droplets from a bulk of liquid is a vital process in a variety of engineering applications, such as atomization in suspension plasma spray (SPS) in which the submicron coating materials are injected to the plasma gas through the suspension droplets. The size and velocity of these droplets has a great impact on the interaction of the suspension with the gas flow emanating from a plasma torch and can consequently affect the mechanical and chemical properties of the resultant coatings. In the current study, an aqueous suspension of small glass particles (2-8 μm) was atomized by utilizing an effervescent atomizer of 1 mm orifice diameter which involves bubbling gas (air) directly into the liquid stream. The gas to liquid ratio (GLR) was kept constant at 6% throughout this study. The mass concentration of glass particles varied in the range between 0.5 to 5% in order to investigate the effect of suspension viscosity and surface tension on the droplet characteristics, such as velocity and size distributions. These characteristics were simultaneously measured by using a non-intrusive optical technique, Phase Doppler Particle Anemometry (PDPA), which is based on the light signal scattered from the droplets moving in a measurement volume. The velocity and size distribution of suspension droplets were finally compared to those of distilled water under identical conditions. The results showed a different atomization behaviors due to the reduction in surface tension of the suspension spray.

  5. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  6. Measurement of Doppler effect up to 2000degC at FCA. 1

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki; Okajima, Shigeaki; Mukaiyama, Takehiko; Satoh, Kunio; Hishida, Makoto; Hayano, Mutsuhiko; Kudogh, Fumio; Kasahara, Yoshiyuki.

    1994-03-01

    A new experimental device for the measurement of 238 U Doppler effect up to 2000degC was developed for the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute with the intention to improve the Doppler effect analysis at high temperature in fast reactors. The measurement method consists of two different techniques; one is the reactivity worth measurement with using a small sample heated up to 1500degC, the other is the reaction rate measurement with using a foil heated up to 2000degC. In the present work, the development and measurement for the former technique is described. The technique itself had been used in critical assemblies around the world, including FCA, for the measurement up to 800degC. The present new device was developed by improving the old device throughouly to extend the sample temperature up to 1500degC which is hot enough for us to evaluate the Doppler effect in the MOX-fuel fast reactor. (author)

  7. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  8. Tissue Doppler echocardiography – A case of right tool, wrong use

    Directory of Open Access Journals (Sweden)

    Thomas George

    2004-08-01

    Full Text Available Abstract Background The developments in echocardiography or ultrasound cardiography (UCG have improved our clinical capabilities. However, advanced hardware and software capabilities have resulted in UCG facilities of dubious clinical benefits. Is tissue Doppler echocardiography (TDE is one such example? Presentation of the hypothesis TDE has been touted as advancement in the field of echocardiography. The striking play of colors, impressive waveforms and the seemingly accurate velocity values could be deceptive. TDE is a clear case of inappropriate use of technology. Testing the hypothesis To understand this, a comparison between flow Doppler and tissue Doppler is made. To make clinically meaningful velocity measurements with Doppler, we need prior knowledge of the line of motion. This is possible in blood flow but impossible in the complex myocardial motion. The qualitative comparison makes it evident that Doppler is best suited for flow studies. Implications of the hypothesis As of now TDE is going backwards using an indirect method when direct methods are better. The work on TDE at present is only debatable 'research and publication' material and do not translate into tangible clinical benefits. There are several advances like curved M-mode, strain rate imaging and tissue tracking in TDE. However these have been disappointing. This is due to the basic flaw in the application of the principles of Doppler. Doppler is best suited for flow studies and applying it to tissue motion is illogical. All data obtained by TDE is scientifically incorrect. This makes all the published papers on the subject flawed. Making diagnostic decisions based on this faulty application of technology would be unacceptable to the scientific cardiologist.

  9. Numerical study of glare spot phase Doppler anemometry

    Science.gov (United States)

    Hespel, C.; Ren, K. F.; Gréhan, G.; Onofri, F.

    2008-03-01

    The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes through the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences and the intensity ratios between two signals, the distance between the reflected and refracted spots can be obtained. These measured values provide information about the particle diameter and its refractive index, as well as its two velocity components. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  10. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    Science.gov (United States)

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  11. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  12. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  13. The influence of emotional stress on Doppler-derived aortic peak velocity in boxer dogs.

    Science.gov (United States)

    Pradelli, D; Quintavalla, C; Crosta, M C; Mazzoni, L; Oliveira, P; Scotti, L; Brambilla, P; Bussadori, C

    2014-01-01

    Subaortic stenosis (SAS) is a common congenital heart disease in Boxers. Doppler-derived aortic peak velocity (AoPV) is a diagnostic criterion for the disease. To investigate the influence of emotional stress during echocardiographic examination on AoPV in normal and SAS-affected Boxers. To evaluate the effects of aortic root diameters on AoPV in normal Boxers. DOGS: Two hundred and fifteen normal and 19 SAS-affected Boxers. The AoPV was recorded at the beginning of echocardiographic examination (T0), and when the emotional stress of the dog was assumed to decrease based on behavioral parameters and heart rate (T1). AoPV0-AoPV1 was calculated. In normal dogs, stroke volume index was calculated at T0 and T1. Aortic root diameters were measured and their relationship with AoPV and AoPV0-AoPV1 was evaluated. In normal dogs, AoPV was higher at T0 (median, 1.95 m/s; range, 1.60-2.50 m/s) than at T1 (median, 1.76 m/s; range, 1.40-2.20 m/s; P dogs, AoPV0 was higher than AoPV1 (P < .0001; reduction 7.3%). Aortic peak velocity was affected by emotional stress during echocardiographic examination both in SAS-affected and normal Boxers. In normal Boxers, aortic root size weakly affected AoPVs, but did not affect AoPV0-AoPV1. Stroke volume seems to play a major role in stress-related AoPV increases in normal Boxers. Emotional stress should be taken into account when screening for SAS in the Boxer breed. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  14. Biometric, B-mode and color Doppler ultrasound assessment of eyes in healthy dogs

    Directory of Open Access Journals (Sweden)

    Elzivânia G. Silva

    Full Text Available ABSTRACT: B-scan ultrasonography is an important diagnostic tool that allows characterization of internal organ anatomy and, when complemented by Doppler ultrasound, allows vascular hemodynamic assessment, increasing the diagnostic accuracy. Thus, the aim of the present study was the B-scan ultrasound characterization and measurement of the eyeball segments and assessment of the external ophthalmic artery by color and pulsed Doppler. Sixty eyeballs were assessed from 30 dogs of different breeds using an 8.5MHz microconvex transductor. First, biometry was performed by B-scan of the following segments: axial length (M1, anterior chamber depth (M2, lens thickness (M3, lens length (M4, vitreous chamber depth (M5, optical disc length (M6 and optic nerve diameter (M7. Colored Doppler identified the external ophthalmic article and pulsed Doppler assessed its flow, and the following were measured: systolic peak velocity (VPS, final diastolic velocity (VDF, resistivity index (IR and pulse index (IP. No statistical difference was observed for the biometric values of the eye segments between the right and left eyes (p>0.05. The vitreous chamber depth (M5 was shown to be the biometric variable with greatest bilateral symmetry, varying from 0.79 to 0.87cm and 0.78 to 0.86cm for the right and left eye, respectively. The ophthalmic artery was visualized over the optic nerve towards the eyeball, with flow stained red. There was no significant statistical difference between the Doppler velocimetric values for the ophthalmic artery between the right and left eye of the animals assessed (p>0.05. The mean resistivity index (RI showed average values equal to 0.63±0.03, bilaterally. The mean base velocity was 17.50cm/s and 18.18cm/s at the systolic peak and 6.21cm/s and 6.68cm/s at the end of the diastole, for the right and left eyes respectively. The anatomic, biometric and hemodynamic characterization using the ultrasound B-scan and the Doppler modalities

  15. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  16. Operator auditory perception and spectral quantification of umbilical artery Doppler ultrasound signals.

    Directory of Open Access Journals (Sweden)

    Ann Thuring

    Full Text Available OBJECTIVE: An experienced sonographer can by listening to the Doppler audio signals perceive various timbres that distinguish different types of umbilical artery flow despite an unchanged pulsatility index (PI. Our aim was to develop an objective measure of the Doppler audio signals recorded from fetoplacental circulation in a sheep model. METHODS: Various degrees of pathological flow velocity waveforms in the umbilical artery, similar to those in human complicated pregnancies, were induced by microsphere embolization of the placental bed (embolization model, 7 lamb fetuses, 370 Doppler recordings or by fetal hemodilution (anemia model, 4 lamb fetuses, 184 recordings. A subjective 11-step operator auditory scale (OAS was related to conventional Doppler parameters, PI and time average mean velocity (TAM, and to sound frequency analysis of Doppler signals (sound frequency with the maximum energy content [MAXpeak] and frequency band at maximum level minus 15 dB [MAXpeak-15 dB] over several heart cycles. RESULTS: WE FOUND A NEGATIVE CORRELATION BETWEEN THE OAS AND PI: median Rho -0.73 (range -0.35- -0.94 and -0.68 (range -0.57- -0.78 in the two lamb models, respectively. There was a positive correlation between OAS and TAM in both models: median Rho 0.80 (range 0.58-0.95 and 0.90 (range 0.78-0.95, respectively. A strong correlation was found between TAM and the results of sound spectrum analysis; in the embolization model the median r was 0.91 (range 0.88-0.97 for MAXpeak and 0.91 (range 0.82-0.98 for MAXpeak-15 dB. In the anemia model, the corresponding values were 0.92 (range 0.78-0.96 and 0.96 (range 0.89-0.98, respectively. CONCLUSION: Audio-spectrum analysis reflects the subjective perception of Doppler sound signals in the umbilical artery and has a strong correlation to TAM-velocity. This information might be of importance for clinical management of complicated pregnancies as an addition to conventional Doppler parameters.

  17. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  18. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  19. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  20. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Directory of Open Access Journals (Sweden)

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  1. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    Science.gov (United States)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  2. Multimodal quantitation of the effects of endovascular therapy for vasospasm on cerebral blood flow, transcranial doppler ultrasonographic velocities, and cerebral artery diameters.

    Science.gov (United States)

    Oskouian, Rod J; Martin, Neil A; Lee, Jae Hong; Glenn, Thomas C; Guthrie, Donald; Gonzalez, Nestor R; Afari, Arash; Viñuela, Fernando

    2002-07-01

    The goal of this study was to quantify the effects of endovascular therapy on vasospastic cerebral vessels. We reviewed the medical records for 387 patients with ruptured intracranial aneurysms who were treated at a single institution (University of California, Los Angeles) between May 1, 1993, and March 31, 2001. Patients who developed cerebral vasospasm and underwent cerebral arteriographic, transcranial Doppler ultrasonographic, and cerebral blood flow (CBF) studies before and after endovascular therapy for cerebral arterial spasm (vasospasm) were included in this study. Forty-five patients fulfilled the aforementioned criteria and were treated with either papaverine infusion, papaverine infusion with angioplasty, or angioplasty alone. After balloon angioplasty (12 patients), CBF increased from 27.8 +/- 2.8 ml/100 g/min to 28.4 +/- 3.0 ml/100 g/min (P = 0.87); the middle cerebral artery blood flow velocity was 1 57.6 +/- 9.4 cm/s and decreased to 76.3 +/- 9.3 cm/s (P < 0.05), with a mean increase in cerebral artery diameters of 24.4%. Papaverine infusion (20 patients) transiently increased the CBF from 27.5 +/- 2.1 ml/100 g/min to 38.7 +/- 2.8 ml/100 g/min (P < 0.05) and decreased the middle cerebral artery blood flow velocity from 109.9 +/- 9.1 cm/s to 82.8 +/- 8.6 cm/s (P < 0.05). There was a mean increase in vessel diameters of 30.1% after papaverine infusion. Combined treatment (13 patients) significantly increased the CBF from 33.3 +/- 3.2 ml/100 g/min to 41.7 +/- 2.8 ml/100 g/min (P< 0.05) and decreased the transcranial Doppler velocities from 148.9 +/- 12.7 cm/s to 111.4 +/- 10.6 cm/s (P < 0.05), with a mean increase in vessel diameters of 42.2%. Balloon angioplasty increased proximal vessel diameters, whereas papaverine treatment effectively dilated distal cerebral vessels. In our small series, we observed no correlation between early clinical improvement or clinical outcomes and any of our quantitative or physiological data (CBF, transcranial Doppler

  3. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  4. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  5. Relationship of neonatal cerebral blood flow velocity asymmetry with early motor, cognitive and language development in term infants.

    Science.gov (United States)

    Wu, Ying-Chin; Hsieh, Wu-Shiun; Hsu, Chyong-Hsin; Chiu, Nan-Chang; Chou, Hung-Chieh; Chen, Chien-Yi; Peng, Shinn-Forng; Hung, Han-Yang; Chang, Jui-Hsing; Chen, Wei J; Jeng, Suh-Fang

    2013-05-01

    The objective of this study was to examine the relationships of Doppler cerebral blood flow velocity (CBFV) asymmetry measures with developmental outcomes in term infants. Doppler CBFV parameters (peak systolic velocity [PSV] and mean velocity [MV]) of the bilateral middle cerebral arteries of 52 healthy term infants were prospectively examined on postnatal days 1-5, and then their motor, cognitive and language development was evaluated with the Bayley Scales of Infant and Toddler Development, Third Edition, at 6, 12, 18 and 24 months of age. The left CBFV asymmetry measure (PSV or MV) was calculated by subtracting the right-side value from the left-side value. Left CBFV asymmetry measures were significantly positively related to motor scores at 6 (r = 0.3-0.32, p cognitive or language outcome. Thus, the leftward hemodynamic status of the middle cerebral arteries, as measured by cranial Doppler ultrasound in the neonatal period, predicts early motor outcome in term infants. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  7. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  8. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  9. Analysis of Doppler effect measurement in FCA cores using JENDL-3.2 library

    International Nuclear Information System (INIS)

    Okajima, Shigeaki

    1996-01-01

    For the evaluation of the calculation accuracy of the 238 U Doppler effect using JENDL-3.2 library, the previously measured Doppler reactivity worths in the FCA were systematically analyzed. In the analysis the Doppler reactivity worth was calculated by a first order perturbation theory. The calculated results were compared with those using JENDL-3.1 library. The JENDL-3.2 calculation in MOX fuel mock-up cores agrees well with the experimental values within the experimental error. In U-235/Pu fuel cores, the JENDL-3.2 calculation gives 12-15% larger Doppler reactivity worths than the JENDL-3.1 calculation. (author)

  10. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  11. Measurement of neurovascular coupling in human motor cortex using simultaneous transcranial doppler (TCD) and electroencephalography (EEG).

