WorldWideScience

Sample records for dopant counter-anion functionality

  1. Effect of anionic dopants on thickness, morphology and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodian, Mehrnoosh [Dep. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Pourabbas, Behzad, E-mail: pourabas@sut.ac.ir [Dep. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Mohajerzadeh, Shams [Nano-Electronics and Thin Film Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of)

    2015-05-29

    The effect of different dopant anions on deposition and characteristics of polypyrrole (PPy) thin film has been studied in this work. Ultra-thin films of conducting PPy were deposited on insulating surfaces of glass and oxidized silicon wafer by in situ chemical polymerization in the presence of different anionic dopants including sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, α-naphthalene sulfonic acid, anthraquinone-2-sulfonic acid sodium salt monohydrate/5-sulfosalicylic acid dehydrate, and camphor sulfonic acid. Hydrophilic/hydrophobic properties and morphology of the self-assembled monolayer of N-(3-trimethoxysilylpropyl)pyrrole, the surface modifying agent in this work, and PPy thin films were characterized before and after deposition by contact angle measurements, field emission scanning electron microscopy, and atomic force microscopy. Chemical structure, thickness, and conductivity of the thin films were also studied by attenuated total reflectance Fourier transform infrared spectrometer, ellipsometry, and four-point probe measurements. The results showed deposition of thin films of conducting PPy with comparable thickness in the range of 6-31 nm and different morphologies, uniformity, and smoothness with average roughness in the range of 0.3-6 nm and relatively high range of conductivity on the modified surfaces. - Highlights: • Conducting thin films of polypyrrole were deposited on glass and SiO{sub 2} substrates. • Surface modification using pyrrole-silane was employed prior to polymerization. • Films as thin as ≈ 7 nm were deposited using different surfactant/counter ions. • Chemistry of the counter ion affects thickness, conductivity and morphology. • Lower thickness/higher conductivity were obtained by structurally flexible dopants.

  2. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated ... MoS3 dopant. Although inorganic metal complexes bear- ... distilled water and then with methanol and acetone until.

  3. Effect of the counter anion of cesium on foliar uptake and translocation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hidenao [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)], E-mail: hhidenao@ies.or.jp; Tsukada, Hirofumi; Kawabata, Hitoshi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan); Chikuchi, Yuki [JGC Plantech Aomori Co. Ltd., Rokkasho, Aomori 039-3212 (Japan); Takaku, Yuichi; Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)

    2009-01-15

    Direct deposition of radioactive material onto crops is one important pathway for safety assessment of radionuclides released from nuclear facilities. Foliar uptake of Cs by radish (Raphanus sativus L. cv. Redchim) was studied by applying droplets of Cs solution (CsCl or CsNO{sub 3}) on an upper leaf surface. The uptake of Cs was strongly affected by counter anions of Cs in the applied solution. Approximately 80% of Cs was absorbed for CsCl solution, while only 20% was absorbed for CsNO{sub 3}. The partition of absorbed Cs between leaf and root tuber was quite similar for both Cs compounds, which indicated that behavior of the absorbed Cs in radish was the same for both.

  4. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  5. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang; Fei, Zhuping; Lin, Yen-Hung; Martin, Jaime; Tuna, Floriana; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  6. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  7. Advantage of TiF{sub 3} over TiCl{sub 3} as a dopant precursor to improve the thermodynamic property of Na{sub 3}AlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Kang Xiangdong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang Ping [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: pingwang@imr.ac.cn; Cheng Huiming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-03-15

    The effect of the dopant anion on thermodynamic tailoring in TiF{sub 3}- and TiCl{sub 3}-doped Na{sub 3}AlH{sub 6} was investigated by pressure-composition desorption isotherm measurements. It was found that the dissociation pressure of the TiF{sub 3}-doped hydride was substantially higher than that of the TiCl{sub 3}-doped sample. This finding agrees well with the theoretically demonstrated thermodynamic modification arising upon F{sup -} substitution in the hydride lattice, thus providing direct experimental evidence to support functionality of F{sup -} anion.

