WorldWideScience

Sample records for doped indium tin

  1. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  2. Physical properties of pyrolytically sprayed tin-doped indium oxide coatings

    NARCIS (Netherlands)

    Haitjema, H.; Elich, J.J.P.

    1991-01-01

    The optical and electrical properties of tin-doped indium oxide coatings obviously depend on a number of production parameters. This dependence has been studied to obtain a more general insight into the relationships between the various coating properties. The coatings have been produced by spray

  3. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  4. Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ko-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, Liang-Da [Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China); Chang, Li-Wei [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China)

    2013-05-15

    Indium oxide (In{sub 2}O{sub 3}) nanorods, nanotowers and tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods have been fabricated by thermal evaporation. The morphology, microstructure and chemical composition of these three nanoproducts are characterized by FE-SEM, HRTEM and XPS. To further investigate the optoelectronic properties, the I–V curves and cathodoluminescence (CL) spectra are measured. The electrical resistivity of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods are 1.32 kΩ, 0.65 kΩ and 0.063 kΩ, respectively. CL spectra of these three nanoproducts clearly indicate that tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt ITO nanorods obtain the highest performance among these three nanoproducts, and this also means that Sn-doped In{sub 2}O{sub 3} nanostructures would be the best way to enhance the optoelectronic properties. Additionally, the growing mechanism and the optoelectronic properties of these three nanostructures are discussed. This study is beneficial to the applications of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices.

  5. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  6. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    Science.gov (United States)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  7. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film

    Directory of Open Access Journals (Sweden)

    Nen-Wen Pu

    2015-09-01

    Full Text Available : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10−4 Ω/cm, carrier concentration (4.1 × 1021 cm−3, carrier mobility (10 cm2/Vs, and mean visible-light transmittance (90% at wavelengths of 400–800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>1021 cm−3 with a high figure of merit (81.1 × 10−3 Ω−1 demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  8. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film.

    Science.gov (United States)

    Pu, Nen-Wen; Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Hsieh, Wei-Ting; Yu, Hau-Wei; Liang, Shih-Chang

    2015-09-21

    : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10 - ⁴ Ω/cm), carrier concentration (4.1 × 10 21 cm - ³), carrier mobility (10 cm²/Vs), and mean visible-light transmittance (90%) at wavelengths of 400-800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>10 21 cm - ³) with a high figure of merit (81.1 × 10 - ³ Ω - ¹) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  9. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  10. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  11. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  12. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process

    International Nuclear Information System (INIS)

    Nakasa, Akihiko; Adachi, Mami; Usami, Hisanao; Suzuki, Eiji; Taniguchi, Yoshio

    2006-01-01

    Organic light emitting diodes (OLEDs) need indium tin oxide (ITO) anodes with highly smooth surface. The work function of ITO, about 4.8 eV, is generally rather lower than the optimum level for application to OLEDs. In this work, NiO was deposited by pyrosol process on pyrosol ITO film to increase the work function of the ITO for improving the performance of OLEDs. It was confirmed that NiO was successfully deposited on pyrosol ITO film and the NiO deposition increased the work function of pyrosol ITO, using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atmospheric photoelectron spectroscopy. Furthermore, doping ITO with Ni succeeded in producing the Ni-doped ITO film with high work function and lower sheet resistance

  13. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  14. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  15. Enhancement of organic light-emitting device performances with Hf-doped indium tin oxide anodes

    International Nuclear Information System (INIS)

    Chen, T.-H.; Liou, Y.; Wu, T.J.; Chen, J.Y.

    2004-01-01

    We have enhanced the luminance and the power efficiency of organic light-emitting devices with Hf-doped indium tin oxide (ITO) anodes instead of a CuPc layer. The Hf-doped ITO layer with a thickness of 15 nm was deposited on top of the ITO anode. Less than 10 mol. % of Hf was doped in ITO films by adjusting the sputtering rates of both sources. The highest work function of the Hf-doped ITO layers was 5.4 eV at the Hf concentrations about 10 mol. %. The driving voltages of the device have been reduced by 1 V. A luminance of 1000 cd/m 2 at 7 mA/cm 2 , a current efficiency of 14 cd/A, and a power efficiency of 6 lm/W at 6 mA/cm 2 have been achieved in the device with a 4 mol. % Hf-doped ITO layer (work function=5.2 eV). In general, the performance was about 50% better than the device with a CuPc buffer layer

  16. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  17. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Lie-Andersen, T.; Jensen, E. Pristed

    2015-01-01

    Indium doped tin pyrophosphates were prepared by three synthetic routes. A heterogeneous synthesis from metal oxides with excess phosphoric acid produces crystalline phosphate particles with a phosphorus rich amorphous phase along the grain boundaries. The amorphous phase prevents the agglomeration...... decrease in conductivity as well as significant agglomeration of the particles, as evident in TEM and from particle size distribution measurements. Homogeneous synthesis with soluble metal acetates or chlorides as precursors results in a single crystalline phase with a small particle size, but strongly...... agglomerated, and a low conductivity at 10- 7-10- 6 Scm- 1 level. Further impregnation of the agglomerates with phosphoric acid does not lead to formation of the phosphorus rich amorphous layers on the surface of the crystals. An intermediate conductivity of 10- 3 Scm- 1 was observed for the acid treated...

  18. Hydrogen doping of Indium Tin Oxide due to thermal treatment of hetero-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ritzau, Kurt-Ulrich, E-mail: kurt-ulrich.ritzau@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); Behrendt, Torge [Infineon Technologies, Max-Planck-Straße 5, 59581 Warstein (Germany); Palaferri, Daniele [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS—UMR 7162, 75013 Paris (France); Bivour, Martin; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2016-01-29

    Indium Tin Oxide (ITO) layers in silicon hetero junction solar cells change their electrical and optical properties when exposed to temperature treatments. Hydrogen which effuses from underlying amorphous silicon layers is identified to dope the ITO layer. This leads to an additional increase in conductivity. In this way an almost isolating ITO can become degenerately doped through temperature treatments. The resulting carrier density in the range of 10{sup 20} cm{sup −3} leads to a substantial increase in free carrier absorption, which in turn leads to an increased parasitic absorption in the cell device. Thus hydrogen effusion in silicon hetero-junction (SHJ) solar cells does not only affect the degradation of amorphous silicon (a-Si:H) passivation of crystalline silicon (c-Si), but also the electrical and optical properties of both front and back ITO layers. This leads to the further design rule for SHJ solar cells, meaning that ITO properties have to be optimized in the state after modification during temperature treatment. - Highlights: • ITO is additionally doped by heat treatment of silicon hetero-junction solar cells. • The discovered effect turns an almost isolating ITO into a degenerately doped TCO. • TCO properties have to be considered as measured in the final cell.

  19. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Pu, Nen-Wen, E-mail: nwpuccit@gmail.com [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Liang, Shih-Chang [Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Lung Tan 32599, Taiwan (China)

    2015-11-01

    Highlights: • Ti-doped indium tin oxide (ITO) films were deposited by DC magnetron sputtering. • Optimal optoelectronic properties were achieved at a sputtering power of 100 W. • Resistivity = 3.2 × 10{sup −4} Ω-cm without substrate heating or post growth annealing. • Mean visible and NIR transmittances of 83 and 80%, respectively, were achieved. • Efficient batteries (11.3%) were fabricated by applying ITO:Ti to CIGS solar cells. - Abstract: In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10{sup −4} Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se{sub 2} solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm{sup 2}, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  20. Opto-electronic properties of chromium doped indium-tin-oxide films deposited at room temperature

    International Nuclear Information System (INIS)

    Chang Weiche; Lee Shihchin; Yang Chihhao; Lin Tienchai

    2008-01-01

    Indium-tin-oxide (ITO) doped chromium films were deposited on Corning 7059 glass prepared by radio frequency (RF) magnetron sputtering under various levels of sputtering power for the chromium target. Experimental results show that the surface roughness slightly decreases by co-sputtering Cr. The pure ITO films deposited at room temperature were amorphous-like. At 15 W of chromium target power, the structure of ITO: Cr film mainly consists of (2 2 2) crystallization plane, with minority of (2 1 1), (4 4 0), (6 6 2) crystallization planes. The carrier concentration of the ITO films increases with increasing the doping of chromium, however the mobility of the carrier decreases. When the sputtering power of the chromium target is at 7.5 W, there has a maximum carrier mobility of 27.3 cm 2 V -1 s -1 , minimum carrier concentration of 2.47 x 10 20 cm -3 , and lowest resistivity of 7.32 x 10 -4 Ω cm. The transmittance of all the chromium doped ITO films at the 300-800 nm wavelength region in this experiment can reach up to 70-85%. In addition, the blue shift of UV-Vis spectrum is not observed with the increase of carrier concentration

  1. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  2. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    Science.gov (United States)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  3. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  4. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors

    International Nuclear Information System (INIS)

    Gregory, Otto J.; You, Tao; Crisman, Everett E.

    2005-01-01

    Ceramic strain sensors based on reactively sputtered indium tin oxide (ITO) thin films doped with aluminum are being considered to improve the high-temperature stability and response. Ceramic strain sensors were developed to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500 deg C. Earlier studies using electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum oxide increase the stability of ITO at elevated temperature. The resulting ESCA depth files showed the presence of two new indium-indium peaks at 448.85 and 456.40 eV, corresponding to the indium 3d5 and 3d3 binding energies. These binding energies are significantly higher than those associated with stoichiometric indium oxide. Based on these studies, a combinatorial chemistry approach was used to screen large numbers of possible concentrations to optimize the stability and performance of Al-doped ceramic strain sensors. Scanning electron microscopy was used to analyze the combinatorial libraries in which varying amounts of aluminum were incorporated into ITO films formed by cosputtering from multiple targets. Electrical stability and piezoresistive response of these films were compared to undoped ITO films over the same temperature range

  5. Electron transport within transparent assemblies of tin-doped indium oxide colloidal nanocrystals

    Science.gov (United States)

    Grisolia, J.; Decorde, N.; Gauvin, M.; Sangeetha, N. M.; Viallet, B.; Ressier, L.

    2015-08-01

    Stripe-like compact assemblies of tin-doped indium oxide (ITO) colloidal nanocrystals (NCs) are fabricated by stop-and-go convective self-assembly (CSA). Systematic evaluation of the electron transport mechanisms in these systems is carried out by varying the length of carboxylate ligands protecting the NCs: butanoate (C4), octanoate (C8) and oleate (C18). The interparticle edge-to-edge distance L0, along with a number of carbon atoms in the alkyl chain of the coating ligand, are deduced from small-angle x-ray scattering (SAXS) measurements and exhibit a linear relationship with a slope of 0.11 nm per carbon pair unit. Temperature-dependent resistance characteristics are analyzed using several electron transport models: Efros-Shklovskii variable range hopping (ES-VRH), inelastic cotunneling (IC), regular island array and percolation. The analysis indicated that the first two models (ES-VRH and IC) fail to explain the observed behavior, and that only simple activated transport takes place in these systems under the experimental conditions studied (T = 300 K to 77 K). Related transport parameters were then extracted using the regular island array and percolation models. The effective tunneling decay constant βeff of the ligands and the Coulomb charging energy EC are found to be around 5.5 nm-1 and 25 meV, respectively, irrespective of ligand lengths. The theoretical tunneling decay constant β calculated using the percolation model is in the range 9 nm-1. Electromechanical tests on the ITO nanoparticle assemblies indicate that their sensitivities are as high as ˜30 and remain the same regardless of ligand lengths, which is in agreement with the constant effective βeff extracted from regular island array and percolation models.

  6. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  7. Influence of indium doping on the properties of zinc tin oxide films and its application to transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mu Hee; Ma, Tae Young, E-mail: tyma@gnu.ac.kr

    2014-01-01

    In this study, the effects of indium (In) doping on the properties of zinc tin oxide (ZTO) films are reported. ZTO films were prepared by RF magnetron sputtering followed by In layer deposition, for use as the diffusion source. In order to protect the In layer from peeling, a second ZTO film was deposited on the In film. The annealing at 400 °C for 30 min was carried out to diffuse In atoms into the ZTO films. The structural, optical, and elemental properties of the annealed ZTO/In/ZTO films were investigated by X-ray diffraction, UV/vis spectrophotometry, and X-ray photoluminescence spectroscopy, respectively. The ZTO transparent thin film transistors employing the ZTO/In/ZTO films as the source/drain were prepared, and the effects of the In doped source/drain on the threshold voltage and mobility were characterized and analyzed. - Highlights: • We successfully doped zinc tin oxide (ZTO) films using In as a diffusion source. • Indium (In) was diffused in both directions with the diffusion coefficient of ∼ 4.3 × 10{sup −16} cm{sup 2}/s. • The mobility of ZTO thin film transistor was increased 1.6-times by adopting the In-diffused source/drain.

  8. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  9. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ken, E-mail: Watanabe.Ken@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Young Scientists (ICYS-MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ohsawa, Takeo; Ross, Emily M., E-mail: emross@hmc.edu; Adachi, Yutaka; Haneda, Hajime [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakaguchi, Isao; Takahashi, Ryosuke [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Paul-Drude-Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Materials Department, University of California, Santa Barbara, California 93106 (United States); White, Mark E.; Tsai, Min-Ying; Speck, James S., E-mail: speck@ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106 (United States); Ohashi, Naoki, E-mail: Ohashi.Naoki@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

    2014-03-31

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO{sub 2}) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO{sub 2}. The H-concentration of the In-doped SnO{sub 2} films increased to (1–2) × 10{sup 19} cm{sup −3} by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations.

  10. Nickel doped indium tin oxide anode and effect on dark spot development of organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.M. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)], E-mail: tedhsu@mail.stut.edu.tw; Kuo, C.S.; Hsu, W.C.; Wu, W.T. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)

    2009-01-01

    This article demonstrated that introducing nickel (Ni) atoms into an indium tin oxide (ITO) anode could considerably decrease ITO surface roughness and eliminate the formation of dark spots of an organic light-emitting device (OLED). A dramatic drop in surface roughness from 6.52 nm of an conventional ITO to 0.46 nm of an 50 nm Ni(50 W)-doped ITO anode was observed, and this led to an improved lifetime performance of an Alq3 based OLED device attributed to reduced dark spots. Reducing thickness of Ni-doped ITO anode was found to worsen surface roughness. Meanwhile, the existence of Ni atoms showed little effect on deteriorating the light-emitting mechanism of OLED devices.

  11. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    International Nuclear Information System (INIS)

    Watanabe, Ken; Ohsawa, Takeo; Ross, Emily M.; Adachi, Yutaka; Haneda, Hajime; Sakaguchi, Isao; Takahashi, Ryosuke; Bierwagen, Oliver; White, Mark E.; Tsai, Min-Ying; Speck, James S.; Ohashi, Naoki

    2014-01-01

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO 2 ) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO 2 . The H-concentration of the In-doped SnO 2 films increased to (1–2) × 10 19  cm −3 by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations

  12. Intrinsic and Extrinsic Ferromagnetism in Co-Doped Indium Tin Oxide Revealed Using X-Ray Magnetic Circular Dichroism

    Directory of Open Access Journals (Sweden)

    A. M. H. R. Hakimi

    2017-01-01

    Full Text Available The effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO thin films have been investigated using X-ray diffraction (XRD, magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD. Following annealing, the magnetometry results indicate the formation of Co clusters with a significant increase in the saturation magnetization of the thin films arising from defects introduced during cluster formation. However, sum rule analysis of the element-specific XMCD results shows that the magnetic moment at the Co sites is reduced after annealing. The effects of annealing demonstrate that the ferromagnetism observed in the as-deposited Co-doped ITO films arises from intrinsic defects and cannot be related to the segregation of metallic Co clusters.

  13. Effect of Cr doping on the structural, morphological, optical and electrical properties of indium tin oxide films

    Science.gov (United States)

    Mirzaee, Majid; Dolati, Abolghasem

    2015-03-01

    We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.

  14. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    Science.gov (United States)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  15. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  16. Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering

    Science.gov (United States)

    Li, Shi-na; Ma, Rui-xin; Ma, Chun-hong; Li, Dong-ran; Xiao, Yu-qin; He, Liang-wei; Zhu, Hong-min

    2013-05-01

    Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.

  17. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  18. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  19. Effect of cerium doping on the electrical properties of ultrathin indium tin oxide films for application in touch sensors

    International Nuclear Information System (INIS)

    Kang, Saewon; Cho, Sanghyun; Song, Pungkeun

    2014-01-01

    The electrical and microstructure properties of cerium doped indium tin oxide (ITO:Ce) ultrathin films were evaluated to assess their potential application in touch sensors. 10 to 150-nm ITO and ITO:Ce films were deposited on glass substrates (200 °C) by DC magnetron sputtering using different ITO targets (doped with CeO 2 : 0, 1, 3, 5 wt.%). ITO:Ce (doped with CeO 2 : 3 wt.%) films with thickness < 25 nm showed lower resistivity than ITO. This lower resistivity was accompanied by a significant increase in the Hall mobility despite a decrease in crystallinity. In addition, the surface morphology and wetting properties improved with increasing Ce concentration. This is related to an earlier transition from an island structure to continuous film formation caused by an increase in the initial nucleation density. - Highlights: • 10 to 150-nm InSnO 2 (ITO) and ITO:Ce thin films were deposited by sputtering. • ITO:Ce films with thickness < 25 nm showed lower resistivity than ITO. • Hall mobility was strongly affected by initial film formation. • Surface morphology and wetting property improved with increasing Ce concentration. • Such behavior is related to an earlier transition to continuous film formation

  20. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  1. Effects of hydrogen gas on properties of tin-doped indium oxide films deposited by radio frequency magnetron sputtering method

    International Nuclear Information System (INIS)

    Kim, Do-Geun; Lee, Sunghun; Lee, Gun-Hwan; Kwon, Sik-Chol

    2007-01-01

    Tin-doped indium oxide (ITO) films were deposited at ∼ 70 deg. C of substrate temperature by radio frequency magnetron sputtering method using an In 2 O 3 -10% SnO 2 target. The effect of hydrogen gas ratio [H 2 / (H 2 + Ar)] on the electrical, optical and mechanical properties was investigated. With increasing the amount of hydrogen gas, the resistivity of the samples showed the lowest value of 3.5 x 10 -4 Ω.cm at the range of 0.8-1.7% of hydrogen gas ratio, while the resistivity increases over than 2.5% of hydrogen gas ratio. Hall effect measurements explained that carrier concentration and its mobility are strongly related with the resistivity of ITO films. The supplement of hydrogen gas also reduced the residual stress of ITO films up to the stress level of 110 MPa. The surface roughness and the crystallinity of the samples were investigated by using atomic force microscopy and x-ray diffraction, respectively

  2. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  3. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  4. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  5. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    International Nuclear Information System (INIS)

    Taweesup, Kattareeya; Yamamoto, Ippei; Chikyow, Toyohiro; Lothongkum, Gobboon; Tsukagoshi, Kazutoshi; Ohishi, Tomoji; Tungasmita, Sukkaneste; Visuttipitukul, Patama; Ito, Kazuhiro; Takahashi, Makoto; Nabatame, Toshihide

    2016-01-01

    Ruthenium doped indium oxide (In_1_−_xRu_xO_y) films fabricated using DC magnetron co-sputtering with In_2O_3 and Ru targets were investigated for use as transparent conductive oxides. The In_1_−_xRu_xO_y films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In_1_−_xRu_xO_y films increased as the Ru content increased. The transmittance of the In_0_._3_8Ru_0_._6_2O_y film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10"−"4 Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In_0_._9Sn_0_._1O_y, ITO) (150 nm)/ultrathin In_0_._3_8Ru_0_._6_2O_y (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10"−"5 Ω cm. This ITO/In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In_2O_3 bilayers. • Effect of Ru addition in In_2O_3 results in smooth surface because of an amorphous structure. • The In_0_._3_8Ru_0_._6_2O_y film with less than 5 nm improves to high transmittance over 80%. • ITO/In_0_._3_8Ru_0_._6_2O_y bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate as an anode of OEL.

  6. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  7. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  8. Studying the Properties of RF-Sputtered Nanocrystalline Tin-Doped Indium Oxide

    Directory of Open Access Journals (Sweden)

    Abd El-Hady B. Kashyout

    2011-01-01

    Full Text Available The ceramic target of Indium tinoxide (ITO (90% In2O3-10%SnO2 has been used to prepare transparent semiconductive thin films on glass substrate by RF magnetron sputtering at room temperature. The properties of the thin films are affected by controlling the deposition parameters, namely, RF power values and deposition times. The structure, morphology, optical and electrical properties of the thin films are investigated using X-ray diffraction (XRD, field emission scanning electron microscope (FESEM, atomic force microscope (AFM, UV-Vis spectrophotometer, and four-point probe measurement. Nanoparticles of 10–20 nm are measured and confirmed using both FESEM and AFM. The main preferred orientations of the prepared thin films are (222 and (400 of the cubic ITO structure. The transparent semiconductive films have high transmittance within the visible range of values 80–90% and resistivity of about 1.62×10−4 Ω⋅cm.

  9. Effect of tin doping on the optical properties of indium oxide films by a spray pyrolysis method

    International Nuclear Information System (INIS)

    Ibrahim Abu Talib; Muhammad Mat Salleh; Muhammad Yahya; Mod Noor Bader Sher

    1993-01-01

    Thin films of stannum doped indium oxide were deposited on glass by a X-ray pyrolysis method. The substrate temperature and the rate of flow of the carrier gas were fixed at 450 0 C and 2.5 litre/minute respectively during deposition. The dependence of the optical properties of the films on the doping concentration was studied. It is found that the transmission of the visible wavelengths (300 to 800 nm) through the films increases around 5% from 74.9% as the film was doped with 10% stannum. It is also found that the optical energy bandgap increases 0.2 eV from 3.16 to 3.36 eV by doping the film with 10% stannum. The increase is attributed to the Bernstein-Moss (1) and self-energy (2) effects

  10. Effect of nitrogen doping on the structural, optical and electrical properties of indium tin oxide films prepared by magnetron sputtering for gallium nitride light emitting diodes

    Science.gov (United States)

    Tian, Lifei; Cheng, Guoan; Wang, Hougong; Wu, Yulong; Zheng, Ruiting; Ding, Peijun

    2017-01-01

    The indium tin oxide (ITO) films are prepared by the direct current magnetron sputtering technology with an ITO target in a mixture of argon and nitrogen gas at room temperature. The blue transmittance at 455 nm rises from 63% to 83% after nitrogen doping. The resistivity of the ITO film reduces from 4.6 × 10-3 (undoped film) to 5.7 × 10-4 Ω cm (N-doped film). The X-ray photoelectron spectroscopy data imply that the binding energy of the In3d5/2 peak is declined 0.05 eV after nitrogen doping. The high resolution transmission electron microscope images show that the nitrogen loss density of the GaN/ITO interface with N-doped ITO film is smaller than that of the GaN/ITO interface with undoped ITO film. The forward turn-on voltage of gallium nitride light emitting diode reduces by 0.5 V after nitrogen doping. The fabrication of the N-doped ITO film is conducive to modify the N component of the interface between GaN and ITO layer.

  11. Effect of the Low-Temperature Annealing on Zn-Doped Indium-Tin-Oxide Films for Silicon Heterojunction Solar Cells

    Science.gov (United States)

    Lee, Seunghun; Lee, Jong-Han; Tark, Sung Ju; Choi, Suyoung; Kim, Chan Seok; Lee, Jeong Chul; Kim, Won Mok; Kim, Donghwan

    2012-10-01

    The effects of the low-temperature annealing on Zn-doped indium-tin-oxide (ITO) films such as the electrical, optical and structural properties were investigated. Zn-doped ITO films were fabricated by rf magnetron sputtering of ITO and Al-doped ZnO (AZO) targets on corning glass at room temperature. The content of Zn increased with increasing the power of AZO target. The carrier concentration of films shows the decreasing behaviour with increasing the content of Zn, due to a carrier compensation originating from the substitution of a doped Zn for an In or interstitial site. After the low-temperature annealing at 180 °C in vacuum, all films were slightly decreased a carrier concentration and increased the hall mobility because of the absorption of oxygen on the surface films. In addition, the average transmittance did not show a considerable change and had a high values over 80%. Especially, the Zn-doped ITO with atomic ratio of Zn/(In+Zn) of 6.8 at. % had the resistivity of 4×10-4 Ω cm, the highest hall mobility of 41 cm2 V-1 s-1, and the average transmittance of 82%.

  12. Highly conducting and transparent sprayed indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Messaoudi, C.; Sayah, D.; Ennaoui, A. (Faculte des Sciences, Rabat (Morocco). Lab. de Physique des Materiaux)

    1998-03-01

    Indium tin oxide (ITO) has a wide range of applications in solar cells (e.g. by controlling the resistivity, we can use low conductivity ITO as buffer layer and highly conducting ITO as front contact in thin films CuInS[sub 2] and CuInSe[sub 2] based solar cells) due to its wide band gap (sufficient to be transparent) in both visible and near infrared range, and high carrier concentrations with metallic conduction. A variety of deposition techniques such as reactive electron beam evaporation, DC magnetron sputtering, evaporation, reactive thermal deposition, and spray pyrolysis have been used for the preparation of undoped and tin doped indium oxide. This latter process which makes possible the preparation of large area coatings has attracted considerable attention due to its simplicity and large scale with low cost fabrication. It has been used here to deposit highly transparent and conducting films of tin doped indium oxide onto glass substrates. The electrical, optical and structural properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrates. X-ray diffraction patterns have shown that deposited films are polycrystalline without second phases and have preferred orientation [400]. INdium tin oxide layers with small resistivity value around 7.10[sup -5] [omega].cm and transmission coefficient in the visible and near IR range of about 85-90% have been easily obtained. (authors) 13 refs.

  13. Study on Optoelectronic Characteristics of Sn-Doped ZnO Thin Films on Poly(ethylene terephthalate) and Indium Tin Oxide/Poly(ethylene terephthalate) Flexible Substrates

    Science.gov (United States)

    Cheng, Chi-Hwa; Chen, Mi; Chiou, Chin-Lung; Liu, Xing-Yang; Weng, Lin-Song; Koo, Horng-Show

    2013-05-01

    Transparent conductive oxides of Sn-doped ZnO (SZO) films with doping weight ratios of 2.0, 3.0, 4.0, and 5.0 wt % have been deposited on indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) and PET flexible substrates at room temperature by pulsed laser deposition (PLD). Resultant films of SZO on ITO/PET and PET flexible substrates are amorphous in phase. It is found that undoped and SZO films on ITO/PET is anomalously better than films on PET in optical transmittance in the range of longer wavelength, possibly due to the refraction index difference between SZO, ITO films, and PET substrates, Burstein-Moss effect and optical interference of SZO/ITO bilayer films and substrate materials, and furthermore resulting in the decrement of reflection. The lowest electrical resistivity (ρ) of 4.0 wt % SZO films on flexible substrates of PET and ITO/PET are 3.8×10-2 and ρ= 1.2×10-2 Ω.cm, respectively. It is found that electrical and optical properties of the resultant films are greatly dependent on various amount of Sn element doping effect and substrate material characteristics.

  14. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo

    1995-01-01

    Structural characteristics and electrooptical properties of Sn-doped In 2 O 3 (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO 2 wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author)

  15. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo [Tokyo Univ. (Japan). Inst. of Industrial Science

    1995-02-01

    Structural characteristics and electrooptical properties of Sn-doped In{sub 2}O{sub 3} (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO{sub 2} wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author).

  16. New method for preparation of polyoxometalate-capped gold nanoparticles, and their assembly on an indium-doped tin oxide electrode

    International Nuclear Information System (INIS)

    Cheng, Y.; Zheng, J.; Wang, Z.; Liu, L.; Wu, Y.; Yang, J.