    Science.gov (United States)

    Alam, Monzurul; Ahmed, Ghazanfar; Ling, Yan To; Zheng, Yong-Ping

    2018-05-25

    Event-related desynchronization (ERD) is a relative power decrease of electroencephalogram (EEG) signals in a specific frequency band during physical motor execution, while transcranial Doppler (TCD) measures cerebral blood flow velocity. The objective of this study was to investigate the neurovascular coupling in the motor cortex by using an integrated EEG and TCD system, and to find any difference in hemodynamic responses in healthy young male and female adults. Approach: 30 healthy volunteers, aged 20-30 years were recruited for this study. The subjects were asked to perform a motor task for the duration of a provided visual cue. Simultaneous EEG and TCD recording was carried out using a new integrated system to detect the ERD arising from the EEG signals, and to measure the mean blood flow velocity of the left and right middle cerebral arteries from bilateral TCD signals. Main Results: The results showed a significant decrease in EEG power in mu band (7.5-12.5 Hz) during the motor task compared to the resting phase. It showed significant increase in desynchronization on the contralateral side of the motor task compared to the ipsilateral side. Mean blood flow velocity during the task phase was significantly higher in comparison with the resting phase at the contralateral side. The results also showed a significantly higher increase in the percentage of mean blood flow velocity in the contralateral side of motor task compared to the ipsilateral side. However, no significant difference in desynchronization, or change of mean blood flow velocity was found between males and females. Significance: A combined TCD-EEG system successfully detects ERD and blood flow velocity in cerebral arteries, and can be used as a useful tool to study neurovascular coupling in the brain. There is no significant difference in the hemodynamic responses in healthy young males and females. © 2018 Institute of Physics and Engineering in Medicine.

  12. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  13. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort.

    Science.gov (United States)

    Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A

    2016-09-01

    We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.

  14. Determination of the stagnation point in pulverized coal swirl flames by detailed analysis of laser velocity measurements; Staupunktbestimmung in Kohlenstaub-Drallflammen mittels detaillierter Analyse von LDA-Daten

    Energy Technology Data Exchange (ETDEWEB)

    Ohliger, A.; Stadler, H.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    When Laser Doppler Anemometry (LDA) is used for experimental investigation of flow fields in pulverised coal flames, the measured coal particle velocities are usually averaged in order to determine the gas velocity. This paper shows that this approach can lead to a misinterpretation of the data. In the burner vicinity of the investigated flame, where high accelerations in the gas phase occur, a discrepancy appears between the measured velocity distribution and the expected normal distribution. Thus, a detailed analysis of the measured particle data is conducted and compared to conventional averaging. The difference can be attributed to large particles from the inner recirculation zone of the flame, which do not follow the gas flow properly. (orig.)

  15. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    International Nuclear Information System (INIS)

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-01-01

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio

  16. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry

    International Nuclear Information System (INIS)

    Schirmer, J; Conway, G D; Holzhauer, E; Suttrop, W; Zohm, H

    2007-01-01

    The technique of correlation Doppler reflectometry for providing radial correlation length L r measurements is explored in this paper. Experimental L r measurements are obtained using the recently installed dual channel Doppler reflectometer system on ASDEX Upgrade. The experimental measurements agree well with theory and with L r measured on other fusion devices using different diagnostic techniques. A strong link between L r and plasma confinement could be observed. From the L- to the H-mode, an increase in the absolute value of E r shear was detected at the same plasma edge region where a decrease in L r was measured. This observation is in agreement with theoretical models which predict that an increase in the absolute shear suppresses turbulent fluctuations in the plasma, leading to a reduction in L r . Furthermore, L r decreases from the plasma core to the edge and decreases with increasing plasma triangularity δ. The experimental results have been extensively modelled using a 2-dimensional finite difference time domain code. The simulations confirm that Doppler reflectometry provides robust radial correlation lengths of the turbulence with high resolution and suggests that L r is independent of the turbulence wavenumber k p erpendicular and its fluctuation level

  17. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  18. Doppler ultrasonography measurement of hepatic hemodynamics during Valsalva maneuver: healthy volunteer study

    Directory of Open Access Journals (Sweden)

    Dong-Ho Bang

    2015-01-01

    Full Text Available Purpose: The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Methods: Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years. The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC, middle hepatic vein (MHV, and right main portal vein (RMPV was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. Results: The mean diameters (cm of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001. The mean diameter (cm, minimal velocity (cm/sec, maximal velocity (cm/sec, and volume flow (mL/min of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001, -7.98±5.47 versus 25.74±13.13 (P<0.001, 21.34±6.89 versus 35.12±19.95 (P=0.002, and 106.94±97.65 versus 153.90±151.80 (P=0.014, respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485, 20.21±8.22 versus 18.73±7.43 (P=0.351, 26.79±8.85 versus 24.93±9.91 (P=0.275, and 391.52±265.63 versus 378.43±239.36 (P=0.315, respectively. Conclusion: The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  19. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  20. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern

    Science.gov (United States)

    König, Jörg; Czarske, Jürgen

    2017-10-01

    Small scale flow phenomena play an important role across engineering, biological and chemical sciences. To gain deeper understanding of the influence of those flow phenomena involved, measurement techniques with high spatial resolution are often required, presuming a calibration of very low uncertainty. To enable such measurements, a method for the in situ calibration of an interferometric flow velocity profile sensor is presented. This sensor, with demonstrated spatial resolution better than 1 μm, allows for spatially-resolving measurements with low velocity uncertainty in flows with high velocity gradients, on condition that the spatial behavior of the interference fringe systems is well-known by calibration with low uncertainty, especially challenging to obtain at applications with geometries difficult to access. The calibration method described herein uses three interfering beams to form the interference fringe systems of the sensor, yielding Doppler burst signals exhibiting two peaks in the frequency domain whose amplitude ratio varies periodically along the measurement volume major z-axis, giving a further independent value of the axial tracer particle position that can be used to determine the calibration functions of the sensor during the flow measurement. A flow measurement in a microchannel experimentally validates that the presented approach allows for simultaneously estimating the calibration functions and the velocity profile, providing flow measurements with very low systematic measurement errors of the particle position of less than 400 nm (confidence interval 95%). In that way, the interferometric flow velocity profile sensor utilizing the in situ self-calibration method promises valuable insights on small scale flow phenomena, such as those given in shear and boundary layer flows, by featuring reliable flow measurements due to minimum systematic and statistical measurement errors.

  1. Photonic-Doppler-Velocimetry, Paraxial-Scalar Diffraction Theory and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, W. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-20

    In this report I describe current progress on a paraxial, scalar-field theory suitable for simulating what is measured in Photonic Doppler Velocimetry (PDV) experiments in three dimensions. I have introduced a number of approximations in this work in order to bring the total computation time for one experiment down to around 20 hours. My goals were: to develop an approximate method of calculating the peak frequency in a spectral sideband at an instant of time based on an optical diffraction theory for a moving target, to compare the ‘measured’ velocity to the ‘input’ velocity to gain insights into how and to what precision PDV measures the component of the mass velocity along the optical axis, and to investigate the effects of small amounts of roughness on the measured velocity. This report illustrates the progress I have made in describing how to perform such calculations with a full three dimensional picture including tilted target, tilted mass velocity (not necessarily in the same direction), and small amounts of surface roughness. With the method established for a calculation at one instant of time, measured velocities can be simulated for a sequence of times, similar to the process of sampling velocities in experiments. Improvements in these methods are certainly possible at hugely increased computational cost. I am hopeful that readers appreciate the insights possible at the current level of approximation.

  2. Assessment of ureterovesical jet dynamics in obstructed ureter by urinary stone with color Doppler and duplex Doppler examinations.

    Science.gov (United States)

    Jandaghi, Ali Babaei; Falahatkar, Siavash; Alizadeh, Ahmad; Kanafi, Alireza Rajabzadeh; Pourghorban, Ramin; Shekarchi, Babak; Zirak, Amin Keshavarz; Esmaeili, Samaneh

    2013-04-01

    This study was designed to evaluate ureterovesical jet dynamics in obstructed ureter and to compare it with those of contralateral unobstructed side. Forty-six patients with diagnosis of ureteral stone, based on imaging findings in computed tomography were enrolled in this study. The gray-scale ultrasound exam from both kidneys and urinary bladder was performed. Then, ureterovesical jet characteristics including ureteral jet frequency, duration and peak velocity were assessed by color Doppler and duplex Doppler studies in both obstructed and unobstructed ureters by a radiologist, 15-30 min after oral hydration with 750-1,000 mL of water. When compared with contralateral normal side, the ureterovesical jet in obstructed ureter showed less frequency (0.59 vs. 3.04 jets/min; P < 0.05), shorter duration (1.24 vs. 5.26 s; P < 0.05) and lower peak velocity (5.41 vs. 32.09 cm/s; P < 0.05). The cut-off points of 1.5 jets/min, 2.5 s and 19.5 cm/s for difference of ureteral jet frequency, duration and peak velocity between obstructed and contralateral normal ureters yielded sensitivities of 97.8, 95.6 and 100 % and specificities of 87, 87.9 and 97.8 %, respectively for diagnosis of ureteral obstruction. Given the safety of Doppler study and significant differences in flow dynamics of obstructed versus unobstructed ureters, our findings demonstrated the utility of Doppler ultrasound examination as a useful adjunct to gray-scale ultrasound by improving the accuracy of ultrasound exam in diagnosis of ureteral obstruction.

  3. Cerebral Lateralization and General Intelligence: Gender Differences in a Transcranial Doppler Study

    Science.gov (United States)

    Njemanze, P.C.

    2005-01-01

    The present study evaluated cerebral lateralization during Raven's progressive matrices (RPM) paradigm in female and male subjects. Bilateral simultaneous transcranial Doppler (TCD) ultrasound was used to measure mean blood flow velocities (MBFV) in the right and left middle cerebral arteries (MCAs) in 24 (15 females and 9 males) right-handed…

  4. Spin-Orbit Misalignments of Three Jovian Planets via Doppler Tomography

    Science.gov (United States)

    Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J.

    2017-10-01

    We present measurements of the spin-orbit misalignments of the hot Jupiters HAT-P-41 b and WASP-79 b, and the aligned warm Jupiter Kepler-448 b. We obtain these measurements with Doppler tomography, where we spectroscopically resolve the line profile perturbation during the transit due to the Rossiter-McLaughlin effect. We analyze time series spectra obtained during portions of five transits of HAT-P-41 b, and find a value of the spin-orbit misalignment of λ =-{22.1}-6.0{+0.8^\\circ }. We reanalyze the radial velocity Rossiter-McLaughlin data on WASP-79 b obtained by Addison et al. using Doppler tomographic methodology. We measure λ =-{99.1}-3.9{+4.1^\\circ }, consistent with but more precise than the value found by Addison et al. For Kepler-448 b we perform a joint fit to the Kepler light curve, Doppler tomographic data, and a radial velocity data set from Lillo-Box et al. We find an approximately aligned orbit (λ =-{7.1}-2.8{+4.2^\\circ }), in agreement with the value found by Bourrier et al. Through analysis of the Kepler light curve we measure a stellar rotation period of {P}{rot}=1.27+/- 0.11 days, and use this to argue that the full three-dimensional spin-orbit misalignment is small, \\psi ˜ 0^\\circ . Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  5. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  6. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  7. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  8. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  9. Color doppler imaging of subclavian steal phenomenon

    International Nuclear Information System (INIS)

    Cho, Nari Ya; Chung, Tae Sub; Kim, Jai Keun

    1997-01-01

    To evaluate the characteristic color doppler imaging of vertebral artery flow in the subclavian steal phenomenon. The study group consisted of eight patients with reversed vertebral artery flow proved by color Doppler imaging. We classified this flow into two groups:(1) complete reversal;(2) partial reversal, as shown by Doppler velocity waveform. Vertebral angiography was performed in six of eight patients;color Doppler imaging and angiographic findings were compared. On color Doppler imaging, all eight cases with reversed vertebral artery flow showed no signal at the proximal subclavian or brachiocephalic artery. We confirmed shunting of six cases by performing angiography from the contralateral vertebral and basilar artery to the ipsilateral vertebral artery. On the Doppler spectrum, six cases showed complete reversal and two partial reversal. On angiography, one partial reversal case showed complete occlusion of the subclavian artery with abundant collateral circulation of muscular branches of the vertebral artery. On color Doppler imaging, a reversed vertebral artery suggests the subclavian steal phenomenon. In particular, partial reversal waveform may reflect collateral circulation

  10. Application of L.D.A. to measure instantaneous flow velocity field in the exhaust of a combustion engine

    International Nuclear Information System (INIS)

    Boutrif, M.S.; Thelliez, M.

    1993-01-01

    We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2 mm thickness. We also show that the cylinder discharges in two phases: the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly: its velocity varies betwen -100 m/s and 200 m/s within a period shorter than 1 ms; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000 rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. (orig.)

  11. Correlation of experimental rCBF determinations in goats with flow measurements from a Doppler-modified carotid artery shunt

    International Nuclear Information System (INIS)

    Loftus, C.M.; Silvidi, J.A.; Becker, J.A.; Miller, B.V.; Bernstein, D.D.

    1989-01-01

    A carotid artery shunt system has been developed that continuously monitors blood flow rates by embedding a Doppler crystal in the shunt wall. The crystal ranges through a liquid lens that enables it to be placed without violation of the shunt lumen. Because the crystal is at a fixed angle (45 degrees) to the axis of blood flow and the diameter of the lumen remains constant, a linear relationship exists between flow rates and the Doppler velocity signal. This shunt system was previously tested in vitro using a pulsatile pump and was found to be accurate to within 4.7% of the actual flow rate. In the present study, animal (goat) experiments were performed consisting of simultaneous carotid shunt flow and bilateral rCBF measurements by the radiolabeled microsphere technique to determine in vivo the accuracy of this Doppler modified shunt and to ascertain the ability of shunt flow to increase in the face of acute contralateral carotid occlusion. Data from five animals show that in vivo shunt flow can be recorded to within 13% of control rCBF and that shunt flow increases nearly 50% under conditions of distal demand (contralateral carotid occlusion). This device may prove useful in laboratory studies of carotid shunt dynamics and in clinical practice to quickly detect correctable shunt flow abnormalities

  12. Stellar magnetometry and Zeeman-Doppler imaging in exo-planets research using the radial velocity method

    International Nuclear Information System (INIS)

    Hebrard, Elodie

    2015-01-01

    Forthcoming instruments dedicated to exo-planets detection through the radial velocity method are numerous, and increasingly more accurate. However this method is indirect: orbiting planets are detected and characterised from variations on the spectrum of the host star. We are therefore sensitive to all activity phenomena impacting the spectrum and producing a radial velocity signal (pulsation, granulation, spots, magnetic cycle...). The detection of rocky Earth-like planets around main-sequence stars, and of hot Jupiters into young systems, are currently limited by the intrinsic magnetic activity of the host stars. The radial velocity fluctuations caused by activity (activity jitter) can easily mimic and hide signals from such planets, whose amplitude is of a few m/s and hundreds of m/s, respectively. As a result, the detection threshold of exo-planets is largely set by the stellar activity level. Currently, efforts are invested to overcome this intrinsic limitation. During my PhD, I studied how to take advantage of imaging tomographic techniques (Zeeman-Doppler imaging, ZDI) to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the activity jitter. My work is based on spectro-polarimetric observations of a sample of weakly-active M-dwarfs, and young active T Tauri stars. Using a modified version of ZDI, we are able to reconstruct the distribution of active regions, and then model the induced stellar signal allowing us to clean RV curves from the activity jitter. First tests demonstrate that this technique can be efficient enough to recover the planet signal, especially for the more active ones. (author)

  13. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server

    2012-01-01

    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  14. Results from transcranial Doppler examination on children and adolescents with sickle cell disease and correlation between the time-averaged maximum mean velocity and hematological characteristics: a cross-sectional analytical study

    Directory of Open Access Journals (Sweden)

    Mary Hokazono

    Full Text Available CONTEXT AND OBJECTIVE: Transcranial Doppler (TCD detects stroke risk among children with sickle cell anemia (SCA. Our aim was to evaluate TCD findings in patients with different sickle cell disease (SCD genotypes and correlate the time-averaged maximum mean (TAMM velocity with hematological characteristics. DESIGN AND SETTING: Cross-sectional analytical study in the Pediatric Hematology sector, Universidade Federal de São Paulo. METHODS: 85 SCD patients of both sexes, aged 2-18 years, were evaluated, divided into: group I (62 patients with SCA/Sß0 thalassemia; and group II (23 patients with SC hemoglobinopathy/Sß+ thalassemia. TCD was performed and reviewed by a single investigator using Doppler ultrasonography with a 2 MHz transducer, in accordance with the Stroke Prevention Trial in Sickle Cell Anemia (STOP protocol. The hematological parameters evaluated were: hematocrit, hemoglobin, reticulocytes, leukocytes, platelets and fetal hemoglobin. Univariate analysis was performed and Pearson's coefficient was calculated for hematological parameters and TAMM velocities (P < 0.05. RESULTS: TAMM velocities were 137 ± 28 and 103 ± 19 cm/s in groups I and II, respectively, and correlated negatively with hematocrit and hemoglobin in group I. There was one abnormal result (1.6% and five conditional results (8.1% in group I. All results were normal in group II. Middle cerebral arteries were the only vessels affected. CONCLUSION: There was a low prevalence of abnormal Doppler results in patients with sickle-cell disease. Time-average maximum mean velocity was significantly different between the genotypes and correlated with hematological characteristics.