  8. Two opposite hysteresis curves in semiconductors with mobile dopants

    OpenAIRE

    Lee, Jae Sung; Lee, Shin Buhm; Kahng, Byungnam; Noh, Tae Won

    2012-01-01

    Recent experimental researches on semiconductors with mobile dopants (SMD) have reported unconventional hysteretic current-voltage (I-V) curves, which form dynamically in either one of the two opposite directions, the counter-figure-eight and figure-eight ways. However the fundamental theory for the formation of the two directions is still absent, and this poses a major barrier for researches oriented to applications. Here, we introduce a theoretical model to explain the origin of the two dir...

  9. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  10. Dopant atoms as quantum components in silicon nanoscale devices

    Science.gov (United States)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  11. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Iwan, A.; Cigl, Martin; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, Věra

    2016-01-01

    Roč. 6, č. 14 (2016), s. 11577-11590 ISSN 2046-2069 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : self-assembling materials * functional dopants * organic photovoltaic cells * azo group * liquid crystal Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  12. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  13. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2005-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO 4 , while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = ClO 4 , Cl or Br. The consistency between experimental and theoretical results is discussed

  14. Characteristics of proportional counters used in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Martishchenko, L.G.; Mel'ttser, L.V.

    1972-01-01

    Counters with extended (up to 10 cm 2 ) apertres have been described and the results obtained are presented. CPM-15 and CPM-16 counters are intended for sensoring and spectral analysis of X-rays in the range of 2.5 to 23 and 2.5 to 15 keV, respectively. The only difference is in the gas composition. The CPM-15 counter is filled with 90 per cent xenon plus 10 per cent methane used as a quenching dopant. The CPM-16 is filled with 90 per cent argon and 10 per cent methane. The life time is 10 10 pulses at 1800 V for CPM-16 and at 2200 V for CPM-15

  15. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.es; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.es

    2005-07-18

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO{sub 4}, while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X = ClO{sub 4}, Cl or Br. The consistency between experimental and theoretical results is discussed.

  16. Using Delphi to realize the function of the γ-immuno counter

    International Nuclear Information System (INIS)

    Qi Na; Chu Yan; He Wenhua

    2005-01-01

    This paper introduces the concept of Radioimmunoassay and the background of the γ-immuno counter, summarizes the feature of the Delphi and discusses the superiority of using language of Delphi to realize the function of γ-immuno counter. (authors)

  17. Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory

    KAUST Repository

    Savizi, Iman Shahidi Pour

    2011-04-01

    Specific adsorption of anions to electrode surfaces may alter the rates of electrocatalytic reactions. Density functional theory (DFT) methods are used to predict the adsorption free energy of acetate and phosphate anions as a function of Pt(1 1 1) electrode potential. Four models of the electrode potential are used including a simple vacuum slab model, an applied electric field model with and without the inclusion of a solvating water bi-layer, and the double reference model. The linear sweep voltammogram (LSV) due to anion adsorption is simulated using the DFT results. The inclusion of solvation at the electrochemical interface is necessary for accurately predicting the adsorption peak position. The Langmuir model is sufficient for predicting the adsorption peak shape, indicating coverage effects are minor in altering the LSV for acetate and phosphate adsorption. Anion adsorption peak positions are determined for solution phase anion concentrations present in microbial fuel cells and microbial electrolysis cells and discussion is provided as to the impact of anion adsorption on oxygen reduction and hydrogen evolution reaction rates in these devices. © 2011 Elsevier Ltd. All rights reserved.

  18. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  19. Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions

    International Nuclear Information System (INIS)

    Qi Kai; Qiu Yubing; Chen Zhenyu; Guo Xingpeng

    2012-01-01

    Highlights: ► Corrosive galvanic cells form on PPy film with the electrochemical reduction of O 2. ► Suitable electrochemical stimulation can inhibit the PPy’s corrosion. ► PPy film doped with larger sized anions has better corrosion resistance performance. - Abstract: The effects of environmental factors, electrochemical stimulation, and doping anions on the corrosion behaviour of conductive polypyrrole (PPy) films in alkaline aqueous media were studied with cyclic voltammetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. High concentrations of electrolyte, low dissolved oxygen and low temperatures enhance the stability of PPy. Polarising PPy at a negative potential inhibits its corrosion obviously. PPy doped with large counter anions shows better corrosion resistance than PPy doped with small counter ions. The possible mechanism involved in PPy corrosion process is discussed.

  20. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  1. Dopant-induced ignition of helium nanoplasmas—a mechanistic study

    Science.gov (United States)

    Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel

    2017-12-01

    Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.