    2011-01-01

    Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1. 34 x 10 5 mol -1 .L.s -1 . The amperometric method gave a linear range from 2. 5 x 10 -6 to 1. 5 x 10 -3 M and a detection limit of 1. 0 x 10 -6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. (author)

  17. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  18. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    International Nuclear Information System (INIS)

    Kashiwagi, Y.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-01-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded

  19. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Science.gov (United States)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  20. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M. [Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Koizumi, A.; Fujiwara, Y. [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takemura, Y.; Murahashi, K.; Ohtsuka, K. [Okuno Chemical Industries Co., Ltd., 2-1-25 Hanaten-nishi, Joto-ku, Osaka 536-0011 (Japan); Furuta, S. [Tomoe Works Co., Ltd., 7-13 Tsurumachi, Amagasaki 660-0092 (Japan)

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  1. Stability aspects of hydrogen-doped indium oxide

    OpenAIRE

    Jost, Gabrielle; Hamri, Alexander Nordin; Köhler, Florian; Hüpkes, Jürgen

    2015-01-01

    Transparent conductive oxides play an important role as contact layers in various opto-electronic devices such as solar cells or LEDs. Whilst crystalline materials e.g. zinc oxide (ZnO), tin oxide (Sn2O3) or tin doped indium oxide (ITO) have already been vastly investigated and applied [1] hydrogen doped indium oxide (In2O3:H) entered the scene a while ago as a new material with a superior trade-off between electrical and optical performance. In2O3:H is commonly deposited at room temperature...

  2. Effect of fabrication conditions on the properties of indium tin oxide powders

    International Nuclear Information System (INIS)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity in and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350°C and Sn doping content 6∼8wt% are determined. The application of ITO in the military camouflage field is proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  4. Indium tin oxide films prepared via wet chemical route

    International Nuclear Information System (INIS)

    Legnani, C.; Lima, S.A.M.; Oliveira, H.H.S.; Quirino, W.G.; Machado, R.; Santos, R.M.B.; Davolos, M.R.; Achete, C.A.; Cremona, M.

    2007-01-01

    In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an α-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 deg. C. A 10 at.% of doping of Sn 4+ ions into an In 2 O 3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10 -3 Ω cm, 2.9 cm 2 /V s and - 3.5 x 10 20 /cm 3 , respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained

  5. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  6. Indium--tin oxide films radio frequency sputtered from specially formulated high density indium--tin oxide targets

    International Nuclear Information System (INIS)

    Kulkarni, S.; Bayard, M.

    1991-01-01

    High density ITO (indium--tin oxide) targets doped with Al 2 O 3 and SiO 2 manufactured in the Tektronix Ceramics Division have been used to rf sputter ITO films of various thicknesses on borosilicate glass substrates. Sputtering in an oxygen--argon gas mixture and annealing in forming gas, resulted in ITO films exhibiting 90% transmission at 550 nm and a sheet resistance of 15 Ω/sq for a thickness of 1100 A. Sputtering in an oxygen--argon gas mixture and annealing in air increased sheet resistance without a large effect on the transmission. Films sputtered in argon gas alone were transparent in the visible and the sheet resistance was found to be 100--180 Ω/sq for the same thickness, without annealing

  7. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    Science.gov (United States)

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  8. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.

    1990-01-01

    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  9. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  10. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Christian Dunkel

    2014-04-01

    Full Text Available Well-ordered 3D mesoporous indium tin oxide (ITO films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs. Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene-b-poly(ethylene oxide block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs.

  11. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Dunkel, Christian; von Graberg, Till; Smarsly, Bernd M.; Oekermann, Torsten; Wark, Michael

    2014-01-01

    Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs. PMID:28788618

  12. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    Science.gov (United States)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  13. Discovery of the calcium, indium, tin, and platinum isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Gross, J.L.; Thoennessen, M.

    2011-01-01

    Currently, twenty-four calcium, thirty-eight indium, thirty-eight tin, and thirty-nine platinum isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented. - Highlights: Documentation of the discovery of all calcium, indium, tin and platinum isotopes. → Summary of author, journal, year, place and country of discovery for each isotope. → Brief description of discovery history of each isotope.

  14. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  15. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Benamar, E.; Rami, M.; Messaoudi, C.; Sayah, D.; Ennaoui, A. [Deptartmento de Physique, Laboratoire de Physique des Materiaux, Faculte des Sciences, BP 1014, Ave Inb Battouta, Rabat (Morocco)

    1998-11-27

    Spray pyrolysis process has been used to deposit highly transparent and conducting films of tin-doped indium oxide onto glass substrates. The electrical, structural and optical properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrate. The morphology of the surface as a function of the substrate temperature has been studied using atomic force microscopy. XRD has shown that deposited films are polycrystalline without second phases and have a preferred orientation (4 0 0). Indium tin oxide layers with low resistivity values around 4x10{sup -5} {Omega} cm and transmission coefficients in the visible and near-infrared range of about 85-90% have been easily obtained

  16. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  17. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  18. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  19. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    Science.gov (United States)

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  20. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  1. Rf reactive sputtering of indium-tin-oxide films

    International Nuclear Information System (INIS)

    Tvarozek, V.; Novotny, I.; Harman, R.; Kovac, J.

    1986-01-01

    Films of indium-tin-oxide (ITO) have been deposited by rf reactive diode sputtering of metallic InSn alloy targets, or ceramic ITO targets, in an Ar and Ar+0 2 atmosphere. Electrical as well as optical properties of ITO films were controlled by varying sputtering parameters and by post-deposition heat-treatment in Ar, H 2 , N 2 , H 2 +N 2 ambients. The ITO films exhibited low resistivity approx. 2 x 10 -4 Ω cm, high transmittance approx. 90% in the visible spectral region and high reflectance approx. 80% in the near infra-red region. (author)

  2. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  3. Radiochemical studies of the separation of some chloro-complexes of tin, antimony, cadmium and indium

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Mani, R.S.

    1976-01-01

    Radioisotopes of tin, antimony, cadmium and indium such as tin-113, antimony-124, antimony-125, cadmium-109, cadmium-115, indium-113m and indium-111 find extensive applications as tracers in various fields. These isotopes are produced by irradiation of targets in a reactor or a cyclotron. It is usually observed that in addition to the nuclear reactions giving rise to the desired isotopes, side reactions also take place giving rise to radionuclidic contaminants. Thus, antimony-125, indium-114m and indium-114 will be present in the cyclotron produced indium-111. The authors have studied column chromatography over hydrous zirconia for the separation of antimony from tin and indium, and cadmium from indium. These studies have thrown light on the role and behaviour of antimony-125 present as an impurity in tin-113 during the preparation of tin-113-indium-113m generators and have indicated methods for the preparation of 115 Cd-sup(115m)In generators and for separation of 111 In from proton irradiated cadmium targets. (Authors)

  4. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  5. Genotoxicity of indium tin oxide by comet test

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available Indium tin oxide (ITO is used for liquid crystal display (LCDs, electrochromic displays, flat panel displays, field emission displays, touch or laptop computer screens, cell phones, energy conserving architectural windows, defogging aircraft and automobile windows, heat-reflecting coatings to increase light bulb efficiency, gas sensors, antistatic window coatings, wear resistant layers on glass, nanowires and nanorods because of its unique properties of high electrical conductivity, transparency and mechanical resistance.Genotoxic effects of ITO were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was a observed at all concentrations of ITO by Comet assay. These result indicate that ITO exhibit genotoxic activity in A. cepa root meristematic cells.

  6. Gas Sensing Properties of Indium Tin Oxide Nanofibers

    Directory of Open Access Journals (Sweden)

    Shiyou Xu

    2009-11-01

    Full Text Available Indium Tin Oxide (ITO nanofibers were fabricated by the electrospinning process. The morphology and crystal structure of ITO nanofibers were studied by SEM, XRD, and TEM respectively. The results showed that polycrystalline ITO nanofibers with an average diameter of 80 nm were obtained. Sensors based on these nanofibers were fabricated by collecting these nanofibers on the integrated sensor platforms. The ITO nanofiber-based sensors showed very fast and high sensor responses at both room and elevated temperatures for NO2. The ratios of resistance in NO2 over that in air were 5 at room temperature and 34 at the optimal working temperature, respectively. The ITO nanofiber-based sensor can be repeatedly used. The details for the fast, enhanced sensor responses and the optimal temperature were discussed.

  7. Surface characterization of sol–gel derived indium tin oxide films on ...

    Indian Academy of Sciences (India)

    Unknown

    , India ... 1. Introduction. Indium tin oxide (ITO) coating on glass is an important item in the field ..... In addition, contamination of carbon from environment cannot be ruled ..... processing of ceramics, glasses and composites (eds) L L. Hench and ...

  8. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  9. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  10. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J.P.; Hakam, A.; Ennaoui, A

    2002-11-30

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrol onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM)

  11. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J.P.; Hakam, A.; Ennaoui, A.

    2002-01-01

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrolysis onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM)

  12. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis

    Science.gov (United States)

    El Rhaleb, H.; Benamar, E.; Rami, M.; Roger, J. P.; Hakam, A.; Ennaoui, A.

    2002-11-01

    Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for thin film characterisation. It was used to determine thin film parameters such as film thickness and optical functions of polycrystalline tin-doped indium oxide (ITO) films deposited by spray pyrolysis onto Pyrex substrates. Dielectric ITO films often present microstructures which give rise to a variation of the refractive index with the distance from substrate. In this work, it was found that the fit between ellipsometric data and optical models results could be significantly improved when it was assumed that the refractive index of ITO films varied across the upper 60 nm near the film surface. Also, the surface roughness was modelled and compared with that given by the atomic force microscope (AFM).

  13. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  14. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    International Nuclear Information System (INIS)

    Beke, S.; Sugioka, K.; Midorikawa, K.; Koroesi, L.; Dekany, I.

    2011-01-01

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In 2 O 3 , ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  15. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  16. Studies on preparation and characterization of indium doped zinc ...

    Indian Academy of Sciences (India)

    Unknown

    The preparation of indium doped zinc oxide films is discussed. ... XRD studies have shown a change in preferential orientation from (002) to .... at grain boundaries in the form of In(OH)3, hindering the .... Angular substrate to nozzle distance.

  17. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  18. Post-deposition annealing effects in RF reactive magnetron sputtered indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M A; Herrero, J; Gutierrez, M T [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1992-05-01

    Indium tin oxide films have been grown by RF reactive magnetron sputtering. The influence of the deposition parameters on the properties of the films has been investigated and optimized, obtaining a value for the figure of merit of 6700 ({Omega} cm){sup -1}. As-grown indium tin oxide films were annealed in vacuum and O{sub 2} atmosphere. After these heat treatments the electro-optical properties were improved, with values for the resistivity of 1.9x10{sup -4} {Omega} cm and the figure of merit of 26700 ({Omega} cm){sup -1}. (orig.).

  19. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    Science.gov (United States)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  20. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  1. Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide

    NARCIS (Netherlands)

    Li, Y.; Giesbers, M.; Zuilhof, H.

    2012-01-01

    This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic

  2. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show

  3. First heats of cerium solution in liquid aluminium, gallium, indium, tin, lead and bismuth

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.; Raspopin, S.P.; Shein, V.G.

    1983-01-01

    Cerium solution heats in liquid alluminium, gallium, indium, tin, lead and bismuth are determined in high temperature mixing calorimeter with an isothermal shell. The statistical analysis carried out proves that values of cerium solution heat in fusible metals obtained by the methods of electric motive forces and calorimety give a satisfactory agreement

  4. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  6. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  7. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  8. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.; Fleet, Luke R.; Burgess, Claire H.; McLachlan, Martyn A.

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  9. Visible spectroelectrochemical characterization of Geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode

    International Nuclear Information System (INIS)

    Jain, Anand; Gazzola, Giulio; Panzera, Aurora; Zanoni, Michele; Marsili, Enrico

    2011-01-01

    We report visible spectroelectrochemical (SEC) characterization of cytochrome c 552 (cyt c 552 ) in viable Geobacter sulfurreducens biofilms on tin-doped indium oxide (ITO) electrodes poised at 0.24 V vs. SHE. G. sulfurreducens biofilms were grown in minimal medium with acetate as electron donor (turnover conditions), followed by 24 h incubation in electron donor-depleted medium (non-turnover conditions). The electronic absorption spectra of G. sulfurreducens biofilms showed the lowest energy absorption band in the reduced state at 552 nm, which indicated excess of cyt c 552 in the biofilm. The spectra under non-turnover conditions displayed gradual reduction of the cyt c 552 , following the step-wise decrease of electrode potential from 0.0 V to −0.6 V vs. standard calomel electrode (SCE). The spectral changes were fully reversible in both positive and negative direction of the scan potential, with average midpoint potential value of −0.42 V vs. SCE. Confocal microscopy analysis revealed that the thickness of biofilms under turnover conditions and non-turnover conditions was approximately 35 and 3.5 μm, respectively. This is the first study to observe the reversible redox conversion of cyt c 552 in viable G. sulfurreducens biofilms.

  10. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  11. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  12. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  13. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  14. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  15. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict

  16. Optical emission spectroscopy during fabrication of indium-tin-oxynitride films by RF-sputtering

    International Nuclear Information System (INIS)

    Koufaki, M.; Sifakis, M.; Iliopoulos, E.; Pelekanos, N.; Modreanu, M.; Cimalla, V.; Ecke, G.; Aperathitis, E.

    2006-01-01

    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) films have been deposited on glass by rf-sputtering from an ITO target, using Ar plasma and N 2 plasma, respectively, and different rf-power. Optical emission spectroscopy (OES) was employed to identify the species present in the plasma and to correlate them with the properties of the ITO and ITON thin films. Emission lines of ionic In could only be detected in N 2 plasma, whereas in the Ar plasma additional lines corresponding to atomic In and InO, were detected. The deposition rate of thin films was correlated with the In species, rather than the nitrogen species, emission intensity in the plasma. The higher resistivity and lower carrier concentration of the ITON films, as compared to the respective properties of the ITO films, were attributed to the incorporation of nitrogen, instead of oxygen, in the ITON structure

  17. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Science.gov (United States)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  18. On the deposition parameters of indium oxide (IO) and tin oxide (TO) by reactive evaporation technique

    International Nuclear Information System (INIS)

    Hassan, F.; Abdullah, A.H.; Salam, R.

    1990-01-01

    Thin films of tin oxide (TO) and indium oxide (IO) are prepared by the reactive evaporation technique, where indium or tin sources are evaporated and made to react with oxygen gas injected close to the substrate. In both depositions a substrate temperature of 380 0 C and a chamber pressure of 2x10 -5 mbar are utilized, but however different oxygen flow rates has been maintained. For TO, the deposition rate is found to be constant up to about 55 minutes of deposition time with a deposition rate of about 0.10 A/s, but for longer deposition time the deposition rate increases rapidly up to about 0.30 A/s. The IO displays a higher deposition rate of about 0.80 A/s over a deposition time 30 minutes, beyond which the deposition rate increases gradually

  19. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  20. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  1. Nuclear structure studies on indium and tin isotope chains by means of laser spectroscopy

    International Nuclear Information System (INIS)

    Eberz, J.

    1986-11-01

    In a collaboration with GSI in Darmstadt and ISOLDE in Geneva the hyperfine structure (HFS) and the isotope shift (IS) of the indium isotopes from 104 In - 127 In in their ground and isomeric states could be studied. Additionally the tin isotopes 109 Sn and 111 Sn could be measured. In tin the transition 5p 2 1 S 0 → 5p6s 3 P 1 with λ = 563 nm was studied. In indium the transition 5p 2 P 1/2 → 6s 2 S 1/2 with λ = 410 nm and 5p 2 P 3/2 → 6s 2 S 1/2 with λ = 451 nm could be measured. The magnetic dipole moments and electric quadrupole moments determined from the measurements of the HFS can be sufficiently explained in the framework of the single-particle model. From the moments the configurations and spins of the studied nuclear states can be stated. In 109 Sn the nuclear spin was determined to I = 5/2. The measurement of the IS in two lines in 108 In allowed regarding the coupling rules for nuclear moments the determination of the nuclear spin. The spin of the 40 m isomers of the 108m In can be stated to I = 2. The mean square nuclear charge radius exhibits a parabolic slope the quadratic part of which with a maximum in the shell center at N = 66 between the neutron numbers N = 50 and N = 82 can be understood as sum of contributions of a surface correlation, i.e. a quadrupole deformation as well as eventually present higher order terms or a change of the surface skin density. The deformation determinable by this description is both for tin and for indium essentially larger than the deformation from the B(E2) values of tin or from the intrinsic quadrupole moments in indium derived from the HFS. (orig./HSI) [de

  2. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  3. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  4. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  5. Concentration dependence of surface properties and molar volume of multicomponent system indium-tin-lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    The results of an experimental research of surface properties of the four-component system indium-tin-lead-bismuth are presented. The researches under discussion were carried out in a combined device in which the surface tension ({sigma}) is measured by the method of maximum pressure in a drop, and density ({rho}) is measured by advanced aerometry. Measurement errors are 0.7 % for surface tension measurement, and 0.2 % for density measurement. The study of the concentration dependence of {sigma} in this system has revealed the influence of the third and fourth components upon the characteristics of surface tension isotherms of the binary system indium-tin. It was found out that with an increase in the content of the third and fourth components the depth of the minimum on the surface tension isotherms of the indium-tin system {sigma} decreases. On the basis of the concentration dependence of the phenomenon of concentration bufferity is revealed. It is shown that despite the complex character, isotherms of {sigma} on beam sections of a multicomponent system do not contain qualitatively new features in comparison with the isotherms of these properties in lateral binary systems.

  6. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  7. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  8. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Marsal, A.; Carreras, P.; Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R.; Bertomeu, J.; Antony, A.

    2014-01-01

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band

  9. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    Science.gov (United States)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  10. Indium doped Cd{sub 1-x}Zn{sub x}O alloys as wide window transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-31

    We have synthesized Indium doped Cd{sub 1-x}Zn{sub x}O alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 × 10{sup −4} Ω-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd{sub 1-x}Zn{sub x}O in ~ 1% of O{sub 2}. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. - Highlights: • Indium doped Cd1-xZnxO alloys across the full composition range were synthesized. • Alloys change from rocksalt (RS) to wurtzite (WZ) when x is higher than 30%. • RS-Cd1-xZnxO phase can be doped with In as efficiently as CdO, achieving a low resistivity ~ 2.0 × 10{sup −4} Ω-cm. • Wide transparency window from 380 to 1200 nm • In doped CdO transmits more solar photons than commercial fluorine doped tin oxide.

  11. Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN

    International Nuclear Information System (INIS)

    Hwang, J. D.; Lin, C. C.; Chen, W. L.

    2006-01-01

    A transparent indium tin oxide (ITO) Ohmic contact on n-type gallium nitride (GaN) (dopant concentration of 2x10 17 cm -3 ) having a specific contact resistance of 4.2x10 -6 Ω cm 2 was obtained. In this study, ITO film deposition method was implemented by sputtering. We found that the barrier height, 0.68 eV, between ITO and n-type GaN is the same for both evaporated- and sputtered-ITO films. However, the 0.68 eV in barrier height renders the evaporated-ITO/n-GaN Schottky contact. This behavior is different from that of our sputtered-ITO/n-GaN, i.e., Ohmic contact. During sputtering, oxygen atoms on the GaN surface were significantly removed, thereby resulting in an improvement in contact resistance. Moreover, a large number of nitrogen (N) vacancies, caused by sputtering, were produced near the GaN surface. These N vacancies acted as donors for electrons, thus affecting a heavily doped n-type formed at the subsurface below the sputtered ITO/n-GaN. Both oxygen removal and heavy doping near the GaN surface, caused by N vacancies, in turn led to a reduction in contact resistivity as a result of electrons tunneling across the depletion layer from the ITO to the n-type GaN. All explanations are given by Auger analysis and x-ray photoelectron spectroscopy

  12. Robust infrared-shielding coating films prepared using perhydropolysilazane and hydrophobized indium tin oxide nanoparticles with tuned surface plasmon resonance.

    Science.gov (United States)

    Katagiri, Kiyofumi; Takabatake, Ryuichi; Inumaru, Kei

    2013-10-23

    Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength and strongest SPR absorption were obtained for the ITO NPs doped with 10% Sn because they possessed the highest electron carrier density. Coating films composed of a continuous silica matrix homogeneously dispersed with ITO NPs were obtained using perhydropolysilazane (PHPS) as a precursor. PHPS was completely converted to silica by exposure to the vapor from aqueous ammonia at 50 °C. The prepared coating films can efficiently shield IR radiation even though they are more than 80% transparent in the visible range. The coating film with the greatest IR-shielding ability completely blocked IR light at wavelengths longer than 1400 nm. The pencil hardness of this coating film was 9H at a load of 750 g, which is sufficiently robust for applications such as automotive glass.

  13. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  14. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  15. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  16. Transparent heaters based on solution-processed indium tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Im, Kiju [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Cho, Kyoungah [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Kim, Jonghyun [Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Kim, Sangsig, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-05-03

    We demonstrate transparent heaters constructed on glass substrates using solution-processed indium tin oxide (ITO) nanoparticles (NPs) and their heating capability. The heat-generating characteristics of the heaters depended significantly on the sintering temperature at which the ITO NPs deposited on a glass substrate by spin-coating were transformed thermally into a solid film. The steady-state temperature of the ITO NP film sintered at 400 {sup o}C was 163 {sup o}C at a bias voltage of 20 V, and the defrosting capability of the film was confirmed by using dry-ice.

  17. Preparation and characterization of indium tin oxide thin films for their application as gas sensors

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    The structural and electrical properties of indium tin oxide (In 2 O 3 /SnO 2 ) thin films grown using direct evaporation technique on various substrates at different temperatures were studied. The effect of annealing, of films with different weight percent concentration of SnO 2 in In 2 O 3 and of different thickness on the structural and electrical properties were studied and optimized for use as gas sensor. The stability of the films against time and temperature variations was studied. The effect of the catalytic layers on the sensor microstructure and its performance towards the gas sensing application was observed

  18. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  19. Gold island films on indium tin oxide for localized surface plasmon sensing

    International Nuclear Information System (INIS)

    Szunerits, Sabine; Praig, Vera G; Manesse, Mael; Boukherroub, Rabah

    2008-01-01

    Mechanically, chemically and optically stable gold island films were prepared on indium tin oxide (ITO) substrates by direct thermal evaporation of thin gold films (2-6 nm) without the need for pre- or post-coating. The effect of mild thermal annealing (150 deg. C, 12 h) or short high temperature annealing (500 deg. C, 1 min) on the morphology of the gold nanostructures was investigated. ITO covered with 2 nm gold nanoislands and annealed at 500 deg. C for 1 min was investigated for its ability to detect the adsorption of biotinylated bovine serum albumin using local surface plasmon resonance (LSPR), and its subsequent molecular recognition of avidin

  20. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  1. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  2. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  3. Radiative recombination in doped indium phosphide crystals

    International Nuclear Information System (INIS)

    Negreskul, V.V.; Russu, E.V.; Radautsan, S.I.; Cheban, A.G.; AN Moldavskoj SSR, Kishinev. Inst. Prikladnoj Fiziki)

    1975-01-01

    Photoluminiscence spectra of nondoped n-InP and their change upon doping with silicon, cadmium, zinc and copper impurities were studied. The shortest wave band at 1.41 eV is connected with radiative electron transition from a shallow donor level (probably silicon) to valent zone, while the band with maximum at 1.37 - 1.39 eV is due to radiative electron transition to an acceptor level whose energy depends upon the nature and concentration of impurity implanted. The luminescence of Light-doped p-InP crystals enables to estimate the ionization energies of acceptor levels in cadmium (Esub(a)=0.043 eV) and zinc (Esub(a)=0.027 eV). Energies of acceptor levels (0.22 and 0.40 eV) due to copper impurity are determined. Intensity of edge emission in the specimens light-doped with silicon is higher than in the nondoped n-InP crystals

  4. Tailor-made surface plasmon polaritons above the bulk plasma frequency: a design strategy for indium tin oxide

    International Nuclear Information System (INIS)

    Brand, S; Abram, R A; Kaliteevski, M A

    2010-01-01

    A simple phase-matching approach is employed as a design aid to engineer surface plasmon polariton states at the interface of an indium tin oxide layer on the top of a Bragg reflector. By altering the details of the reflector, and in particular the ordering of the layers and the thickness of the layer adjacent to the indium tin oxide, it is possible to readily adjust the energy of these states. Examples of structures engineered to give rise to distinctive features in the reflectivity spectra above the bulk screened plasma frequency for states of both possible polarizations are presented.

  5. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    International Nuclear Information System (INIS)

    Leon-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J; Santiago-Aviles, Jorge J

    2007-01-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600deg. C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature

  6. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  7. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    Science.gov (United States)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  8. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Angelov, Ts; Aleksandrova, M; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Stefanov, P; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Dilova, T; Grechnikov, A

    2014-01-01

    A study of NO 2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO 2 concentrations. The QCM-ITO system becomes sensitive at NO 2 concentration ≥ 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO 2 concentration. When the NO 2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO 2 in the air at room temperature

  9. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  10. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  11. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  12. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  13. Solubility of indium-tin oxide in simulated lung and gastric fluids: Pathways for human intake.

    Science.gov (United States)

    Andersen, Jens Christian Østergård; Cropp, Alastair; Paradise, Diane Caroline

    2017-02-01

    From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is known of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  15. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  16. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  17. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    International Nuclear Information System (INIS)

    Wegener, M.; Riess, K.; Roosen, A.

    2016-01-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  18. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, M.; Riess, K.; Roosen, A. [Erlangen-Nuremberg Univ., Erlangen (Germany). Dept. of Materials Science, Glass and Ceramics

    2016-07-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  19. Indium doped zinc oxide thin films obtained by electrodeposition

    International Nuclear Information System (INIS)

    Machado, G.; Guerra, D.N.; Leinen, D.; Ramos-Barrado, J.R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Indium doped ZnO thin films were obtained by co-electrodeposition (precursor and dopant) from aqueous solution. XRD analysis showed typical patterns of the hexagonal ZnO structure for both doped and undoped films. No diffraction peaks of any other structure such as In 2 O 3 or In(OH) 3 were found. The incorporation of In into the ZnO film was verified by both EDS and XPS measurements. The bandgap energy of the films varied from 3.27 eV to 3.42 eV, increasing with the In concentration in the solution. This dependence was stronger for the less cathodic potentials. The incorporation of In into the film occurs as both, an In donor state in the ZnO grains and as an amorphous In 2 O 3 at the grain boundaries

  20. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M. Thirumoorthi

    2016-03-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared by jet nebulizer spray pyrolysis technique for different Sn concentrations on glass substrates. X-ray diffraction patterns reveal that all the films are polycrystalline of cubic structure with preferentially oriented along (222 plane. SEM images show that films exhibit uniform surface morphology with well-defined spherical particles. The EDX spectrum confirms the presence of In, Sn and O elements in prepared films. AFM result indicates that the surface roughness of the films is reduced as Sn doping. The optical transmittance of ITO thin films is improved from 77% to 87% in visible region and optical band gap is increased from 3.59 to 4.07 eV. Photoluminescence spectra show mainly three emissions peaks (UV, blue and green and a shift observed in UV emission peak. The presence of functional groups and chemical bonding was analyzed by FTIR. Hall effect measurements show prepared films having n-type conductivity with low resistivity (3.9 × 10−4 Ω-cm and high carrier concentrations (6.1 × 1020 cm−3.

  1. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties

    International Nuclear Information System (INIS)

    Liu, Xiaoge; Park, Junghyun; Kang, Ju-Hyung; Yuan, Hongtao; Cui, Yi; Hwang, Harold Y.; Brongersma, Mark L.