  15. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    Science.gov (United States)

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter

  16. A local-velocity meter for hypersonic plasma jet

    International Nuclear Information System (INIS)

    Nyazev, A.A.; Lerner, N.B.; Svinolupov, K.I.

    1985-01-01

    This paper describes a system for a resonant laser Doppler meter for the local velocity in a hypersonic plasma flow. Preliminary test results on the prototype are reported for a jet of air containing sodium at 1100 degrees K, air pressure in the working region 20-200 Pa, and jet speed 6-8 km/sec. Measured speeds agree with theoretical predictions. The prototype and the method do not impose constraints on the working conditions but can be extended to wide ranges in temperature and pressure, such as ones in which the line width does not exceed the Doppler shift

  17. Doppler spectroscopy as a path to the detection of Earth-like planets.

    Science.gov (United States)

    Mayor, Michel; Lovis, Christophe; Santos, Nuno C

    2014-09-18

    Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.

  18. The Methodology of Doppler-Derived Central Blood Flow Measurements in Newborn Infants

    Directory of Open Access Journals (Sweden)

    Koert A. de Waal

    2012-01-01

    Full Text Available Central blood flow (CBF measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO and/or as cardiac input measured at the superior vena cava (SVC flow. Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use.

  19. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    Science.gov (United States)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  20. A brain-computer interface based on bilateral transcranial Doppler ultrasound.

    Directory of Open Access Journals (Sweden)

    Andrew J B Myrden

    Full Text Available In this study, we investigate the feasibility of a BCI based on transcranial Doppler ultrasound (TCD, a medical imaging technique used to monitor cerebral blood flow velocity. We classified the cerebral blood flow velocity changes associated with two mental tasks--a word generation task, and a mental rotation task. Cerebral blood flow velocity was measured simultaneously within the left and right middle cerebral arteries while nine able-bodied adults alternated between mental activity (i.e. word generation or mental rotation and relaxation. Using linear discriminant analysis and a set of time-domain features, word generation and mental rotation were classified with respective average accuracies of 82.9%±10.5 and 85.7%±10.0 across all participants. Accuracies for all participants significantly exceeded chance. These results indicate that TCD is a promising measurement modality for BCI research.

  1. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  2. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  3. Spectral color Doppler in the diagnosis and follow-up of Graves' disease

    International Nuclear Information System (INIS)

    Sponza, Massimo; Bertolotto, Michele; Ricci, Claudio; Fabris, Bruno; Armini, Lorenzo

    1997-01-01

    Hyperthyroidism in Graves' disease is caused by the presence of circulating autoantibodies to the THS receptors on the thyroid cells. Thyroid-suppression therapy prevents hormone production directly, without affecting the pathogenetic process. They performed color Doppler US of the thyroid gland and pulsed Doppler analysis of thyroid artery flow in 21 patients with Graves' disease before and during medical treatment. US results were compared with those of a control group of 40 healthy subjects and correlated with the values of thyroid hormones, TSH and thyroid microsomal and thyroglobulin antibodies. The thyroid gland was hypo vascularized in the control group. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity of PSV 20 ± 4 cm/s, diastolic velocity of 8 ± 1 cm/s, and resistive index of 0.60 ± 0.04. The thyroid gland of Graves' disease patients was hyper vascularized. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity (PSV = 51 ± 12 cm/s), end diastolic velocity (VD = 15 ± 4 cm/s) and resistive index (RI = 0.71 ± 0.04) significantly higher than in normal subjects (p < 0.001). Circulating thyroid hormones and flow parameters normalized after 6-8 months of medical therapy (PSV = 20 ± 6 cm/s, VD = 9 ± 3 cm(s, RI = 0.58 ± 0.07). The color Doppler patterns normalized only in a patient with normal TSH and antibodies. Sampling of the thyroid arteries proved more repeatable than sampling of parenchymal vessels

  4. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  5. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.

    Science.gov (United States)

    Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A

    2017-06-06

    Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.

  6. Point and planar LIF for velocity-concentration correlations in a jet in cross flow

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Larsen, Poul Scheel

    2002-01-01

    Simultaneous measurements of velocities and concentration with Planar Laser Induced Fluorescense (PLIF) combined with Particle Image Velocimetry (PIV) are compared to similar measurements with pointwise Laser Induced Fluorescense (LIF) made with a slightly modified standard Laser Doppler Anemometer......, since these involve areas with high velocity- and concentration gradients, which in turn amplifies the effect of a finite measurement volume in the two measurement systems. In addition, the concentration measurement was realized by injecting clean water into the dye seeded main flow. This "inverse...

  7. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  8. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    Science.gov (United States)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  9. Particle sizing experiments with the laser Doppler velocimeter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  10. Detection of Traveling Ionospheric Disturbances by Medium Frequency Doppler Sounding Using AM Radio Transmissions

    Science.gov (United States)

    Chilcote, M. A.; Labelle, J. W.; Lind, F. D.; Coster, A. J.; Galkin, I. A.; Miller, E.; Weatherwax, A. T.

    2013-12-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere were detected from time variations in the Doppler shifts of commercial AM radio broadcast stations. Three separately deployed receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network, recorded signals from two radio stations during eleven nights in March-April, 2012. Combining these measurements established that variations in the frequencies of the received signals, with amplitudes up to a few tenths of a Hertz, resulted from Doppler shifts produced by the ionosphere. At times, TIDs were detected as large amplitude variations in the Doppler shift with approximately 40-minute period correlated across the array. For one study interval, 0000-0400 UT on April 13, 2012, simultaneous GPS-TEC, digisonde, and superDARN coherent backscatter radar measurements confirmed the detection of TIDs with the same period. Detection of the AM signals at widely spaced receivers allowed the phase velocity and wavelength of the TIDs to be inferred, with some limitations due to differing reflection heights for the different frequencies. These measurements will be compared to phase velocities and wavelengths determined from combining an array of GPS receivers; discrepancies due to the altitude sensitivity of the techniques or other effects will be discussed. These results demonstrate that AM radio signals can be used for detection of nighttime TIDs.

  11. Measuring probe for measurement of local velocities

    International Nuclear Information System (INIS)

    Casal, V.; Arnold, G.; Kirchner, R.; Kussmaul, H.; Miller, H.

    1988-03-01

    The report describes a method for measurement of local velocities. It bases on the detection of the propagation of a temperature pulse induced into the fluid. The method can also be applied in flowing liquid metals with superimposed magnetic field; in this case common measuring principles fail application. The measuring system discussed consists of, a measuring head, a heating system, amplifiers and a PC. The latter performs process operation, data sampling, and evaluation of velocity. The measuring head itself includes a miniaturized heater (as a pulse marker) heated by the heating system in a short pulse, and a number of thermocouples (sensors) for detection of signals. The design, construction, and examination of a developed measuring device is described. (orig.) [de

  12. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  13. Doppler ultrasonography combined with transient elastography improves the non-invasive assessment of fibrosis in patients with chronic liver diseases.

    Science.gov (United States)

    Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica

    2017-01-31

    Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.

  14. Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms

    International Nuclear Information System (INIS)

    Bhattacharyya, Dipankar; Ray, Biswajit; Ghosh, Pradip N

    2007-01-01

    We report theoretical studies of a Λ-type five-level atomic system. The density matrix equations are set up and solved numerically to obtain the probe absorption line shape of Rb D 2 transitions for cold (Doppler-free) and room temperature (Doppler-broadened) atoms. Simulated spectra for Doppler-broadened systems lead to four velocity-selective dips along with an electromagnetic induced transparency (EIT) peak as observed earlier from the co-propagating pump-probe spectroscopy of Rb D 2 transitions. Effects of pump power and spontaneous decay rate from the upper levels on the simulated spectra are also studied. For cold atoms a very pronounced EIT peak is observed when the pump frequency is on resonance with one allowed transition. We find that lower pump power leads to a much sharper EIT signal in this case. A simulated dispersion curve shows a rapid variation of the refractive index that may lead to a sharp reduction of the group velocity of photons

  15. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Kitano, Hiroya

    2014-04-01

    Numerous studies have reported sound-induced motion of the tympanic membrane (TM). To demonstrate sequential motion characteristics of the entire TM by noncontact laser Doppler vibrometry (LDV), we have investigated multipoint TM measurement. A laser Doppler vibrometer was mounted on a surgical microscope. The velocity was measured at 33 points on the TM using noncontact LDV without any reflectors. Measurements were performed with tonal stimuli of 1, 3, and 6 kHz. Amplitudes were calculated from these measurements, and time-dependent changes in TM motion were described using a graphics application. TM motions were detected more clearly and stably at 1 and 3 kHz than at other frequencies. This is because the external auditory canal acted as a resonant tube near 3 kHz. TM motion displayed 1 peak at 1 kHz and 2 peaks at 3 kHz. Large amplitudes were detected in the posterosuperior quadrant (PSQ) at 1 kHz and in the PSQ and anteroinferior quadrant (AIQ) at 3 kHz. The entire TM showed synchronized movement centered on the PSQ at 1 kHz, with phase-shifting between PSQ and AIQ movement at 3 kHz. Amplitude was smaller at the umbo than at other parts. In contrast, amplitudes at high frequencies were too small and complicated to detect any obvious peaks. Sequential multipoint motion of the tympanic membrane showed that vibration characteristics of the TM differ according to the part and frequency.

  16. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  17. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend

    Energy Technology Data Exchange (ETDEWEB)

    Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M.

    1982-12-01

    Laser-Doppler measurements are reported for laminar and turbulent flow through a 90/sup 0/ bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60, and 75/sup 0/ planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layerd, conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. This displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intended for use as benchmark data for calibrating flow calculation methods.

  18. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars

    Energy Technology Data Exchange (ETDEWEB)

    Lea, Lewis J., E-mail: ll379@cam.ac.uk; Jardine, Andrew P. [SMF Fracture and Shock Physics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-02-15

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.

  19. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore.

  20. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  1. Peculiar velocity measurement in a clumpy universe

    Science.gov (United States)

    Habibi, Farhang; Baghram, Shant; Tavasoli, Saeed

    Aims: In this work, we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0.5 deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task, we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then, we use the SNe Ia sample of Union 2, to investigate the relativistic effects, we consider. Results: We show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here, we quantify this effect. We show that at low redshifts the lensing effect is negligible compare to the effect of peculiar velocity. From the observational point of view, we show that the uncertainties on luminosity of the present SNe Ia data prevent us from precise measuring the peculiar velocities even at low redshifts (z < 0.2).

  2. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    Science.gov (United States)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  3. Enormous periodic doppler shifts in SS 433

    International Nuclear Information System (INIS)

    Margon, B.; Ford, H.C.; Grandi, S.A.; Stone, R.P.S.

    1979-01-01

    We have previously reported prominent ''moving' emission lines in the visible spectrum of Stephenson-Sanduleak 433, the optical counterpart of a variable radio and X-ray source. Further observations show that despite the implausible velocities and changes in velocities implied if the moving features are interpreted as Doppler-shifted Balmer lines, this explanation is indeed correct. Spectroscopy of SS 433 on 51 mights in 1978--1979 reveals that the unidentified features are two sets of Balmer and He I lines, one with large and changing redshift, and the other with large and changing blueshift. Combining our data with published earlier observations, we obtain Doppler shifts on 80 nights in the period 1978 June to 1979 June. These data indicate that the velocity variations are cyclical, repeating in both the blueshift and redshift systems with a period of 164 +- 3 days. The two systems have thus far been observed to reach maximum positive and negative radial velocities of +50,000 and -35,000 km s -1 , respectively, are always symmetric about redshift z=0.04, and follow roughly sinusoidal velocity curves. We discuss in addition a variety of interesting short-term spectroscopic details, including minor but highly significant deviations of the radial velocity from the sinusoid, and nightly line profile changes, sometimes appearing as mirror-image events in the redshift and blueshift systems. The behavior of SS 433 is unprecedented

  4. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 month...

  5. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, Chad R.; Mueller, David S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.

  6. Spectral color Doppler in the diagnosis and follow-up of Graves` disease; Ruolo dell`eco color Doppler e dell`analisi flussimetrica nella diagnosi e nel follow-up della malattia dei Graves

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Massimo; Bertolotto, Michele; Ricci, Claudio [Ospedale di Cattinara, Trieste (Italy). Istituto di Medicina Clinica; Fabris, Bruno; Armini, Lorenzo [Ospedale di Cattinara, Trieste (Italy). Istituto di Radiologia

    1997-04-01

    Hyperthyroidism in Graves` disease is caused by the presence of circulating autoantibodies to the THS receptors on the thyroid cells. Thyroid-suppression therapy prevents hormone production directly, without affecting the pathogenetic process. They performed color Doppler US of the thyroid gland and pulsed Doppler analysis of thyroid artery flow in 21 patients with Graves` disease before and during medical treatment. US results were compared with those of a control group of 40 healthy subjects and correlated with the values of thyroid hormones, TSH and thyroid microsomal and thyroglobulin antibodies. The thyroid gland was hypo vascularized in the control group. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity of PSV 20 {+-} 4 cm/s, diastolic velocity of 8 {+-} 1 cm/s, and resistive index of 0.60 {+-} 0.04. The thyroid gland of Graves` disease patients was hyper vascularized. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity (PSV = 51 {+-} 12 cm/s), end diastolic velocity (VD = 15 {+-} 4 cm/s) and resistive index (RI = 0.71 {+-} 0.04) significantly higher than in normal subjects (p < 0.001). Circulating thyroid hormones and flow parameters normalized after 6-8 months of medical therapy (PSV = 20 {+-} 6 cm/s, VD = 9 {+-} 3 cm/s, RI = 0.58 {+-} 0.07). The color Doppler patterns normalized only in a patient with normal TSH and antibodies. Sampling of the thyroid arteries proved more repeatable than sampling of parenchymal vessels.

  7. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  8. Research on the improvement of nuclear safety - Development of a technique for simultaneous measurement of particle size and velocity for direct containment heating accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)

  9. Recent advances in self-mixing laser-doppler velocimetry: use as an in-vivo blood flow meter

    NARCIS (Netherlands)

    Scalise, Lorenzo; de Mul, F.F.M.; Steenbergen, Wiendelt; Petoukhova, Anna

    2000-01-01

    In the present paper, recent experimental advances obtained with a laser Doppler self-mixing velocimeter are reported. The self-mixing effect in a semiconductor laser is used to realize the velocimeter. The velocity is calculated measuring the frequency peak of the frequency spectrum of the

  10. Two-dimensional and Doppler echocardiographic findings in healthy non-sedated red-eared slider terrapins (Trachemys scripta elegans).