  2. Minority anion substitution by Ni in ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Amorim, Lígia Marina; Silva, Daniel José; David-Bosne, Eric; Decoster, Stefan; da Silva, Manuel Ribeiro; Temst, Kristiaan; Vantomme, André

    2013-01-01

    We report on the lattice location of implanted Ni in ZnO using the $\\beta$− emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  3. The counter ion: expanding excipient functionality

    Directory of Open Access Journals (Sweden)

    Shireesh Apte

    2011-06-01

    Full Text Available Excipients have increasingly become 'enablers' of drug delivery and efficacy rather than passive bystanders. Advances in pharmaceutical technology have enabled the ability to deliver specific counter ions (in the form of the counter ion containing excipient and the API simultaneously to preselected targets in the body. This, coupled with a near universal mechanism of columbic interactions that determine the [API- counter ion] efficacy, can be harnessed to exploit this hitherto unavailable or unrecognized enabling mechanism. New excipients may be assembled by a near inexhaustible supply of different permutations of counter ions and their judicious use in specific situations could potentially drive a renaissance in excipient innovation (and drug delivery and efficacy despite regulatory stagnation.

  4. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  5. Bistable Si dopants in the GaAs (1 1 0) surface

    International Nuclear Information System (INIS)

    Smakman, E P; Koenraad, P M

    2015-01-01

    In this review, recent work is discussed on bistable Si dopants in the GaAs (1 1 0) surface, studied by scanning tunneling microscopy (STM). The bistability arises because the dopant atom can switch between a positive and a negative charge state, which are associated with two different lattice configurations. Manipulation of the Si atom charge configuration is achieved by tuning the local band bending with the STM tip. Furthermore, illuminating the sample with a laser also influences the charge state, allowing the operation of the dopant atom as an optical switch. The switching dynamics without illumination is investigated in detail as a function of temperature, lateral tip position, and applied tunneling conditions. A physical model is presented that independently describes the thermal and quantum tunneling contributions to the switching frequency and charge state occupation of a single Si atom. The basic functionality of a memory cell is demonstrated employing a single bistable Si dopant as the active element, using the STM tip as a gate to write and read the information. (topical review)

  6. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  7. Deprotonation effect of tetrahydrofuran-2-carbonitrile buffer gas dopant in ion mobility spectrometry.

    Science.gov (United States)

    Fernandez-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-06-15

    When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes

    KAUST Repository

    Schmidt, Martina M.

    2017-12-11

    Conjugated polyelectrolytes (CPEs) are a focus of research because combine their inherent electrical conductivity and the ability to interact with ions in aqueous solutions or biological systems. However, it is still not understood to what degree the counter ion in CPEs influences the properties of the CPE itself and the performance of electronic transducers. In order to investigate this, three different conjugated polyelectrolytes, poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS−X+), are synthesized, which have the same polythiophene backbone but different X+ counter ions: the bulky tetrabutylammonium (TBA+), tetraethylammonium (TEA+), and the smallest tetramethylammonium (TMA+). At the interface with biological systems, thin CPE films have to be stable in an aqueous environment and should allow the inward and outward flow of ions from the electrolyte. Since the studied PTHS−X+ have different solubilities in water, the optical properties of pristine PTHS−X+ as well as of crosslinked PTHS−X+ via UV–vis absorption spectroscopy are investigated additionally. PTHS−TMA+ exhibits better aggregation, fast interdiffusion of ions, and fast recovery from the oxidized state. Additionally, spectroelectrochemical and cyclic voltammetric as well as electrochemical capacitance investigations show that PTHS−TMA+ can be oxidized to a higher degree. This leads to a better performance of PTHS−TMA+-based organic electrochemical transistors.

  9. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  10. Effects of small-angle mistilts on dopant visibility in ADF-STEM imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Held, Jacob T.; Duncan, Samuel; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu

    2017-06-15

    Highlights: • ADF-STEM is powerful technique for 3D location of substitutionally doped atoms. • The effects of specimen mistilt on ADF-STEM imaging of doped atoms are evaluated. • Visibility changes over 0–30 mrad mistilts are large enough to preclude 3D dopant location. • Dopant visibility is a strong function of specimen mistilt and cannot be ignored. - Abstract: Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems. It is shown that dopant visibility is a strong function of specimen mistilt, and the accuracy of specimen orientation is an important factor in the analysis of three-dimensional dopant location, but the sensitivity to mistilt can be weakened by increasing the STEM probe convergence angle and optimizing ADF detector inner angle.