    2014-01-01

    Doped indium tin oxide (ITO) behaves as a Drude metal with a plasma frequency that is controlled by its free carrier density. In this work, we systematically tune this frequency across the mid-infrared range by annealing treatments in a reducing environment that produce high electron concentrations (∼10 21  cm −3 ). The changes in ITO's optical properties that result from the changes in carrier density are measured by attenuated total reflection measurements. These optical frequency measurements are complemented by Hall measurements to obtain a comprehensive picture of the Drude response of the ITO films. It was found that a complete description of the optical properties at very high carrier densities needs to account for the nonparabolicity of the conduction band of ITO and a reduced carrier mobility. More specifically, an increase in carrier concentration from 6.2 × 10 19  cm −3 to 1.4 × 10 21  cm −3 comes with a change of the effective electron mass from 0.35 m 0 to 0.53 m 0 and a decrease in the optical frequency mobility from about 20 cm 2  V −1  s −1 to 9 cm 2  V −1  s −1

  2. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    International Nuclear Information System (INIS)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming

    2012-01-01

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: ► Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. ► Cathodic polarization studied with electrochemical impedance spectroscopy. ► ITO underwent a corrosion attack during cathodic polarization, indium was observed. ► Electrochemical parameters of ITO were obtained using equivalent electrical circuit. ► A corrosion mechanism is proposed.

  3. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel

    2014-11-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  4. Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying; Shen, Wei-Chih; Lee, Yi-Ju; Chen, Jenq-Shyong

    2010-01-01

    A method is proposed for patterning crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser irradiation at 80 MHz repetition rate followed by chemical etching. In the proposed approach, the a-ITO film is transformed into a c-ITO film over a predetermined area via the heat accumulation energy supplied by the high repetition rate laser beam, and the unirradiated a-ITO film is then removed using an acidic etchant solution. The fabricated c-ITO patterns are observed using scanning electron microscopy and cross-sectional transmission electron microscopy. The crystalline, optical, electrical properties were measured by X-ray diffraction, spectrophotometer, and four point probe station, respectively. The experimental results show that a high repetition rate reduces thermal shock and yields a corresponding improvement in the surface properties of the c-ITO patterns.

  5. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Aziz, Hany

    2014-01-01

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10 5  cd/m 2 is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  6. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    International Nuclear Information System (INIS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°

  7. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    Science.gov (United States)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  8. Growth and characterization of indium tin oxide thin films deposited on PET substrates

    International Nuclear Information System (INIS)

    Lee, Jaehyeong; Jung, Hakkee; Lee, Jongin; Lim, Donggun; Yang, Keajoon; Yi, Junsin; Song, Woo-Chang

    2008-01-01

    Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 x 10 -3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters

  9. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Doggart, P.; Bristow, N.; Kettle, J., E-mail: j.kettle@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean St., Bangor, Gwynedd, Wales LL57 1UT (United Kingdom)

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  10. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  11. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  12. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  13. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih-Keong

    2015-01-01

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  14. Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Horstmann, F.; Sittinger, V.; Szyszka, B.

    2009-01-01

    In this study, indium tin oxide (ITO) films were prepared by high power pulse magnetron sputtering [D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, J. Vac. Sci. Technol. A, 22 (2004) 1415. ] without substrate heating. The ITO films were deposited from a ceramic target at a deposition rate of approx. 5.5 nm*m/min kW. Afterwards, the ITO films were covered with a siliconoxynitride film sputtered from a silicon alloy target in order to prevent oxidation of the ITO film during annealing at 650 deg. C for 10 min in air. The optical and electrical properties as well as the texture and morphology of these films were investigated before and after annealing. Mechanical durability of the annealed films was evaluated at different test conditions. The results were compared with state-of-the art ITO films which were obtained at optimized direct current magnetron sputtering conditions

  15. Deposition of indium tin oxide thin films by cathodic arc ion plating

    International Nuclear Information System (INIS)

    Yang, M.-H.; Wen, J.-C.; Chen, K.-L.; Chen, S.-Y.; Leu, M.-S.

    2005-01-01

    Indium tin oxide (ITO) thin films have been deposited by cathodic arc ion plating (CAIP) using sintered oxide target as the source material. In an oxygen atmosphere of 200 deg. C, ITO films with a lowest resistivity of 2.2x10 -4 Ω-cm were obtained at a deposition rate higher than 450 nm/min. The carrier mobility of ITO shows a maximum at some medium pressures. Although morphologically ITO films with a very fine nanometer-sized structure were observed to possess the lowest resistivity, more detailed analyses based on X-ray diffraction are attempted to gain more insight into the factors that govern electron mobility in this investigation

  16. Respiration sensor made from indium tin oxide-coated conductive fabrics

    Science.gov (United States)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  17. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  18. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  19. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  20. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  1. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  2. Textured indium tin oxide thin films by chemical solution deposition and rapid thermal processing

    International Nuclear Information System (INIS)

    Mottern, Matthew L.; Tyholdt, Frode; Ulyashin, Alexander; Helvoort, Antonius T.J. van; Verweij, Henk; Bredesen, Rune

    2007-01-01

    The microstructure of state-of-the-art chemical solution deposited indium tin oxide thin films typically consists of small randomly oriented grains, high porosity and poor homogeneity. The present study demonstrates how the thin film microstructure can be improved significantly by tailoring the precursor solutions and deposition conditions to be kinetically and thermodynamically favorable for generation of homogeneous textured thin films. This is explained by the occurrence of a single heterogeneous nucleation mechanism. The as-deposited thin films, crystallized at 800 deg. C, have a high apparent density, based on a refractive index of ∼ 1.98 determined by single wavelength ellipsometry at 633 nm. The microstructure of the films consists of columnar grains with preferred orientation as determined by X-ray diffraction and transmission electron microscopy. The resistivity, measured by the four point probe method, is ∼ 2 x 10 -3 Ω cm prior to post-deposition treatments

  3. Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide

    International Nuclear Information System (INIS)

    Haldar, Amrita; Yambem, Soniya D.; Liao, Kang-Shyang; Alley, Nigel J.; Dillon, Eoghan P.; Barron, Andrew R.; Curran, Seamus A.

    2011-01-01

    Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C 61 -butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm 2 , open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

  4. Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination

    International Nuclear Information System (INIS)

    Willis, David A; Dreier, Adam L

    2009-01-01

    A Q-switched neodymium : yttrium-aluminium-garnet (Nd : YAG) laser was used to ablate indium tin oxide (ITO) thin films from polyethylene terephthalate substrates. Film damage and partial removal with no evidence of a melt zone was observed above 1.7 J cm -2 . Above the film removal threshold (3.3 J cm -2 ) the entire film thickness was removed without substrate damage, suggesting that ablation was a result of delamination of the film in the solid phase. Measurements of ablated fragment velocities near the ablation threshold were consistent with calculations of velocities caused by stress-induced delamination of the ITO film, except for a high velocity component at higher fluences. Nanosecond time-resolved shadowgraph photography revealed that the high velocity component was a shock wave induced by the rapid compression of ambient air when the film delaminated.

  5. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  6. Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films

    International Nuclear Information System (INIS)

    Wang, R.X.; Beling, C.D.; Fung, S.; Djurisic, A.B.; Ling, C.C.; Li, S.

    2005-01-01

    The influence of postannealing in different gaseous environments on the optical properties of indiu-tin-oxide (ITO) thin films deposited on glass substrates using e-beam evaporation has been systematically investigated. It is found that the annealing conditions affect the optical and electrical properties of the films. Atomic force microscopy, x-ray diffraction, and x-ray photoemission spectroscopy (XPS) were employed to obtain information on the chemical state and crystallization of the films. These data suggest that the chemical states and surface morphology of the ITO film are strongly influenced by the gaseous environment during the annealing process. The XPS data indicate that the observed variations in the optical transmittance can be explained by oxygen incorporation into the film, decomposition of the indium oxide phases, as well as the removal of metallic In

  7. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    Science.gov (United States)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  8. Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air

    International Nuclear Information System (INIS)

    Ederth, J.; Hultaaker, A.; Niklasson, G.A.; Granqvist, C.G.; Heszler, P.; Doorn, A.R. van; Jongerius, M.J.; Burgard, D.

    2005-01-01

    Electrical and optical properties were investigated in porous thin films consisting of In 2 O 3 :Sn (indium tin oxide; ITO) nanoparticles. The temperature-dependent resistivity was successfully described by a fluctuation-induced tunneling model, indicating a sample morphology dominated by clusters of ITO nanoparticles separated by insulating barriers. An effective-medium model, including the effect of ionized impurity scattering, was successfully fitted to measured reflectance and transmittance. Post-deposition treatments were carried out at 773 K for 2 h in both air and vacuum. It is shown that vacuum annealing increases either the barrier width or the area between two conducting clusters in the samples and, furthermore, an extra optical absorption occurs close to the band gap. A subsequent air annealing then reduces the effect of the barriers on the electrical properties and diminishes the absorption close to the band gap. (orig.)

  9. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  10. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  11. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: mizutani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)

    2014-08-30

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  12. Electrochemical synthesis of gold nanoparticles onto indium tin oxide glass and application in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yanling; Song Yan; Wang Yuan; Di Junwei, E-mail: djw@suda.edu.cn

    2011-07-29

    A simple one-step method for the electrochemical deposition of gold nanoparticles (GNPs) onto bare indium tin oxide film coated glass substrate without any template or surfactant was investigated. The effect of electrolysis conditions such as potential range, temperature, concentration and deposition cycles were examined. The connectivity of GNPs was analyzed by UV-Vis absorption spectroscopy and scanning electron microscopy. The nanoparticles were found to connect in pairs or to coalesce in larger numbers. The twin GNPs display a transverse and a longitudinal localized surface plasmon resonance (LSPR) band, which is similar to that of gold nanorods. The presence of longitudinal LSPR band correlates with high refractive index sensitivity. Conjugation of the twin-linked GNPs with albumin bovine serum-biotin was employed for the detection of streptavidin as a model based on the specific binding affinity in biotin/streptavidin pairs. The spectrophotometric sensor showed concentration-dependent binding for streptavidin.

  13. Tin/Indium nanobundle formation from aggregation or growth of nanoparticles

    International Nuclear Information System (INIS)

    Jiang Hongjin; Moon, Kyoung-sik; Sun Yangyang; Wong, C. P.; Hua, Fay; Pal, Tarasankar; Pal, Anjali

    2008-01-01

    Shape and size controlled gram level synthesis of tin/indium (SnIn) alloy nanoparticles and nanobundles is reported. Poly(N-vinylpyrrolidone) (PVP) was employed as a capping agent, which could control the growth and structure of the alloy particles under varying conditions. Transmission electron microscopy showed that unique SnIn alloy nanobundles could be synthesized from the bulk materials above a certain concentration of PVP and below this concentration, discrete spherical nanoparticles of variable size were evolved. The morphology and the composition of the as-synthesized SnIn alloy nanobundles were investigated by high-resolution transmission electron microscopy (TEM). The possible mechanisms on the formation of these structures were discussed

  14. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  15. A study of the characteristics of indium tin oxide after chlorine electro-chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee; Kim, Hyunwoo; Lee, Nayoung; Choi, Byoungdeog, E-mail: bdchoi@skku.edu

    2016-10-15

    Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOs were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.

  16. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    Directory of Open Access Journals (Sweden)

    Rajesh Biswal

    2014-07-01

    Full Text Available The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002 to (101 planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  17. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH{sub 2}{sup +} ions implanted-indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenyao; Jiao Jiao; Chen Qunxia [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xia Ji [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Shuoqi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu Jingbo, E-mail: hujingbo@bnu.edu.c [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Qilong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2010-12-01

    A new type of gold nanoparticle attached to a NH{sub 2}{sup +} ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH{sub 2}/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10{sup 15} ions/cm{sup 2}. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH{sub 2}{sup +} ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  18. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  19. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  20. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  1. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  2. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  3. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  4. Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells

    International Nuclear Information System (INIS)

    Wu, Hsiang-Chiu; Chen, Hsin; Lyau, Jia-Bo; Lin, Min-Hsuan; Chuang, Yung-Jen

    2017-01-01

    Contemporary semiconductor and micromachining technologies have been exploited to develop lab-on-a-chip microsystems, which enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of biological cells to be studied in situ . This kind of study is important, for example, for understanding how neuronal networks grow in response to environmental stimuli. To fulfill this application need, this paper investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with indium-tin-oxide (ITO) electrodes. The microfluidic channels are designed to guide and trap biological cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured cells efficiently in applications such as drug-screening. (paper)

  5. Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes

    International Nuclear Information System (INIS)

    Hwang, Myun-sung; Jeong, Bong-yong; Moon, Jooho; Chun, Sang-Ki; Kim, Jihoon

    2011-01-01

    Highlights: → Inkjet printing of ITO films. → Ag-grid was inkjet-printed in between two ITO layers in order to improve the electrical property. → Ag-grid inserted ITO films with 2 mm Ag-grid pitch showed the sheet resistance less than 3.4 Ω/sq and the transmittance higher than 82%. - Abstract: Indium-tin-oxide (ITO) films have been prepared by inkjet-printing using ITO nanoparticle inks. The electrical and optical properties of the ITO films were investigated in order to understand the effects of annealing temperatures under microwave. The decrease in the sheet resistance and resistivity of the inkjet-printed ITO films was observed as the annealing temperature increases. The film annealed at 400 deg. C showed the sheet resistance of 517 Ω/sq with the film thickness of ∼580 nm. The optical transmittance of the films remained constant regardless of their annealing temperatures. In order to further reduce the sheet resistance of the films, Ag-grid was printed in between two layers of inkjet-printed ITO. With 3 mm Ag-grid line-to-line pitch, the Ag-grid inserted ITO film has the sheet resistance of 3.4 Ω/sq and the transmittance of 84% after annealing at 200 deg. C under microwave.

  6. The Effect of Annealing on Nanothick Indium Tin Oxide Transparent Conductive Films for Touch Sensors

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2015-01-01

    Full Text Available This study aims to discuss the sheet resistance of ultrathin indium tin oxide (ITO transparent conductive films during the postannealing treatment. The thickness of the ultrathin ITO films is 20 nm. They are prepared on B270 glass substrates at room temperature by a direct-current pulsed magnetron sputtering system. Ultrathin ITO films with high sheet resistance are commonly used for touch panel applications. As the annealing temperature is increased, the structure of the ultrathin ITO film changes from amorphous to polycrystalline. The crystalline of ultrathin ITO films becomes stronger with an increase of annealing temperature, which further leads to the effect of enhanced Hall mobility. A postannealing treatment in an atmosphere can enhance the optical transmittance owing to the filling of oxygen vacancies, but the sheet resistance rises sharply. However, a higher annealing temperature, above 250°C, results in a decrease in the sheet resistance of ultrathin ITO films, because more Sn ions become an effective dopant. An optimum sheet resistance of 336 Ω/sqr was obtained for ultrathin ITO films at 400°C with an average optical transmittance of 86.8% for touch sensor applications.

  7. Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system

    International Nuclear Information System (INIS)

    Chiang, Jung-Lung; Jhan, Syun-Sheng; Hsieh, Shu-Chen; Huang, An-Li

    2009-01-01

    Indium tin oxide (ITO) thin films were deposited onto Si and SiO 2 /Si substrates using a radio frequency sputtering system with a grain size of 30-50 nm and thickness of 270-280 nm. ITO/Si and ITO/SiO 2 /Si sensing structures were achieved and connected to a standard metal-oxide-semiconductor field-effect transistor (MOSFET) as an ITO pH extended-gate field-effect transistor (ITO pH-EGFET). The semiconductor parameter analysis measurement (Keithley 4200) was utilized to measure the current-voltage (I-V) characteristics curves and study the sensing properties of the ITO pH-EGFET. The linear pH voltage sensitivities were about 41.43 and 43.04 mV/pH for the ITO/Si and ITO/SiO 2 /Si sensing structures, respectively. At the same time, both pH current sensitivities were about 49.86 and 51.73 μA/pH, respectively. Consequently, both sensing structures can be applied as extended-gate sensing heads. The separative structure is suitable for application as a disposable pH sensor.

  8. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  9. Effects of target bias voltage on indium tin oxide films deposited by high target utilisation sputtering

    International Nuclear Information System (INIS)

    Calnan, Sonya; Upadhyaya, Hari M.; Dann, Sandra E.; Thwaites, Mike J.; Tiwari, Ayodhya N.

    2007-01-01

    Indium tin oxide (ITO) films were deposited by reactive High Target Utilisation Sputtering (HiTUS) onto glass and polyimide substrates. The ion plasma was generated by an RF power source while the target bias voltage was varied from 300 V to 500 V using a separate DC power supply. The deposition rate, at constant target power, increased with DC target voltage due to increased ion energy reaching 34 nm/min at 500 V. All the films were polycrystalline and showed strong (400) and (222) reflections with the relative strength of latter increasing with target bias voltage. The resistivity was lowest at 500 V with values of 1.8 x 10 -4 Ω cm and 2.4 x 10 -4 Ω cm on glass and polyimide, respectively but was still less than 5 x 10 -4 Ω cm at 400 V. All films were highly transparent to visible light, (> 80%) but the NIR transmittance decreased with increasing target voltage due to higher free carrier absorption. Therefore, ITO films can be deposited onto semiconductor layers such as in solar cells, with minimal ion damage while maintaining low resistivity

  10. Properties of indium tin oxide films deposited using High Target Utilisation Sputtering

    International Nuclear Information System (INIS)

    Calnan, S.; Upadhyaya, H.M.; Thwaites, M.J.; Tiwari, A.N.

    2007-01-01

    Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 x 10 -4 Ω cm on glass while that on the polyimide was 1.9 x 10 -4 Ω cm. Substrate temperatures above 100 deg. C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells

  11. Fabrication of indium tin oxide (ITO) thin film with pre-treated sol coating

    International Nuclear Information System (INIS)

    Hong, Sung-Jei; Han, Jeong-In

    2004-01-01

    A new pre-treated sol-coating method to fabricate an indium tin oxide (ITO) thin film is introduced in this paper. The pre-treatment sol-coating method is to form a seed layer on the substrate before spin coating of ITO sol. The pre-treatment was carried out at room temperature in order not to damage the substrate during the pre-treatment. It is effective to enhance the formation of the ITO sol film on the substrate, owing to the seed layer. The seed layer consists of ultrafine grains, which are observed at the pre-treated substrate. For the optimal pre-treatment condition, we used pre-treatment times of 24, 48, 72, and 96 hours to observe the effect on the characteristics of ITO sol film. As a result, the lowest resistance could be achieved with a pre-treatment time of 72 hours. The optical transmittance of the ITO sol film with the pre-treatment time of 72 hours exceeded 80 % at a wavelength of 400 nm. So, an ITO sol film with good electrical and optical properties could be fabricated by using the pretreatment sol coating.

  12. Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods.

    Science.gov (United States)

    Tice, Daniel B; Li, Shi-Qiang; Tagliazucchi, Mario; Buchholz, D Bruce; Weiss, Emily A; Chang, Robert P H

    2014-03-12

    Light-matter interaction at the nanoscale is of particular interest for future photonic integrated circuits and devices with applications ranging from communication to sensing and imaging. In this Letter a combination of transient absorption (TA) and the use of third harmonic generation as a probe (THG-probe) has been adopted to investigate the response of the localized surface plasmon resonances (LSPRs) of vertically aligned indium tin oxide rods (ITORs) upon ultraviolet light (UV) excitation. TA experiments, which are sensitive to the extinction of the LSPR, show a fluence-dependent increase in the frequency and intensity of the LSPR. The THG-probe experiments show a fluence-dependent decrease of the LSPR-enhanced local electric field intensity within the rod, consistent with a shift of the LSPR to higher frequency. The kinetics from both TA and THG-probe experiments are found to be independent of the fluence of the pump. These results indicate that UV excitation modulates the plasma frequency of ITO on the ultrafast time scale by the injection of electrons into, and their subsequent decay from, the conduction band of the rods. Increases to the electron concentration in the conduction band of ∼13% were achieved in these experiments. Computer simulation and modeling have been used throughout the investigation to guide the design of the experiments and to map the electric field distribution around the rods for interpreting far-field measurement results.

  13. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  14. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  15. Kinetics Study of Silver Electrocrystallization on (3-mercaptopropyl)trimethoxysilane-grafted Indium Tin Oxide Plastic Substrate

    International Nuclear Information System (INIS)

    Hau, Nga Yu; Chang, Ya-Huei; Feng, Shien-Ping

    2015-01-01

    Highlights: • The larger charge transfer coefficient supports that MPS promotes electrodeposition. • ACV shows that electron-transfer rate enhanced by 2.5 times after MPS treatment. • The fitting of CA defined the Ag nucleation mode on blank and MPS-grafted ITO-PEN. • MPS treatment changed the nucleation mode from 2-step to a single step one. - Abstract: 3-mercaptopropyl-trimethoxysilane (MPS) self-assembled monolayer (SAM) has been demonstrated as effective promoters to enable direct electroplated metallization on indium tin oxide (ITO) plastic substrate. In this paper, the detail kinetics in Ag electrocrystallization on MPS-grafted ITO-PEN is reported. Contact angle measurement provides evidence of bridging-link effect between the sulfur head groups of MPS and the Ag + ions in the electrolyte. Electrochemical techniques including cyclic voltammetry and Tafel plot were used to investigate the redox kinetics. Quantitative evaluation was conducted by alternating current voltammetry to determine the rate constant of electron transfer. The chronoamperograms and their fitting results suggest a combined model with two-dimensional/three-dimensional nucleation transition and Shariker-Hills model for electroplated Ag on blank ITO-PEN and MPS-grafted ITO-PEN respectively

  16. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Praig, Vera G.; Szunerits, Sabine [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Piret, Gaelle; Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Manesse, Mael [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Castel, Xavier [Institut d' Electronique et de Telecommunications de Rennes (IETR), UMR CNRS 6164, 18 rue H. Wallon, BP 406, 22004 Saint-Brieuc Cedex 1 (France)

    2008-11-15

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 . Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with {lambda}{sub max}=675{+-} 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices. (author)

  17. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    International Nuclear Information System (INIS)

    Praig, Vera G.; Piret, Gaelle; Manesse, Mael; Castel, Xavier; Boukherroub, Rabah; Szunerits, Sabine

    2008-01-01

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 deg. Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with λ max = 675 ± 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices

  18. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Md. Abdul; Oyama, Munetaka, E-mail: oyama.munetaka.4m@kyoto-u.ac.jp [Kyoto University, Department of Material Chemistry, Graduate School of Engineering (Japan)

    2013-05-15

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl{sub 4}) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 Degree-Sign C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  19. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  20. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  1. Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Young Heon, E-mail: young.h.kim@kriss.re.kr [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ha, Tae Hwan [University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Hong Seung [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-Ro, Busan 606-791 (Korea, Republic of)

    2015-09-15

    Highlights: • Nanometer-sized small grains were observed in the ITO thin films. • The grain size increased as the post-thermal annealing temperature increased. • The mobility of ITO thin films increased with increasing grain size. • The ITO film annealed at 300 °C was an amorphous phase, while the others were polycrystalline structure. - Abstract: In this paper, we demonstrate the electrical properties, depending on grain size, of nanocrystalline indium tin oxide (ITO) thin films prepared with a solution process. The size distributions of nanometer-sized ITO film grains increased as the post-annealing temperature increased after deposition; the grain sizes were comparable with the calculated electron mean free path. The mobility of ITO thin films increased with increasing grain size; this phenomenon was explained by adopting the charge-trapping model for grain boundary scattering. These findings suggest that it is possible to improve mobility by reducing the number of trapping sites at the grain boundary.

  2. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    International Nuclear Information System (INIS)

    Sears, Kallista; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-01-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency

  3. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Kallista, E-mail: kallista.sears@csiro.au; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-03-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency.

  4. Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Nam; Kim, Seung Bin [Pohang University of Science and Technology, Pohang (Korea, Republic of); Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2012-01-15

    In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) → 2268, 2164 (due to In-OH stretching mode) → 1546 (due to overtones of Sn- O-Sn modes) → 1412 (due to overtones of Sn-O-Sn modes) cm{sup -1}.

  5. Positron beam study of indium tin oxide films on GaN

    International Nuclear Information System (INIS)

    Cheung, C K; Wang, R X; Beling, C D; Djurisic, A B; Fung, S

    2007-01-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 deg. C without oxygen and at 200 deg. C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 x 10 -3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy

  6. Influence of annealing temperature and environment on the properties of indium tin oxide thin films

    International Nuclear Information System (INIS)

    Wang, R X; Beling, C D; Fung, S; Djurisic, A B; Ling, C C; Kwong, C; Li, S

    2005-01-01

    Indium tin oxide (ITO) thin films were deposited on glass substrates using the e-beam evaporating technique. The influence of deposition rate and post-deposition annealing on the optical properties of the films was investigated in detail. It is found that the deposition rate and annealing conditions strongly affect the optical properties of the films. The transmittance of films greatly increases with increasing annealing temperature below 300 deg. C but drastically drops at 400 deg. C when they are annealed in forming gas (mixed N 2 and H 2 gas). An interesting phenomenon observed is that the transmittance of the darkened film can recover under further 400 deg. C annealing in air. Atomic force microscopy, x-ray diffraction and x-ray photoemission spectroscopy were employed to obtain information on the chemical state and crystallization of the films. Analysis of these data suggests that the loss and re-incorporating of oxygen are responsible for the reversible behaviour of the ITO thin films

  7. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  8. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  9. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    Science.gov (United States)

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  10. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    Science.gov (United States)

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  11. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  12. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  13. Interfacial reactions between indium tin oxide and triphenylamine tetramer layers induced by photoirradiation

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Yamamoto, Ichiro; Murasaki, Takanori; Kato, Yoshifumi

    2008-01-01

    The effects of photoirradiation on the interfacial chemical reactions between indium tin oxide (ITO) films and layers of triphenylamine tetramer (TPTE) were investigated by using in situ x-ray photoelectron spectroscopy (XPS). Thin TPTE layers deposited onto sputter-deposited ITO films were irradiated with violet light-emitting diodes (peak wavelength: 380 nm). Shifts in the peak positions of spectral components that originated in the organic layer toward the higher binding-energy side were observed in the XPS profiles during the early stages of irradiation. No further peak shifts were observed after additional irradiation. An increase in the ratio of the organic component in the O 1s spectra was also observed during the photoirradiation. The ratio of the organic component increased in proportion to the cube root of the irradiation time. These results suggest that photoirradiation induces an increase in the height of the carrier injection barrier at the interface between TPTE and ITO in the early stages of the irradiation, possibly due to the rapid diffusion controlled formation and growth of an oxidized TPTE layer, which is considered to act as a high resistance layer

  14. Microstructure-mechanical property relationships for Al-Cu-Li-Zr alloys with minor additions of cadmium, indium or tin

    Science.gov (United States)

    Blackburn, L. B.; Starke, E. A., Jr.

    1989-01-01

    Minor amounts of cadmium, indium or tin were added to a baseline alloy with the nominal composition of Al-2.4Cu-2.4Li-0.15Zr. These elements were added in an attempt to increase the age-hardening response of the material such that high strengths could be achieved through heat-treatment alone, without the need for intermediate mechanical working. The alloy variant containing indium achieved a higher peak hardness in comparison to the other alloy variations, including the baseline material, when aged at temperatures ranging from 160 C to 190 C. Tensile tests on specimens peak-aged at 160 indicated the yield strength of the indium-bearing alloy increased by approximately 15 percent compared to that of the peak-aged baseline alloy. In addition, the yield strength obtained in the indium-bearing alloy was comparable to that reported for similar baseline material subjected to a 6 percent stretch prior to peak-aging at 190 C. The higher strength levels obtaied for the indium-bearing alloy are attributed to increased number densities and homogeneity of both the T1 and theta-prime phases, as determined by TEM studies.

  15. Spray deposited gallium doped tin oxide thinfilm for acetone sensor application

    Science.gov (United States)

    Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.

    2018-04-01

    Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.

  16. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Salehi, A.

    2002-01-01

    Indium doping was used to enhance the selectivity of SnO 2 gas sensor. Both indium-doped and undoped SnO 2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO 2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO 2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO 2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO 2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  17. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-01-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10 −5 Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10 −3 Ω −1 , comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs

  18. Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate

    International Nuclear Information System (INIS)

    Han, H.; Adams, Daniel; Mayer, J.W.; Alford, T.L.