    Science.gov (United States)

    Poser, H; Russello, G; Zanella, A; Bellini, L; Gelli, D

    2011-12-01

    Echocardiographic evaluation was performed in six healthy young adult non-sedated terrapins (Trachemys scripta elegans). The best imaging quality was obtained through the right cervical window. Base-apex inflow and outflow views were recorded, ventricular size, ventricular wall thickness and ventricular outflow tract were measured, and fractional shortening was calculated. Pulsed-wave Doppler interrogation enabled the diastolic biphasic atrio-ventricular flow and the systolic ventricular outflow patterns to be recorded. The following Doppler-derived functional parameters were calculated: early diastolic (E) and late diastolic (A) wave peak velocities, E/A ratio, ventricular outflow systolic peak and mean velocities and gradients, Velocity-Time Integral, acceleration and deceleration times, and Ejection Time. For each parameter the mean, standard deviation and 95% confidence interval were calculated. Echocardiography resulted as a useful and easy-to-perform diagnostic tool in this poorly known species that presents difficulties during evaluation.

  11. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    Science.gov (United States)

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  12. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  13. Transcranial Doppler ultrasound and cerebral angiography - alternative or complementary

    International Nuclear Information System (INIS)

    Bockenheimer, S.; Lorey, N.

    1985-01-01

    Transcranial Doppler ultrasound is a noninvasive method of recording the flow velocity of larger intracranial vessels. The impact on diagnosis of cerebravascular occlusive disease is not yet evaluated. We present 15 patients, age range 39-73 years, who suffered from completed stroke. The findings of transcranial Doppler ultrasound and of cerebral angiography are presented. The value of both methods in treatment strategy is discussed. (orig.) [de

  14. Doppler ultrasound for detection of renal transplant artery stenosis - Threshold peak systolic velocity needs to be higher in a low-risk or surveillance population

    International Nuclear Information System (INIS)

    Patel, U.; Khaw, K.K.; Hughes, N.C.

    2003-01-01

    AIMS: To establish the ideal threshold arterial velocity for the diagnosis of renal transplant artery stenosis in a surveillance population with a low pre-test probability of stenosis. METHODS: Retrospective review of Doppler ultrasound, angiographic and clinical outcome data of patients transplanted over a 3-year period. Data used to calculate sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) for various threshold peak systolic velocity values. RESULTS: Of 144 patients transplanted, full data were available in 117 cases. Five cases had renal transplant artery stenosis--incidence 4.2% [stenosis identified at a mean of 6.5 months (range 2-10 months)]. All five cases had a significant arterial pressure gradient across the narrowing and underwent angioplasty. Threshold peak systolic velocity of ≥2.5 m/s is not ideal [specificity=79% (CI 65-82%), PPV=18% (CI 6-32%), NPV=100% (CI 94-100%)], subjecting many patients to unnecessary angiography--8/117 (6%) in our population. Comparable values if the threshold is set at ≥3.0 m/s are 93% (CI 77-96%), 33% (CI 7-44%) and 99% (CI 93-100%), respectively. The clinical outcome of all patients was satisfactory, with no unexplained graft failures or loss. CONCLUSIONS: In a surveillance population with a low pre-test probability of stenosis, absolute renal artery velocity ≥2.5 m/s is a limited surrogate marker for significant renal artery stenosis. The false-positive rate is high, and ≥3.0 m/s is a better choice which will halve the number of patients enduring unnecessary angiography. Close clinical follow-up of patients in the 2.5-3.0 m/s range, with repeat Doppler ultrasound if necessary, will identify the test false-negatives

  15. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  16. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  17. Contribution to the development of a Doppler global velocimeter for applications in turbomachinery; Contribution au developpement d'un velocimetre global a effet doppler en vue de l'application aux turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Buchet, H.

    2002-03-15

    Research in turbomachinery requires to develop CFD code as well as experimental device. Measurements are of prime important to set testing bench and access unsteady 3D velocimetry field in rotating parts. Since 1996, DGV technique (Doppler Global Velocimetry) has been developed at ONERA-Toulouse. This technique measure frequency shift caused by Doppler effect. To be applied in turbomachinery, this new method must be compared with PIV. As a reference case, a flow which geometry is comparable to that of a compressor blade grid has been chosen. Tests have been performed at Laboratoire Aerodynamique de Supaero in a transonic wind tunnel on an isolated profile. Wake has been characterised with the two different methods by measuring velocity average flow field. Results are promising and justify further development of the system.(author)

  18. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  19. Spectral Doppler Waveforms for Diagnosis of Appendicitis: Potential Utility of Point Peak Systolic Velocity and Resistive Index Values.

    Science.gov (United States)

    Shin, Lewis K; Jeffrey, R Brooke; Berry, Gerald J; Olcott, Eric W

    2017-12-01

    Purpose To test the hypothesis that appendiceal spectral Doppler waveforms can distinguish patients with and patients without appendicitis. Materials and Methods In this retrospective study, Doppler waveforms were obtained from intramural appendiceal arteries identified with color Doppler imaging in 60% (93 of 155) of consecutive patients whose appendices were visualized at graded compression ultrasonography (US) performed for suspected appendicitis (53 male and 40 female; age, 1-56 years; mean, 14.5 years) over the 5-month period from November 2015 through March 2016. Point, non-angle-corrected peak systolic velocity (PSV) and resistive index (RI) values were compared between patients with and patients without appendicitis by utilizing histopathologically proven appendicitis and 6-week clinical follow-up as diagnostic reference standards. Data were assessed by using the Student t test, exact binomial distribution, two-sample test of proportions, and receiver operating characteristic analysis. Results Among the 93 patients, 36 (38.7%) had proven appendicitis (mean PSV, 19.7 cm/sec; mean RI, 0.69) and 57 patients (61.2%) did not (mean PSV, 7.1 cm/sec, P appendicitis was 0.97 (95% confidence interval [CI]: 0.95, 1.00) for PSV and 0.86 (95% CI: 0.78, 0.95; P = .011) for RI. Chosen discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 94.7% and 96.5% with sensitivity of 88.9% and 63.9% (P = .013) and negative predictive value of 93.1% and 80.9% (P = .045), respectively. Original clinical graded compression US interpretations based on established US findings demonstrated specificity of 96.2% and sensitivity of 100.0%. Considering the subset of 20 patients whose maximum outer diameter measured 6-8 mm, the discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 88.9% each, with sensitivity of 100.0% and 63.6% and negative predictive value of 100

  20. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  1. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  2. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  3. Exercise and Cardiac Function by Tissue Doppler Imaging. The Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Joseph, Gowsini; Sogaard, Peter; Nielsen, Gitte

    2016-01-01

    diastolic (e') and late diastolic (a') velocities were measured by color TDI. Longitudinal displacement (LD) was calculated from the velocity curve during ejection. Statistical tests were performed by linear univariate and multivariable regression analyses, in relation to age groups (lt;50years, 50-65 years......Introduction: TDI (Tissue Doppler Imaging) is a sensitive marker of myocardial dysfunction and mortality in heart disease and in the general population. Regular physical activity is associated with risk reduction in coronary heart disease and mortality. There is a need for studies to clarify...

  4. Exercise and Cardiac Function by Tissue Doppler Imaging. The Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Joseph, Gowsini; Sogaard, Peter; Nielsen, Gitte

    diastolic (e') and late diastolic (a') velocities were measured by color TDI. Longitudinal displacement (LD) was calculated from the velocity curve during ejection. Statistical tests were performed by linear univariate and multivariable regression analyses, in relation to age groups (lt;50years, 50-65 years......Introduction: TDI (Tissue Doppler Imaging) is a sensitive marker of myocardial dysfunction and mortality in heart disease and in the general population. Regular physical activity is associated with risk reduction in coronary heart disease and mortality. There is a need for studies to clarify...

  5. Thermal Design for a Diffraction-Limited Doppler Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Univ. of Notre Dame is building a new high-resolution spectrometer named “iLocater” to achieve unprecedented radial velocity (RV) precision for stellar Doppler...

  6. Monitoring cerebral hemodynamics with transcranial Doppler ultrasound during cognitive and exercise testing in adults following unilateral stroke.

    Science.gov (United States)

    Watt, Brian P; Burnfield, Judith M; Truemper, Edward J; Buster, Thad W; Bashford, Gregory R

    2012-01-01

    An observational study was performed as a preliminary investigation into the use of transcranial Doppler ultrasound (TCD) for recording cerebral hemodynamic changes during multiple tasks. TCD is a method of measuring cerebral blood flow (CBF) using ultrasound transducers in contact with the surface of the head. Using the maximum flow envelope of the Doppler spectrum returning from the middle cerebral artery (MCA), standard clinical flow indices can be calculated and displayed in real time providing information concerning perturbations in CBF and their potential cause. These indices as well as flow velocity measurements have been recognized as useful in measuring changes in responses to various stimulus that can be used to indicate cardiovascular health. For this study, the pulsatility index (PI) and resistivity index (RI) were chosen since they indicate composite changes indicative of vasoconstriction and vasodilatation which are normal hemodynamic responses under appropriate conditions. A total of eleven participants were recruited to take part in this study. Nine of these individuals had no known disability (Controls); two had experienced unilateral cerebrovascular accidents (Strokes) in the ipsilateral MCA distribution. Maximum velocity envelopes of the spectral Doppler data were recorded using a fixation device designed to stabilize two ultrasound probes (2 MHz) to sample the bilateral MCAs CBF. These measures were performed separately while the subject performed four activities: 1) rest, 2) cognitive challenge, 3) cardiovascular exercise, and 4) simultaneous exercise and cognitive challenge. Cardiovascular parameters were calculated from the data by extracting maximum (Vs) and minimum flow velocities (Vd), PI, RI, and time signatures for each cardiac cycle. The data for all participants shows significant changes in cardiovascular parameters between states of rest and exercise, as well as slight trends across time. Although the data are preliminary, they show

  7. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    imaging, and, finally, some of the more recent experimental techniques. The authors shows that the Doppler shift, usually considered the way velocity is detected, actually, plays a minor role in pulsed systems. Rather, it is the shift of position of signals between pulses that is used in velocity...

  8. ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS

    International Nuclear Information System (INIS)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s −1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  9. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    Science.gov (United States)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  10. Cerenkov detector for heavy-ion velocity measurements

    International Nuclear Information System (INIS)

    Olson, D.L.; Baumgartner, M.; Dufour, J.P.; Girard, J.G.; Greiner, D.E.; Lindstrom, P.J.; Symons, T.J.M.; Crawford, H.J.

    1984-08-01

    We have developed a highly sensitive velocity measuring detector using total-internal-reflection Cerenkov counters of a type mentioned by Jelly in 1958. If the velocity of the particle is above the threshold for total-internal-reflection these counters have a charge resolution of sigma = 0.18e for a 3mm thick glass radiator. For the velocity measurement we use a fused silica radiator so that the velocity of the particles are near the threshold for total-internal reflection. For momentum-analyzed projectile fragments of 1.6 GeV/nucleon 40 Ar, we have measured a mass resolution of sigma = 0.1u for isotope identification

  11. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  12. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  13. Doppler ultrasonography of the pectinis oculi artery in harpy eagles (Harpia harpyja

    Directory of Open Access Journals (Sweden)

    Wanderlei de Moraes

    2017-03-01

    Full Text Available Twenty harpy eagles (Harpia harpyja without systemic or ocular diseases were examined to measure blood velocity parameters of the pectinis oculi artery using Doppler ultrasonography. Pectinate artery resistive index (RI and pulsatility index (PI were investigated using ocular Doppler ultrasonography. The mean RI and PI values across all eyes were 0.44±0.10 and 0.62±0.20 respectively. Low RI and PI values found in the harpy eagle´s pectinis oculi artery compared with the American pekin ducks one and other tissue suggest indeed a high metabolic activity in pecten oculi and corroborates the hypothesis of a nutritional function and/or intraocular pressure regulation.

  14. An improvement of wind velocity estimation from radar Doppler spectra in the upper mesosphere

    Directory of Open Access Journals (Sweden)

    S. Takeda

    2001-08-01

    Full Text Available We have developed a new parameter estimation method for Doppler wind spectra in the mesosphere observed with an MST radar such as the MU radar in the DBS (Doppler Beam Swinging mode. Off-line incoherent integration of the Doppler spectra is carried out with a new algorithm excluding contamination by strong meteor echoes. At the same time, initial values on a least square fitting of the Gaussian function are derived using a larger number of integration of the spectra for a longer time and for multiple heights. As a result, a significant improvement has been achieved with the probability of a successful fitting and parameter estimation above 80 km. The top height for the wind estimation has been improved to around 95 km. A comparison between the MU radar and the High Resolution Doppler Imager (HRDI on the UARS satellite is shown and the capability of the new method for a validation of a future satellite mission is suggested.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics – Radio science (remote sensing; signal processing

  15. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  16. Clinical significance of a presystolic wave on Doppler examination of the left ventricular outflow tract.

    Science.gov (United States)

    Joshi, Kamal R; Kabirdas, Deepa; Romero-Corral, Abel; Shah, Mahek; Figueredo, Vincent M; Pressman, Gregg S

    2014-11-15

    A presystolic wave (PSW) is commonly seen on Doppler examination of the left ventricular outflow tract (LVOT), but is little studied. We conducted a retrospective study to assess the prevalence of the PSW, correlations with various Doppler parameters, and its clinical significance. Two hundred echocardiograms, 100 with ejection fraction (EF) >55% and 100 with EF <45%, were reviewed. Mitral inflow velocities, septal annular velocities, LVOT, and PSW velocities were measured. Major adverse cardiovascular events (MACE [death, heart failure hospitalization, atrial fibrillation, and stroke]) were compared between those with and without a PSW, in both EF groups. Mean age was 58 ± 15 years; 56% were men and 69% were African-American. PSW prevalence was similar between normal (68%) and reduced EF groups (62%). However, its velocity was less in the low EF group (37 ± 10 vs 48 ± 16 cm/s, p <0.0001). In subjects with normal EF PSW velocity correlated with mitral A velocity (rho = 0.43, p = 0.0003). In subjects with reduced EF the association with A velocity was not significant (rho = 0.22, p = 0.09), but there was a significant association with annular a' velocity (rho = 0.38, p = 0.002). Over a mean follow-up of 1.7 ± 0.3 years, 57 subjects (28%) experienced MACE. Those without a PSW had more MACE (39% vs 23%, p = 0.02); PSW absence remained predictive of MACE after adjustment for multiple variables, especially in patients with reduced EF. In conclusion, PSW is common in the LVOT. Its presence and magnitude are associated with measures of atrial contraction. Its absence is associated with increased rates of adverse events, especially in patients with low EF. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  18. Analysis of Detectors and Transmission Curve Correction of Mobile Rayleigh Doppler Wind Lidar

    International Nuclear Information System (INIS)

    Tang Lei; Shu Zhi-Feng; Dong Ji-Hui; Wang Guo-Cheng; Xu Wen-Jing; Hu Dong-Dong; Wang Yong-Tao; Chen Ting-Di; Dou Xian-Kang; Sun Dong-Song; Cha Hyunki

    2010-01-01

    A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10km to 40km. A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. In order to guarantee the wind accuracy, different forms of calibration function of detectors in different count rates response range would be especially valuable. The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10km to 40km. The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1 M count rates, respectively. The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range. (fundamental areas of phenomenology(including applications))

  19. Age-related decline in mitral peak diastolic velocities is unaffected in well-trained runners

    DEFF Research Database (Denmark)

    Olsen, Rasmus Huan; Couppé, Christian; Dall, Christian Have

    2015-01-01

    (a') diastolic and systolic (s') annular longitudinal tissue Doppler velocities were measured by echocardiography during four stages (rest, supine bike exercise at 30% and 60% of maximal workload, and recovery). RESULTS: The athletes had marked cardiac remodeling, while overall differences in mitral...