  11. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    , and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  12. Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong; Cai, Ningning [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shanxi (China); Chen, Jun [Beijing Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China)

    2016-04-30

    The electronic and magnetic properties of ZnO nanowire with Li dopants and vacancies have been investigated using first-principles density functional theory. It is found that the Zn vacancy can induce magnetism while increasing the formation energy of the system. However, the calculated results indicate that the introduction of Li-dopants will reduce the formation energy of system. We also have studied the magnetic couplings with vacancies as well as their corresponding configurations with Li-dopants for four configurations of ZnO nanowires. The results show that ferromagnetic properties can be improved/reversed after the introduction of Li-dopants. Ferromagnetic mechanism is originated from the fierce p–p hybridization of O near the Fermi level. We find that ferromagnetism of Li-doped ZnO nanowires with Zn vacancies can be realized at room temperature and they are promising spintronic materials. - Highlights: • Li-dopants will reduce the formation energy of ZnO nanowires with Zn vacancy. • The fierce p–p hybridization of O near Fermi level is responsible for FM properties. • Li-doped ZnO–V{sub Zn} nanowire is a promising FM semiconductor material.

  13. Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions.

    Science.gov (United States)

    Neves, Catarina M S S; Kurnia, Kiki Adi; Coutinho, João A P; Marrucho, Isabel M; Lopes, José N Canongia; Freire, Mara G; Rebelo, Luís Paulo N

    2013-09-05

    In the past few years, ionic liquids (ILs) with cyano-functionalized anions have shown to be improved candidates for electrochemical and separation applications. Nevertheless, only scattered data exist hitherto and a broad analysis of their structure-property relationship has yet to be attempted. Therefore, in this work, a systematic study of the densities, viscosities and refractive indices of imidazolium-based ILs with cyano-functionalized anions was carried out at 0.1 MPa within a broad temperature range (from 278 to 363 K). The ILs under study are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN](-), [N(CN)2](-), [C(CN)3](-) and [B(CN)4](-) anions. The selected matrix of cation/anion combinations allows us to provide a detailed and comprehensive investigation of the influence of the -CN group through an analysis of the thermophysical properties of the related ILs. The results show that, regardless of the cation, the densities decrease with an increase in the number of cyano groups or anion molecular weight. Moreover, for a fixed cation and temperature, the refractive index of the ILs decreases according to the rank: [SCN](-) > [N(CN)2](-) ≈ [C(CN)3](-) > [B(CN)4](-). On the other hand, no clear trend was observed for the viscosity of ILs and the respective number of -CN groups. The viscosity dependence on the cyano-functionalized anions decreases in the order: [SCN](-) > [B(CN)4](-) > [N(CN)2](-) > [C(CN)3](-). The isobaric thermal expansion coefficient, the derived molar refraction, the free volume, and the viscosity energy barrier of all compounds were estimated from the experimental data and are presented and discussed. Finally, group contribution models were applied, and new group contribution parameters are presented, extending these methods to the prediction of the ILs properties.

  14. Dopant ink composition and method of fabricating a solar cell there from

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  15. Dopant ink composition and method of fabricating a solar cell there from

    Science.gov (United States)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  16. Hydrogen adsorption and storage on Palladium – functionalized graphene with NH-dopant: A first principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Omar, E-mail: omf071@mail.usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9 Saskatchewan (Canada); Department of Condensed Matter Physics, Cheikh Anta Diop University, Dakar (Senegal); Szpunar, Jerzy A; Szpunar, Barbara [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9 Saskatchewan (Canada); Beye, Aboubaker Chedikh [Department of Condensed Matter Physics, Cheikh Anta Diop University, Dakar (Senegal)