    2005-01-01

    Indium tin oxide (ITO) thin films, on polyethylene napthalate (PEN) of both good electrical and optical properties were obtained by radio-frequency sputtering. The optoelectronic properties of the ITO films on PEN substrate were evaluated in terms of the oxygen content and the surface morphology. Rutherford backscattering spectrometry analysis was used to determine the oxygen content in the film. Hall-effect measurements were used to evaluate the dependence of electrical properties on oxygen content. The results showed that the resistivity of the ITO film increases with increasing oxygen content. For an oxygen content of 1.6x10 18 -2.48x10 18 atoms/cm 2 , the resistivity varied from 0.38x10 -2 to 1.86x10 -2 Ω cm. Typical resistivities were about ∼10 -3 Ω cm. UV-Vis spectroscopy and atomic force microscopy measurements were used to determine the optical transmittance and surface roughness of ITO films, respectively. Optical transmittances of ∼85% were obtained for the ITO thin films. Our results revealed that substrate roughness were translated onto the deposited ITO thin layers. The ITO surface roughness influences both the optical and electrical properties of the thin films. For a 125 μm PEN substrate the roughness is 8.4 nm, whereas it is 3.2 nm for 200 μm substrate thicknesses. The optical band gap is about 3.15 eV for all ITO film and is influenced by the polymer substrate. A model is proposed that the optical transmittance in the visible region is governed by the carrier concentration in the ITO thin films

  19. Improvement of mechanical reliability by patterned silver/Indium-Tin-Oxide structure for flexible electronic devices

    International Nuclear Information System (INIS)

    Baek, Kyunghyun; Jang, Kyungsoo; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Woojin; Kim, Doyoung; Yi, Junsin

    2013-01-01

    We report the effect of silver (Ag)-buffer layer Indium-Tin-Oxide (ITO) film on a polyethylene terephthalate substrate on the electrical, optical and reliable properties for transparent–flexible displays. The electrical and optical characteristics of an ITO-only film and an Ag-layer-inserted ITO film are measured and compared to assess the applicability of the triple layered structure in flexible displays. The sheet resistance, the resistivity and the light transmittance of the ITO-only film were 400 Ω/sq, 1.33 × 10 −3 Ω-cm and 99.2%, while those of the ITO film inserted with a 10 nm thick Ag layer were 165 Ω/sq, 4.78 × 10 −4 Ω-cm and about 97%, respectively. To evaluate the mechanical reliability of the different ITO films, bending tests were carried out. After the dynamic bending test of 900 cycles, the sheet resistance of the ITO film inserted with the Ag layer changed from 154 Ω/sq to 475 Ω/sq, about a 3-time increase but that of the ITO-only film changed from 400 Ω/sq to 61,986 Ω/sq, about 150-time increase. When the radius is changed from 25 mm to 20 mm in the static bending test, the sheet resistance of the ITO-only film changed from 400 to 678.3 linearly whereas that of the Ag-layer inserted ITO film changed a little from 154.4 to 154.9. These results show that Ag-layer inserted ITO film had better mechanical characteristics than the ITO-only film. - Highlights: ► Transparent flexible electrode fabricated on glass substrate. ► Electrode fabricated using vertically-patterned design on glass substrate. ► Optimization of the vertical patterns ► Application of the vertically-patterned electrode in transparent–flexible electronics

  20. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    International Nuclear Information System (INIS)

    Xiao, Yu; Gao, Fangyuan; Dong, Guobo; Guo, Tingting; Liu, Qirong; Ye, Di; Diao, Xungang

    2014-01-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10 −4 Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n −0.127 , which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested

  1. Remote plasma sputtering of indium tin oxide thin films for large area flexible electronics

    International Nuclear Information System (INIS)

    Yeadon, A.D.; Wakeham, S.J.; Brown, H.L.; Thwaites, M.J.; Whiting, M.J.; Baker, M.A.

    2011-01-01

    Indium tin oxide (ITO) thin films with a specific resistivity of 3.5 × 10 −4 Ω cm and average visible light transmission (VLT) of 90% have been reactively sputtered onto A4 Polyethylene terephthalate (PET), glass and silicon substrates using a remote plasma sputtering system. This system offers independent control of the plasma density and the target power enabling the effect of the plasma on ITO properties to be studied. Characterization of ITO on glass and silicon has shown that increasing the plasma density gives rise to a decrease in the specific resistivity and an increase in the optical band gap of the ITO films. Samples deposited at plasma powers of 1.5 kW, 2.0 kW and 2.5 kW and optimized oxygen flow rates exhibited specific resistivity values of 3.8 × 10 −4 Ω cm, 3.7 × 10 −4 Ω cm and 3.5 × 10 −4 Ω cm and optical gaps of 3.48 eV, 3.51 eV and 3.78 eV respectively. The increase in plasma density also influenced the crystalline texture and the VLT increased from 70 to 95%, indicating that more oxygen is being incorporated into the growing film. It has been shown that the remote plasma sputter technique can be used in an in-line process to produce uniform ITO coatings on PET with specific resistivities of between 3.5 × 10 −4 and 4.5 × 10 −4 Ω cm and optical transmission of greater than 85% over substrate widths of up to 30 cm.

  2. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan, E-mail: gaofangyuan@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo; Guo, Tingting; Liu, Qirong [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Ye, Di [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-04-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10{sup −4} Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n{sup −0.127}, which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested.

  3. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  4. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  5. Real-time monitoring of indium tin oxide laser ablation in liquid crystal display patterning

    International Nuclear Information System (INIS)

    Hong, M.H.; Lu, Y.F.; Meng, M.; Low, T.S.

    1998-01-01

    Audible acoustic wave detection is applied to investigate KrF excimer laser ablation of Indium Tin Oxide (ITO) thin film layer for Liquid Crystal Display (LCD) patterning. It is found that there is no acoustic wave generation if laser fluence is lower than ITO ablation threshold. For laser fluence higher than the threshold, audible acoustic wave will be detected due to shock wave generation during ITO laser ablation. The amplitude of the acoustic wave is closely related to the laser ablation rate. With more laser pulse applied, the amplitude is dropped to zero because the ITO layer is completely removed. However, if laser fluence is increased higher than ablation threshold for glass substrate, the amplitude is also dropped with pulse number but not to zero. It is due to laser ablation of ITO layer and glass substrate at the same time. Since the thickness of ITO layer is in a scale of 100 nm, laser interaction with glass substrate will happen even at the first pulse of higher laser fluence irradiation. Laser ablation induced ITO plasma emission spectrum in visible light region is analyzed by an Optical Multi-channel Analyzer (OMA). Specific spectral lines are In I (325.8, 410.2 and 451.1 nm) and In II 591.1 nm. Spectral intensities of 410.2 and 451.1 nm lines are selected to characterize the evolution of ITO plasma intensity with laser fluence and pulse number. It is found that the spectral intensities are reduced to zero with laser pulse number. It is also found that spectral lines other than ITO plasma will appear for laser fluence higher than ablation threshold for glass substrate. Threshold fluences for glass and ITO ablation are estimated for setting up a parameter window to control LCD patterning in real-time

  6. Surface properties of indium tin oxide treated by Cl2 inductively coupled plasma

    International Nuclear Information System (INIS)

    He, Kongduo; Yang, Xilu; Yan, Hang; Gong, Junyi; Zhong, Shaofeng; Ou, Qiongrong; Liang, Rongqing

    2014-01-01

    Graphical abstract: - Highlights: • The work function of chlorinated ITO increases initially by up to 1 eV. • The chlorinated ITO keeps an increment of work function of 0.3 eV after 100 days. • The WF decrease curves can be fitted with double exponential functions. • The desorption of unstable Cl in the surface leads to the rapid decrease of WF. • The core levels of In 3d5 and Sn 3d5 and O 1s shift toward higher binding energies. - Abstract: The effects of Cl 2 inductively coupled plasma (ICP) treatment on the time dependence of work function (WF) and surface properties of indium tin oxide (ITO) were investigated. Kelvin probe (KP) measurements show that the WF after Cl 2 ICP treatment is close to 5.9 eV. The WF decrease curve of Cl 2 plasma treated ITO is fitted with double exponential functions with an adjusted R-square of 0.99. The mechanism under the decrease process is discussed by X-ray photoelectron spectroscopy (XPS). The ITO WF decrease after Cl 2 ICP treatment performs much better than that after O 2 ICP treatment and the chlorinated ITO keeps a WF increment of 0.3 eV compared with that without plasma treatment after 100 days. Other properties of chlorinated ITO surface such as morphology and transmittance change slightly. The results are significant for the understanding of degradation of Cl 2 plasma treated ITO and the fabrication of organic semiconductor devices

  7. Surface properties of indium tin oxide treated by Cl{sub 2} inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    He, Kongduo; Yang, Xilu; Yan, Hang; Gong, Junyi; Zhong, Shaofeng [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Ou, Qiongrong, E-mail: qrou@fudan.edu.cn [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Liang, Rongqing [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China)

    2014-10-15

    Graphical abstract: - Highlights: • The work function of chlorinated ITO increases initially by up to 1 eV. • The chlorinated ITO keeps an increment of work function of 0.3 eV after 100 days. • The WF decrease curves can be fitted with double exponential functions. • The desorption of unstable Cl in the surface leads to the rapid decrease of WF. • The core levels of In 3d5 and Sn 3d5 and O 1s shift toward higher binding energies. - Abstract: The effects of Cl{sub 2} inductively coupled plasma (ICP) treatment on the time dependence of work function (WF) and surface properties of indium tin oxide (ITO) were investigated. Kelvin probe (KP) measurements show that the WF after Cl{sub 2} ICP treatment is close to 5.9 eV. The WF decrease curve of Cl{sub 2} plasma treated ITO is fitted with double exponential functions with an adjusted R-square of 0.99. The mechanism under the decrease process is discussed by X-ray photoelectron spectroscopy (XPS). The ITO WF decrease after Cl{sub 2} ICP treatment performs much better than that after O{sub 2} ICP treatment and the chlorinated ITO keeps a WF increment of 0.3 eV compared with that without plasma treatment after 100 days. Other properties of chlorinated ITO surface such as morphology and transmittance change slightly. The results are significant for the understanding of degradation of Cl{sub 2} plasma treated ITO and the fabrication of organic semiconductor devices.

  8. Modifying the Casimir force between indium tin oxide film and Au sphere

    Science.gov (United States)

    Banishev, A. A.; Chang, C.-C.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-01-01

    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide (ITO) film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The random, systematic, and total experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an ITO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in very good agreement with computations disregarding the contribution of free carriers in the dielectric permittivity. According to the hypothetical explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.

  9. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  10. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  11. Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide

    International Nuclear Information System (INIS)

    Ashur, Idan; Jones, Anne K.

    2012-01-01

    Highlights: ► Immobilization of azurin at indium tin oxide causes modification of the native redox properties. ► Azurin was immobilized at alkylsilane self-assembled monolayer on indium tin oxide. ► Native, solution redox properties are retained for the immobilized protein on the SAM. ► Technique should be widely applicable to other redox proteins. - Abstract: Indium tin oxide (ITO) is a promising material for developing spectroelectrochemical methods due to its combination of excellent transparency in the visible region and high conductivity over a broad range of potential. However, relatively few examples of immobilization of redox proteins at ITO with retention of the ability to transfer electrons with the underlying material with native characteristics have been reported. In this work, we utilize an alkylsilane functionalized ITO surface as a biocompatible interface for immobilization of the blue copper protein azurin. Adsorption of azurin at ITO as well as ITO coated with self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane (MPTMS) and n-decyltrimethoxysilane (DTMS) was achieved, and immobilized protein probed using protein film electrochemistry. The native redox properties of the protein were perturbed by adsorption directly to ITO or to the MPTMS layer on an ITO surface. However, azurin adsorbed at a DTMS covered ITO surface retained native electrochemical properties (E 1/2 = 122 ± 5 mV vs. Ag/AgCl) and could exchange electrons directly with the underlying ITO layer without need for an intervening chemical mediator. These results open new opportunities for immobilizing functional redox proteins at ITO and developing spectroelectrochemical methods for investigating them.

  12. Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Mostafa Jafari

    2014-10-01

    Full Text Available A semiconducting nanoparticle indium tin oxide (ITO was modified with silane groups and for this purpose trimethoxysilane (TMOS precursor was used under specific experimental conditions for surface modification of ITO nanoparticles. It is found that the modification of ITO nanoparticles increases the interactions between the filler and the matrix and subsequently improves the distibution of indium tin oxide nanoparticles in the polymer matrix. The epoxisilica polymer matrix was produced using trimethoxysilane and 3-glycidyloxypropyl trimethoxysilane precursors and ethylenediamine (EDA as curing agent at low temperature by sol-gel process. The sol-gel process was very useful due to its easily controllable process, solution concentration and homogeneity without using expensive and complicated equipments in comparison with other methods. Then, Fourier transform infrared (FTIR spectroscopy was employed to study the formation of Si-O-Si and Si-OH groups on ITO nanoparticles. X-Ray diffraction (XRD technique and thermal gravimetric analysis (TGA were employed to investigate the modification and weight loss of the modified ITO, respectively, as an indication of the presence of organic groups on these nanoparticles. The separation analyzer tests were performed to check the stability of the nanoparticles suspension and it revealed that due to better interaction of nanoparticles with the polymer matrix the stability of modified ITO suspention is higher than the unmodified sample. The morphology and particle distribution were determined by scanning electron microscopy (SEM. It was found that the distibution of modified indium tin oxide in epoxy-silica polymer matrix was improved in comparison with pure ITO.

  13. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; van den Berg, Albert

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources,

  14. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  15. Pulsed Nd:YAG laser deposition of indium tin oxide thin films in different gases and organic light emitting device applications

    International Nuclear Information System (INIS)

    Yong, T.Y.; Tou, T.Y.; Yow, H.K.; Safran, G.

    2008-01-01

    The microstructures, electrical and optical properties of indium-doped tin oxide (ITO) films, deposited on glass substrates in different background gases by a pulsed Nd:YAG laser, were characterized. The optimal pressure for obtaining the lowest resistivity in ITO thin film is inversely proportional to the molecular weight of the background gases, namely the argon (Ar), oxygen (O 2 ), nitrogen (N 2 ) and helium (He). While substrate heating to 250 deg. C decreased the ITO resistivity to -4 Ω cm, obtaining the optical transmittance of higher than 90% depended mainly on the background gas pressure for O 2 and Ar. Obtaining the lowest ITO resistivity, however, did not beget a high optical transmittance for ITO deposition in N 2 and He. Scanning electron microscope pictures show distinct differences in microstructures due to the background gas: nanostructures when using Ar and N 2 but polycrystalline for using O 2 and He. The ITO surface roughness varied with the deposition distance. The effects on the molecularly doped, single-layer organic light emitting device (OLED) operation and performance were also investigated. Only ITO thin films prepared in O 2 and Ar are suitable for the fabrication OLED with performance comparable to that fabricated on the commercially available, magnetron-sputtered ITO

  16. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  17. Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials.

    Science.gov (United States)

    Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan

    2018-05-01

    A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.

  18. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    of a bottom electrode comprising silver nanoparticles on a 130 micron thick polyethyleneternaphthalate (PEN) substrate. Subsequently an electron transporting layer of zinc oxide nanoparticles was applied from solution followed by an active layer of P3HT-PCBM and a hole transporting layer of PEDOT......, 3 and 8 stripes. All five layers in the device were processed from solution in air and no vacuum steps were employed. An additional advantage is that the use of indium-tin-oxide (ITO) is avoided in this process. The devices were tested under simulated sunlight (1000 W m−2, AM1.5G) and gave a typical...

  19. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S S; Shinde, P S; Bhosale, C H; Rajpure, K Y

    2008-01-01

    Indium doped zinc oxide (IZO) thin films are grown onto Corning glass substrates using the spray pyrolysis technique. The effect of doping concentration on the structural, electrical and optical properties of IZO thin films is studied. X-ray diffraction studies show a change in preferential orientation from the (0 0 2) to the (1 0 1) crystal planes with increase in indium doping concentration. Scanning electron microscopy studies show polycrystalline morphology of the films. Based on the Hall-effect measurements and analysis, impurity scattering is found to be the dominant mechanism determining the diminished mobility in ZnO thin films having higher indium concentration. The addition of indium also induces a drastic decrease in the electrical resistivity of films; the lowest resistivity (4.03 x 10 -5 Ω cm) being observed for the film deposited with 3 at% indium doping. The effect of annealing on the film properties has been reported. Films deposited with 3 at% In concentration have relatively low resistivity with 90% transmittance at 550 nm and the highest value of figure of merit 7.9 x 10 -2 □ Ω -1

  20. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  1. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  2. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  3. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    Directory of Open Access Journals (Sweden)

    Weichang Zhou

    2014-12-01

    Full Text Available High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  4. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Nadia T.; Alias, Yatimah; Khor, Sook Mei, E-mail: naomikhor@um.edu.my

    2015-01-15

    Graphical abstract: - Highlights: • The incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. • The resistance to non-specific protein adsorptions of BSA–FITC and RBITC–Cyt c were determined by confocal laser scanning microscopy. • The antifouling interface allows detection of target analytes in highly complicated biological matrices. - Abstract: Biosensing interfaces consisting of linker molecules (COOH or NH{sub 2}) and charged, antifouling moieties ((-SO{sup 3−} and N{sup +}(Me){sub 3}) for biosensing applications were prepared for the first time by the in situ deposition of mixtures of aryl diazonium cations on indium tin oxide (ITO) electrodes. A linker molecule is required for the attachment of biorecognition molecules (e.g., antibodies, enzymes, DNA chains, and aptamers) close to the transducer surface. The attached molecules improve the biosensing sensitivity and also provide a short response time for analyte detection. Thus, the incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. The reductive adsorption behavior and electrochemical measurement were studied for (1) an individual compound and (2) a mixture of antifouling zwitterionic molecules together with linker molecules [combination 1: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 1,4-phenylenediamine (PPD); combination 2: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 4-aminobenzoic acid (PABA)] of aryl diazonium cations grafted onto an ITO electrode. The mixture ratios of SP:TMAP:PPD and SP:TMAP:PABA that provided the greatest resistance to non-specific protein adsorptions of bovine serum albumin labeled with fluorescein isothiocyanate (BSA–FITC) and cytochrome c labeled with rhodamine B isothiocyanate (RBITC–Cyt c) were determined by confocal laser scanning microscopy (CLSM). For the surface antifouling study

  5. Indium tin oxide thin film strain gages for use at elevated temperatures

    Science.gov (United States)

    Luo, Qing

    A robust ceramic thin film strain gage based on indium-tin-oxide (ITO) has been developed for static and dynamic strain measurements in advanced propulsion systems at temperatures up to 1400°C. These thin film sensors are ideally suited for in-situ strain measurement in harsh environments such as those encountered in the hot sections of gas turbine engines. A novel self-compensation scheme was developed using thin film platinum resistors placed in series with the active strain element (ITO) to minimize the thermal effect of strain or apparent strain. A mathematical model as well as design rules were developed for the self-compensated circuitry using this approach and close agreement between the model and actual static strain results has been achieved. High frequency dynamic strain tests were performed at temperatures up to 500°C and at frequencies up to 2000Hz to simulate conditions that would be encountered during engine vibration fatigue. The results indicated that the sensors could survive extreme test conditions while maintaining sensitivity. A reversible change in sign of the piezoresistive response from -G to +G was observed in the vicinity of 950°C, suggesting that the change carrier responsible for conduction in the ITO gage had been converted from a net "n-carrier" to a net "p-carrier" semiconductor. Electron spectroscopy for chemical analysis (ESCA) of the ITO films suggested they experienced an interfacial reaction with the Al2O3 substrate at 1400°C. It is likely that oxygen uptake from the substrate is responsible for stabilizing the ITO films to elevated temperatures through the interfacial reaction. Thermo gravimetric analysis of ITO films on alumina at elevated temperatures showed no sublimation of ITO films at temperature up to 1400°C. The surface morphology of ITO films heated to 800, 1200 and 1400°C were also evaluated by atomic force microscopy (AFM). A linear current-voltage (I--V) characteristic indicated that the contact interface

  6. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices

    International Nuclear Information System (INIS)

    Darwish, Nadia T.; Alias, Yatimah; Khor, Sook Mei

    2015-01-01

    Graphical abstract: - Highlights: • The incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. • The resistance to non-specific protein adsorptions of BSA–FITC and RBITC–Cyt c were determined by confocal laser scanning microscopy. • The antifouling interface allows detection of target analytes in highly complicated biological matrices. - Abstract: Biosensing interfaces consisting of linker molecules (COOH or NH 2 ) and charged, antifouling moieties ((-SO 3− and N + (Me) 3 ) for biosensing applications were prepared for the first time by the in situ deposition of mixtures of aryl diazonium cations on indium tin oxide (ITO) electrodes. A linker molecule is required for the attachment of biorecognition molecules (e.g., antibodies, enzymes, DNA chains, and aptamers) close to the transducer surface. The attached molecules improve the biosensing sensitivity and also provide a short response time for analyte detection. Thus, the incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. The reductive adsorption behavior and electrochemical measurement were studied for (1) an individual compound and (2) a mixture of antifouling zwitterionic molecules together with linker molecules [combination 1: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 1,4-phenylenediamine (PPD); combination 2: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 4-aminobenzoic acid (PABA)] of aryl diazonium cations grafted onto an ITO electrode. The mixture ratios of SP:TMAP:PPD and SP:TMAP:PABA that provided the greatest resistance to non-specific protein adsorptions of bovine serum albumin labeled with fluorescein isothiocyanate (BSA–FITC) and cytochrome c labeled with rhodamine B isothiocyanate (RBITC–Cyt c) were determined by confocal laser scanning microscopy (CLSM). For the surface antifouling study, we used 2

  7. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices

    Science.gov (United States)

    Darwish, Nadia T.; Alias, Yatimah; Khor, Sook Mei

    2015-01-01

    Biosensing interfaces consisting of linker molecules (COOH or NH2) and charged, antifouling moieties ((sbnd SO3- and N+(Me)3) for biosensing applications were prepared for the first time by the in situ deposition of mixtures of aryl diazonium cations on indium tin oxide (ITO) electrodes. A linker molecule is required for the attachment of biorecognition molecules (e.g., antibodies, enzymes, DNA chains, and aptamers) close to the transducer surface. The attached molecules improve the biosensing sensitivity and also provide a short response time for analyte detection. Thus, the incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. The reductive adsorption behavior and electrochemical measurement were studied for (1) an individual compound and (2) a mixture of antifouling zwitterionic molecules together with linker molecules [combination 1: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 1,4-phenylenediamine (PPD); combination 2: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 4-aminobenzoic acid (PABA)] of aryl diazonium cations grafted onto an ITO electrode. The mixture ratios of SP:TMAP:PPD and SP:TMAP:PABA that provided the greatest resistance to non-specific protein adsorptions of bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) and cytochrome c labeled with rhodamine B isothiocyanate (RBITC-Cyt c) were determined by confocal laser scanning microscopy (CLSM). For the surface antifouling study, we used 2-[2-(2-methoxyethoxy) ethoxy]acetic acid (OEG) as a standard control because of its prominent antifouling properties. Surface compositions of combinations 1 and 2 were characterized using X-ray photoelectron spectroscopy (XPS). Field-emission scanning electron microscopy (FE-SEM) was used to characterize the morphology of the grafted films to confirm the even distribution between linker and antifouling molecules grafted onto the ITO surfaces

  8. Preparation of RF reactively sputtered indium-tin oxide thin films with optical properties suitable for heat mirrors

    International Nuclear Information System (INIS)

    Boyadzhiev, S; Dobrikov, G; Rassovska, M

    2008-01-01

    Technologies are discussed for preparing and characterizing indium-tin oxide (ITO) thin films with properties appropriate for usage as heat mirrors in solar thermal collectors. The samples were prepared by means of radio frequency (RF) reactive sputtering of indium-tin targets in oxygen. The technological parameters were optimized to obtain films with optimal properties for heat mirrors. The optical properties of the films were studied by visible and infra-red (IR) spectrophotometry and laser ellipsometry. The reflectance of the films in the thermal IR range was investigated by a Fourier transform infra-red (FTIR) spectrophotometer. Heating of the substrates during the sputtering and their post deposition annealing in different environments were also studied. The ultimate purpose of the present research being the development of a technological process leading to low-cost ITO thin films with high transparency in the visible and near IR (0.3-2.4 μm) and high reflection in the thermal IR range (2.5-25 μm), we investigated the correlation of the ITO thin films structural and optical properties with the technological process parameters - target composition and heat treatment

  9. Effect of Indium Doping on the Sensitivity of SnO2 Gas Sensor

    International Nuclear Information System (INIS)

    Suharni; Sayono

    2009-01-01

    The dependence of sensitivity f SnO 2 gas sensors on indium concentration has been studied. Undoped and indium-doped SnO 2 gas sensors have been prepared by DC sputtering technique with following parameters i.e : electrode voltage of 3 kV, current 20 mA, vacuum pressure 1.8 × 10 -1 torr, deposition time 60 minutes and temperature of 200℃. The effect of weight variations of indium in order of 0.0370; 0.0485 and 0.0702 grams into SnO 2 thin film gas sensor for optimum result were investigated. The measurement of resistance, sensitivity and response time for various temperature for detecting of carbon monoxide (CO), Ammonia (NH 3 ) and acetone (CH 3 COCH 3 ) gas for indium doped has been done. From the analysis result shows that for indium doped 0.0702 g on the SnO 2 the resistance can be decreased from 832.0 kΩ to 3.9 kΩ and the operating temperature from 200℃ to 90℃ and improving the sensitivity from 15.92% to 40.09% and a response time from 30 seconds to 10 seconds for CO. (author)

  10. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Science.gov (United States)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  11. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Indium-tin oxide (ITO is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO, and ventilation dust particles activated nuclear factor kappa B (NFκB within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8 within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  12. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  13. Effect of indium doping on zinc oxide films prepared by chemical ...

    Indian Academy of Sciences (India)

    Administrator

    confirmed by X-ray diffraction technique which leads to the introduction of defects in ZnO. Indium doping ... elements like Al, Ga and In can be used as n-type dopant. (Kato et al 2002) .... (α is the absorption coefficient and hν the photon energy).

  14. Elastic properties of zinc, cadmium, bismuth, thallium, tin, lead and their binary alloys with indium

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed

  15. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    International Nuclear Information System (INIS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rusop, Mohamad; Rahman, S. A.

    2016-01-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10"3 Ωcm"−"1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.

  16. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, Mohamad, E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Rahman, S. A., E-mail: saadah@um.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Low Dimensional Materials Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-06

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.