  20. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  1. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  2. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  3. Pulsed and Tissue Doppler Echocardiographic Changes in Patients with Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Taysir S. Garadah

    2010-01-01

    Full Text Available Background Doppler echocardiographic studies of left ventricle (LV systolic and diastolic function in patients with β-Thalassemia Major (β-TM had shown different patterns of systolic and diastolic dysfunction. Aim This cross-sectional study was designed to study the LV systolic and diastolic function in patients with β-TM using Pulsed Doppler (PD and Tissue Doppler (TD echocardiography. Methods All patients were evaluated clinically and by echocardiography, The study included patients with β-TM (n = 38, age 15.7 ± 8.9 years compared with an age-matched control group (n = 38, age 15.9 ± 8.9 years. The pulse Doppler indices were normalized for age and heart rate. Results Compared with control patients, M-Mode showed that patients with β-TM have thicker LV septal wall index (0.659 ± 0.23 vs. 0.446 ± 0.219 cm, P ≤ 0.001, posterior wall index (0.659 ± 0.235 vs. 0.437 ± 0.214 cm, P ≤ 0.01, and larger LVEDD index is (3.99 ± 0.48 vs. 2.170 ± 0.57 mm. P = 0.035. Pulsed Doppler showed high LV trans-mitral E wave velocity (70.818 ± 10.139 vs. 57.532 ± 10.139, p = 0.027 and E/A ratio (1.54 vs. 1.23, P ≤ 0.01. The duration of Deceleration time (DT and isovolumic relaxation time (IVRT were significantly shorter in patients with β-TM (150.234 ± 20.0.23 vs. 167.123 ± 19.143 msec, P ≤ 0.01 and (60.647 ± 6.77 vs. 75.474 ± 5.83 msec, P ≤ 0.001, respectively. The ratio of transmitral E wave velocity to the tissue Doppler E wave at the basal septal mitral annulus E/Em – was significantly higher in β-TM group (14.024 ± 2.29 vs. 12.132 ± 1.82, P ≤ 0.01. The Tissue Doppler systolic velocity (Sm and the early diastolic velocity (Em were significantly lower in β-TM group compared to control (4.31 ± 1.2 cm/s vs. 6.95 ± 2.1, P ≤ 0.01 and 4.31 ± 2.7 cm/s vs. 5.82 ± 2.5, P ≤ 0.01 respectively. The tricuspid valve velocity was significantly higher than controls (2.993 ± 0.569 vs. 1.93 ± 0.471 m/sec, respectively, P ≤ 0

  4. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Emilia [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden); Thomassen, Paul [Team Ashes, Trondheim (Norway); Leijon, Mats [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden)

    2013-04-15

    Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP) measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  5. Measuring discharge with acoustic Doppler current profilers from a moving boat

    Science.gov (United States)

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  6. Peak negative myocardial velocity gradient in early diastole as a noninvasive indicator of left ventricular diastolic function: comparison with transmitral flow velocity indices.

    Science.gov (United States)

    Shimizu, Y; Uematsu, M; Shimizu, H; Nakamura, K; Yamagishi, M; Miyatake, K

    1998-11-01

    We sought to assess the clinical significance of peak negative myocardial velocity gradient (MVG) in early diastole as a noninvasive indicator of left ventricular (LV) diastolic function. Peak systolic MVG has been shown useful for the quantitative assessment of regional wall motion abnormalities, but limited data exist regarding the diastolic MVG as an indicator of LV diastolic function. Peak negative MVG was obtained from M-mode tissue Doppler imaging (TDI) in 43 subjects with or without impairment of systolic and diastolic performance: 12 normal subjects, 12 patients with hypertensive heart disease (HHD) with normal systolic performance and 19 patients with dilated cardiomyopathy (DCM), and was compared with standard Doppler transmitral flow velocity indices. In a subgroup of 30 patients, effects of preload increase on these indices were assessed by performing passive leg lifting. In an additional 11 patients with congestive heart failure at the initial examination, the measurements were repeated after 26+/-16 days of volume-reducing therapy. Peak negative MVG was significantly depressed both in HHD (-3.9+/-1.3/s, p indices failed to distinguish DCM from normal due to the pseudonormalization. Transmitral flow velocity indices were significantly altered (peak early/late diastolic filling velocity [E/A]=1.1+/-0.5 to 1.5+/-0.7, p indicator of LV diastolic function that is less affected by preload alterations than the transmitral flow velocity indices, and thereby could be used for the follow-up of patients with nonischemic LV dysfunction presenting congestive heart failure.

  7. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  8. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  9. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  10. Characteristics of laser-induced plasma under reduced background pressure with Doppler spectroscopy of excited atomic species near the shockwave front

    Science.gov (United States)

    Dojić, Dejan; Skočić, Miloš; Bukvić, Srdjan

    2018-03-01

    We present measurements of Laser Induced Plasma expansion relying on classical, laterally resolved spectroscopy. Easy observable Doppler splitting of Cu I 324.75 nm spectral line provides measurement of radial expansion velocity in a straightforward way. The measurements are conducted in atmosphere of air, argon and hydrogen at low pressure in the range 20-200 Pa. We found that expansion velocity is linearly decreasing if pressure of surrounding gas increases, with velocity/pressure slope nearly the same for all three gases. Copper atoms have the highest expansion speed in argon ( ∼ 50 km/s) and the smallest speed in air ( ∼ 42 km/s). It is found that expansion velocity increases linearly with irradiance, while intensity of the spectral line is quite insensitive to the laser irradiance.

  11. Velocimetria Doppler no período neonatal em recém-nascidos a termo pequenos para idade gestacional Neonatal Doppler velocimetry in full term small-for-gestational age newborns

    Directory of Open Access Journals (Sweden)

    Iracema Augusta Carvalho Cortez Muniz

    2003-09-01

    cerebral artery (ACA. Doppler measurements were different statistically between the groups only for values related to peak systolic flow velocity (PSFV and mean flow velocity (MFV in the ACA. There was no significant difference for any evaluated parameters of flow velocity in the middle cerebral artery (MCA. It was concluded that SGA newborns showed PSFV and MFV significantly reduced only in the ACA. Weight/gestational age, neonatal polycythemia and mean arterial blood pressure values were statistically related to MFV in the ACA. In presence of fetal suffering, mean arterial blood pressure values and smoking in the pregnancy were statistically related to MFV in the MCA.

  12. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  13. Hull-Mounted Acoustic Doppler Current Profiler Data (SADCP) collected aboard the NOAA Ship NANCY FOSTER during cruise NF-10-01 and NF-10-02

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upper ocean current velocity measurements collected with NOAA Ship NANCY FOSTER's Teledyne RD Instruments 150 kHz hull-mounted acoustic Doppler current profiler...

  14. Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2017-12-01

    Full Text Available Velocity profiles originated by a pump as turbine (PAT were measured using an ultrasonic doppler velocimetry (UDV. PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated flow velocity variations were investigated. This research focuses, particularly, on the velocity profiles achieved for different rotational speeds and discharge values along the impeller since that is where the available hydraulic power is transformed into the mechanical power. Comparisons were made between experimental test results and computational fluid dynamics (CFD simulations. The used CFD model was calibrated and validated using the same conditions as the experimental facility. The numerical simulations showed good approximation with the velocity measurements for different cross-sections along the PAT system. The application of this CFD numerical model and experimental tests contributed to better understanding the system behavior and to reach the best efficiency operating conditions. Improvements in the knowledge about the hydrodynamic flow behavior associated with the velocity triangles contribute to improvements in the PAT concept and operation.

  15. Air velocity profiles near sleeve blockages in an unheated 7 x 7 rod bundle. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J. M.; Bates, J. M.

    1979-04-01

    Local air velocity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 x 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create an area reduction of 90% in the center four subchannels of the bundle. Experimental results indicated that severe flow disturbances occurred downstream from the blockage cluster but showed only minor flow disturbances upstream from the blockage. Flow reversals were detected downstream from the blockage and persisted for approximately five subchannel hydraulic diameters. The air velocity profiles were in excellent agreement with water velocity data previously obtained at essentially the same Reynolds number. Subchannel average velocity predictions obtained with the COBRA computer program were in good agreement with subchannel average velocities estimated using the measured local velocity data.

  16. Measurement of portal blood flow in healthy individuals: a comparison between magnetic resonance imaging and Doppler ultrasound

    International Nuclear Information System (INIS)

    Costa, Juliana Dantas da; Sebastiane, Patricia Moreno; Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; D'Ippolito, Giuseppe

    2008-01-01

    Objective: To evaluate the inter-observer agreement between Doppler ultrasonography and magnetic resonance imaging in the quantification of portal blood flow in healthy individuals, as well as evaluating the reproducibility of both methods. Materials and methods: A prospective, transverse, observational and self-paired study was developed evaluating 20 healthy volunteers whose portal blood flow was measured by means of Doppler ultrasonography and magnetic resonance imaging performed by two independent observers. Interobserver and inter method agreements were calculated using the intra class and Pearson's correlation coefficients. Results: The agreement between Doppler ultrasonography and magnetic resonance imaging was low (intra class coefficient: 1.9%-18.2%; Pearson's coefficient: 0.1%-13.7%; p=0.565). Mean values for the portal blood flow measured by Doppler ultrasonography and magnetic resonance imaging were respectively 0.768 l/min and 0.742 l/min. Interobserver agreement for quantification of the portal blood flow by Doppler ultrasonography and magnetic resonance imaging was respectively reasonable (intra class coefficient: 43.3%; Pearson's coefficient: 43.0%) and excellent (intra class coefficient: 91.4%; Pearson's coefficient: 93.4%). Conclusion: In the present study, magnetic resonance imaging demonstrated to be a reliable method for quantifying the portal blood flow, with a higher interobserver agreement than Doppler ultrasonography. The inter method agreement was low. (author)

  17. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  18. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  19. Lifetime measurement in {sup 168}Yb using the recoil distance Doppler shift (RDDS) method

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Michael; Moeller, Oliver; Pietralla, Norbert [TU Darmstadt (Germany); Dewald, Alfred; Pissulla, Thomas [Universitaet Koeln (Germany); Petkov, Pavel [Universitaet Koeln (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2009-07-01

    In the analysis of coincidence RDDS experiments one uses the Differential Decay Curve (DDC) Method to determine lifetimes of excited states. Experiments with small recoil velocities, thus small Doppler shifts, enforce the use of narrow coincidence gates to determine peak intensities. This results in a loss of statistics. As an alternative to the application of gates, we present the fit of 2-dimensional functions to the {gamma}{gamma} coincidence data. This approach has been studied on data taken in a RDDS measurement for the ground state band of {sup 168}Yb. The {sup 18}O({sup 154}Sm,4n){sup 168}Yb{sup *} fusion evaporation reaction was induced by an 80 MeV ion beam of the tandem accelerator facility in Cologne. The target was mounted in the Cologne coincidence plunger device. Lifetimes from the 4{sub 1}{sup +} to the 10{sub 1}{sup +} states have been extracted. The method is discussed and the results are compared to the CBS rotor model in the context of centrifugal stretching.

  20. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  1. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    Science.gov (United States)

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  2. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  3. Intraparenchymal Doppler ultrasound after proximal embolization of the splenic artery in trauma patients

    International Nuclear Information System (INIS)

    Dormagen, Johann B.; Gaarder, Christine; Sandvik, Leiv; Naess, Paal A.; Kloew, Nils E.

    2008-01-01

    We studied the changes in proximal embolization of the splenic artery to the intraparenchymal blood flow with Doppler ultrasound. Seventeen trauma patients with spleen injury OIS grade 2-5 underwent embolization of the splenic artery. Peak-systolic velocity (PSV) and end-diastolic velocity (EDV) were measured in intrasplenic arteries initially 1 day after embolization, at early follow-up after 7 days, at intermediate follow-up after 10 weeks, and at late follow-up after 10 months. Resistance index (RI), systolic/diastolic ratio (S/D ratio), acceleration (AC), and acceleration time (AT) were calculated. The results were compared to values from 17 volunteers. RI increased from 0.39 initially to 0.49 (P = 0.002) at intermediate and to 0.52 (P 2 initially to 1.89 m/s 2 at late follow-up (P = 0.01). AC at late follow-up was not different from reference group (2.33 m/s 2 ). In conclusion, Doppler ultrasound is a useful tool in the evaluation of improvable intraparenchymal blood flow over time after central splenic artery embolization. (orig.)

  4. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  5. Improved flow velocity estmates from oving-boat ADCO measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Sassi, M.G.; Hoitink, A.J.F.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  6. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  7. Ion temperature measurements of turbulently heated tokamak plasma by Doppler-broadening of visible lines in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-01-01

    In the turbulent heating experiment of the high-field tokamak TRIAM-1, the bulk ion heating shown by the neutral energy analyzer measurement is confirmed by the Doppler broadening measurement of visible lines. The increasing rate and decay time of the Doppler ion temperature are almost the same as those derived from the neutral energy analyzer measurement. From both methods of ion temperature measurements, it is shown that the ion temperature has a parabolic profile within 50 ..mu..s after the application of the heating pulse.

  8. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  9. New technology - demonstration of a vector velocity technique

    DEFF Research Database (Denmark)

    Møller Hansen, Peter; Pedersen, Mads M; Hansen, Kristoffer L

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...

  10. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  11. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  12. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    Science.gov (United States)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  13. Direct Optical Measurement of Vorticity in Fluid Flow

    Science.gov (United States)

    2015-12-11

    Rotational Doppler Effect ( RDE ) and Laguerre-Gaussian (LG) light beams that possess orbital angular momentum (OAM). The approach has been implemented...Analogously, but much less utilized, the Rotational Doppler Effect ( RDE ) can be used to measure the angular velocity of a rotating object [4-5...Measuring with RDE requires the use of Laguerre-Gaussian (LG) light beams that possess orbital angular momentum (OAM) l , a spatial (azimuthal

  14. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  15. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  16. Digital storage and analysis of color Doppler echocardiograms

    Science.gov (United States)

    Chandra, S.; Thomas, J. D.

    1997-01-01

    Color Doppler flow mapping has played an important role in clinical echocardiography. Most of the clinical work, however, has been primarily qualitative. Although qualitative information is very valuable, there is considerable quantitative information stored within the velocity map that has not been extensively exploited so far. Recently, many researchers have shown interest in using the encoded velocities to address the clinical problems such as quantification of valvular regurgitation, calculation of cardiac output, and characterization of ventricular filling. In this article, we review some basic physics and engineering aspects of color Doppler echocardiography, as well as drawbacks of trying to retrieve velocities from video tape data. Digital storage, which plays a critical role in performing quantitative analysis, is discussed in some detail with special attention to velocity encoding in DICOM 3.0 (medical image storage standard) and the use of digital compression. Lossy compression can considerably reduce file size with minimal loss of information (mostly redundant); this is critical for digital storage because of the enormous amount of data generated (a 10 minute study could require 18 Gigabytes of storage capacity). Lossy JPEG compression and its impact on quantitative analysis has been studied, showing that images compressed at 27:1 using the JPEG algorithm compares favorably with directly digitized video images, the current goldstandard. Some potential applications of these velocities in analyzing the proximal convergence zones, mitral inflow, and some areas of future development are also discussed in the article.