    2017-01-15

    Highlights: • H{sub 2} adsorption in single and double-sided Pd-G(3x3) and the effect of NH radical on graphene were studied. • Strong interaction of Pd and graphene in double-sided Pd-G(3x3) than that in the single-sided Pd-G(3x3). • The storage capacity was 3.622 wt% with a binding energy of 0.658 eV/H2. • The increase of NH radicals on Pd-G(3x3) enhanced the binding of Pd atoms on the graphene sheet. • We predicted that 2NH-dopant at the opposite site of Pd atoms prevents the desorption of Pd atom from graphene sheet. - Abstract: We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H{sub 2} molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315–0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H{sub 2} molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H{sub 2} adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H{sub 2} molecules, which helps also to avoid the desorption of Pd(H{sub 2}){sub n} (n = 1–5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  17. Hydrogen adsorption and storage on Palladium – functionalized graphene with NH-dopant: A first principles calculation

    International Nuclear Information System (INIS)

    Faye, Omar; Szpunar, Jerzy A; Szpunar, Barbara; Beye, Aboubaker Chedikh

    2017-01-01

    Highlights: • H_2 adsorption in single and double-sided Pd-G(3x3) and the effect of NH radical on graphene were studied. • Strong interaction of Pd and graphene in double-sided Pd-G(3x3) than that in the single-sided Pd-G(3x3). • The storage capacity was 3.622 wt% with a binding energy of 0.658 eV/H2. • The increase of NH radicals on Pd-G(3x3) enhanced the binding of Pd atoms on the graphene sheet. • We predicted that 2NH-dopant at the opposite site of Pd atoms prevents the desorption of Pd atom from graphene sheet. - Abstract: We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H_2 molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315–0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H_2 molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H_2 adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H_2 molecules, which helps also to avoid the desorption of Pd(H_2)_n (n = 1–5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  18. Theoretical characterization of a class of orange dopants for white-light-emitting single polymers

    International Nuclear Information System (INIS)

    Hu, Bo; Yao, Chan; Wang, Qingwei; Zhang, Hao; Yu, Jiankang

    2012-01-01

    New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Calculations show that the change of chemical composition along the backbone in BTD-based derivative yields modifications to the electronic and optical properties. Furthermore, by introducing electron-donating groups [−CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained and may be further combined with polyfluorene to form white light. Also, we estimate the reorganization energies upon cation or anion formation as one of the important parameters of mobility with the charge hopping model to determine whether the molecular structural changes may improve the hole/electron transport. The electrostatic surface potentials are finally taken into account to evaluate stability. -- Graphical abstract: New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Highlights: ► The change of chemical composition along the backbone yields modifications to the electronic and optical properties. ► Introducing [–CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained. ► Desirable orange emission may be further combined with polyfluorene to form white light. ► Designed BTD-based derivatives can function as good hole or ambipolar transport materials in the OLEDs. ► According to the calculated electrostatic surface potentials, OMC-PZ has better stability than that of OMC-PZT.

  19. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  20. Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingshu [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Dong, Juncai, E-mail: dongjc@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-01

    Doping is widely applied in yielding desirable properties and functions in silicon technology; thus, fully understanding the relaxation mechanism for lattice-mismatch strain is of fundamental importance. Here we systematically study the local lattice distortion near dilute IIIA-, IVA-, and VA-group substitutional dopants in Si crystal using density functional theory, and anomalous radial and angular strain relaxation modes are first revealed. Both the nearest-neighbor (NN) bond-distances and the tetrahedral bond-angles are found to exhibit completely opposite dependence on the electronic configurations for the low Z (Z<26) and high Z (Z>26) dopants. More surprisingly, negative and positive angular shifts for the second NN twelve Si2 atoms are unveiled surrounding the p- and n-type dopants, respectively. While electron localization function shows that the doped hole and electron are highly localized near the dopants, hence being responsible for the abnormal angular shifts, a universal radial strain relaxation mechanism dominated by a competition of the Coulomb interactions among the ion-core, bond-charge, and the localized hole or electron is also proposed. These findings may prove to be instrumental in precise design of silicon-based solotronics.

  1. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series

    International Nuclear Information System (INIS)

    Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.

    2014-01-01

    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z − and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results

  2. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Björketun, Mårten E; Ebbesen, Sune

    2013-01-01

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X3...

  3. Dopant density from maximum-minimum capacitance ratio of implanted MOS structures

    International Nuclear Information System (INIS)

    Brews, J.R.