  17. Tin

    Science.gov (United States)

    Kamilli, Robert J.; Kimball, Bryn E.; Carlin, James F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Tin (Sn) is one of the first metals to be used by humans. Almost without exception, tin is used as an alloy. Because of its hardening effect on copper, tin was used in bronze implements as early as 3500 B.C. The major uses of tin today are for cans and containers, construction materials, transportation materials, and solder. The predominant ore mineral of tin, by far, is cassiterite (SnO2).In 2015, the world’s total estimated mine production of tin was 289,000 metric tons of contained tin. Total world reserves at the end of 2016 were estimated to be 4,700,000 metric tons. China held about 24 percent of the world’s tin reserves and accounted for 38 percent of the world’s 2015 production of tin.The proportion of scrap used in tin production is between 10 and 25 percent. Unlike many metals, tin recycling is relatively efficient, and the fraction of tin in discarded products that get recycled is greater than 50 percent.Only about 20 percent of the world’s identified tin resources occur as primary hydrothermal hard-rock veins, or lodes. These lodes contain predominantly high-temperature minerals and almost invariably occur in close association with silicic, peraluminous granites. About 80 percent of the world’s identified tin resources occur as unconsolidated secondary or placer deposits in riverbeds and valleys or on the sea floor. The largest concentration of both onshore and offshore placers is in the extensive tin belt of Southeast Asia, which stretches from China in the north, through Thailand, Burma (also referred to as Myanmar), and Malaysia, to the islands of Indonesia in the south. Furthermore, tin placers are almost always found closely allied to the granites from which they originate. Other countries with significant tin resources are Australia, Bolivia, and Brazil.Most hydrothermal tin deposits belong to what can be thought of as a superclass of porphyry-greisen deposits. The hydrothermal tin deposits are all characterized by a close spatial

  18. Cesium-incorporated indium-tin-oxide films for use as a cathode with low work function for a transparent organic light-emitting device

    International Nuclear Information System (INIS)

    Uchida, Takayuki; Mimura, Toshifumi; Ohtsuka, Masao; Otomo, Toshio; Ide, Mieko; Shida, Azusa; Sawada, Yutaka

    2006-01-01

    Transparent organic light-emitting devices (TOLEDs) were successfully fabricated utilizing a novel transparent conducting cathode with low work function. Cesium-incorporated indium-tin-oxide film was deposited on the organic layers with negligible damage by simultaneous operation of RF magnetron sputtering using an ITO target and vacuum evaporation of metallic cesium. Incorporation of cesium in the ITO film was confirmed by XPS analysis. The work function (4.3 eV) determined by photoelectron spectroscopy in air (PESA) was lower than that of 0.3-0.4-eV without cesium-incorporation and stable under the atmospheric environment. The electron injection efficiency of cesium-incorporated ITO cathode in the present transparent OLED fabricated was comparable to that of the previous double-layered structure comprising of ITO cathode and an organic buffer layer (BCP) doped by evaporation of cesium [T. Uchida, S. Kaneta, M. Ichihara, M. Ohtsuka, T. Otomo, D.R. Marx, Jpn. J. Appl. Phys., 44, No. 9 (2005) L282

  19. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Energy Technology Data Exchange (ETDEWEB)

    El Moussaoui, H., E-mail: elmoussaoui.hassan@gmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Mahfoud, T.; Habouti, S. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); El Maalam, K.; Ben Ali, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hamedoun, M.; Mounkachi, O. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid – BP 63, 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4}; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases. - Highlights: • We have studied the microstructural and the magnetic properties of Sn{sub 1-x}MnxFe{sub 2}O{sub 4}. • The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} have a blocking temperature around 100 K. • The Ms and Hc increase with the augmentation of Mn content.

  20. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  1. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  2. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  3. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel

    2014-06-11

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict such changes as an alternative to fracture mechanics formulations. Our predictions are obtained by assuming that there are no flaws at the onset of loading as opposed to the assumptions of fracture mechanics approaches. We calibrate the crack onset strain and the damage model based on experimental data reported in the literature. We predict crack density and changes in electrical resistance as a function of the damage induced in the films. We implement our model in the commercial finite element software ABAQUS using a user subroutine UMAT. We obtain fair to good agreement with experiments. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. A novel technique for increase the figure of merit of indium-tin oxide transparent conducting coatings

    International Nuclear Information System (INIS)

    Keshmiri, S.H.; Roknabadi, M.R.

    1999-01-01

    Indium-Tin Oxide (ITO) films have been used as transparent electrodes in many optoelectronic devices. Although the free electron concentration in these films can be rather high, but due to low drift mobilities, the electrical conductivity of ITO films are much lower than that of metals. This is mainly due to high concentration of trapping centers created by structural defects in an ITO film. In this article, a simple technique is explained for post-deposition hydrogenation of ITO films. It was found that exposure of ITO films to atomic-hydrogen plasma produced a significant increases in the electrical conductivity of the films. At the optimum condition, an increase of about 330% in the electrical conductivity of an ITO film was observed. The hydrogenation process did not affect optical transparency of he samples adversely. But some slight improvements (in visible wavelengths) were observed. SEM studies indicated that the microstructure of the films was not noticeably changed by the hydrogenation process. (author)

  5. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  6. Surface modification of indium tin oxide films by amino ion implantation for the attachment of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Jiao Jiao; Liu Chenyao; Chen Qunxia; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    Amino ion implantation was carried out at the energy of 80 keV with fluence of 5 x 10 15 ions cm -2 for indium tin oxide film (ITO) coated glass, and the existence of amino group on the ITO surface was verified by X-ray photoelectron spectroscopy analysis and Fourier transform infrared spectra. Scanning electron microscopy images show that multi-wall carbon nanotubes (MWCNTs) directly attached to the amino ion implanted ITO (NH 2 /ITO) surface homogeneously and stably. The resulting MWCNTs-attached NH 2 /ITO (MWCNTs/NH 2 /ITO) substrate can be used as electrode material. Cyclic voltammetry results indicate that the MWCNTs/NH 2 /ITO electrode shows excellent electrochemical properties and obvious electrocatalytic activity towards uric acid, thus this material is expected to have potential in electrochemical analysis and biosensors.

  7. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  8. Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering

    International Nuclear Information System (INIS)

    Karasawa, T.; Miyata, Y.

    1993-01-01

    Transparent conducting thin films of indium tin oxide (ITO) have been deposited by d.c. reactive planar magnetron sputtering by using metal In-Sn alloy target in an Ar-O 2 gas mixture. The study demonstrates that the deposition on unheated substrates achieved sheet resistance of as low as about 50-60 Ω/□ (or a resistivity of about 7 x 10 -4 Ω cm), and visible transmission of about 90% for a wavelength of 420 nm. The effects of heat treatment at 450 C in air depends on the deposition conditions of the as-deposited ITO films. Although annealing improves the properties of as-deposited ITO films which were deposited with non-optimum conditions, the optimized condition for the formation of the film in the as-deposited state is essential to obtain a high quality transparent conducting coating. (orig.)

  9. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    Science.gov (United States)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  10. Controlling plasmonic properties of epitaxial thin films of indium tin oxide in the near-infrared region

    Science.gov (United States)

    Kamakura, R.; Fujita, K.; Murai, S.; Tanaka, K.

    2015-06-01

    Epitaxial thin films of indium tin oxide (ITO) were grown on yttria-stabilized zirconia single-crystal substrates by using a pulsed laser deposition to examine their plasmonic properties. The dielectric function of ITO was characterized by spectroscopic ellipsometry. Through the concentration of SnO2 in the target, the carrier concentration in the films was modified, which directly leads to the tuning of the dielectric function in the near-infrared region. Variable-angle reflectance spectroscopy in the Kretschmann geometry shows the dip in the reflection spectrum of p-polarized light corresponding to the excitation of surface plasmon polaritions (SPPs) in the near-infrared region. The excitation wavelength of the SPPs was shifted with changing the dielectric functions of ITO, which is reproduced by the calculation using transfer matrix method.

  11. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  12. Wet etching mechanism and crystallization of indium-tin oxide layer for application in light-emitting diodes

    Science.gov (United States)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  13. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  14. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate

    International Nuclear Information System (INIS)

    Wong, F.L.; Fung, M.K.; Tong, S.W.; Lee, C.S.; Lee, S.T.

    2004-01-01

    A radio-frequency sputtering deposition method was applied to prepare indium tin oxide (ITO) on a plastic substrate, polyethylene terephthalate (PET). The correlation of deposition conditions and ITO film properties was systematically investigated and characterized. The optimal ITO films had a transmittance of over 90% in the visible range (400-700 nm) and a resistivity of 5.0x10 -4 Ω-cm. Sequentially α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminium, and magnesium-silver were thermally deposited on the ITO-coated PET substrate to fabricate flexible organic light-emitting diodes (FOLEDs). The fabricated devices had a maximum current efficiency of ∼4.1 cd/A and a luminance of nearly 4100 cd/m 2 at 100 mA/cm 2 . These values showed that the FOLEDs had comparable performance characteristics with the conventional organic light-emitting diodes made on ITO-coated glasses with the same device configuration

  15. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  16. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  17. Cyclic voltammetry on n-alkylphosphonic acid self-assembled monolayer modified large area indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Habich, Dana Berlinde [Siemens AG, CT T DE HW 3 Organic Electronics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Halik, Marcus [Lehrstuhl fuer Polymerwerkstoffe, Department Werkstoffwissenschaften, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Martensstrasse 7, 91058 Erlangen (Germany); Schmid, Guenter, E-mail: guenter.schmid@siemens.com [Siemens AG, CT T DE HW 3 Organic Electronics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

    2011-09-01

    We show stable bonding of n-alkylphosphonic acid self-assembled monolayers (SAMs) to indium tin oxide electrodes and their direct electrical characterization by cyclic voltammetry (CV). The functional coatings were investigated with regards to the addressability and stability of the electrodes, which are related to small changes in molecular layer thickness. The response of a redox active compound in solution to the faradic current is indirectly proportional to the molecular chain length of the SAMs. We observed a decrease of the electrode sensitivity with enhanced surface protection and slow long term degradation of the SAM under electrochemical stress by CV, and therefore conclude a trade-off optimum for molecules with the C10 chain.

  18. Effect of cesium assistance on the electrical and structural properties of indium tin oxide films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaewon; Hwang, Cheol Seong; Park, Sung Jin; Yoon, Neung Ku [Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Sorona Inc., Pyeongtaek, Gyeonggi 451-841 (Korea, Republic of)

    2009-07-15

    Indium tin oxide (ITO) thin films were deposited by cesium (Cs)-assisted dc magnetron sputtering in an attempt to achieve a high performance at low temperatures. The films were deposited on SiO{sub 2}/Si wafer and glass (Eagle 2000) substrates at a substrate temperature of 100 degree sign C with a Cs vapor flow during the deposition process. The ITO thin films deposited in the presence of Cs vapor showed better crystallinity than the control films grown under normal Ar/O{sub 2} plasma conditions. The resistivity of the films with the Cs assistance was lower than that of the control films. The lowest resistivity of 6.2x10{sup -4} {Omega} cm, which is {approx}20% lower than that of the control sample, was obtained without any postdeposition thermal annealing. The surface roughness increased slightly when Cs vapor was added. The optical transmittance was >80% at wavelengths ranging from 380 to 700 nm.

  19. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  20. Indium tin oxide films prepared by atmospheric plasma annealing and their semiconductor-metal conductivity transition around room temperature

    International Nuclear Information System (INIS)

    Li Yali; Li Chunyang; He Deyan; Li Junshuai

    2009-01-01

    We report the synthesis of indium tin oxide (ITO) films using the atmospheric plasma annealing (APA) technique combined with the spin-coating method. The ITO film with a low resistivity of ∼4.6 x 10 -4 Ω cm and a high visible light transmittance, above 85%, was achieved. Hall measurement indicates that compared with the optimized ITO films deposited by magnetron sputtering, the above-mentioned ITO film has a higher carrier concentration of ∼1.21 x 10 21 cm -3 and a lower mobility of ∼11.4 cm 2 V -1 s -1 . More interestingly, these electrical characteristics result in the semiconductor-metal conductivity transition around room temperature for the ITO films prepared by APA.

  1. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K

    Science.gov (United States)

    Chiu, Shao-Pin; Chung, Hui-Fang; Lin, Yong-Han; Kai, Ji-Jung; Chen, Fu-Rong; Lin, Juhn-Jong

    2009-03-01

    Single-crystalline indium tin oxide (ITO) nanowires (NWs) were grown by the standard thermal evaporation method. The as-grown NWs were typically 100-300 nm in diameter and a few µm long. Four-probe submicron Ti/Au electrodes on individual NWs were fabricated by the electron-beam lithography technique. The resistivities of several single NWs have been measured from 300 down to 1.5 K. The results indicate that the as-grown ITO NWs are metallic, but disordered. The overall temperature behavior of resistivity can be described by the Bloch-Grüneisen law plus a low-temperature correction due to the scattering of electrons off dynamic point defects. This observation suggests the existence of numerous dynamic point defects in as-grown ITO NWs.

  2. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K

    International Nuclear Information System (INIS)

    Chiu, S-P; Lin, J-J; Chung, H-F; Kai, J-J; Chen, F-R; Lin, Y-H

    2009-01-01

    Single-crystalline indium tin oxide (ITO) nanowires (NWs) were grown by the standard thermal evaporation method. The as-grown NWs were typically 100-300 nm in diameter and a few μm long. Four-probe submicron Ti/Au electrodes on individual NWs were fabricated by the electron-beam lithography technique. The resistivities of several single NWs have been measured from 300 down to 1.5 K. The results indicate that the as-grown ITO NWs are metallic, but disordered. The overall temperature behavior of resistivity can be described by the Bloch-Grueneisen law plus a low-temperature correction due to the scattering of electrons off dynamic point defects. This observation suggests the existence of numerous dynamic point defects in as-grown ITO NWs.

  3. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  4. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  5. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  6. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  7. On the structure and surface chemical composition of indium-tin oxide films prepared by long-throw magnetron sputtering

    International Nuclear Information System (INIS)

    Chuang, M.J.; Huang, H.F.; Wen, C.H.; Chu, A.K.

    2010-01-01

    Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 o C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.

  8. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  9. Laterally resolved ion-distribution functions at the substrate position during magnetron sputtering of indium-tin oxide films

    International Nuclear Information System (INIS)

    Plagemann, A.; Ellmer, K.; Wiesemann, K.

    2007-01-01

    During the magnetron sputtering from an indium-tin oxide (ITO) target (76 mm diameter) we measured the ion-distribution functions (IDFs) of energetic ions (argon, indium, and oxygen ions) at the substrate surface using a combination of a quadrupole mass spectrometer and an electrostatic energy analyzer. We obtained the IDFs for argon sputtering pressures in the range from 0.08 to 2 Pa and for dc as well as rf (13.56 MHz) plasma excitation with powers from 10 to 100 W. The IDF measurements were performed both over the target center at a target-to-substrate distance of 65 mm and at different positions along the target radius in order to scan the erosion track of the target. The mean kinetic energies of argon ions calculated from the IDFs in the dc plasma decreased from about 30 to 15 eV, when the argon pressure increased from 0.08 to 2 Pa, which is caused by a decrease of the electron temperature also by a factor of 2. Indium atoms exhibit higher mean energies due to their additional energy from the sputtering process. The total metal ion flux turns out to be proportional to the discharge power and the pressure, the latter dependence being due to Penning ionization of the metal atoms (In and Sn). From the scans across the target surface the lateral distributions of metal, oxygen, and argon ions were derived. In the dc discharge the position of the erosion track is reproduced by increased ion intensities, while it is not the case for the rf excited plasma. The lateral variations of the observed species do not influence the lateral resistivity distributions of the deposited ITO films

  10. Photocatalytic activity of tin-doped TiO{sub 2} film deposited via aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Chin Sheng, E-mail: cschua@simtech.a-star.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Tan, Ooi Kiang; Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Ding, Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore)

    2013-10-01

    Tin-doped TiO{sub 2} films are deposited via aerosol assisted chemical vapor deposition using a precursor mixture composing of titanium tetraisopropoxide and tetrabutyl tin. The amount of tin doping in the deposited films is controlled by the volume % concentration ratio of tetrabutyl tin over titanium tetraisopropoxide in the mixed precursor solution. X-ray diffraction analysis results reveal that the as-deposited films are composed of pure anatase TiO{sub 2} phase. Red-shift in the absorbance spectra is observed attributed to the introduction of Sn{sup 4+} band states below the conduction band of TiO{sub 2}. The effect of tin doping on the photocatalytic property of TiO{sub 2} films is studied through the degradation of stearic acid under UV light illumination. It is found that there is a 10% enhancement on the degradation rate of stearic acid for the film with 3.8% tin doping in comparison with pure TiO{sub 2} film. This improvement of photocatalytic performance with tin incorporation could be ascribed to the reduction of electron-hole recombination rate through charge separation and an increased amount of OH radicals which are crucial for the degradation of stearic acid. Further increase in tin doping results in the formation of recombination site and large anatase grains, which leads to a decrease in the degradation rate. - Highlights: ► Deposition of tin-doped TiO{sub 2} film via aerosol assisted chemical vapor deposition ► Deposited anatase films show red-shifted in UV–vis spectrum with tin-dopants. ► Photoactivity improves at low tin concentration but reduces at higher concentration. ► Improvement in photoactivity due to bandgap narrowing from Sn{sup 4+} band states ► Maximum photoactivity achieved occurs for films with 3.8% tin doping.

  11. Indium vacancy induced d0 ferromagnetism in Li-doped In2O3 nanoparticles

    Science.gov (United States)

    Cao, Haiming; Xing, Pengfei; Zhou, Wei; Yao, Dongsheng; Wu, Ping

    2018-04-01

    Li-doped In2O3 nanoparticles with room temperature d0 ferromagnetism were prepared by a sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence were carried out to investigate the effects of Li incorporation on the lattice defects. As the content of Li increases, non-monotonic changes in shifts of XRD peak (2 2 2) and the intensity ratios of indium vacancies related photoluminescence peak (PII) with respect to oxygen vacancies related peak (PI) are observed. Results show that at low doping level (≤2 at.%) Li prefers to occupy In sites, while with further doping the interstitial sites are more favorable for Li. Combined with the consistent non-monotonic change in saturation magnetization, we think that indium vacancies resulting from Li-doping play an important role in inducing d0 ferromagnetism in our Li-doped In2O3 nanoparticles, and the FM coupling is mainly mediated by the LiIn-ONN-VIn-ONN-LiIn chains.

  12. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Rathouský, Jiří; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    2010-01-01

    Roč. 6, č. 5 (2010), s. 633-637 ISSN 1613-6810 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony -doped tin oxide * msoporous materials * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.333, year: 2010

  13. Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    International Nuclear Information System (INIS)

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.

    2011-01-01

    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO 2 defect. Within experimental accuracy, a small delay in the growth of the VO 2 defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the C i O i , C i C s , and C i O i (Si I ) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices.

  14. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  15. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  16. Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan

    Polymer solar cells (PSCs) aim to produce clean energy that is cost-competitive to energy produced by fossil fuel-based conventional energy sources. From an environmental perspective, PSCs already compares favorably to other solar cell technologies in terms of fewer emissions of greenhouse gases......, represents majority of the share of cost and energy footprint in terms of materials and processing in a conventional PSC module. Furthermore, the scarcity of indium is feared to create bottleneck in the dawning PSC industry and its brittle nature is an obstacle for fast processing of PSCs on flexible...

  17. Electrical properties of indium-tin oxide films deposited on nonheated substrates using a planar-magnetron sputtering system and a facing-targets sputtering system

    International Nuclear Information System (INIS)

    Iwase, Hideo; Hoshi, Youichi; Kameyama, Makoto

    2006-01-01

    Distribution of the electrical properties of indium-tin oxide (ITO) film prepared by both a planar-magnetron sputtering system (PMSS) and a facing-targets sputtering system (FTSS) at room temperature were investigated. It was found that the outstanding non-uniformities of the electrical properties in noncrystalline ITO films are mainly due to the variation of the oxygen stoichiometry dependent on film positions on substrate surfaces. Furthermore, ITO film with uniform distribution of electrical properties was obtainable using FTSS

  18. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Lim, Jun-Hyung; Lee, Je-Hun; Ahn, Byung Du, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [Samsung Display Co., Ltd., Yongin, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Yong-Sung [Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 (Korea, Republic of)

    2014-10-13

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  19. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    International Nuclear Information System (INIS)

    Li, Li; Liu, Honglin; Zou, Lin; Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2013-01-01

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  20. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Liu, Honglin; Zou, Lin [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ding, Wanyu, E-mail: dwysd_2000@163.com [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116028 (China); Ju, Dongying [Department of Material Science and Engineering, Saitama Institute of Technology, Fukaya 369-0293 (Japan); Chai, Weiping [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2013-10-31

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  1. Electronic structure evolution and energy level alignment at C60/4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]/MoOx/indium tin oxide interfaces

    Science.gov (United States)

    Liu, Xiaoliang; Yi, Shijuan; Wang, Chenggong; Wang, Congcong; Gao, Yongli

    2014-04-01

    The electronic structure evolution and energy level alignment have been investigated at interfaces comprising fullerene (C60)/4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine] (TAPC)/ molybdenum oxide (MoOx)/ indium tin oxide with ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy. With deposition of TAPC upon MoOx, a dipole of 1.58 eV was formed at the TAPC/MoOx interface due to electron transfer from TAPC to MoOx. The highest occupied molecular orbital (HOMO) onset of TAPC was pinned closed to the Fermi level, leading to a p-doped region and thus increasing the carrier concentration at the very interface. The downward band bending and the resulting built-in field in TAPC were favorable for the hole transfer toward the TAPC/MoOx interface. The rigid downward shift of energy levels of TAPC indicated no significant interface chemistry at the interface. With subsequent deposition of C60 on TAPC, a dipole of 0.27 eV was observed at the C60/TAPC heterojunction due to the electron transfer from TAPC to C60. This led to a drop of the HOMO of TAPC near the C60/TAPC interface, and hence further enhanced the band bending in TAPC. The band bending behavior was also observed in C60, similarly creating a built-in field in C60 film and improving the electron transfer away from the C60/TAPC interface. It can be deduced from the interface analysis that a promising maximum open circuit voltage of 1.5 eV is achievable in C60/TAPC-based organic photovoltaic cells.

  2. Indium doped niobium phosphates as intermediate temperature proton conductors

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Anfimova, Tatiana

    2013-01-01

    contributed to the anhydrous proton conductivity. The Nb0.9In0.1 phosphate exhibited a proton conductivity of five times higher than that of the un-doped analog at 250 °C. The conductivity was stabilized at a level of above 0.02 S cm−1 under dry atmosphere at 250 °C during the stability evaluation for 3 days....

  3. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  4. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-06-01

    Full Text Available This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2, indium tin oxide (ITO, and a hybrid layer of SiO2/ITO applied using Radio frequency (RF sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52% exceeded that of cells with a SiO2 antireflective coating (21.92%. Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating.

  5. Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. C. M. Brokken-Zijp

    2011-01-01

    Full Text Available For the first time it is shown that N-doped SnO2 nanoparticles photocatalyze directly the polymerization of the C=C bonds of (methacrylates under visible light illumination. These radical polymerizations also occur when these particles are doped with Sb and when the surfaces of these particles are grafted with methacrylate (MPS groups. During irradiation with visible or UV light the position and/or intensity of the plasmon band absorption of these nanoparticles are always changed, suggesting that the polymerization starts by the transfer of an electron from the conduction band of the particle to the (methacrylate C=C bond. By using illumination wavelengths with a very narrow band width we determined the influence of the incident wavelength of light, the Sb- and N-doping, and the methacrylate (MPS surface grafting on the quantum efficiencies for the initiating radical formation (Φ and on the polymer and particle network formation. The results are explained by describing the effects of Sb-doping, N-doping, and/or methacrylate surface grafting on the band gaps, energy level distributions, and surface group reactivities of these nanoparticles. N-doped (MPS grafted SnO2 (Sb ≥ 0% nanoparticles are new attractive photocatalysts under visible as well as UV illumination.

  6. Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications

    International Nuclear Information System (INIS)

    Krautz, D; Cheylan, S; Ghosh, D S; Pruneri, V

    2009-01-01

    We report on the possibility of using a thin Ni layer, instead of ITO, as a semitransparent hole-injecting electrode for bottom polymer LEDs. Thin metal layers of Ni were deposited by a sputtering technique and their electrical and optical properties with different deposition times have been investigated. Both square resistance and transmittance were seen to decrease with deposition time (thickness). The films showed a transmittance of around 30-40%, which is quite low compared to the 86% of ITO, while their square resistance was higher than that of ITO. Nevertheless, diodes based on a blue emitting polymer, polyfluorene (PFO), showed the same efficiency for either ITO or thin Ni electrodes, although the Ni transmittance is around 2.5 times lower than the ITO transmittance. Such preliminary results definitively suggest that indium-free organic devices can be achieved.

  7. Electrical, optical and photoelectric properties of cadmium sulfide monocrystals doped by indium and irradiated by electrons

    CERN Document Server

    Davidyuk, G E; Manzhara, V S

    2002-01-01

    One studied effect of irradiation by E = 1.2 MeV energy and PHI = 2 x 10 sup 1 sup 7 cm sup - sup 2 dose fast electrons on electrical, optical and photoelectrical CdS single-crystals doped by In. On the basis of analysis of the experimental results one makes conclusions about decomposition and, in this case, indium atoms occurring in cation sublattice nodes are knocked out by cadmium atoms. In CdS:In irradiated specimens one detected new centres of slow recombination with occurrence of maximums of photoconductivity optical suppression within lambda sub M sub sub 1 = 0.75 mu m and lambda sub M sub sub 2 = 1.03 mu m range. It is assumed that complexes containing cadmium vacancies and indium atoms are responsible for recombination new centres

  8. Improving crystallization and electron mobility of indium tin oxide by carbon dioxide and hydrogen dual-step plasma treatment

    Science.gov (United States)

    Wang, Fengyou; Du, Rongchi; Ren, Qianshang; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-12-01

    Obtaining high conductivity indium tin oxide (ITO) films simultaneously with a "soft-deposited" (low temperature, low ions bombardment) and cost-efficient deposition process are critical aspect for versatile photo-electronic devices application. Usually, the low-cost "soft-deposited" process could be achieved via evaporation technique, but with scarifying the conductivity of the films. Here, we show a CO2 and H2 two-step plasma (TSP) post-treatment applied to ITO films prepared by reactive thermal evaporation (RTE), allows to meet the special trade-off between the deposition techniques and the electrical properties. Upon treatment, an increase in electron concentration and electron mobility is observed, which subsequently resulting a low sheet resistivity. The mobility reaches high values of 80.9 cm2/Vs for the TSP treated ∼100 nm thickness samples. From a combination of X-ray photoelectron spectroscopy and opto-electronic measurements, it demonstrated that: during the TSP process, the first-step CO2 plasma treatment could promote the crystallinity of the RTE ITO films. While the electron traps density at grain boundaries of polycrystalline RTE ITO films could be passivated by hydrogen atom during the second-step H2 plasma treatment. These results inspired that the TSP treatment process has significant application prospects owing to the outstanding electrical properties enhancement for "soft-deposited" RTE ITO films.

  9. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    International Nuclear Information System (INIS)

    Chen, Po-Hsun; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui; Zheng, Hao-Xuan; Chen, Min-Chen; Sze, Simon M.

    2017-01-01

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O_2 inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O_2 plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O_2 plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O_2 plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O_2 plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O_2 plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  10. Effects of a base coating used for electropolymerization of poly(3,4-ethylenedioxythiophene) on indium tin oxide electrode

    International Nuclear Information System (INIS)

    Wang, X.J.; Wong, K.Y.

    2006-01-01

    Electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) films on indium tin oxide (ITO), using a very thin PEDOT:poly(styrene sulfonate) (PEDOT:PSS) film as a base coating, was carried out in a non-aqueous solution containing the monomer, an electrolyte and propylene carbonate by a two-electrode system. For comparison, PEDOT film electrodeposited on bare ITO substrate under the same condition was also presented. The PEDOT films deposited on these two substrates were characterized by scanning electron microscopy, energy disperse X-ray spectroscopy and Raman spectroscopy. The results indicate that the PEDOT film electrodeposited on bare ITO was not uniform, while the PEDOT film electrodeposited on PEDOT:PSS/ITO has better uniformity. The compositions of the different regions of PEDOT film electrodeposited on bare ITO and PEDOT:PSS/ITO were studied and discussed. Electrochromic devices (ECDs) based on PEDOT films electrodeposited on bare ITO and PEDOT:PSS/ITO were fabricated and characterized by UV-Vis-NIR spectrophotometric study. The results show that the display contrast of the ECD based on PEDOT film electrodeposited on PEDOT:PSS/ITO was improved over that on a bare ITO substrate

  11. The effect of the atmosphere on the optical properties of as-synthesized colloidal indium tin oxide

    International Nuclear Information System (INIS)

    Capozzi, Charles J; Joshi, Salil; Gerhardt, Rosario A; Ivanov, Ilia N

    2009-01-01

    The optical properties of indium tin oxide (ITO) have often been explored when it is in the form of deposited thin films. In this study, a colloidal chemistry approach is taken to investigate the influence of the atmosphere on the optical properties of ITO nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), absorption spectroscopy and photoluminescence (PL) were used to characterize colloidal ITO samples, synthesized under aerated and inert conditions, with the same composition. In both cases, the ITO can be completely dispersed in a non-polar solvent without any evidence of agglomeration. For the ITO made in air, the nanoparticle-solvent solution exhibits a pale green color, and XRD and TEM indicate an average particle size of ∼7 nm and small shrinkage in the lattice structure. When the ITO is synthesized under inert conditions, the solution turns blue, and XRD and TEM indicate an average particle size of ∼8 nm and even less strain in the lattice than for the ITO synthesized under aerated conditions. The change in color and lattice strain is attributed to the difference in oxygen vacancy concentration for the ITO nanoparticles synthesized under aerated and inert conditions, which exhibit different optical band gap values of 3.89 eV and 4.05 eV, respectively. Our work here shows that thin film deposition or sintering steps may not be required for studying the optical properties of as-synthesized ITO nanoparticles.