  17. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  18. The diagnosis of deep venous thrombosis using laser Doppler skin perfusion measurements

    NARCIS (Netherlands)

    de Graaff, J. C.; Ubbink, D. T.; Büller, H. R.; Jacobs, M. J.

    2001-01-01

    Compression ultrasonography (CUS) falls short in the diagnosis of deep venous thrombosis in asymptomatic patients and thrombi limited to the calf veins. Alternatively, laser Doppler fluxmetry (LDF) may be useful for this purpose, as it can measure the peripheral vasoconstriction response upon an

  19. The effect of blood acceleration on the ultrasound power Doppler spectrum

    Science.gov (United States)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  20. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  1. Can Emergency Physicians Perform Common Carotid Doppler Flow Measurements to Assess Volume Responsiveness?

    Directory of Open Access Journals (Sweden)

    Stolz, Lori A.

    2015-02-01

    Full Text Available Introduction: Common carotid flow measurements may be clinically useful to determine volume responsiveness. The objective of this study was to assess the ability of emergency physicians (EP to obtain sonographic images and measurements of the common carotid artery velocity time integral (VTi for potential use in assessing volume responsiveness in the clinical setting. Methods: In this prospective observational study, we showed a five-minute instructional video demonstrating a technique to obtain common carotid ultrasound images and measure the common carotid VTi to emergency medicine (EM residents. Participants were then asked to image the common carotid artery and obtain VTi measurements. Expert sonographers observed participants imaging in real time and recorded their performance on nine performance measures. An expert sonographer graded image quality. Participants were timed and answered questions regarding ease of examination and their confidence in obtaining the images. Results: A total of 30 EM residents participated in this study and each performed the examination twice. Average time required to complete one examination was 2.9 minutes (95% CI [2.4-3.4 min]. Participants successfully completed all performance measures greater than 75% of the time, with the exception of obtaining measurements during systole, which was completed in 65% of examinations. Median resident overall confidence in accurately performing carotid VTi measurements was 3 (on a scale of 1 [not confident] to 5 [confident]. Conclusion: EM residents at our institution learned the technique for obtaining common carotid artery Doppler flow measurements after viewing a brief instructional video. When assessed at performing this examination, they completed several performance measures with greater than 75% success. No differences were found between novice and experienced groups. [West J Emerg Med. 2015;16(2:255–259.

  2. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  3. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    Science.gov (United States)

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  4. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  5. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  6. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  7. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  8. Determination of the direction of motion on the basis of CW-homodyne laser Doppler radar

    Science.gov (United States)

    Biselli, Eugen; Werner, Christian

    1989-03-01

    Four methods for measuring the direction of a moving object using homodyne laser Doppler techniques are reviewed. The dynamic ranges of the signals for two methods that make use of the transmitter laser resonator characteristics or gain cell characteristics are shown to be limited. The resonance effects observed using a rotating wheel as an auxiliary target are discussed. The method employing eccentric scanner movement bidirectional scanning provides information concerning the direction of the velocity component to be measured.

  9. Relationship between hemodynamic changes of portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    CHENG Xiaofei

    2014-11-01

    Full Text Available ObjectiveTo explore the relationship between hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis. MethodsA total of 192 patients with hepatitis B cirrhosis who were admitted to our hospital from March 2010 to December 2013, as well as 100 healthy persons, were recruited. The mean portal vein blood flow velocity (PVVmean, hepatic artery pulsatility index (HAPI, and hepatic artery resistance index (HARI were measured by color Doppler ultrasound. FibroScan was also carried out. All data were statistically analyzed using SPSS 13.0. Continuous data were expressed as mean±SD and compared between groups by t-test. ResultsThe HAPI, HARI, and FibroScan value of the patient group were 1.56±024, 0.73±0.05, and 25.38±7.73, respectively, significantly higher than those of the control group (1.36±0.14, 0.65±0.07, and 7.8±3.6 (P<0.05; the PVVmean of the patient group was 14.43±1.86, significantly lower than that of the control group (17.35±0.56 (P<0.05. FibroScan value was positively correlated with HAPI and HARI (r1=0.59, r2=0.66, P<0.001, but negatively correlated with PVVmean (r=-0.64, P<0.001. ConclusionThe liver stiffness assessed by FibroScan and the hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound are vitally important for evaluating the severity of liver cirrhosis.

  10. Comparison of Doppler and oscillometric ankle blood pressure measurement in patients with angiographically documented lower extremity arterial occlusive disease.

    Science.gov (United States)

    Nukumizu, Yoshihito; Matsushita, Masahiro; Sakurai, Tsunehisa; Kobayashi, Masayoshi; Nishikimi, Naomichi; Komori, Kimihiro

    2007-01-01

    To assess the reliability of the oscillometric method in patients with peripheral vascular disease, ankle blood pressure measurement by Doppler and oscillometry was compared. This study represents a prospective, non-blinded examination of pressure measurements in 168 patients. Twenty-two patients were included who had abdominal aortic aneurysms (AAA) and 146 had peripheral arterial occlusive disease (PAOD). Patients with PAOD were divided into 2 groups according to angiography results: a crural artery occlusion group (CAO, n = 32), and a no crural artery occlusion group (NCAO, n = 114). All subjects underwent pressure measurement by both Doppler and oscillometry. The correlation coefficient was 0.928 in AAA patients and 0.922 in PAOD patients. In CAO patients, there were significantly fewer patients whose oscillometric pressure was equivalent to the Doppler pressure (DP), as compared to NCAO patients, because the oscillometric pressure (OP) was 10% higher than DP in 44% of CAO patients. A high correlation exists between Doppler and oscillometric ankle pressure measurements irrespective of the type of vascular disease. However, the oscillometric method could not be substituted for the Doppler method completely, because there were several patients whose OP was greater than DP especially in those with crural artery occlusive disease.

  11. Diagnosis of brain death by transcranial Doppler sonography.

    Science.gov (United States)

    Bode, H; Sauer, M; Pringsheim, W

    1988-12-01

    The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.

  12. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    Science.gov (United States)

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  13. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  14. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.

    Science.gov (United States)

    Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A

    1999-08-01

    To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of

  15. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Science.gov (United States)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  16. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  17. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    Science.gov (United States)

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  18. Experimental Study on The Two-Phase Flow Characteristics Using Conductivity Probes And Laser Doppler Anemometry In A Vertical Pipe

    Science.gov (United States)

    Chiva, S.; Mendez, S.; Muñoz-Cobo, J. L.; Julia, J. E.; Hernandez, L.

    2007-06-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using Laser Doppler Anemometry (LDA). Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.491 m/s to 0.981 m/s and a void fraction up to 10 %. For each two-phase flow configuration twenty five radial position and three axial locations were measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions.

  19. Moving Target Detection With Compact Laser Doppler Radar

    Science.gov (United States)

    Sepp, G.; Breining, A.; Eisfeld, W.; Knopp, R.; Lill, E.; Wagner, D.

    1989-12-01

    This paper describes an experimental integrated optronic system for detection and tracking of moving objects. The system is based on a CO2 waveguide laser Doppler ra-dar with homodyne receiver and galvanometer mirror beam scanner. A "hot spot" seeker consisting of a thermal imager with image processor transmits the coordinates of IR-emitting, i.e. potentially powered, objects to the laser radar scanner. The scanner addresses these "hot" locations operating in a large field-of-view (FOV) random ac-cess mode. Hot spots exhibiting a Doppler shifted laser signal are indicated in the thermal image by velocity-to-colour encoded markers. After switching to a small FOV scanning mode, the laser Doppler radar is used to track fast moving objects. Labora-tory and field experiments with moving objects including rotating discs, automobiles and missiles are described.

  20. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  1. CALF BLOOD-FLOW AND POSTURE - DOPPLER ULTRASOUND MEASUREMENTS DURING AND AFTER EXERCISE

    NARCIS (Netherlands)

    VANLEEUWEN, BE; BARENDSEN, GJ; LUBBERS, J; DEPATER, L

    To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions

  2. Variações de parâmetros da função diastólica do ventrículo esquerdo de acordo com a idade através da ecocardiografia com Doppler tissular Changes in the parameters of left ventricular diastolic function according to age on tissue Doppler imaging

    Directory of Open Access Journals (Sweden)

    Márcia Duarte Pedone

    2004-12-01

    Full Text Available OBJETIVO: Determinar a correlação entre as velocidades diastólicas do Doppler tissular com a idade em amostra de adultos saudáveis, e correlacionar a idade com as velocidades do fluxo transmitral e de veias pulmonares. MÉTODOS: Estudados, através da ecocardiografia, 51 indivíduos saudáveis, com idades entre 21 e 69 anos e registradas as velocidades miocárdicas diastólicas ao Doppler tissular e determinadas as velocidades dos fluxos transmitral e venoso pulmonar. RESULTADOS: As velocidades miocárdicas diastólicas iniciais septal basal e lateral basal apresentaram correlação inversa com a idade, com r = - 0,40 (p = 0,004 e r = - 0,60 (p = 0,0001 respectivamente. As velocidades atriogênicas do Doppler tissular foram diretamente correlacionadas com a idade, sendo no segmento septal basal r = 0,56 (p = 0,0001 e no segmento lateral basal r = 0,50 (p = 0,0001. As velocidades do fluxo transmitral e do fluxo venoso pulmonar também mostraram correlação com a idade. CONCLUSÃO: Existe correlação entre a idade e as velocidades miocárdicas diastólicas do Doppler tissular e com as velocidades do fluxo transmitral e fluxo venoso pulmonar, demonstrando em indivíduos saudáveis uma variação de parâmetros da função diastólica do ventrículo esquerdo com a evolução natural da idade.OBJECTIVE: To determine the correlation between diastolic velocities on tissue Doppler imaging and age in a sample of healthy adults and to correlate age with the velocities of transmitral and pulmonary vein flows. METHODS: Echocardiographic assessment of 51 healthy individuals, whose ages ranged from 21 to 69 years. The diastolic myocardial velocities were recorded on tissue Doppler imaging. The velocities of the transmitral and pulmonary vein flows were also determined. RESULTS: The initial basal septal and basal lateral diastolic myocardial velocities showed an inverse correlation with age [r = - 0.40 (P = 0.004, and r = - 0.60 (P = 0.0001, respectively

  3. Laser Doppler vibrometry experiment on a piezo-driven slot synthetic jet in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2015-01-01

    Full Text Available The present study deals with a slot synthetic jet (SJ issuing from an actuator into quiescent surroundings and driven by a piezoceramic transducer. The actuator slot width was 0.36 mm, with a drive frequency proposed near the theoretical natural frequency of the actuator. The working fluid was water at room temperature. The present experiments used flow visualization (a laser-induced fluorescence technique and laser Doppler vibrometry methods. Flow visualization was used to identify SJ formation, to demonstrate its function, and to estimate SJ velocity. Laser Doppler vibrometry was used to quantify diaphragm displacement and refine operating parameters. Phase averaging yielded a spatial and temporal diaphragm deflection during the actuation period. Taking incompressibility and continuity into consideration, the velocity in the actuator slot and the Reynolds number of the SJ were evaluated as 0.21 m/s and 157, respectively. The present results confirmed a SJ actuator function at the resonance frequency of approximately 46 Hz, which corresponds closely with the theoretical evaluation. The laser Doppler vibrometry results corresponded closely with an estimation of SJ velocity by the present flow visualization.

  4. Evaluation of the thyroid blood flow with Doppler ultrasonography in healthy school-aged children

    International Nuclear Information System (INIS)

    Yazici, Burhan; Simsek, Enver; Erdogmus, Besir; Bahcebasi, Talat; Aktas, Alev; Buyukkaya, Ramazan; Uzun, Hakan; Safak, Alp Alper

    2007-01-01

    Objective: To determine the relationship between thyroid blood flow and anthropometric measurements, pubertal stage, and thyroid and gonadotropic hormones. Materials and methods: We examined 123 healthy school-aged children prospectively (69 boys (56.1%) and 54 girls (43.9%), 7-17 years old). Their sex, age, body weight, height, body mass index (BMI), and pubertal stage were determined. Serum thyrotropin, free thyroxine, luteinizing hormone, and follicle stimulating hormone were measured in both genders, along with testosterone in boys and estradiol in girls. The peak systolic velocity (PSV), resistance index (RI), and pulsatility index (PI) of the superior thyroid artery were determined. The correlations between the Doppler parameters and these factors were investigated. Results: There were no differences in age, weight, height, BMI, thyroid volume, PSV, RI, or PI between boys and girls (P > 0.05). The PSV and PI showed strong correlations with age, height, weight, puberty stage, thyroid volume, and BMI. The RI showed a strong inverse correlation with age, height, weight, puberty stage, and thyroid volume and a weak inverse correlation with the BMI. Conclusion: Determination of the thyroid arterial flow in normal healthy children is important during a Doppler ultrasound (US) examination. Doppler US parameters and their percentiles should be described in healthy children from different age groups, and these percentiles will aid in interpreting Doppler US in children

  5. Evaluation of the thyroid blood flow with Doppler ultrasonography in healthy school-aged children

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Burhan [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey)], E-mail: dryazici@yahoo.com; Simsek, Enver [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Erdogmus, Besir [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey); Bahcebasi, Talat [Department of Public Health, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Aktas, Alev [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Buyukkaya, Ramazan [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey); Uzun, Hakan [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Safak, Alp Alper [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey)

    2007-08-15

    Objective: To determine the relationship between thyroid blood flow and anthropometric measurements, pubertal stage, and thyroid and gonadotropic hormones. Materials and methods: We examined 123 healthy school-aged children prospectively (69 boys (56.1%) and 54 girls (43.9%), 7-17 years old). Their sex, age, body weight, height, body mass index (BMI), and pubertal stage were determined. Serum thyrotropin, free thyroxine, luteinizing hormone, and follicle stimulating hormone were measured in both genders, along with testosterone in boys and estradiol in girls. The peak systolic velocity (PSV), resistance index (RI), and pulsatility index (PI) of the superior thyroid artery were determined. The correlations between the Doppler parameters and these factors were investigated. Results: There were no differences in age, weight, height, BMI, thyroid volume, PSV, RI, or PI between boys and girls (P > 0.05). The PSV and PI showed strong correlations with age, height, weight, puberty stage, thyroid volume, and BMI. The RI showed a strong inverse correlation with age, height, weight, puberty stage, and thyroid volume and a weak inverse correlation with the BMI. Conclusion: Determination of the thyroid arterial flow in normal healthy children is important during a Doppler ultrasound (US) examination. Doppler US parameters and their percentiles should be described in healthy children from different age groups, and these percentiles will aid in interpreting Doppler US in children.