    1982-01-01

    For uniformly doped structures, the ratio of the maximum to the minimum high frequency capacitance determines the dopant ion density per unit volume. Here it is shown that for implanted structures this 'max-min' dopant density estimate depends upon the dose and depth of the implant through the first moment of the depleted portion of the implant. A a result, the 'max-min' estimate of dopant ion density reflects neither the surface dopant density nor the average of the dopant density over the depletion layer. In particular, it is not clear how this dopant ion density estimate is related to the flatband capacitance. (author)

  4. Influence of Dopants in ZnO Films on Defects

    Science.gov (United States)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  5. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  6. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  7. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  8. A NRESPG Monte Carlo code for the calculation of neutron response functions for gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Takeda, N; Fukuda, A [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Torii, T; Hashimoto, M; Sugita, T; Yang, X; Dietze, G

    1996-07-01

    In this paper, we show the outline of the NRESPG and some typical results of the response functions and efficiencies of several kinds of gas counters. The cross section data for the several kinds of filled gases and the wall material of stainless steel or aluminum are taken mainly from ENDF/B-IV. The ENDF/B-V for stainless steel is also used to investigate the influence on pulse height spectra of gas counters due to the difference of nuclear data files. (J.P.N.)

  9. Anion-based approaches to tunable functionality in oxide heterostructures

    Science.gov (United States)

    May, Steven

    2014-03-01

    The ability to control the position and composition of the anion site is emerging as a promising route to tune properties in epitaxial perovskites. This talk will focus on recent and ongoing efforts aimed at developing anion-based approaches to tailor electronic and magnetic properties in oxide films. First, I will discuss how the position of the oxygen anions can be tailored to stabilize non-bulk-like bond angles and lengths, thereby altering electronic bandwidth. Recent work on La2/3Sr1/3MnO3 will be presented in which ultrathin films under the same strain state exhibit dramatically different electronic and magnetic properties when grown on substrates with different symmetries. In the second half of the talk, I will describe efforts focused on altering the composition of the anion site. In La1/3Sr2/3FeO3-δ films, a reversible change in oxygen content leads to dramatic changes in electrical, optical, and structural properties. Finally, the synthesis of oxyfluoride ferrite and nickelate perovskite films via topotactic reactions carried out following thin film deposition will be described. This work is supported by the Office of Naval Research (N00014-11-1-0664) and the U. S. Army Research Office (W911NF-12-1-0132).

  10. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters

    Science.gov (United States)

    Wu, X.; Senapati, L.; Nayak, S. K.; Selloni, A.; Hajaligol, M.

    2002-08-01

    CO adsorption on small cationic, neutral, and anionic Aun (n=1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, the on-top (one-fold coordinated) is found to be the most favorable one, irrespective of the charge state of the cluster. In addition, planar structures are preferred by both the bare and the CO-adsorbed clusters. The adsorption energies of CO on the cationic clusters are generally greater than those on the neutral and anionic complexes, and decrease with size. The adsorption energies on the anions, instead, increase with cluster size and reach a local maximum at Au5CO-, in agreement with recent experiment. The differences in adsorption energies for the different charge states decrease with increasing cluster size.

  11. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  12. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    International Nuclear Information System (INIS)

    Zheng, Yijun; Cui, Jiaxi; Ikeda, Taichi

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N 3 -SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N 3 -SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10 −10 mol cm −2 and 4.6 ± 0.3 × 10 −10 mol cm −2 , respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N 3 -SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  13. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yijun; Cui, Jiaxi [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Ikeda, Taichi, E-mail: IKEDA.Taichi@nims.go.jp [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N{sub 3}-SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N{sub 3}-SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10{sup −10} mol cm{sup −2} and 4.6 ± 0.3 × 10{sup −10} mol cm{sup −2}, respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N{sub 3}-SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  14. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  15. Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

    Science.gov (United States)

    Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

    2017-06-01

    We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

  16. Prospects for photosensitive dopants in liquid argon

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/π ratio. Previous results indicating high voltage problems and no change in the e/π ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs

  17. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo; Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shi, Lili; Pan, Huilin; Zhang, Jiguang; Liu, Jun; Persson, Kristin A.; Mueller, Karl T.

    2017-10-27

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ion and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.

  18. Density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic aluminum nitride clusters

    Science.gov (United States)

    Guo, Ling

    CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on-top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2-4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd-even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size.