  12. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    Science.gov (United States)

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  13. Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination

    International Nuclear Information System (INIS)

    Chaney, John A.; Koh, Sharon E.; Dulcey, Charles S.; Pehrsson, Pehr E.

    2003-01-01

    The surface chemistry of carbon removal from indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS), and high-resolution energy loss spectroscopy (HR-ELS). A vibrating Kelvin probe (KP) was used to monitor the work function (PHI) of ITO after cleaning, either by base-cleaning with alcoholic-KOH or by O 2 plasma-cleaning. Base-cleaning lowered PHI ITO as seen in the KP analysis, whereas plasma-cleaning slightly increased PHI ITO by an oxidative process. The degree of PHI ITO depression by base-cleaning was seen to depend on the initial surface, but the PHI depression itself was nonreductive to the ITO, as seen in the In-MNN AES lineshape. The nonreductive depression of PHI ITO by base-cleaning was further supported by a constant charge carrier density, as estimated from the HR-ELS. Base-cleaning was slightly more effective than the oxygen plasma in removing carbon from the ITO surface. However, base-cleaning preferentially removed graphitic carbon while leaving significant hydrocarbon contaminants, as determined by vibrational analysis with HREELS. All other ITO surfaces retained a significant carbon and hydrocarbon contamination as evidenced by AES and HREELS. There was little evidence of the formation of surface hydroxyl species, as expected for such an inherently contaminated surface as ITO

  14. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    Science.gov (United States)

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  16. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    Science.gov (United States)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium.

    Science.gov (United States)

    Hicks, Jacqueline M; Wong, Zhi Yi; Scurr, David J; Silman, Nigel; Jackson, Simon K; Mendes, Paula M; Aylott, Jonathan W; Rawson, Frankie J

    2017-05-23

    Our ability to tailor the electronic properties of surfaces by nanomodification is paramount for various applications, including development of sensing, fuel cell, and solar technologies. Moreover, in order to improve the rational design of conducting surfaces, an improved understanding of structure/function relationships of nanomodifications and effect they have on the underlying electronic properties is required. Herein, we report on the tuning and optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The structure/function relationship of these nanomodifications on the electronic properties of ITO was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and physical characterization techniques which has led to new mechanistic insights into the in situ grafting of diazonium. We discovered that the connecting bond is a nitro group which is covalently linked to a carbon on the aryl amine. The increased understanding of the surface chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces important for development of various electronic applications.

  18. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    Science.gov (United States)

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  19. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe.

    Science.gov (United States)

    Bogdanowicz, Robert; Niedziałkowski, Paweł; Sobaszek, Michał; Burnat, Dariusz; Białobrzeska, Wioleta; Cebula, Zofia; Sezemsky, Petr; Koba, Marcin; Stranak, Vitezslav; Ossowski, Tadeusz; Śmietana, Mateusz

    2018-04-27

    In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be simultaneously applied as an electrode in an electrochemical setup. The ITO-LMR electrode allows for optical monitoring of changes occurring at the electrode during electrochemical processing. The studies have shown that the ITO-LMR sensor’s spectral response strongly depends on electrochemical modification of its surface by ketoprofen. The effect can be applied for real-time detection of ketoprofen. The obtained sensitivities reached over 1400 nm/M (nm·mg −1 ·L) and 16,400 a.u./M (a.u.·mg −1 ·L) for resonance wavelength and transmission shifts, respectively. The proposed method is a valuable alternative for the analysis of ketoprofen within the concentration range of 0.25⁻250 μg mL −1 , and allows for its determination at therapeutic and toxic levels. The proposed novel sensing approach provides a promising strategy for both optical and electrochemical detection of electrochemical modifications of ITO or its surface by various compounds.

  20. Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Beltran, A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Centro de Innovación Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Universidad Autónoma de Nuevo León, PIIT-Monterrey C.P. 66600 Apodaca, N.L. (Mexico); Dominguez, C.; Bahena-Uribe, D. [Centro Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mor. (Mexico); Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Centro de Innovación Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Universidad Autónoma de Nuevo León, PIIT-Monterrey C.P. 66600 Apodaca, N.L. (Mexico); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2014-09-01

    The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. - Highlights: • Early-stage polymerization polypyrrole particles on indium tin oxide (ITO). • Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO. • Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film. • Non-electroactive additives strongly influence polypyrrole nucleation on ITO.

  1. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Karczewski, Jakub [Solid State Physics Department, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2015-12-01

    Graphical abstract: - Highlights: • ITO electrodes modified by NP arrays prepared by laser dewetting of thin Au films. • Enhanced activity, linear response and high sensitivity towards glucose. • Promising biosensor material AuNP-modified ITO of improved performance. - Abstract: The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40–120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  2. Preparation of indium tin oxide anodes using energy filtrating technique for top-emitting organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyong, Wang [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036 (China); Ning, Yao, E-mail: yaoning@zzu.edu.cn [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Changbao, Han; Xing, Hu [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2014-01-01

    Indium tin oxide (ITO) anodes were deposited by an improved magnetron sputtering technique (energy filtrating magnetron sputtering technique, EFMS) for top-emitting organic light-emitting diodes (TOLEDs). The phases, surface morphologies and optical properties were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer. The sheet resistances were measured by the sheet resistance meter. The electrical properties were tested by the Hall measurement system. The electro-optic characteristics were examined by a special home-made measurement system. Results indicated that ITO anode deposited by EFMS had a more uniform and smoother surface with smaller grains. ITO film was prepared with the electrical property of the lowest resistivity (4.56 × 10{sup −4} Ω cm), highest carrier density (6.48 × 10{sup 20} cm{sup −3}) and highest carrier mobility (21.1 cm{sup 2}/V/s). The average transmissivity of the ITO film was 87.0% in the wavelength range of 400–800 nm. The TOLEDs based on this ITO anode had a lower turn-on voltage of 2 V (>0.02 mA/cm{sup 2}), higher current density of 58.4 mA/cm{sup 2} at 30 V, higher current efficiency of 1.374 cd/A and higher luminous efficiency of 0.175 lm/W. The possible mechanism of the technique was discussed in detail.

  3. Simple and robust near-infrared spectroscopic monitoring of indium-tin-oxide (ITO) etching solution using Teflon tubing

    International Nuclear Information System (INIS)

    Nah, Sanghee; Ryu, Kyungtag; Cho, Soohwa; Chung, Hoeil; Namkung, Hankyu

    2006-01-01

    The ability to monitor etching solutions using a spectroscopy directly through existing Teflon lines in electronic industries is highly beneficial and offers many advantages. A monitoring method was developed using near-infrared (NIR) measurements with Teflon tubing as a sample container for the quantification of components in the indium-tin-oxide (ITO) etching solution composed of hydrochloric acid (HCl), acetic acid (CH 3 COOH) and water. Measurements were reproducible and it was possible to use the same calibration model for different Teflon tubings. Even though partial least squares (PLS) calibration performance was slightly degraded for Teflon cells when compared to quartz cells of the similar pathlength, the calibration data correlated well with reference data. The robustness of Teflon-based NIR measurement was evaluated by predicting the spectra of 10 independent samples that were collected using five different Teflon tubes. Although, two Teflon tubes were visually less transparent than the other three, there was no significant variation in the standard error of predictions (SEPs) among the five Teflon tubes. Calibration accuracy was successfully maintained and highly repeatable prediction results were achieved. This study verifies that a Teflon-based NIR measurement is reliable for the monitoring of etching solutions and it can be successfully integrated into on-line process monitoring

  4. Ultraviolet photoelectron spectroscopy investigation of interface formation in an indium-tin oxide/fluorocarbon/organic semiconductor contact

    International Nuclear Information System (INIS)

    Tong, S.W.; Lau, K.M.; Sun, H.Y.; Fung, M.K.; Lee, C.S.; Lifshitz, Y.; Lee, S.T.

    2006-01-01

    It has been demonstrated that hole-injection in organic light-emitting devices (OLEDs) can be enhanced by inserting a UV-illuminated fluorocarbon (CF x ) layer between indium-tin oxide (ITO) and organic hole-transporting layer (HTL). In this work, the process of interface formation and electronic properties of the ITO/CF x /HTL interface were investigated with ultraviolet photoelectron spectroscopy. It was found that UV-illuminated fluorocarbon layer decreases the hole-injection barrier from ITO to α-napthylphenylbiphenyl diamine (NPB). Energy level diagrams deduced from the ultraviolet photoelectron spectroscopy (UPS) spectra show that the hole-injection barrier in ITO/UV-treated CF x /NPB is the smallest (0.46 eV), compared to that in the ITO/untreated CF x /NPB (0.60 eV) and the standard ITO/NPB interface (0.68 eV). The improved current density-voltage (I-V) characteristics in the UV-treated CF x -coated ITO contact are consistent with its smallest barrier height

  5. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  6. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  7. Characteristics of Indium Tin Oxide (ITO Nanoparticles Recovered by Lift-off Method from TFT-LCD Panel Scraps

    Directory of Open Access Journals (Sweden)

    Dongchul Choi

    2014-11-01

    Full Text Available In this study, indium-tin-oxide (ITO nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD panel scraps by means of lift-off method. This can be done by dissolving color filter (CF layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222 preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate.

  8. Molecular beam epitaxy of InN layers on Sapphire, GaN and indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Denker, Christian; Landgraf, Boris; Schuhmann, Henning; Malindretos, Joerg; Seibt, Michael; Rizzi, Angela [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Segura-Ruiz, Jaime; Gomez-Gomez, Maribel; Cantarero, Andres [Materials Science Institute, University of Valencia, Paterna (Spain)

    2009-07-01

    Among the group-III nitrides semiconductors, InN is the one with the narrowest gap (0.67 eV), lowest effective electron mass and highest peak drift velocity. It is therefore a very interesting material for several applications, in particular semiconductor solar cells. Furthermore, the high electron affinity makes it suitable also as electrode material for organic solar cells. InN layers were grown by molecular beam epitaxy on MOCVD GaN templates, on bare c-plane sapphire and on polycrystalline indium tin oxide. On all substrates the III-V ratio as well as the substrate temperature was varied. A RHEED analysis of InN growth on GaN showed a relatively sharp transition from N-rich and columnar growth to In-rich growth with droplet formation by increasing the In flux impinging on the surface. The InN layers on single crystalline substrates were characterized by SEM, AFM, XRD, PL and Raman. The InN layers on ITO were mainly analyzed with respect to the surface morphology with SEM. HRTEM in cross section gives insight into the structure of the interface to the ITO substrate.

  9. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  10. A direct method to measure the fracture toughness of indium tin oxide thin films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Chang, Rwei-Ching; Tsai, Fa-Ta; Tu, Chin-Hsiang

    2013-01-01

    This work presents a straightforward method to measure the fracture toughness of thin films deposited on flexible substrates. A 200 nm thick indium tin oxide (ITO) thin film is deposited on a 188 μm thick terephthalate (PET) substrate by a radio frequency magnetron sputtering machine. Using nanoindentation to induce brittle fracture on the ITO thin films, the energy release is calculated from integrating the resulting load–depth curve. An approach that directly measures the fracture toughness of thin films deposited on flexible substrates is proposed. A comparison shows that the results of the proposed method agree well with those of other reports. Furthermore, in order to improve the toughness of the ITO thin films, a copper interlayer is added between the ITO thin film and PET substrate. It shows that the fracture toughness of the ITO thin film deposited on the copper interlayer is higher than that of the one without the interlayer, which agrees well with the critical load tested by micro scratch. Further observations on optical and electric performances are also discussed in this work. - Highlights: • A straightforward method to measure the film's toughness • Directly using the load-depth curve of nanoindentation • The toughness is consistent with the critical load tested by micro scratch. • Interlayers can improve the film's toughness. • Optical and electric performances are also discussed

  11. Surface morphology modelling for the resistivity analysis of low temperature sputtered indium tin oxide thin films on polymer substrates

    International Nuclear Information System (INIS)

    Yin Xuesong; Tang Wu; Weng Xiaolong; Deng Longjiang

    2009-01-01

    Amorphous or weakly crystalline indium tin oxide (ITO) thin film samples have been prepared on polymethylmethacrylate and polyethylene terephthalate substrates by RF-magnetron sputtering at a low substrate temperature. The surface morphological and electrical properties of the ITO layers were measured by atomic force microscopy (AFM) and a standard four-point probe measurement. The effect of surface morphology on the resistivity of ITO thin films was studied, which presented some different variations from crystalline films. Then, a simplified film system model, including the substrate, continuous ITO layer and ITO surface grain, was proposed to deal with these correlations. Based on this thin film model and the AFM images, a quadratic potential was introduced to simulate the characteristics of the ITO surface morphology, and the classical Kronig-Penney model, the semiconductor electrical theory and the modified Neugebauer-Webb model were used to expound the detailed experimental results. The modelling equation was highly in accord with the experimental variations of the resistivity on the characteristics of the surface morphology.

  12. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    International Nuclear Information System (INIS)

    Torres, V.; Beruete, M.; Sánchez, P.; Del Villar, I.

    2016-01-01

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide

  13. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  14. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, V. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Beruete, M. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Sánchez, P. [Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain); Del Villar, I. [Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain)

    2016-01-25

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide.

  15. Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes.

    Science.gov (United States)

    Ho, Sut Kam; Garcia, Dario Machado

    2017-04-01

    A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm 2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

  16. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  17. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  18. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  19. FeNi3/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    International Nuclear Information System (INIS)

    Fu, Li-Shun; Jiang, Jian-Tang; Zhen, Liang; Shao, Wen-Zhu

    2013-01-01

    Highlights: ► Electrical conductivity and infrared emissivity can be controlled by ITO content. ► The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. ► The permittivity in microwave band can be controlled by the electrical conductivity. ► EMA performance is significantly influenced by the content of ITO phase. ► FeNi 3 /ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi 3 /indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol–gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi 3 /ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi 3 /ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  20. FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li-Shun; Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Shao, Wen-Zhu [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer Electrical conductivity and infrared emissivity can be controlled by ITO content. Black-Right-Pointing-Pointer The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. Black-Right-Pointing-Pointer The permittivity in microwave band can be controlled by the electrical conductivity. Black-Right-Pointing-Pointer EMA performance is significantly influenced by the content of ITO phase. Black-Right-Pointing-Pointer FeNi{sub 3}/ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol-gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi{sub 3}/ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi{sub 3}/ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  1. Influence of indium-tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers

    International Nuclear Information System (INIS)

    Cerruti, Marta; Rhodes, Crissy; Losego, Mark; Efremenko, Alina; Maria, Jon-Paul; Fischer, Daniel; Franzen, Stefan; Genzer, Jan

    2007-01-01

    This paper analyses the variability of self-assembled monolayers (SAMs) formation on ITO depending on the substrate surface features. In particular, we report on the formation of carboxylic acid- and thiol-based SAMs on two lots of commercially prepared indium-tin oxide (ITO) thin films. Contact angle measurements, electrochemical experiments, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy showed that the quality of monolayers formed differed substantially between the two ITO batches. Only one of the two ITO substrates was capable of forming well-organized thiol- and carboxylic acid-based SAMs. In order to rationalize these observations, atomic force microscopy and x-ray diffraction analyses were carried out, and SAMs were prepared on ITO substrates fabricated by sputtering in our laboratories. An attempt was made to influence the film microstructure and surface morphology by varying substrate temperatures during ITO deposition. Good-quality thiol and carboxylic acid SAMs were obtained on one of the ITO substrates prepared in-house. While our characterization could not single out conclusively one specific parameter in ITO surface structure that could be responsible for good SAMs formation, we could point out homogeneous surface morphology as a relevant factor for the quality of the SAMs. Evidence was also found for ITO crystallographic orientation to be a parameter influencing SAMs organization

  2. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  3. Antimony Doped Tin Oxides and Their Composites with Tin pyrophosphates as Catalyst Supports for Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...... based on tin pyrophosphates as the catalyst support. The materials showed an overall conductivity of 0.57 S cm−1 at 130 °C under the water vapor atmosphere with a contribution of the proton conduction. Using this composite support, iridium oxide nanoparticle catalysts were prepared and characterized...

  4. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    Science.gov (United States)

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (solar cells (PSCs) with high efficiency.

  5. Influence of the sputtering system's vacuum level on the properties of indium tin oxide films

    International Nuclear Information System (INIS)

    Zebaze Kana, M.G.; Centurioni, E.; Iencinella, D.; Summonte, C.

    2006-01-01

    The influence of the chamber residual pressure level in the radio frequency magnetron sputtering process on the electrical, optical and structural properties of indium thin oxide (ITO) is investigated. Several ITO films were deposited at various residual pressure levels on Corning glass using In 2 O 3 :SnO 2 target in argon atmosphere and without the addition of oxygen partial pressure. It is found that a very good vacuum is associated to metallic films and results in less transparent ITO films, with some powder formation on the surface. On the contrary highly transparent and conducting films are produced at a higher residual pressure. The best deposition conditions are addressed for ITO films as transparent conducting oxide layers in silicon heterojunction solar cells. Using the optimal vacuum level for ITO fabrication, a maximum short circuit current of 36.6 mA/cm 2 and a fill-factor of 0.78 are obtained for solar cells on textured substrates with a device conversion efficiency of 16.2%

  6. Measurement of surface recombination velocity on heavily doped indium phosphide

    International Nuclear Information System (INIS)

    Jenkins, P.; Ghalla-Goradia, M.; Faur, M.; Bailey, S.

    1990-01-01

    The controversy surrounding the published low values of surface recombination velocity (SRV) in n-InP, solidified in recent years when modeling of existing n/p InP solar cells revealed that the front surface SRV had to be higher than 1 x 10 6 cm/sec in order to justify the poor blue response that is characteristic of all n/p InP solar cells. In this paper, SRV on heavily doped (>10 18 cm -3 )n-type and p-type InP is measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of ∼10 5 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of >10 6 cm/sec

  7. UV Irradiation Effects in Pure and Tin-Doped Amorphous AsSe Films

    Science.gov (United States)

    2001-06-01

    during irradiation did not exceed 40 ’C. 304 M. Popescu, M. lovu, W. Hloyer, 0. Shpotyuk , F. Sava, A. L6rinczi 3. Results Pure and tin-doped AsSe filns...9000 ,- ,, ---, ,, - ,, - 9000 .... ... .-.. .. r111h) (222) Illuminated 8000 8000 - 7000 7000 lie (220) 6000 6000 5000 O 5000 4000 - 4000 3000 .L...Popescu, M. lovu, W. Hoyer, 0. Shpotyuk , F. Sava, A. L6rinczi the effective thickness of the layers and, possibly, the correlation length. The photo

  8. Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    K. Durga Venkata Prasad

    2016-07-01

    Full Text Available The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for basic research and for technological applications alike. Oxides span a wide range of electrical properties from wide band-gap insulators to metallic and superconducting. Tin oxide belongs to a class of materials called Transparent Conducting Oxides (TCO which constitutes an important component for optoelectronic applications. Co2+ doped tin oxide thin films were prepared by chemical spray pyrolysis synthesis and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Co2+ ions in the host lattice and the luminescent properties of the prepared sample. Powder XRD data revealed that the crystal structure belongs to tetragonal rutile phase and its lattice cell parameters are evaluated. The average crystallite size was estimated to be 26 nm. The morphology of prepared sample was analyzed by using SEM and TEM studies. Functional groups of the prepared sample were observed in the FT-IR spectrum. Optical absorption and EPR studies have shown that on doping, Co2+ ions enter in the host lattice as octahedral site symmetry. PL studies of Co2+ doped SnO2 thin films exhibit blue and yellow emission bands. CIE chromaticity coordinates were also calculated from emission spectrum of Co2+ doped SnO2 thin films.

  9. Charge mobility increase in indium-molybdenum oxide thin films by hydrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, S.; Álvarez-Fraga, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Salas, E. [Spline CRG, ESRF, 38043 Grenoble (France); Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, 28911 Madrid (Spain); Rodriguez-Palomo, A.; Andrés, A. de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain)

    2016-11-15

    Highlights: • The charge mobility in IMO films is correlated with its hydrogen content. • The mobility behavior is explained by the presence of OH{sup −} groups in IMO films. • Mo{sup 4+} is identified in transparent conductive IMO by X-ray absorption spectroscopy. - Abstract: The increase of charge mobility in transparent conductive indium molybdenum oxide (IMO) films is correlated with the presence of hydroxyl groups. The introduction of H{sub 2} in the chamber during sputtering deposition compensates the excess charge introduced by cationic Mo doping of indium oxide either by oxygen or hydroxyl interstitials. Films present a linear increase of carrier mobility correlated with H{sub 2} content only after vacuum annealing. This behavior is explained because vacuum annealing favors the removal of oxygen interstitials over that of hydroxyl groups. Since hydroxyl groups offer lower effective charge and smaller lattice distortions than those associated with interstitial oxygen, this compensation mechanism offers the conditions for the observed increase in mobility. Additionally, the short-range order around molybdenum is evaluated by extended X-ray absorption fine structure (EXAFS) spectroscopy, showing that Mo{sup 4+} is placed at the In site of the indium oxide.

  10. Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Chang-Sam; Kwon, Soon-Ho; Yoon, Jong-Won

    2014-01-01

    Graphical abstract: -- Highlights: • Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method. • The surface-modified layer was observed at a scale of several nanometers on LiMn 2 O 4 . • The ITO-coated LiMn 2 O 4 shows better capacity retention at 30 and 55 °C than pristine LiMn 2 O 4 . -- Abstract: Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method in an attempt to improve its electrochemical performance at elevated temperatures. The surface-modified LiMn 2 O 4 is characterized via XRD, FE-SEM, TEM, Auger electron spectroscopy (AES) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The surface layer modified by substitution with indium was observed at a scale of several nanometers near the surface on LiMn 2 O 4 . The concentration of ITO for electrochemical performance was varied from 0.3 wt% to 0.8 wt%. The 0.5 wt% ITO coated LiMn 2 O 4 showed the best electrochemical performance. This enhancement in electrochemical performance is mainly attributed to the effect of the surface layer modified through ITO, which could suppress Mn dissolution and reduce the charge transfer resistance at the solid electrolyte interface

  11. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  12. Investigation of space-occupying lesions in the liver with technetium-99m tin colloid and indium-113m-chloride

    International Nuclear Information System (INIS)

    Nelson, M.J.; Klopper, J.F.

    1985-01-01

    Liver scanning with radiocolloids is an important method to determine the presence, the position and the size of space-occupying lesions in the liver. Unfortunately, this information is nonspecific and it is not possible to distinguish between tumours, abscesses or cysts. Thirty-six patients in whom a definite diagnosis of hepatoma, amoebic liver abscess or echinococcus cyst had been made were examined with technetium-99m tin colloid and indium-113m chloride. The amoebic liver abscesses were avascular, showed a hyperaemic area surrounding the abscess and appeared smaller on the indium than on the technetium scan. The hepatomas showed greater vascularity and absence of the hyperaemic area. Cysts were avascular, did not show a hyperaemic rim and the size was equal on both scans. The experience of the observers had an influence on the accuracy of interpretation of the scans; experienced observers made a correct diagnosis in 73% of cases. It is suggested that simultaneous technetium-99m tin colloid and indium 113m-chloride scans provide additional specificity in the differential diagnosis between hepatoma, amoebic liver abscess and echinococcus cysts

  13. Investigation of space-occupying lesions in the liver with technetium-99m tin colloid and indium-113m-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J. (Provincial Hospital, Port Elizabeth (South Africa). Dept. of Nuclear Medicine); Klopper, J.F. (Stellenbosch Univ. (South Africa). Dept. of Nuclear Medicine)

    1985-01-26

    Liver scanning with radiocolloids is an important method to determine the presence, the position and the size of space-occupying lesions in the liver. Unfortunately, this information is nonspecific and it is not possible to distinguish between tumours, abscesses or cysts. Thirty-six patients in whom a definite diagnosis of hepatoma, amoebic liver abscess or echinococcus cyst had been made were examined with technetium-99m tin colloid and indium-113m chloride. The amoebic liver abscesses were avascular, showed a hyperaemic area surrounding the abscess and appeared smaller on the indium than on the technetium scan. The hepatomas showed greater vascularity and absence of the hyperaemic area. Cysts were avascular, did not show a hyperaemic rim and the size was equal on both scans. The experience of the observers had an influence on the accuracy of interpretation of the scans; experienced observers made a correct diagnosis in 73% of cases. It is suggested that simultaneous technetium-99m tin colloid and indium 113m-chloride scans provide additional specificity in the differential diagnosis between hepatoma, amoebic liver abscess and echinococcus cysts.

  14. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Jahwarhar Izuan Abdul [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry and Biology, Centre for Defense Foundation Studies, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yusof, Nor Azah, E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Jaafar [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, Uda [Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Hajian, Reza, E-mail: rezahajian@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization.

  15. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  16. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    Science.gov (United States)

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  17. Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Yusuke Ayato

    2013-12-01

    Full Text Available A biofuel cell (BFC cathode has been developed based on direct electron transfer (DET of hemoglobin (Hb molecules with an indium-tin-oxide (ITO electrode and their electrocatalysis for reduction of hydrogen peroxide (H2O2. In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS solutions containing and not containing Hb. In half-cell measurements, the reduction current of H2O2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V versus Ag|AgCl|KCl(satd. in the PBS solution. The practical open-circuit voltage (OCV on BFCs utilizing H2O2 reduction at the Hb-ITO cathode with a hydrogen (H2 oxidation anode at a platinum (Pt electrode was expected to be at least 0.74 V from the theoretical H2 oxidation potential of −0.64 V versus Ag|AgCl|KCl(satd. in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 µW cm−2. The maximum power per single cell was recorded at 21.5 µW by using the ITO-coated porous glass.

  18. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  19. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms.

    Science.gov (United States)

    Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe

    2017-08-15

    Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  1. Control of indium tin oxide anode work function modified using Langmuir-Blodgett monolayer for high-efficiency organic photovoltaics

    Directory of Open Access Journals (Sweden)

    Yuya Yokokura

    2017-08-01

    Full Text Available The use of Langmuir-Blodgett (LB monolayers to modify the indium tin oxide (ITO work function and thus improve the performance of zinc phthalocyanine (ZnPc/fullerene (C60-based and boron subphthalocyanine chloride (SubPc/C60-based small molecule organic photovoltaic devices (OPVs was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH218COOH was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc values of the OPVs with the three- and five-layer inserts (1.78 mA·cm−2 and 0.61 mA·cm−2, respectively were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA·cm−2 was comparable to that of the OPV without any insert (3.14 mA·cm-2. The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA, which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.

  2. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  3. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  4. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    International Nuclear Information System (INIS)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-01-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization

  5. Oxygen vacancy and Moessbauer parameters of Fe doped tin oxides

    International Nuclear Information System (INIS)

    Nomura, K.; Mudarra Navarro, A.M.; Errico, L.; Rodriguez Torres, C.E.

    2013-01-01

    It is not clear what the local environment of Fe ions included in rutile structure is. In order to clarify this point, Moessbauer parameters of 57 Fe doped SnO 2 are compared with the results of ab initio calculation taking into account different configurations of iron and oxygen vacancy in the rutile structure of SnO 2 . Calculations were performed using the LAPW+lo method (Wien2k); RMT x Kmax = 7, A mesh of 50 k-points at IBZ, 2x2x2 super cell of SnO 2 . (J.P.N.)