  6. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  7. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  8. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  9. Effect of Metoclopramide on Portal Blood Flow in Patients with Liver Cirrhosis: Evaluation by the Pulsed Doppler System

    International Nuclear Information System (INIS)

    Baik, Soon Koo; Lee, Yong Gyu; Hong, Sa Joon; Lee, Seong Wu; Lee, Dong Ki; Kwong, Sang Ok

    1994-01-01

    Metoclopramide is known to lower the intravariceal flow by raising the lower esophageal sphincter pressure and consequently decreases the portal blood flow. So we designed this study to assess the effect of metoclopramide on portal blood flow in cirrhotic patients using pulsed Doppler system. By using pulsed Doppler ultrasound, portal blood velocity, diameter of the portal vein, portal blood flow, blood pressure and pulse rate were measured at 15, 30 and 60 minutes after administration of 20mg metoclopramide in 16cirrhotic patients and compared with the basal values. In order 10 cirrhotic patients, normal saline was administrated, and the above mentioned parameters were measured. Wothin 15 minutes after intravenous administration of 20mg metoclopramide, portal blood velocity and portal blood flow decreased significantly, from 12.45+2.64 to 11.80+2.55cm/sec and from 1006.3+407.1 to 974.4+414.7ml/min, respectively(P<0.05). In placebo group,there was no significant change in measured parameters after administration of normal saline. These results support the hypothesis that metoclopramide significantly decreases the portal blood flow transiently in cirrhotic patients with portal hypertension

  10. Magnetic gauge for free surface velocities in reinforced concrete blasted by explosives

    International Nuclear Information System (INIS)

    Ashuach, Y; Gissis, I; Avinadav, C

    2014-01-01

    We developed a simple magnetic gauge for measuring free surface velocities of rock materials in the range of 0.1-20 m/s. The gauge consists of two elements: a NdFeB magnet and a pick-up coil. The coil is attached to the free surface at the point of interest. The magnet is placed a few centimeters away from the coil and the rock. The motion of the rock surface, due to blast loading, induces current in the coil due to the changes in the magnetic flux. The coil velocity is deduced from the measured current using a computational code. The gauge was tested and validated in a set of free-falling experiments. We present velocity measurements from various blast experiments in limestone and reinforced concrete, using both the magnetic gauge and a Doppler interferometer. The results obtained from the two measurement techniques are in good agreement. Since the magnetic gauge is cheap and very simple to operate, it is well-suited for mapping the velocity distribution at multiple points of interest on the concrete surface.

  11. Doppler ultrasound scan during normal gestation: umbilical circulation; Ecografia Doppler en la gestacion normal: circulacion umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, T.; Sabate, J.; Martinez-Benavides, M. M.; Sanchez-Ramos, J. [Hospital Virgen Macarena. Sevilla (Spain)

    2002-07-01

    To determine normal umbilical circulation patterns by means of Doppler ultrasound scan in a healthy gestating population without risk factors and with normal perinatal results, and to evaluate any occurring modifications relative to gestational age by obtaining records kept during pregnancy. One hundred and sixteen pregnant women carrying a single fetus have been studied. These women had no risk factors, with both clinical and analytical controls, as well as ultrasound scans, all being normal. There were performed a total of 193 Doppler ultrasound scans between weeks 15 and 41 of gestation, with blood-flow analysis in the arteries and vein of the umbilical cord. The obtained information was correlated with parameters that evaluate fetal well-being (fetal monitoring and/or oxytocin test) and perinatal result (delivery type, birth weight, Apgar score). Statistical analysis was performed with the programs SPSS 6.0.1 for Windows and EPIINFO 6.0.4. With pulsed Doppler, the umbilical artery in all cases demonstrated a biphasic morphology with systolic and diastolic components and without retrograde blood flow. As the gestation period increased, there was observed a progressive decrease in resistance along with an increase in blood-flow velocity during the diastolic phase. The Doppler ultrasound scan is a non-invasive method that permits the hemodynamic study of umbilical blood circulation. A knowledge of normal blood-flow signal morphology, as well as of the normal values for Doppler indices in relation to gestational age would permit us to utilize this method in high-risk pregnancies. (Author) 30 refs.

  12. Laser-Doppler velocimetry measurements in a motored IC engine simulator

    Science.gov (United States)

    Gany, A.; Sirignano, W. A.; Larrea, J.-J.

    1980-01-01

    A measurement technique and experimental results are presented for mean velocity and velocity fluctuations in a motored, axisymmetric engine chamber simulation. Three valve configurations are considered: open orifice, open valve, and operating valve. Measurements of axial and tangential velocity components have been taken at various axial and radial positions for one compression ratio (7:1) and one rpm level (31). The measurements show that the intake stroke (in both two and four stroke operations) result in a recirculating flow with substantial turbulence generation even at the low rpm value. The four-stroke results in an axisymmetric design are novel and especially significant since the ability exists to make comparisons with theoretical, axisymmetric, turbulent results.

  13. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Yan, Denghua; Li, Chuanzhe; Chu, Zhigang; Yu, Fuliang

    2017-12-01

    Hydrological forecasts require high-resolution and accurate rainfall information, which is one of the most difficult variables to be captured by the mesoscale Numerical Weather Prediction (NWP) systems. Radar data assimilation is an effective method for improving rainfall forecasts by correcting the initial and lateral boundary conditions of the NWP system. The aim of this study is to explore an efficient way of utilizing the Doppler radar observations for data assimilation, which is implemented by exploring the effect of assimilating radar data from different height layers on the improvement of the NWP rainfall accuracy. The Weather Research and Forecasting (WRF) model is used for numerical rainfall forecast in the Zijingguan catchment located in the ;Jing-Jin-Ji; (Beijing-Tianjin-Hebei) Region of Northern China, and the three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data is divided into seven data sets according to the height layers: (1) 2000 m, and (7) all layers. The results show that radar reflectivity assimilation leads to better results than radial velocity assimilation. The accuracy of the forecasted rainfall deteriorates with the rise of the height of the assimilated radar reflectivity. The same results can be found when assimilating radar reflectivity and radial velocity at the same time. The conclusions of this study provide a reference for efficient assimilation of the radar data in improving the NWP rainfall products.

  14. Use of a tethersonde measurement system to conduct a Doppler SODAR performance audit

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, G.W. [North American Weather Consultants, Salt Lake City, UT (United States); Catizone, P.A. [TRC Environmental Corp., Windsor, CT (United States); Coble, T.D. [ASARCO Inc., East Helena, MT (United States)

    1994-12-31

    With the increased usage of dispersion models that require stack top wind information, such as the Complex Terrain Dispersion Model (CTDM), the need for a reliable method to collect elevated wind data has also increased. Doppler Sound Detection and Ranging (SODAR) instruments have gained recognition as a viable means of collecting such data. SODAR technology has improved greatly over the last decade and is now a cost effective alternative to tall meteorological towers. SODARs are remote sensing devices that sample the atmosphere and calculate wind speed and wind direction data at different altitudes. This is accomplished by measuring the doppler shift of an acoustic pulse emitted by a ground level antenna.

  15. Changes in inferior vena cava blood flow velocity and diameter during breathing movements in the human fetus

    NARCIS (Netherlands)

    T. Huisman (T.); S. van den Eijnde (Stefan); P.A. Stewart (Patricia); J.W. Wladimiroff (Juriy)

    1993-01-01

    textabstractBreathing movements in the human fetus cause distinct changes in Doppler flow velocity measurements at arterial, venous and cardiac levels. In adults, breathing movements result in a momentary inspiratory collapse of the inferior vena cava vessel wall. The study objective was to quantify

  16. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  17. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    Science.gov (United States)

    Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.

    2013-01-01

    The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.

  18. Measuring velocity by differentiation of analog encoder signals

    NARCIS (Netherlands)

    Winarto, R.F.; Steinbuch, M.; Molengraft, van de M.J.G.

    2013-01-01

    In this report a new method for measuring velocities has been introduced. During the research in literature an overview has been made of the existing methods of measuring velocities. From this research, it can be concluded that a lot of existing approaches only work in specific settings. Besides

  19. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  20. On the choice of the number of samples in laser Doppler anemometry signal processing

    Science.gov (United States)

    Dios, Federico; Comeron, Adolfo; Garcia-Vizcaino, David

    2001-05-01

    The minimum number of samples that must be taken from a sinusoidal signal affected by white Gaussian noise, in order to find its frequency with a predetermined maximum error, is derived. This analysis is of interest in evaluating the performance of velocity-measurement systems based on the Doppler effect. Specifically, in laser Doppler anemometry (LDA) it is usual to receive bursts with a poor signal-to- noise ratio, yet high accuracy is required for the measurement. In recent years special attention has been paid to the problem of monitoring the temporal evolution of turbulent flows. In this kind of situation averaging or filtering the data sequences cannot be allowed: in a rapidly changing environment each one of the measurements should rather by performed within a maximum permissible error and the bursts strongly affected by noise removed. The method for velocity extraction that will be considered here is the spectral analysis through the squared discrete Fourier transform, or periodogram, of the received bursts. This paper has two parts. In the first an approximate expression for the error committed in LDA is derived and discussed. In the second a mathematical formalism for the exact calculation of the error as a function of the signal-to- noise ratio is obtained, and some universal curves for the expected error are provided. The results presented here appear to represent a fundamental limitation on the accuracy of LDA measurements, yet, to our knowledge, they have not been reported in the literature so far.

  1. Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer

    Directory of Open Access Journals (Sweden)

    A. Ansmann

    2010-08-01

    Full Text Available For the first time, a comprehensive, height-resolved Doppler lidar study of updrafts and downdrafts in the mixing layer is presented. The Doppler lidar measurements were performed at Leipzig, Germany, in the summer half year of 2006. The conditional sampling method is applied to the measured vertical velocities to identify, count, and analyze significant updraft and downdraft events. Three cases of atmospheric boundary-layer (ABL evolution with and without fair-weather cumuli formation are discussed. Updrafts occur with an average frequency of 1–2 per unit length zi (boundary-layer depth zi, downdrafts 20–30% more frequently. In the case with cumuli formation, the draft occurrence frequency is enhanced by about 50% at cloud level or near cloud base. The counted updraft events cover 30–34%, downdrafts 53–57% of the velocity time series in the central part of the ABL (subcloud layer during the main period of convective activity. By considering all drafts with horizontal extent >36 m in the analysis, the updraft mean horizontal extent ranges here from 200–420 m and is about 0.16 zi–0.18 zi in all three cases disregarding the occurrence of cumulus clouds. Downdraft extents are a factor of 1.3–1.5 larger. The average value of the updraft mean vertical velocities is 0.5–0.7 m/s or 0.40 w*–0.45 w* (convective velocity scale w*, and the negative downdraft mean vertical velocities are weaker by roughly 10–20%. The analysis of the relationship between the size (horizontal extent of the updrafts and downdrafts and their mean vertical velocity reveals a pronounced increase of the average vertical velocity in updrafts from 0.4–0.5 m/s for small thermals (100–200 m to about 1.5 m/s for large updrafts (>600 m in the subcloud layer in the case with fair-weather cumuli. At cloudless conditions, the updraft

  2. Ion Spin-Up, Temperature, and Flow Measurements in the TCSU Experiment

    Science.gov (United States)

    Deards, C. L.; Grossnickle, J. A.; Steinhauer, L. C.; Melnik, P. A.; Milroy, R. D.

    2009-11-01

    The Translation, Confinement, and Sustainment Upgrade (TCSU) experiment employs a bakeable ultra-high vacuum chamber to reduce impurities and overall recycling. In recent experiments with Ti gettering applied to the plasma tube, radiation from impurities was dramatically reduced and recycling was almost eliminated. Ion temperature and azimuthal rotation velocities data from the resulting lower density, higher temperature FRC will be presented. The data comes from Doppler-broadening and Doppler-shifted measurements of Si III, C III, and O III, the dominant impurities in the TCSU plasma. Additionally, plans and initial data will be presented on azimuthal and poloidal velocity shear. Velocity shear is thought to improve stability and transport. All data measurements are made using an Acton Research SpectraPro 500i Czerny-Turney type spectrograph.

  3. Burning velocity measurements of nitrogen-containing compounds.

    Science.gov (United States)

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  4. Activation Doppler Measurements on U 238 and U 235 in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, L I; Gustafsson, I

    1968-03-15

    Measurements of the Doppler effect in U-238 capture and U-235 fission have been made by means of the activation technique in three different neutron spectra in the fast critical assembly FR0. The experiments involved the irradiation of thin uranium metal foils or oxide disks, which were heated in a small oven located at the core centre. The measurements on U-238 were extended to 1780 deg K and on U-235 to 1470 deg K. A core region surrounding the oven was homogenized in order to facilitate the interpretation of results. The reaction rates in the uranium samples were detected by gamma counting. The experimental method was checked with regard to systematic errors by irradiations in a thermal spectrum. The data obtained for U-238 capture were corrected for the effect of neutron collisions in the oven wall, and were extrapolated to zero sample thickness. In the softest spectrum (core 5) a Doppler effect (relative increase in capture rate) of 0.260 {+-} 0.018 was obtained on heating from 343 to 1780 deg K, and in the hardest spectrum (core 3) the corresponding value was 0.030 {+-} 0.003. An appreciable Doppler effect in U-235 fission was obtained only in the softest spectrum, in which the measured increase in fission rate on heating from 320 to 1470 deg K was 0.007 {+-} 0.003.

  5. Carotid Artery End-Diastolic Velocity and Future Cerebro-Cardiovascular Events in Asymptomatic High Risk Patients.

    Science.gov (United States)

    Chung, Hyemoon; Jung, Young Hak; Kim, Ki-Hyun; Kim, Jong-Youn; Min, Pil-Ki; Yoon, Young Won; Lee, Byoung Kwon; Hong, Bum-Kee; Rim, Se-Joong; Kwon, Hyuck Moon; Choi, Eui-Young

    2016-01-01

    Prognostic value of additional carotid Doppler evaluations to carotid intima-media thickness (IMT) and plaque has not been completely evaluated. A total of 1119 patients with risk factors for, but without, overt coronary artery disease (CAD), who underwent both carotid ultrasound and Doppler examination were included in the present study. Parameters of interest included peak systolic and end-diastolic velocities, resistive indices of the carotid arteries, IMT, and plaque measurements. The primary end-point was all-cause cerebro-cardiovascular events (CVEs) including acute myocardial infarction, coronary revascularization therapy, heart failure admission, stroke, and cardiovascular death. Model 1 covariates comprised age and sex; Model 2 also included hypertension, diabetes and smoking; Model 3 also had use of aspirin and statin; and Model 4 also included IMT and plaque. The mean follow-up duration was 1386±461 days and the mean age of the study population was 60±12 years. Amongst 1119 participants, 43% were women, 57% had a history of hypertension, and 23% had diabetes. During follow-up, 6.6% of patients experienced CVEs. Among carotid Doppler parameters, average common carotid artery end-diastolic velocity was the independent predictor for future CVEs after adjustments for all models variables (HR 0.95 per cm/s, 95% confident interval 0.91-0.99, p=0.034 in Model 4) and significantly increased the predictive value of Model 4 (global χ(2)=59.0 vs. 62.8, p=0.029). Carotid Doppler measurements in addition to IMT and plaque evaluation are independently associated with future CVEs in asymptomatic patients at risk for CAD.

  6. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    Science.gov (United States)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  7. Sub-Doppler cooling in reduced-period optical lattice geometries

    International Nuclear Information System (INIS)

    Berman, P.R.; Raithel, G.; Zhang, R.; Malinovsky, V.S.

    2005-01-01

    It is shown that sub-Doppler cooling occurs in an atom-field geometry that can lead to reduced-period optical lattices. Four optical fields are combined to produce a 'standing wave' Raman field that drives transitions between two ground state sublevels. In contrast to conventional Sisyphus cooling, sub-Doppler cooling to zero velocity occurs when all fields are polarized in the same direction. Solutions are obtained using both semiclassical and quantum Monte Carlo methods in the case of exact two-photon resonance. The connection of the results with conventional Sisyphus cooling is established using a dressed state basis

  8. Discharge measurements at gaging stations

    Science.gov (United States)

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  9. Utilisation of the Rapsodie reactor for the measurement of the doppler effect

    International Nuclear Information System (INIS)

    Zaleski, C.P.; Abdon, R.; Ladet, J.; Ping, I.; Steven, L.