  19. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  20. Transport in Silicon Nanowires: Role of Radial Dopant Profile

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, Riccardo; Jauho, Antti-Pekka

    2008-01-01

    distributions of P dopant impurities. We find that the radial distribution of the dopants influences the conductance properties significantly: surface doped wires have longer mean-free paths and smaller sample-to-sample fluctuations in the cross-over from ballistic to diffusive transport. These findings can...

  1. Two-dimensional dopant profiling for shallow junctions by TEM and AFM

    International Nuclear Information System (INIS)

    Yoo, K.

    2000-01-01

    The present work concerns the development of the Etch/TEM and Etch/AFM methods to obtain quantitative 2-D dopant profiles for the ultra shallow p-n junctions of the next generation of metal-oxide-semiconductor field effect transistors (MOSFETs). For these methods, thin foil (TEM) or bulk (AFM) cross-sectional specimens were etched using a dopant selective chemical so that local areas of the dopant implanted source/drain (S/D) regions were etched to different depths. The surface topography of the S/D regions was determined from the thickness fringes for the TEM method and by the direct measurement for the AFM method. The local etched depths were converted to etch rates, and these were then converted to corresponding 1-D and 2-D dopant profiles by the experimentally independent etch rate calibration curves. Shallow junction MOSFET samples were designed and fabricated with junction depths 60nm (n + /p), 80nm (n + /p) and 120nm (p + /n) using 0.25μm process technology. A new method using SOG (Spin-on-Glass) contributed to the high quality XTEM thin foil specimens. Controlled stirring of the etchant increased the dopant concentration selectivity and etching consistency. Computer modelling simulated the isotropic etching behaviours, which can introduce the significant error in dopant profiling for shallow and abrupt junction samples. Comprehensive quantitative results enabled the optimum etching time to be determined for the first time. Etch/TEM method gave 1-D dopant profiles that showed good agreement with 1-D Spreading Resistance Probe (SRP) dopant profiles for determining junction depths. 2-D dopant profiles gave L eff , i.e. the shortest lateral distance between the S/D junctions, of major importance for MOSFET performance. Values for L eff of 161, 159 and 123nm were determined from 60, 80 and 120nm junction depth samples respectively, compared with the 215nm MOSFET gate length. The resolution and accuracy of the Etch/TEM method are estimated as 2 and 10nm

  2. Computational Study of Nb-Doped-SnO2/Pt Interfaces: Dopant Segregation, Electronic Transport, and Catalytic Properties

    DEFF Research Database (Denmark)

    Fu, Qiang; Halck, Niels Bendtsen; Hansen, Heine Anton

    2017-01-01

    functional theory and non equilibrium Green's function study, we investigate the Nb segregation at Pt/NTO interfaces under operational electrochemical conditions, and reveal the resulting effects on the electronic transport, as well as the catalytic properties. We find that the Nb dopants tend to aggregate......Carbon black, a state-of-the-art cathode material for proton exchange membrane fuel cells (PEMFCs), suffers from severe corrosion in practical applications. Niobium-doped tin dioxide (NTO) is a promising alternative to support the Pt catalysts at the cathodes. Here, through a combined density....... The electronic conductivities of the Pt/NTO systems are not particularly sensitive to the distance of the Nb dopants relative to the interface, but depend explicitly on the Nb concentration and configuration. Through a dopant induced ligand effect, the NTO substrates can improve the catalytic activity of the Pt...

  3. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    Energy Technology Data Exchange (ETDEWEB)

    Werner, M.; Berg, J.A. van den E-mail: j.a.vandenberg@salford.ac.uk; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q

    2004-02-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10{sup 13} to 5 x 10{sup 15} cm{sup -2}. MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10{sup 14} cm{sup -2} (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a {approx}4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses {>=}4 x 10{sup 14} cm{sup -2} the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, {approx}2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As.

  4. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    International Nuclear Information System (INIS)

    Werner, M.; Berg, J.A. van den; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q.