  6. Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes

    Directory of Open Access Journals (Sweden)

    Staffan Sandin

    2017-03-01

    Full Text Available The influence of precursor salts in the synthesis of nickel and antimony doped tin oxide (NATO electrodes using thermal decomposition from dissolved chloride salts was investigated. The salts investigated were SnCl4×5H2O, SnCl2×2H2O, SbCl3 and NiCl2×6H2O. It was shown that the use of SnCl4×5H20 in the preparation process leads to a tin loss of more than 85 %. The loss of Sb can be as high as 90 % while no indications of Ni loss was observed. As a consequence, the concentration of Ni in the NATO coating will be much higher than in the precursor solution. This high and uncontrolled loss of precursors during the preparation process will lead to an unpredictable composition in the NATO coating and will have negative economic and environmental effects. It was found that using SnCl2×2H20 instead of SnCl4×5H2O can reduce the tin loss to less than 50 %. This tin loss occurs at higher temperatures than when using SnCl4×5H2O where the tin loss occurs from 56 – 147 °C causing the composition to change both during the drying (80 – 110 °C and calcination (460 -550 °C steps of the preparation process. Electrodes coated with NATO based on the two different tin salts were investigated for morphology, composition, structure, and ozone electrocatalytic properties.

  7. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  9. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    International Nuclear Information System (INIS)

    Li, Yuan-Qing; Wang, Jian-Lei; Fu, Shao-Yun; Mei, Shi-Gang; Zhang, Jian-Min; Yong, Kang

    2010-01-01

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 o C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO 2 nanoparticles is reduced by more than three orders compared with the pure SnO 2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In 2 O 3 .

  10. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  11. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  12. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films: role of oxygen

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Barik, U.K.

    2006-01-01

    Silver-doped indium oxide thin films have been prepared on glass and quartz substrates at room temperature (300 K) by a reactive dc magnetron sputtering technique using an alloy target of pure indium and silver (80:20 at. %). During sputtering, the oxygen flow rates are varied in the range 0.00-2.86 sccm keeping the magnetron power constant at 40 W. The resistivity of these films is in the range 10 0 -10 -3 Ωcm and they show a negative temperature coefficient of resistivity. The films exhibit p-type conductivity at an oxygen flow rate of 1.71 sccm. The work function of these silver-indium oxide films has been measured by a Kelvin probe technique. The refractive index of the films (at 632.8 nm) varies in the range 1.13-1.20. Silver doping in indium oxide narrows the band gap of indium oxide (3.75 eV). (orig.)

  13. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A; Barik, U K [Indian Institute of Technology Madras, Semiconductor Physics Laboratory, Department of Physics, Chennai (India)

    2006-07-15

    Silver-doped indium oxide thin films have been prepared on glass and quartz substrates at room temperature (300 K) by a reactive dc magnetron sputtering technique using an alloy target of pure indium and silver (80:20 at. %). During sputtering, the oxygen flow rates are varied in the range 0.00-2.86 sccm keeping the magnetron power constant at 40 W. The resistivity of these films is in the range 10{sup 0}-10{sup -3} {omega}cm and they show a negative temperature coefficient of resistivity. The films exhibit p-type conductivity at an oxygen flow rate of 1.71 sccm. The work function of these silver-indium oxide films has been measured by a Kelvin probe technique. The refractive index of the films (at 632.8 nm) varies in the range 1.13-1.20. Silver doping in indium oxide narrows the band gap of indium oxide (3.75 eV). (orig.)

  14. Electrochemically reduced graphene–gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol

    International Nuclear Information System (INIS)

    Dharuman, Venkataraman; Hahn, Jong Hoon; Jayakumar, Kumarasamy; Teng, Wei

    2013-01-01

    Highlights: •Label free immunosensing of estradiol is demonstrated using graphene–AuNP composite fabricated on ITO transducer. •Continuous potential cycling reduction method selectively reduces the acid groups of the graphene oxide at pH 6.5. •The AuNP deposition induces change in the graphene orientation on the ITO surface and enhances the charge transport. -- Abstract: Electro reduced graphene and gold nano particle (ErG/AuNP) composite is prepared on indium tin oxide (ITO) surface. Characterization by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Raman spectroscopy (RS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques reveals the formation of vertical and flat oriented ErG films on the ITO. The AuNP deposition changes the flat oriented ErGs into vertical orientation indicated by the FESEM. Coherent interactions between the ITO, ErG and AuNPs are responsible for the discrete formation of vertical oriented hetero structures of ErG–AuNP composite on the ITO. Electrochemical properties are investigated using [Fe(CN) 6 ] 3−/4− and [Ru(NH 3 )] 2+/3+ redox probes using cyclic voltammetry (CV). While the [Fe(CN) 6 ] 3−/4− shows fast reversible behavior, the [Ru(NH 3 )] 2+/3+ reveals very slow charge transport on both ErG and ErG/AuNP films indicating the multi and compact graphene layer posses positive charge at pH 6.5 used for preparing these composites. Immuno sensing of breast cancer inducing hormone 17β-estradiol (E2) is demonstrated in presence of [Fe(CN) 6 ] 3−/4− . Estrone (E1) and estriol (E3) antigens are used as the controls. The near vertical immobilization of anti-estradiol-antibody enhances the lowest detection limit of 0.1 fmol and dynamic range of 1 × 10 −3 –0.1 × 10 −12 M without any signal amplifiers. These results prove that the acid group of the GO is reduced selectively in controlled way by simple potential

  15. Ultrabroadband terahertz characterization of highly doped ZnO and ITO

    DEFF Research Database (Denmark)

    Wang, Tianwu; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    The broadband complex conductivities of transparent conducting oxides (TCO), namely, aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) and tin-doped indium oxide (ITO), were investigated by using THz-TDS from 0.5 to 18 THz. The complex conductivities were accurately calculated using...

  16. Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-02-01

    Full Text Available A series of In1-xCrxO3 composites, with x ranging from 0.01 to 0.5wt% were prepared by mechanochemically starting from InCl3 and CrO3. Structural and micro structural characteristics of the sample were investigated by XRD, SEM with EDAX. Thick films of pure Indium Oxide and composites were prepared by standard screen printing technique. The gas sensitivity of these thick films was tested for various gases. The pure Indium Oxide thick film (x=0 shows maximum sensitivity to ethanol vapour (80 ppm at 350 oC, but composite-A (x=0.01 thick film shows maximum sensitivity to H2S gas (40 ppm at 250 oC, composite-B (x=0.1 thick film shows higher sensitivity to NH3 gas (80 ppm at 250 oC and composite-C (x=0.5 thick film shows maximum sensitivity to Cl2 gas (80 ppm at 350 oC. A systematic study of gas sensing performance of the sensors indicates the key role played by concentration variation of Cr doped species. The sensitivity, selectivity and recovery time of the sensor were measured and presented.

  17. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  18. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); Schulze, Dirk [TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Ahrens, Carsten [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg (Germany)

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  19. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  20. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  1. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.co [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India); Muruganantham, G.; Sakthivel, B. [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-11-15

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO{sub 2}:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl{sub 2} precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08x10{sup 14} lines/m{sup 2}) when compared with that of the undoped film (13.2x10{sup 14} lines/m{sup 2}), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 OMEGA/square) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl{sub 2} precursor (without using methanol or ethanol).

  2. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    Science.gov (United States)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  3. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  4. Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    A. A. YADAV

    2008-05-01

    Full Text Available Fluorine doped tin oxide (F: SnO2 films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200 direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor.

  5. Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping

    Energy Technology Data Exchange (ETDEWEB)

    Mrabet, C., E-mail: chokri.mrabet@hotmail.com; Boukhachem, A.; Amlouk, M.; Manoubi, T.

    2016-05-05

    This work highlights some physical investigations on tin oxide thin films doped with different lanthanum content (ratio La–to-Sn = 0–3%). Such doped thin films have been successfully grown by spray pyrolysis onto glass substrates at 450 °C. X-ray diffraction (XRD) patterns showed that SnO{sub 2}:La thin films were polycrystalline with tetragonal crystal structure. The preferred orientation of crystallites for undoped SnO{sub 2} thin film was along (110) plane, whereas La-doped ones have rather preferential orientations along (200) direction. Although the grain size values exhibited a decreasing tendency with increasing doping content confirming the role of La as a grain growth inhibitor, dislocation density and microstrain values showed an increasing tendency. Also, Raman spectroscopy shows the bands corresponding to the tetragonal structure for the entire range of La doping. The same technique confirms the presence of La{sub 2}O{sub 3} as secondary phase. Moreover, SEM images showed a porous architecture with presence of big clusters with different sizes and shapes resulting from the agglomeration of small grains round shaped. Photoluminescence spectra of SnO{sub 2}:La thin films exhibit a decrease in the emission intensity with La concentration due to the decrease in grain size. Optical transmittance spectra of the films showed high transparency (∼80%) in the visible region. The dispersion of the refractive index is discussed using both Cauchy model and Wemple–Di-Domenico method. The optical band gap values vary slightly with La doping and were found to be around 3.8 eV. It has been found that La doping causes a pronounced decrease in the sheet resistance by up to two orders of magnitude and allows improving the Haacke's figure of merit (Φ) of the sprayed thin films. Moreover, we have introduced for a first time a new figure of merit for qualifying photo-thermal conversion applications. The obtained high conducting and transparent SnO{sub 2}:La

  6. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Ziad Y. Banyamin

    2014-10-01

    Full Text Available Fluorine doped tin oxide (FTO coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size, optical (transmission, optical band-gap and electrical (resistivity, charge carrier, mobility properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs.

  7. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    Science.gov (United States)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  8. Synthesis and Characterization of Nanocomposites Tin Oxide-Graphene Doping Pd Using Polyol Method

    Directory of Open Access Journals (Sweden)

    Aminuddin Debataraja

    2018-05-01

    Full Text Available This paper report on polyol method for Pd doped tin oxide-graphene nanocomposite thin film. XRD result shows sharp peaks at certain 2θ value and match with tin oxide, graphene, and Pd database. FTIR result shows peak from alcohol chain for –OH strong bonded absorption (3444 cm-1, also there are aldehyde and ketone which are indicated by C=O strong absorption (1751 cm-1. Moreover, alkene is also formed for decreasing symmetry intensity C=C (1616 cm-1, while alkyne is formed at strong deformation absorption at 646 and 613 cm-1. SEM and TEM result show SnO2 particles are attached uniformly on graphene surface layer. The composition for C, O, Sn, and Pd are 33.13, 25.58, 35.35 and 5.94%, respectively. This result indicated that the good composition is formed for Pd doped SnO2-graphene nanocomposite. The nanocomposite is promising materials for toxic gas sensor application at low temperature.

  9. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Mishra, Chinmayee [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Hong, Hyun Seon [Sungshin University, Dept. of Interdisciplinary ECO Science, Seoul, 142-732 (Korea, Republic of); Cho, Sung-Soo [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of)

    2016-05-15

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching

  10. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  11. Visible Light Photoelectrochemical Properties of N-Doped TiO2 Nanorod Arrays from TiN

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    2013-01-01

    Full Text Available N-doped TiO2 nanorod arrays (NRAs were prepared by annealing the TiN nanorod arrays (NRAs which were deposited by using oblique angle deposition (OAD technique. The TiN NRAs were annealed at 330°C for different times (5, 15, 30, 60, and 120 min. The band gaps of annealed TiN NRAs (i.e., N-doped TiO2 NRAs show a significant variance with annealing time, and can be controlled readily by varying annealing time. All of the N-doped TiO2 NRAs exhibit an enhancement in photocurrent intensity in visible light compared with that of pure TiO2 and TiN, and the one annealed for 15 min shows the maximum photocurrent intensity owning to the optimal N dopant concentration. The results show that the N-doped TiO2 NRAs, of which the band gap can be tuned easily, are a very promising material for application in photocatalysis.

  12. Light Output Enhancement of InGaN/GaN Light-Emitting Diodes with Contrasting Indium Tin-Oxide Nanopatterned Structures

    Directory of Open Access Journals (Sweden)

    Sang Hyun Jung

    2013-01-01

    Full Text Available Various nanopatterns on the transparent conducting indium tin oxide (ITO layer are investigated to enhance the light extraction efficiency of the InGaN/GaN light-emitting diodes (LEDs. Triangular, square, and circular nanohole patterns with the square and hexagonal lattices are fabricated on the ITO layer by an electron beam lithography and inductively coupled plasma dry etching processes. The circular hole pattern with a hexagonal geometry is found to be the most effective among the studied structures. Light output intensity measurements reveal that the circular hole nanopatterned ITO LEDs with a hexagonal lattice show up to 35.6% enhancement of output intensity compared to the sample without nanopatterns.

  13. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    International Nuclear Information System (INIS)

    Cho, Chu-Young; Hong, Sang-Hyun; Park, Seong-Ju

    2015-01-01

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles

  14. Quantitative evaluation of high-energy O− ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    International Nuclear Information System (INIS)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-01-01

    O − ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O − energy distribution is measured with spatial dependence. Directional high-energy O − ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O − ion is measured. From absolute evaluation of the heat flux from O − ion, O − particle flux in order of 10 18 m −2 s −1 is evaluated at a distance of 10 cm from the target. Production yield of O − ion on the ITO target by one Ar + ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10 −3 as the minimum value. (paper)

  15. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    Science.gov (United States)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  16. Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode

    International Nuclear Information System (INIS)

    Chung, Choong-Heui; Ko, Young-Wook; Kim, Yong-Hae; Sohn, Choong-Yong; Hye Yong Chu; Ko Park, Sang-Hee; Lee, Jin Ho

    2005-01-01

    Indium tin oxide (ITO) films were prepared by radio frequency magnetron sputtering at room temperature, for use as a cathode in a transparent organic light-emitting diode (TOLED). To minimize damage to the TOLED by the ITO sputtering process, the target-to-substrate distance was increased to 20 cm. An ITO film deposited at the optimum oxygen partial pressure exhibited an electrical resistivity as low as 4.06 x 10 -4 Ω cm and a high optical transmittance of 91% in the visible range. The film was used as a transparent cathode for a TOLED with structure of an ITO coated glass substrate / Naphthylphenyldiamide (60 nm) / Tris-(8-hydroxyquinoline) aluminum (60 nm) / LiF (1 nm) / Al (2 nm) / Ag (8 nm) / ITO cathode (100 nm). A maximum luminance of 37,000 cd/m 2 was obtained. The device performance was comparable to a conventional OLED

  17. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    Science.gov (United States)

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  18. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  19. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2-Ar sputtering gas mixture

    Science.gov (United States)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; de Andrés, A.; Prieto, C.

    2015-07-01

    The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H2 in the gas mixture of H2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H2/(Ar + H2) ratio in the range of 0.3-0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, ΦTC = T10/RS, than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices.

  20. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pourhashemi, A., E-mail: pourhashemi@engr.ucsb.edu; Farrell, R. M.; Cohen, D. A.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  1. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  2. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  3. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  4. Performance optimization of AlGaN-based LEDs by use of ultraviolet-transparent indium tin oxide: Effect of in situ contact treatment

    Science.gov (United States)

    Tu, Wenbin; Chen, Zimin; Zhuo, Yi; Li, Zeqi; Ma, Xuejin; Wang, Gang

    2018-05-01

    Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10‑4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.

  5. Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes

    International Nuclear Information System (INIS)

    Knoche, Krysti L.; Aoyama, Erika; Hasan, Kamrul; Minteer, Shelley D.

    2017-01-01

    Current ammonia production methods are costly and environmentally detrimental. Biological nitrogen fixation has implications for low cost, environmentally friendly ammonia production. It has been shown that electrochemical stimulation increases the ammonia output of the cyanobacteria SA-1 mutant of Anabaena variabilis, but the mechanism of bioelectrocatalysis has been unknown. Here, the mechanism of electrostimulated biological ammonia production is investigated by immobilization of the cyanobacteria with polyvinylamine on indium tin oxide (ITO) coated polyethylene. Cyclic voltammetry is performed in the absence and presence of various substrates and with nitrogenase repressed and nitrogenase derepressed cells to study mechanism, and cyclic voltammetry and UV–vis spectroscopy are used to identify redox moieties in the spent electrolyte. A bioelectrocatalytic signal is observed for nitrogenase derepressed A. variabilis SA-1 in the presence of N_2 and light. Results indicate that the redox protein ferredoxin mediates electron transfer between nitrogenase and the electrode to stimulate ammonia production.

  6. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  7. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    Science.gov (United States)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  8. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  9. Preparation and optical properties of Eu3+-doped tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Wang, Guofeng; Yang, Yiping; Mu, Qiuying; Wang, Yude

    2010-01-01

    Eu 3+ -doped SnO 2 nanoparticles with high surface area were generated within the template of the cationic surfactant (cetyltrimethylammonium bromide, CTAB) micelle assembly by surfactant-mediated method from the hydrous tin chloride (SnCl 4 .5H 2 O) and europium chloride (EuCl 3 .6H 2 O). The as-synthesized product was amorphous and transformed into crystalline calcined at 500 o C for 2 h. DSC-TGA, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the final products. The results showed that the Eu 3+ -doped SnO 2 nanoparticles with diameter of 3-7 nm were obtained. The influences of the molar ratios of Eu 3+ and CTAB on the room temperature photoluminescence (RTPL) properties of Eu 3+ -doped SnO 2 nanoparticles were investigated. The results showed that the contents of Eu 3+ and CTAB had a great influence on the crystallite sizes and RTPL properties of Eu 3+ :SnO 2 nanoparticles. The maximum of the RTPL intensity can be observed at the molar ratio 5.0% Eu 3+ and 10.0% CTAB.

  10. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  11. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  12. Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Liu, Shan; Hua, Xiaoxia; Xia, Fangquan; Tian, Dong; Zhou, Changli

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A novel electrochemical sensing platform by self-assembling of HS-β-cyclodextrin/gold nanoparticles onto indium tin oxide electrode (HS-β-CD/AuNPs/SAM/ITO electrode) surface was constructed. •The proposed electrochemical sensor exhibited high sensitivity for the determination 2,4,6-trichlorophenol which electrochemical activity is very weak. •The newly developed method was successfully applied to quantitatively determine 2,4,6-trichlorophenol in tap water samples. -- ABSTRACT: A new electrochemical sensor for determination of 2,4,6-trichlorophenol (2,4,6-TCP) was fabricated. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. The electrochemical behavior of 2,4,6-TCP was investigated using cyclic voltammetry and differential pulse voltammetry at the HS-β-cyclodextrin (HS-β-CD)/gold nanoparticles (AuNPs) composite modified indium tin oxide (ITO) electrode. The results showed that the current responses of 2,4,6-TCP greatly enhanced due to the high catalytic activity and enrichment capability of composites. The peak current of 2,4,6-TCP increases linearly with the increase of the 2,4,6-TCP concentration from 3.0 × 10 −9 to 2.8 × 10 −8 M, with the limit of detection of 1.0 × 10 −9 . Further more, the modified electrode was successfully applied to detect the level of 2,4,6-TCP in tap water samples with excellent sensitivity

  13. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    International Nuclear Information System (INIS)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-01

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O 2 , H 2 O, and N 2 O as the reactive gases. Experimental results show that the electrical properties of the N 2 O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N 2 O introduction into the deposition process, where the field mobility reach to 30.8 cm 2 V –1 s –1 , which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT

  14. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  15. Doped indium nitride thin film by sol-gel spin coating method

    Science.gov (United States)

    Lee, Hui San; Ng, Sha Shiong; Yam, Fong Kwong

    2017-12-01

    In this study, magnesium doped indium nitride (InN:Mg) thin films grown on silicon (100) substrate were prepared via sol-gel spin coating method followed by nitridation process. A custom-made tube furnace was used to perform the nitridation process. Through this method, the low dissociation temperature issue of InN:Mg thin films can be solved. The deposited InN:Mg thin films were investigated using various techniques. The X-rays diffraction results revealed that two intense diffraction peaks correspond to wurtzite structure InN (100), and InN (101) were observed at 29° and 33.1° respectively. Field emission scanning electron microscopy images showed that the surface of the films exhibits densely packed grains. The elemental composition of the deposited thin films was analyzed using energy dispersive X-rays spectroscopy. The detected atomic percentages for In, N, and Mg were 43.22 %, 3.28 %, and 0.61 % respectively. The Raman spectra showed two Raman- and infrared-active modes of E2 (High) and A1 (LO) of the wurtzite InN. The band gap obtained from the Tauc plot showed around 1.74 eV. Lastly, the average surface roughness measured by AFM was around 0.133 µm.

  16. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  17. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  18. Synthesis of Antimony Doped Tin Oxide and its Use as Electrical Humidity Sensor

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2008-05-01

    Full Text Available In this paper we report the humidity sensitive electrical properties of antimony doped tin oxide. Antimony has been doped within SnO2 in the ratio 1:1. The pellet has been made by hydraulic pressing machine at pressure 30 MPa and room temperature 24°C. This pellet, has been annealed at 200ºC, 300ºC, 400ºC, 500ºC and 600ºC successively for 3 hrs and after each step annealing, observations were taken. It has been observed, as Relative Humidity (%RH increases, there is decrease in the resistivity of pellet for the entire range of RH i.e. from 10% to 95%. Linear decrease is observed for the range of RH from 10% to 85% for annealing temperature 200ºC and 300ºC, from 10% to 60% for annealing temperature 400ºC and from 10% to 30% for annealing temperature 500ºC and 600ºC respectively. Scanning electron micrographs show the surface morphology and X-ray diffraction reveals the nanostructure of sensing element. Results have been found reproducible with hysterisis of ± 2% after 3 months.

  19. On the relaxation rate distribution of the photoionized DX centers in indium doped Cd1-xMnxTe

    International Nuclear Information System (INIS)

    Trzmiel, J; Placzek-Popko, E; Gumienny, Z; Weron, K; Becla, P

    2009-01-01

    It was recently shown that the kinetics of persistent photoconductivity (PPC) build-up in indium doped Cd 1-x Mn x Te are non-exponential and can be described solely by the stretched-exponential function. The non-exponentiality is attributed to the indium related DX centers present in the materials. In order to explain this observation, low temperature photoconductivity build-up was studied for Cd 1-x Mn x Te:In of two different manganese contents. It was found that this type of response has its origin in the heavy-tailed distribution of the DX centers. The distribution was analyzed in terms of photon flux. Increasing photon flux leads to the more dispersive behavior. It was also confirmed that the heavy-tailed distribution is due to the different local configuration of atoms surrounding DX centers in the alloy.

  20. Preparation of high quality spray-deposited fluorine-doped tin oxide thin films using dilute di(n-butyl)tin(iv) diacetate precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Premalal, E.V.A., E-mail: vikum777@gmail.com [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Dematage, N. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Kaneko, S. [SPD Laboratory Inc, Hi-Cube 3-1-7, Wajiyama, Naka-ku, Hamamatsu (Japan); Konno, A. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan)

    2012-09-01

    Fluorine-doped tin oxide (FTO) thin films were prepared, at different substrate temperatures, using dilute precursor solutions of di(n-butyl)tin(iv) diacetate (0.1 M DBTDA) by varying the F{sup -} concentration in the solution. It is noticed that conductivity of FTO film is increasing by increasing the fluorine amount in the solution. Morphology of SEM image reveals that grain size and its distribution are totally affected by the substrate temperature in which conductivity is altered. Among these FTO films, the best film obtained gives an electronic conductivity of 31.85 Multiplication-Sign 10{sup 2} {Omega}{sup -1} cm{sup -1}, sheet resistance of 4.4 {Omega}/{open_square} ({rho} = 3.14 Multiplication-Sign 10{sup -4} {Omega} cm) with over 80% average normal transmittance between the 400 and 800 nm wavelength range. The best FTO film consists of a large distribution of grain sizes from 50 nm to 400 nm range and the optimum conditions used are 0.1 M DBTDA, 0.3 M ammonium fluoride, in a mixture of propan-2-ol and water, at 470 Degree-Sign C substrate temperature. The large distribution of grain sizes can be easily obtained using low DBTDA concentration ({approx} 0.1 M or less) and moderate substrate temperature (470 Degree-Sign C). - Highlights: Black-Right-Pointing-Pointer F-doped SnO{sub 2} (FTO) thin films prepared using di(n-butyl)tin(iv) diacetate (DBTDA). Black-Right-Pointing-Pointer Substrate temperature and DBTDA concentration affect grain size and distribution. Black-Right-Pointing-Pointer Large distribution of grain sizes can optimize the conductivity of FTO film. Black-Right-Pointing-Pointer 0.1 M DBTDA, substrate temperature of 470 Degree-Sign C allows a large grain size distribution.

  1. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  2. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Guo, Di; Zhuo, Ming; Zhang, Xiaoai; Xu, Cheng; Jiang, Jie; Gao, Fu; Wan, Qing; Li, Qiuhong; Wang, Taihong

    2013-01-01

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V T ) and field-effect mobility. The changes of I D –V G curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10 −9 g mL −1 to 5 × 10 −6 g mL −1 with a detection limit of 0.8 × 10 −10 g mL −1 . Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the

  3. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di; Zhuo, Ming [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang, Xiaoai [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Xu, Cheng; Jiang, Jie [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Gao, Fu [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Wan, Qing, E-mail: wanqing7686@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Li, Qiuhong, E-mail: liqiuhong2004@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang, Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2013-04-22

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V{sub T}) and field-effect mobility. The changes of I{sub D}–V{sub G} curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10{sup −9} g mL{sup −1} to 5 × 10{sup −6} g mL{sup −1} with a detection limit of 0.8 × 10{sup −10} g mL{sup −1}. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs

  4. Enhanced pressureless bonding by Tin Doped Silver Paste at low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng-Xiang [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Department of Material Science and Engineering, Virginia Tech (United States); Li, Xin, E-mail: xinli@tju.edu.cn [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Lu, Guo-Quan [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Department of Material Science and Engineering, Virginia Tech (United States); Mei, Yun-Hui [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China)

    2016-04-13

    The nanosilver sintering die-attach technique has been a promising alternative for wide band gap semiconductors. However, it is less preferable in industry because of its high sintering temperature. Recently research has been initiated to develop transient liquid phase sintering (TLPS) solder paste for use in electronics packaging. In this article, in order to lower the sintering temperature of nanosilver paste, we develop a novel tin (up to 10 wt%) doped silver paste (TDSP) and a sintering profile with the highest processing temperature of 235 °C based on TLPS. Sintered TDSP is Ag/Ag{sub 3}Sn/Ag–Sn solid solution composites. The composites have a microstructure of Ag matrix grains reinforced by Ag{sub 3}Sn and Ag–Sn solid solution within the matrix grains. And this microstructure endows the sintered Ag+4%Sn with a pressureless bonding strength of 23 MPa. The improved mechanical properties of sintered TDSP are attributed to second-phase strengthening and solid solution strengthening mechanisms. However, the overmuch formation of brittle Ag{sub 3}Sn phase is the main reason resulting in sharp decrease of bonding strength when the Sn content over 5 wt%. The new TDSP technology is expected to be applicable to a wide range of power semiconductors devices, such as organic devices and printed circuit boards. Furthermore, it provides new strategies for low-temperature sintering.

  5. Optical and Electrical Properties of Tin-Doped Cadmium Oxide Films Prepared by Electron Beam Technique

    Science.gov (United States)

    Ali, H. M.; Mohamed, H. A.; Wakkad, M. M.; Hasaneen, M. F.

    2009-04-01

    Tin-doped cadmium oxide films were deposited by electron beam evaporation technique. The structural, optical and electrical properties of the films were characterized. The X-ray diffraction (XRD) study reveals that the films are polycrystalline in nature. As composition and structure change due to the dopant ratio and annealing temperature, the carrier concentration was varied around 1020 cm-3, and the mobility increased from less than 10 to 45 cm2 V-1 s-1. A transmittance value of ˜83% and a resistivity value of 4.4 ×10-4 Ω cm were achieved for (CdO)0.88(SnO2)0.12 film annealed at 350 °C for 15 min., whereas the maximum value of transmittance ˜93% and a resistivity value of 2.4 ×10-3 Ω cm were obtained at 350 °C for 30 min. The films exhibited direct band-to-band transitions, which corresponded to optical band gaps of 3.1-3.3 eV.