    1964-01-01

    This report shows how a special loading of a 400 liters core in the reactor 'Rapsodie' could simulate the same neutronic conditions as those encountered in power fast reactors. Various methods designed to measure the Doppler effect in this core are described and compared. In particular, a computation of the errors involved is set. This computation would bring us to think that such an experiment could give a valid estimation of the Doppler coefficient of large fast reactors. The neutronic computations set for this study are described in an annex. - This report(the annex excepted) has already been presented by Freddy STORRER at the conference on breeding: Economics and safety in large fast breeder reactors at Argonne National Laboratory, october 1963 and published in the Proceedings (ANL 6792). (authors) [fr

  10. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  11. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI

    International Nuclear Information System (INIS)

    Meckel, Stephan; Leitner, Lorenz; Schubert, Tilman; Bonati, Leo H.; Lyrer, Philippe; Santini, Francesco; Stalder, Aurelien F.; Markl, Michael; Wetzel, Stephan G.

    2013-01-01

    4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques. (orig.)

  12. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  13. Field Measurements to Characterize Turbulent Inflow for Marine Hydrokinetic Devices - Marrowstone Island, WA

    Science.gov (United States)

    Richmond, M. C.; Thomson, J. M.; Durgesh, V.; Polagye, B. L.

    2011-12-01

    Field measurements are essential for developing an improved understanding of turbulent inflow conditions that affect the design and operation of marine and hydrokinetic (MHK) devices. The Marrowstone Island site in Puget Sound, Washington State is a potential location for installing MHK devices, as it experiences strong tides and associated currents. Here, field measurements from Nodule Point on the eastern side of Marrowstone Island are used to characterize the turbulence in terms of velocity variance as a function of length and time scales. The field measurements were performed using Acoustic Doppler Velocimetry (ADV) and Acoustic Doppler Current Profiler (ADCP) instruments. Both were deployed on a bottom-mounted tripod at the site by the Applied Physics Lab at the University of Washington (APL-UW). The ADV acquired single point, temporally resolved velocity data from 17-21 Feb 2011, at a height of 4.6 m above the seabed at a sampling frequency of 32 Hz. The ADCP measured the velocity profile over the water column from a height of 2.6 m above the seabed up to the sea-surface in 36 bins, with each bin of 0.5 m size. The ADCP acquired data from 11-27 Feb 2011 at a sampling frequency of 2 Hz. Analysis of the ADV measurements shows distinct dynamic regions by scale: anisotropic eddies at large scales, an isotropic turbulent cascade (-5/3 slope in frequency spectra) at mesoscales, and contamination by Doppler noise at small scales. While Doppler noise is an order of magnitude greater for the ADCP measurements, the turbulence bulk statistics are consistent between the two instruments. There are significant variations in turbulence statistics with stage of the tidal currents (i.e., from slack to non-slack tidal conditions), however an average turbulent intensity of 10% is a robust, canonical value for this site. The ADCP velocity profiles are useful in quantifying the variability in velocity along the water column, and the ensemble averaged velocity profiles may be

  14. THE HARPS-TERRA PROJECT. I. DESCRIPTION OF THE ALGORITHMS, PERFORMANCE, AND NEW MEASUREMENTS ON A FEW REMARKABLE STARS OBSERVED BY HARPS

    Energy Technology Data Exchange (ETDEWEB)

    Anglada-Escude, Guillem; Butler, R. Paul, E-mail: anglada@dtm.ciw.edu [Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States)

    2012-06-01

    Doppler spectroscopy has uncovered or confirmed all the known planets orbiting nearby stars. Two main techniques are used to obtain precision Doppler measurements at optical wavelengths. The first approach is the gas cell method, which consists of least-squares matching of the spectrum of iodine imprinted on the spectrum of the star. The second method relies on the construction of a stabilized spectrograph externally calibrated in wavelength. The most precise stabilized spectrometer in operation is the High Accuracy Radial velocity Planet Searcher (HARPS), operated by the European Southern Observatory in La Silla Observatory, Chile. The Doppler measurements obtained with HARPS are typically obtained using the cross-correlation function (CCF) technique. This technique consists of multiplying the stellar spectrum by a weighted binary mask and finding the minimum of the product as a function of the Doppler shift. It is known that CCF is suboptimal in exploiting the Doppler information in the stellar spectrum. Here we describe an algorithm to obtain precision radial velocity measurements using least-squares matching of each observed spectrum to a high signal-to-noise ratio template derived from the same observations. This algorithm is implemented in our software HARPS-TERRA (Template-Enhanced Radial velocity Re-analysis Application). New radial velocity measurements on a representative sample of stars observed by HARPS are used to illustrate the benefits of the proposed method. We show that, compared with CCF, template matching provides a significant improvement in accuracy, especially when applied to M dwarfs.

  15. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    Science.gov (United States)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  16. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  17. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  18. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  19. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  20. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  1. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  2. Comparative analysis of pulsed doppler ultrasonography of portal vein vs indirect photography

    International Nuclear Information System (INIS)

    Chang, Jae Chun; Kwon, Huck Po; Hwang, Mi Soo; Kim, Sun Youn; Park, Bok Hwan; Lee, Hyun Ju; Kim, Hong Jin

    1990-01-01

    There are some limitation of interpretation in indirect photography via superior mesenteric artery. In order to supplement and predict indirect photography, we compared indirect photographic findings with pulsed doppler flowmetry in 38 hepatobiliary patients, and the results were as follow: 1. In case of normal main portal vein(MPV) filling, Pulsed Doppler always showed antegrade, continuous parabolic wave form and cases of abnormal MPV filling, showed unusual wave form and flow direction. 2. In normal filling case of proximal right portal vein, Pulsed Doppler almost showed normal continuous parabolic wave form but in normal filling cases of proximal left portal vein, occasionally showed undulating wave form. 3. In each side proximal portal vein abnormal filling case, we could observe abnormal doppler wave form and could obtain additional information using doppler wave form. 4. Mean portal flow velocity was significantly increased in higher photography grade(p=0.01) and congestion index was significantly decreased in higher photography grade(p=0.01). 5. We concluded that doppler ultrasonography could supplement incomplete indirect photography

  3. Measurement of the neutrino velocity in OPERA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dracos, M., E-mail: marcos.dracos@in2p3.fr [IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France)

    2013-02-15

    The OPERA neutrino experiment has measured the neutrino velocity using the CERN CNGS beam over a baseline of 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010, 2011. An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5±7.4(stat.){sub −8.0}{sup +8.3}(sys.))ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v−c)/c=(2.7±3.1(stat.){sub −3.3}{sup +3.4}(sys.))×10{sup −6}. During spring 2012 the CNGS provided during two weeks a short proton bunched beam dedicated to the neutrino velocity measurement. The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos with slightly modified setup compared to 2011 measurements. These modifications increased the timing accuracy and also fixed previous problems. The arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum has been found to be in agreement with the previous measurement. This result confirms the revised OPERA result and that indeed the neutrino anticipation announced in September 2011 was due to technical problems.

  4. Measurement of particle velocity using a mutual inductance technique

    International Nuclear Information System (INIS)

    Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven

    2004-01-01

    Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement

  5. Tissue doppler echocardiography for evaluating left ventricular functions in obese

    Directory of Open Access Journals (Sweden)

    Mecnun Çetin

    2013-03-01

    Full Text Available Objective: The aim of this study was to investigate theimpact of childhood obesity on ventricular functions usingtissue Doppler echocardiography.Materials and methods: The mitral tissue Doppler signalswere recorded in the apical four-chamber view, with thesample volume placed at the lateral walls of mitral annulus.The mitral flow was examined with the sample Pulse Dopplerpositioned parallely to flow just at the orifice of the mitralleaflets. Twenty obese (mean age, 161.5±25.8 monthsand 20 healthy children (mean age, 151.2±33.5 monthswere included to this study.Results: Body mass index (BMI was significantly higherin obese group (30.92±6.87. Isovolumic relaxation time(IVRT which is one of the left ventricular (LV diastolicfunction parameters was 66.10±7.30 ms in obese group,and 58.70±9.06 ms in the control group. IVRT was significantlyhigher in the obese group (p=0.007. In obesegroup, the mitral annulus tissue Doppler E velocity wasdecreased, flow velocity was increased and decrement inEm/Am ratio was significant. We found significant negativecorrelation between BMI and LV Em/Am ratio. Myocardialperformance index (MPI in obese group and control groupwas 0.50±0.07 and 0.41±0.04, respectively (p<0.001.Between MPI and LV Em/Am ratio there was a significantnegative correlation while MPI showed positive correlationwith BMI. In obese group septal and LV posterior wall thicknesswas shown to be significantly increased compared tothe control group (p<0.001.Conclusion: Our findings, may be important for determinationof the relationship between obesity and cardiovascularrisk factors in children. Tissue Doppler echocardiographicimaging may be useful in revealing this relationship.Key words: obesity, doppler echocardiography, ventricular dysfunction

  6. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  7. Comparison of different configurations of Phase Doppler Analyser

    Science.gov (United States)

    Zaremba, Matouš; Malý, Milan; Jedelský, Jan; Jícha, Miroslav

    2016-03-01

    A phase Doppler anemometry (PDA) technique is widely used in experimental fluid mechanics to measure size and velocity of particles in the fluid flow. Even though this method is common in experimental fluid mechanics, there are only few techniques that might serve for the purpose of the evaluation of the PDA system. To examine results of the PDA visualizations techniques are usually used. However, this approach suffers from several aspects. Mainly, it is difficult to determine the exact position of the measurement volume of PDA system. Then it is complicated to determine which particles are passing through the measuring volume. Another way how to examine performance of the PDA system is to use two PDA systems simultaneously. By using one laser for both systems we can avoid previously mentioned aspects. In our experiments, we use fiber based PDA system and classical PDA system both made by Dantec Dynamics. The aim of this paper is to compare results from various configurations and highlight crucial parameters that influence measurements.

  8. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  9. New way of doppler lifetime measurements used in a case of 119I

    International Nuclear Information System (INIS)

    Pasternak, A.A.; Srebrny, J.; Droste, Ch.; Morek, T.

    2000-01-01

    Complete text of publication follows. An experience gained during data analysis of lifetime measurements (1) in 119 I is presented. The experiment was done using NORDBALL array with plunger inside. The 119 I were produced in the reaction 109 Ag( 13 C,3n) 119 I. Two type of Ag targets were used: thin one (about 0.8 mg/cm 2 ) for RDM measurements and thick one (about 6 mg/cm 2 ) for DSA measurements. Both types of lifetime data were analysed by the same code SHAPE (2) originaly devoted to DSA method. Such sofisticated analysis alowed to determined lifetimes for about 60 levels. The following topics are important for precise lifetime determination: I. Application of DSA software to RDM data. Recoil Distance Doppler Shift Attenuation Method RDDSAM takes into consideration exact γ-lineshape measured using plunger. The information obtained from RDDSAM is more rich than when standard RDM analysis is used. II. Reaction, energy of projectile and statistical side-feeding time. The reaction and the energy of projectile should be chosen to get similar angular momentum distribution of entry states as the one of investigated states. In such case, E2 stretched cascade from entry states to the measured levels is strongly reduced. Then, one can use a simple formula for calculation of the statistical side feeding time: τ sidefeeding = k sf x (E exc - E lev ), where: E exc is the energy of entry state with spin value being the same as spin of investigated level, and E lev is the energy of investigated level. The value of k sf = 0.020(5) ps/MeV was deduced from the analysis of a few fastest transitions in 119 I. III. Self-calibration of stopping power. To perform self calibration of stopping power we propose (1) to use 'semi-thick' target with thickness comparable to recoil range. In our case 0.8 mg/cm 2 target fulfils such condition. For the semi-thick target the observed γ-lineshape is governed by the velocity distribution of recoils leaving target if τ level is much larger than

  10. Application of a Novel Laser-Doppler Velocimeter for Turbulence: Structural Measurements in Turbulent Boundary Layers

    National Research Council Canada - National Science Library

    Lowe, Kevin T; Simpson, Roger L

    2006-01-01

    An advanced laser-Doppler velocimeter (LDV), deemed the 'comprehensive LDV', is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers...

  11. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  12. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    Directory of Open Access Journals (Sweden)

    Anderson Chun On Tsang

    2015-04-01

    Full Text Available Purpose: The aim of this study was to validate a computational fluid dynamics (CFD simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents.

  13. Measurements of ultrasonic waves by means of laser Doppler velocimeter and an experimental study of elastic wave propagation in inhomogeneous media; Laser doppler sokudokei ni yoru choonpa keisoku to ganseki wo mochiita fukinshitsu baishitsu no hado denpa model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, O; Sato, T [Geological Survey of Japan, Tsukuba (Japan); Lei, X [Dia Consultants Company, Tokyo (Japan)

    1996-05-01

    In the study of seismic wave propagation, a model experimenting technique has been developed using a laser Doppler velocimeter (LDV) as the sensor. This technique, not dependent on conventional piezoelectric devices, only irradiates the specimen with laser to measure the velocity amplitude on the target surface, eliminating the need for close contact between the specimen and sensor. In the experiment, elastic penetration waves with their noise levels approximately 0.05mm/s were observed upon application of vibration of 10{sup 6}-10{sup 5}Hz. The specimen was stainless steel or rock, and waveforms caught by the LDV and piezoelectric device were compared. As the result, it was found that the LDV is a powerful tool for effectively explaining elastic wave propagation in inhomogeneous media. The piezoelectric device fails to reproduce accurately the waves to follow the initial one while the LDV detect the velocity amplitude on the specimen surface in a wide frequency range encouraging the discussion over the quantification of observed waveforms. 10 refs., 7 figs.

  14. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  15. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  16. A comparative study of calculated and measured particle velocities

    International Nuclear Information System (INIS)

    Tariq, S.M.

    2005-01-01

    After an explosive is detonated in a blast hole, seismic waves are generated in the ground surrounding the blast hole. These waves cause the particles of rock to oscillate about its position. As the wave attenuate, the particles come back to their original position. The rapidity with which the particles move is called the particle velocity. The peak or maximum velocity is the value which is of prime concern. This value of peak particle velocity can be estimated by the equations determined by the United States Bureau of Mines and by the DUPONT. A research program was conducted by the author at the 'Beck Materials Quarry' situated near Rolla, Missouri, USA. The purpose was to draw a comparison between the predicted and measured particle velocities. It was generally found that the predicted peak particle velocities were quite high as compared to the velocities measured by the Seismographs. (author)

  17. Determination of testicular blood flow in camelids using vascular casting and color pulsed-wave Doppler ultrasonography.

    Science.gov (United States)

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography.

  18. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    Directory of Open Access Journals (Sweden)

    Michelle Kutzler

    2011-01-01

    Full Text Available We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV was higher in fertile males compared to infertile males (P=0.0004. In addition, end diastolic velocity (EDV within the supratesticular arteries was higher for fertile males when compared to infertile males (P=0.0325. Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P=0.0104. However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P=0.121. In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P=0.486 and marginal arteries (P=0.144. The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography.

  19. Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry

    Science.gov (United States)

    Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas

    2010-01-01

    OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v 10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143

  20. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...