  6. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  7. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  8. Improving the performance of fluorine-doped tin oxide by adding salt

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2015-07-01

    High-performance fluorine-doped tin oxide (FTO) films were fabricated via a spray deposition technique with salt added to the precursor. The addition of NaCl in the precursor improved the conductivity of the FTO films. Increasing the NaCl concentration to its optimal concentration reduced the sheet resistance of the FTO film. The optimal values for the addition of a NaCl were 0.5, 0.5, 1.5, and 1.5 at.% for the FTO film prepared using NH{sub 4}F concentration of 4, 10, 16, and 22 at.%, respectively. The lowest sheet resistance of the salt-added FTO film was 4.8 Ω/□. The FTO film averaged a transmittance of more than 80% in the visible range region (λ = 400–800 nm). XRD diffractograms confirmed that the crystal structure of the as-grown FTO film was that of a tetragonal SnO{sub 2} and that the addition of salt improved its crystallinity. This film has the potential for use as an electrode for dye-sensitized solar cells (DSSCs). - Highlights: • A method to improve FTO performance using the addition of salt • The FTO film exhibited high performance of conductivity and light transmittance. • This technique is low-cost, fast and scales-up easily using simple devices.

  9. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  10. Retardation of grain boundary self-diffusion in nickel doped with antimony and tin

    International Nuclear Information System (INIS)

    Padgett, R.A.; White, C.L.

    1984-01-01

    Many important metallurgical phenomena are strongly influenced or controlled by grain boundary mass transport. There is also much evidence that the composition of grain boundaries is often significantly different from the overall composition of metals and alloys, owing to strong segregation of residual (and often undetected) impurities. This segregation, which does not always advertise its presence through grain boundary brittleness, may vary markedly from heat to heat, and occasionally from specimen to specimen within a given heat. Unfortunately, there are relatively few experimental observations of how such segregation affects grain boundary mass transport, and even less fundamental understanding of how these effects occur. In this paper we present autoradiographic results on self-diffusion of 63 Ni in nickel and nickel doped with antimony and tin. While these results do not permit a quantitative evaluation of the grain boundary diffusivity, D, they qualitatively illustrate the dramatic effect that these solute elements have on the ability of nickel grain boundaries to act as preferential paths for mass transport

  11. Probing of O2 vacancy defects and correlated magnetic, electrical and photoresponse properties in indium-tin oxide nanostructures by spectroscopic techniques

    Science.gov (United States)

    Ghosh, Shyamsundar; Dev, Bhupendra Nath

    2018-05-01

    Indium-tin oxide (ITO) 1D nanostructures with tunable morphologies i.e. nanorods, nanocombs and nanowires are grown on c-axis (0 0 0 1) sapphire (Al2O3) substrate in oxygen deficient atmosphere through pulsed laser deposition (PLD) technique and the effect of oxygen vacancies on optical, electrical, magnetic and photoresponse properties is investigated using spectroscopic methods. ITO nanostructures are found to be enriched with significant oxygen vacancy defects as evident from X-ray photoelectron and Raman spectroscopic analysis. Photoluminescence spectra exhibited intense mid-band blue emission at wavelength of region of 400-450 nm due to the electronic transition from conduction band maxima (CBM) to the singly ionized oxygen-vacancy (VO+) defect level within the band-gap. Interestingly, ITO nanostructures exhibited significant room-temperature ferromagnetism (RTFM) and the magnetic moment found proportional to concentration of VO+ defects which indicates VO+ defects are mainly responsible for the observed RTFM in nanostructures. ITO nanowires being enriched with more VO+ defects exhibited strongest RTFM as compared to other morphologies. Current voltage (I-V) characteristics of ITO nanostructures showed an enhancement of current under UV light as compared to dark which indicates such 1D nanostructure can be used as photovoltaic material. Hence, the study shows that there is ample opportunity to tailor the properties of ITOs through proper defect engineering's and such photosensitive ferromagnetic semiconductors might be promising for spintronic and photovoltaic applications.

  12. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  13. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    Science.gov (United States)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  14. Effect of applied voltage on the structural properties of SnO2 nanostuctures grown on indium-tin-oxide coated glass substrates.

    Science.gov (United States)

    Lee, Dea Uk; Yun, Dong Yeol; No, Young Soo; Hwang, Jun Ho; Lee, Chang Hun; Kim, Tae Whan

    2013-11-01

    SnO2 nanostuctures were formed on indium-tin-oxide (ITO)-coated glass substrates by using an electrochemical deposition (ECD) method. X-ray photoelectron spectroscopy (XPS) spectra showed the existence of elemental Sn and O in the samples, indicative of the formation of SnO2 materials. An XPS spectrum showing the O 1s peak at a binding energy of 531.5 eV indicated that the oxygen atoms were bonded to the SnO2. Field-emission scanning electron microscopy (FE-SEM) images showed that the samples formed by using the ECD method had SnO2 nanostructures with a size between 280 and 350 nm. FE-SEM images showed that the size of the SnO2 nanostructures formed at 65 degrees C for 30 min increased with decreasing applied voltage. X-ray diffraction (XRD) patterns showed that the SnO2 nanostrucures had tetragonal structures with cell parameters of a = 4.738 A and c = 3.187 A. XRD results showed that the peak intensity of the (110) plane increased with decreasing applied voltage, indicative of a preferencial orientation of the (110) plane.

  15. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  16. Electrochemical polymerization of an aniline-terminated self-assembled monolayer on indium tin oxide electrodes and its effect on polyaniline electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico)], E-mail: rcruzsilva@uaem.mx; Nicho, Maria E.; Resendiz, Mary C.; Agarwal, Vivechana [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico); Castillon, Felipe F.; Farias, Mario H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681 C.P. 22800 Ensenada, B.C. (Mexico)

    2008-06-02

    Indium tin oxide (ITO) transparent electrodes were surface modified by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Cyclic voltammetry of the PAPTS monolayer in aniline-free aqueous electrolyte showed the typical shape of a surface-confined monomer, due to the oxidation of the aniline moieties. This process resulted in a two-dimensional polyaniline film with uniform thickness of 1.3 nm, as measured by atomic force microscopy. X-ray photoelectron and UV-visible spectroscopic techniques confirm the formation of a conjugated polymer film. The influence of the surface modification of ITO electrodes on polyaniline electrochemical deposition was also studied. The initial oxidation rate of aniline increased in the PAPTS-modified ITO electrodes, although the overall film formation rate was lower than that of unmodified ITO electrodes. The morphology of the electrodeposited polyaniline films on PAPTS-modified and unmodified ITO electrodes was studied by atomic force microscopy. Films of smaller grain were grown in the PAPTS-modified ITO as compared to films grown on unmodified ITO. A blocking effect due to the propyl spacer is proposed to explain the reduced electron transfer in PAPTS-modified electrodes.

  17. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    Science.gov (United States)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  18. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  19. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    Science.gov (United States)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  20. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  1. Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass.

    Science.gov (United States)

    Liu, Chao; Wei, Xiuhua; Tu, Yifeng

    2013-07-15

    In this study, a nano-structured copolymer of luminol/aniline (PLA) was deposited onto nano-TiO2-functionalised indium tin oxide (ITO)-coated glass by electrochemical polymerisation using cyclic voltammetry (CV). The resulting reagentless electrochemiluminescent (ECL) electrode (ECLode) can be used for flow injection analysis (FIA). The properties of the ECLode were characterised by CV, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The ECLode has high background ECL emission as well as excellent stability and reproducibility, and yielding sensitive response towards target analytes. The ECL emissions of the ECLode were 50 times higher than PLA/ITO, and 500 times higher than polyluminol (PL)/ITO. The ECLode showed sensitive responses to reactive oxygen species (ROSs), permitting its application for determination of antioxidants by quenching. Under optimised conditions, an absolute detection limit of 69.9 pg was obtained for resveratrol, comparable to the highest levels of sensitivity achieved by other methods. Thus, the gross antioxidant content of red wine was determined, with satisfactory recoveries between 87.6% and 108.3%. These results suggest a bright future for the use of the ECLode for single-channel FIA due to its high sensitivity, accuracy and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh-Raji

    2016-07-01

    Full Text Available In this paper, a label-free aptamer based detection system (apta-DS was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide/N-hydroxysuccinimide (NHS. The cyclic voltammetry (CV and chronopotentiometry (CP methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO. In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study’s results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  3. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    International Nuclear Information System (INIS)

    Goyal, Rajendra N.; Rana, Anoop Raj Singh; Aziz, Md. Abdul; Oyama, Munetaka

    2011-01-01

    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10 -9 mol L -1 to 80.0 x 10 -9 mol L -1 for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10 -10 mol L -1 and 42 x 10 -10 mol L -1 respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  4. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: rngcyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rana, Anoop Raj Singh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Aziz, Md. Abdul; Oyama, Munetaka [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2011-05-05

    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10{sup -9} mol L{sup -1} to 80.0 x 10{sup -9} mol L{sup -1} for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10{sup -10} mol L{sup -1} and 42 x 10{sup -10} mol L{sup -1} respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  5. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn; Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing [Institute of Thin Film Physics and Applications, School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060 (China); Roy, V. A. L. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.

  6. A High Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    International Nuclear Information System (INIS)

    Bruce A Zeitlin

    2005-01-01

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  7. Ultrasonic attenuation in the superconducting and intermediate states of pure and doped type I superconductors

    International Nuclear Information System (INIS)

    Chaudhuri, K.D.; Singh, R.

    1982-01-01

    The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant

  8. Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films

    Science.gov (United States)

    Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.

  9. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  10. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  11. Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

    NARCIS (Netherlands)

    Yan, L.T.; Schropp, R.E.I.

    2011-01-01

    Tungsten- and titanium-doped indium oxide (IWO and ITiO) filmswere deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly

  12. Properties of fluorine and tin co-doped ZnO thin films deposited by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Zhang, Pengwei; Tian, Xinlong; Cheng, Guo; Xie, Yinghao; Zhang, Huangchu; Zeng, Xiangfu; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    Highlights: •F and Sn co-doped ZnO thin films were synthesized by sol–gel method. •The effects of different F doping concentrations were investigated. •The co-doped nanocrystals exhibit good crystal quality. •The origin of the photoluminescence emissions was discussed. •The films showed high transmittance and low resistivity. -- Abstract: Highly transparent and conducting fluorine (F) and tin (Sn) co-doped ZnO (FTZO) thin films were deposited on glass substrates by the sol–gel processing. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) with various F doping concentrations. SEM images showed that the hexagonal ZnO crystals were well-arranged on the glass substrates and the HRTEM images indicated that the individual nanocrystals are highly oriented and exhibited a perfect lattice structure. Owing to its high carrier concentration and mobility, as well as good crystal quality, a minimum resistivity of 1 × 10 −3 Ω cm was obtained from the FTZO thin film with 3% F doping, and the average optical transmittance in the entire visible wavelength region was higher than 90%. The X-ray photoelectron spectroscopy (XPS) study confirmed the substitution of Zn 2+ by Sn ions and Room temperature photoluminescence (PL) observed for pure and FTZO thin films suggested the films exhibit a good crystallinity with a very low defect concentration

  13. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  14. Physicochemical characterization of point defects in fluorine doped tin oxide films

    Science.gov (United States)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  15. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  16. Effect of indium doping level on certain physical properties of CdS films deposited using an improved SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.com [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur-613 503, Tamil Nadu (India); Senthamilselvi, V. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur-613 503, Tamil Nadu (India); Department of Physics, Kunthavai Naachiyaar Government College for Women (Autonomous), Thanjavur-613 007, Tamil Nadu (India)

    2013-04-01

    The influence of indium (In) doping levels (0, 2, …, 8 at.%) on certain physical properties of cadmium sulphide (CdS) thin films deposited using an improved successive ionic layer adsorption and reaction (ISILAR) method has been studied. In this improved SILAR technique, a fresh anionic solution was introduced after a particular number of dipping cycles in order to achieve good stoichiometry. All the deposited films exhibited cubic phase with (1 1 1) plane as preferential orientation. The calculated crystallite size values are found to be decreased from 54.80 nm to 23.65 nm with the increase in In doping level. The optical study confirmed the good transparency (80%) of the film. A most compact and pinhole free smooth surface was observed for the CdS films with 8 at.% of In doping level. The perceived photoluminescence (PL) bands endorsed the lesser defect crystalline nature of the obtained CdS:In films. The chemical composition analysis (EDAX) showed the near stoichiometric nature of this ISILAR deposited CdS:In films.

  17. Effect of indium doping level on certain physical properties of CdS films deposited using an improved SILAR technique

    International Nuclear Information System (INIS)

    Ravichandran, K.; Senthamilselvi, V.

    2013-01-01

    The influence of indium (In) doping levels (0, 2, …, 8 at.%) on certain physical properties of cadmium sulphide (CdS) thin films deposited using an improved successive ionic layer adsorption and reaction (ISILAR) method has been studied. In this improved SILAR technique, a fresh anionic solution was introduced after a particular number of dipping cycles in order to achieve good stoichiometry. All the deposited films exhibited cubic phase with (1 1 1) plane as preferential orientation. The calculated crystallite size values are found to be decreased from 54.80 nm to 23.65 nm with the increase in In doping level. The optical study confirmed the good transparency (80%) of the film. A most compact and pinhole free smooth surface was observed for the CdS films with 8 at.% of In doping level. The perceived photoluminescence (PL) bands endorsed the lesser defect crystalline nature of the obtained CdS:In films. The chemical composition analysis (EDAX) showed the near stoichiometric nature of this ISILAR deposited CdS:In films.

  18. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    Science.gov (United States)

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  19. The stannylphosphide anion reagent sodium bis(triphenylstannyl) phosphide: synthesis, structural characterization, and reactions with indium, tin, and gold electrophiles.

    Science.gov (United States)

    Cummins, Christopher C; Huang, Chao; Miller, Tabitha J; Reintinger, Markus W; Stauber, Julia M; Tannou, Isabelle; Tofan, Daniel; Toubaei, Abouzar; Velian, Alexandra; Wu, Gang

    2014-04-07

    Treatment of P4 with in situ generated [Na][SnPh3] leads to the formation of the sodium monophosphide [Na][P(SnPh3)2] and the Zintl salt [Na]3[P7]. The former was isolated in 46% yield as the crystalline salt [Na(benzo-15-crown-5)][P(SnPh3)2] and used to prepare the homoleptic phosphine P(SnPh3)3, isolated in 67% yield, as well as the indium derivative (XL)2InP(SnPh3)2 (XL = S(CH2)2NMe2), isolated in 84% yield, and the gold complex (Ph3P)AuP(SnPh3)2. The compounds [Na(benzo-15-crown-5)][P(SnPh3)2], P(SnPh3)3, (XL)2InP(SnPh3)2, and (Ph3P)AuP(SnPh3)2 were characterized using multinuclear NMR spectroscopy and X-ray crystallography. The bonding in (Ph3P)AuP(SnPh3)2 was dissected using natural bond orbital (NBO) methods, in response to the observation from the X-ray crystal structure that the dative P:→Au bond is slightly shorter than the shared electron-pair P-Au bond. The bonding in (XL)2InP(SnPh3)2 was also interrogated using (31)P and (13)C solid-state NMR and computational methods. Co-product [Na]3[P7] was isolated in 57% yield as the stannyl heptaphosphide P7(SnPh3)3, following salt metathesis with ClSnPh3. Additionally, we report that treatment of P4 with sodium naphthalenide in dimethoxyethane at 22 °C is a convenient and selective method for the independent synthesis of Zintl ion [Na]3[P7]. The latter was isolated as the silylated heptaphosphide P7(SiMe3)3, in 67% yield, or as the stannyl heptaphosphide P7(SnPh3)3 in 65% yield by salt metathesis with ClSiMe3 or ClSnPh3, respectively.

  20. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, Takuji [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Kuwabara, Takayuki, E-mail: tkuwabar@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Yamaguchi, Takahiro [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Taima, Tetsuya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Takahashi, Kohshin, E-mail: ktakaha@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-09-30

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V{sub oc} from the initial V{sub oc} became short when the ionization potential (I{sub P}) of ITO reduced by the amine modification, and consequently both of its saturated V{sub oc} and power conversion efficiency (PCE) improved. The I{sub P} decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  1. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    International Nuclear Information System (INIS)

    Kusumi, Takuji; Kuwabara, Takayuki; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2015-01-01

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C_6_1 butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V_o_c from the initial V_o_c became short when the ionization potential (I_P) of ITO reduced by the amine modification, and consequently both of its saturated V_o_c and power conversion efficiency (PCE) improved. The I_P decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  2. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    Science.gov (United States)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  3. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  4. A statistical approach for the optimization of indium tin oxide films used as a front contact in amorphous/crystalline silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Le, Anh Huy Tuan; Ahn, Shihyun; Kim, Sangho; Han, Sangmyeong; Kim, Sunbo; Park, Hyeongsik; Nguyen, Cam Phu Thi; Dao, Vinh Ai; Yi, Junsin

    2014-01-01

    Highlights: • The number of experiments was reduced by approximately 90% using Taguchi design. • The optimal condition of ITO films was obtained by Grey relational analysis. • Substrate temperature is dominant effect on opto-electrical properties of ITO films. • Using the optimal ITO films, the solar cell efficiency was absolutely increased by 1.750%. - Abstract: In heterojunction silicon with intrinsic thin layer (HIT) solar cells, the excellent opto-electrical properties of indium tin oxide (ITO) front contact play a critical role in attaining high efficiency. Therefore, in this study, we present and demonstrate an effective statistic approach based on combining Taguchi method and Grey relational analysis for the optimization of ITO films. A reduction in the number of experiments by approximately 90% is obtained by the Taguchi method through an orthogonal array. The reproduction of the effect of process parameters on single performance characteristic, however, is still ensured. In addition, an excellent trade-off between electrical and optical properties of ITO films was attained within the selected range of parameters by Grey relational analysis at power density of 0.685 W/cm 2 , working pressure of 0.4 Pa, substrate temperature of 200 °C, and post-annealing temperature of 200 °C in 30 min. Under optimal condition, the ITO films showed lowest electrical resistivity of 1.978 × 10 −4 Ω cm, and highest transmittance of 90.322%. The HIT solar cells using these ITO films as a front contact show highest efficiency of 16.616%, yielding a 1.750% absolute increase in efficiency compared to using ITO films with the initial condition. Furthermore, the analysis of variance (ANOVA) is determined to define the process parameters which have a dominant effect on the electrical and optical properties of ITO films. Based on ANOVA, we found that the substrate temperature was a key parameter which critically affects the opto-electrical properties of ITO films

  5. In-plane conductance of thin films as a probe of surface chemical environment: Adsorbate effects on film electronic properties of indium tin oxide and gold

    Science.gov (United States)

    Swint, Amy Lynn

    Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at

  6. Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells

    Science.gov (United States)

    Soultati, Anastasia; Kostis, Ioannis; Papadimitropoulos, Giorgos; Zeniou, Angelos; Gogolides, Evangelos; Alexandropoulos, Dimitris; Vainos, Nikos; Davazoglou, Dimitris; Speliotis, Thanassis; Stathopoulos, Nikolaos A.; Argitis, Panagiotis; Vasilopoulou, Maria

    2017-12-01

    Pre-treatment methods are commonly employed to clean as well as to modify electrode surfaces. Many previous reports suggest that modifying the surface properties of indium tin oxide (ITO) by oxygen plasma treatment is a crucial step for the fabrication of high performance organic solar cells. In this work, we propose a fast and cost-effective microwave exposure step for the modification of the surface properties of ITO anode electrodes used in organic solar cells. It is demonstrated that a short microwave exposure improves the hydrophilicity and reduces the roughness of the ITO surface, as revealed by contact angle and atomic force microscopy (AFM) measurements, respectively, leading to a better quality of the PEDOT:PSS film coated on top of it. Similar results were obtained with the commonly used oxygen plasma treatment of ITO suggesting that microwave exposure is an effective process for modifying the surface properties of ITO with the benefits of low-cost, easy and fast processing. In addition, the influence of the microwave exposure of ITO anode electrode on the performance of an organic solar cell based on the poly(3-hexylthiophene):[6,6]-phenyl C70 butyric acid methyl ester (P3HT:PC70BM) blend is investigated. The 71% efficiency enhancement obtained in the microwave annealed-ITO based device as compared to the device with the as-received ITO was mainly attributed to the improvement in the short circuit current (J sc) and decreased leakage current caused by the reduced series and the increased shunt resistances and also by the higher charge generation efficiency, and the reduced recombination losses.

  7. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  8. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    Science.gov (United States)

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  9. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    Science.gov (United States)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  10. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Camargo-Martinez, J.; Ramirez-Garibo, A.; Pérez-Arrieta, M.L.; Balderas-Xicohténcatl, R.; Rivera-Alvarez, Z.; Aguilar-Frutis, M.; Falcony, C.

    2012-01-01

    Indium chloride doped zinc oxide (ZnO:In) thin films were deposited onto glass substrates using zinc acetate by Ultrasonic Spray Pyrolysis technique. The effect of substrate temperature, deposition time and acetic acid added to the spraying solution on the structural, electrical and optical properties of these ZnO:In films is reported. The films were in all cases polycrystalline with a hexagonal (wurtzite) structure, a transparency over 80% and resistivity of the order of 10 −3 –10 −2 Ω·cm. The resistivity was dependent on the volume % of acetic acid added to the spraying solution. The minimum resistivity value was obtained with a 5 vol.% acetic acid (pH = 3.71) at substrate temperature of 450 °C. The deposition rates obtained were as high as 180 Å·min −1 at a substrate temperature of 450 °C. - Highlights: ► Conductive ZnO:In thin films were deposited by Ultrasonic Spray Pyrolysis (USP). ► USP is of low cost, high growth rates and scalable for industrial applications. ► USP is appropriate for the deposition of metallic oxide films. ► We studied the effect of acetic acid, time deposition and substrate temperature. ► Zinc acetate and indium chloride were used as precursor materials.

  11. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E., E-mail: ezaleta@fis.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Camargo-Martinez, J.; Ramirez-Garibo, A. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Perez-Arrieta, M.L. [Universidad Autonoma de Zacatecas, Unidad Academica de Fisica, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, Mexico (Mexico); Balderas-Xicohtencatl, R.; Rivera-Alvarez, Z. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo, Mexico, D.F. (Mexico); Falcony, C. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico)

    2012-12-01

    Indium chloride doped zinc oxide (ZnO:In) thin films were deposited onto glass substrates using zinc acetate by Ultrasonic Spray Pyrolysis technique. The effect of substrate temperature, deposition time and acetic acid added to the spraying solution on the structural, electrical and optical properties of these ZnO:In films is reported. The films were in all cases polycrystalline with a hexagonal (wurtzite) structure, a transparency over 80% and resistivity of the order of 10{sup -3}-10{sup -2} Ohm-Sign {center_dot}cm. The resistivity was dependent on the volume % of acetic acid added to the spraying solution. The minimum resistivity value was obtained with a 5 vol.% acetic acid (pH = 3.71) at substrate temperature of 450 Degree-Sign C. The deposition rates obtained were as high as 180 A{center_dot}min{sup -1} at a substrate temperature of 450 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Conductive ZnO:In thin films were deposited by Ultrasonic Spray Pyrolysis (USP). Black-Right-Pointing-Pointer USP is of low cost, high growth rates and scalable for industrial applications. Black-Right-Pointing-Pointer USP is appropriate for the deposition of metallic oxide films. Black-Right-Pointing-Pointer We studied the effect of acetic acid, time deposition and substrate temperature. Black-Right-Pointing-Pointer Zinc acetate and indium chloride were used as precursor materials.

  12. Studies on the electrical properties of reactive DC magnetron-sputtered indium-doped silver oxide thin films: The role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Barik, Ullash Kumar [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-03-15

    Indium ({approx}10 at.%)-doped silver oxide (AIO) thin films have been prepared on glass substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target made of pure (99.99%) silver and indium (90:10 at.%) metals. The oxygen flow rates have been varied in the range 0.00-3.44 sccm during sputtering. The X-ray diffraction data on these indium-doped silver oxide films show polycrystalline nature. With increasing oxygen flow rate, the carrier concentration, the Hall mobility and the electron mean free path decrease. These films show a very low positive temperature coefficient of resistivity {approx}3.40x10{sup -8} ohm-cm/K. The work function values for these films (measured by Kelvin probe technique) are in the range 4.81-5.07 eV. The high electrical resistivity indicate that the films are in the island state (size effects). Calculations of the partial ionic charge (by Sanderson's theory) show that indium doping in silver oxide thin films enhance the ionicity.

  13. Studies on the electrical properties of reactive DC magnetron-sputtered indium-doped silver oxide thin films: The role of oxygen

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Barik, Ullash Kumar

    2007-01-01

    Indium (∼10 at.%)-doped silver oxide (AIO) thin films have been prepared on glass substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target made of pure (99.99%) silver and indium (90:10 at.%) metals. The oxygen flow rates have been varied in the range 0.00-3.44 sccm during sputtering. The X-ray diffraction data on these indium-doped silver oxide films show polycrystalline nature. With increasing oxygen flow rate, the carrier concentration, the Hall mobility and the electron mean free path decrease. These films show a very low positive temperature coefficient of resistivity ∼3.40x10 -8 ohm-cm/K. The work function values for these films (measured by Kelvin probe technique) are in the range 4.81-5.07 eV. The high electrical resistivity indicate that the films are in the island state (size effects). Calculations of the partial ionic charge (by Sanderson's theory) show that indium doping in silver oxide thin films enhance the ionicity

  14. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  15. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  16. Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Intelligence Material Team, Korea Institute of Ceramic Eng. and Tech., Gasan-digtial-ro 10 Gil 77 Geumcheon-gu, 153-801 Seoul (Korea, Republic of); Riu, Doh-Hyung [Dept. of New Material Sci. and Eng., Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-12-15

    (200) and (301) preferred oriented fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added and water-based FTO precursor solutions, respectively. (200) oriented FTO thin film from ethanol-added solution shows the lower electrical resistivity and visible light transmission than (301) preferred thin film from water-based solution. It is due to the higher carrier concentration and electron mobility in (200) oriented crystals, that is, the lower ionized impurity scattering. The higher electron concentration is related to the higher optical band gap energy, the lower visible light transmission, and the higher IR reflection. For (301) preferred FTO thin films from water-based solution, the lower carrier concentration and electron mobility make the higher electrical resistivity and visible light transmission. Raman scattering analysis shows that IR active modes prominent in (200) oriented FTO thin film are related with the lower electrical resistivity. - Highlights: • We coated fluorine-doped tin oxide thin films with preferred orientation of (200) and (301). • We examine changes in the level of electrical and optical properties with the orientation. • (200) preferred orientation showed lower electrical resistivity and optical transmittance. • (200) oriented thin films have higher electron concentrations that are related with IR active modes.

  17. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.C., E-mail: wilsonphy@gmail.com [Department of Physics, Govt. Polytechnic College Kothamangalam, Chelad P O, Ernakulam, Kerala 686681 (India); Department of Physics, B. S. Abdur Rahman University, Vandaloor, Chennai, Tamilnadu 600048 (India); Basheer Ahamed, M. [Department of Physics, B. S. Abdur Rahman University, Vandaloor, Chennai, Tamilnadu 600048 (India)

    2016-01-15

    Graphical abstract: - Highlights: • Novel honey comb like cadmium sulfide thin film nanostructures prepared using chemical bath deposition on glass substrates. • Honey comb nanostructure found in two layers: an ultra thin film at bottom and well inter connected with walls of < 25 nm thick on top; hence maximum surface area possible for CdS nanostructure. • Shell size of the nanostructures and energy band gaps were controlled also an enhanced persistent conductivity observed on Sn doping. - Abstract: Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like “plum pudding”. Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  18. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho-young [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong [LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  19. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  20. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    Science.gov (United States)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these d