    2004-01-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10 13 to 5 x 10 15 cm -2 . MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10 14 cm -2 (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a ∼4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses ≥4 x 10 14 cm -2 the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, ∼2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As

  5. Evolution of Voltage-Dependent Anion Channel Function: From Molecular Sieve to Governator to Actuator of Ferroptosis

    Directory of Open Access Journals (Sweden)

    John J. Lemasters

    2017-12-01

    Full Text Available The voltage-dependent anion channel (VDAC is well known as the pathway for passive diffusion of anionic hydrophilic mitochondrial metabolites across the outer membrane, but a more complex functionality of the three isoforms of VDAC has emerged, as addressed in the Frontiers in Oncology Research Topic on “Uncovering the Function of the Mitochondrial Protein VDAC in Health and Disease: from Structure-Function to Novel Therapeutic Strategies.” VDAC as the single most abundant protein in mitochondrial outer membranes is typically involved in isoform-specific interactions of the mitochondrion with its surroundings as, for example, during mitochondria-dependent pathways of cell death. VDAC closure can also act as an adjustable limiter (governator of global mitochondrial metabolism, as during hepatic ethanol metabolism to promote selective oxidation of membrane-permeant acetaldehyde. In cancer cells, high free tubulin inhibits VDAC1 and VDAC2, contributing to suppression of mitochondrial function in the Warburg phenomenon. Erastin, the canonical inducer of ferroptosis, opens VDAC in the presence of tubulin and hyperpolarizes mitochondria, leading to mitochondrial production of reactive oxygen species, mitochondrial dysfunction, and cell death. Our understanding of VDAC function continues to evolve.

  6. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    Science.gov (United States)

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

  7. A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanushree; Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Shimpi, Navinchandra G., E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Kalina, Mumbai 400098, Maharashtra (India)

    2017-06-15

    Highlights: • A binary dopant based on β-cyclodextrin has been proposed for PANI. • The binary dopant provided long term stability to electrically conducting PANI. • The β-cyclodextrin based binary dopant rendered PANI sensitive towards CO at RT. - Abstract: The effect of hydrochloric acid/β-cyclodextrin (HCl/β-CD) binary dopant on the morphological, thermal, electrical, and sensing properties of PANI was investigated and compared with those of the conventionally doped PANI. The PANI samples were characterized using FTIR, UV–Vis, {sup 1}H NMR, and FESEM. Significant changes were observed in the structural, thermal, and electrical character of PANI doped with the HCl/β-CD binary dopant. A higher doping level was obtained for the PANI-binary dopant system, as observed from its {sup 1}H NMR spectra. Moreover, the binary dopant imparted long-term stability to the sensor in its conductive form. In addition, the PANI-binary dopant system exhibited a significantly high gas response towards carbon monoxide gas at room temperature.

  8. The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2

    KAUST Repository

    Grau-Crespo, Ricardo

    2011-08-03

    Density functional theory calculations indicate that the incorporation of V into Ti lattice positions of rutile TiO2 leads to magnetic V 4 + species, but the extension and sign of the coupling between dopant moments confirm that ferromagnetic order cannot be reached via low-concentration doping in the non-defective oxide. Oxygen vacancies can introduce additional magnetic centres, and we show here that one of the effects of vanadium doping is to reduce the formation energies of these defects. In the presence of both V dopants and O vacancies all the spins tend to align with the same orientation. We conclude that V doping favours the ferromagnetic behaviour of TiO2 not only by introducing spins associated with the dopant centres but also by increasing the concentration of oxygen vacancies with respect to the pure oxide. © 2001 IOP Publishing Ltd.

  9. The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2

    KAUST Repository

    Grau-Crespo, Ricardo; Schwingenschlö gl, Udo

    2011-01-01

    Density functional theory calculations indicate that the incorporation of V into Ti lattice positions of rutile TiO2 leads to magnetic V 4 + species, but the extension and sign of the coupling between dopant moments confirm that ferromagnetic order cannot be reached via low-concentration doping in the non-defective oxide. Oxygen vacancies can introduce additional magnetic centres, and we show here that one of the effects of vanadium doping is to reduce the formation energies of these defects. In the presence of both V dopants and O vacancies all the spins tend to align with the same orientation. We conclude that V doping favours the ferromagnetic behaviour of TiO2 not only by introducing spins associated with the dopant centres but also by increasing the concentration of oxygen vacancies with respect to the pure oxide. © 2001 IOP Publishing Ltd.

  10. Vibrational signatures of cation-anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-05

    Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.

  11. Dithieno[3,2-a:2',3'-c]phenazine-based Chemical Probe for Anions: A Spectroscopic Study of Binding

    KAUST Repository

    El-Assaad, Tarek H.

    2015-04-27

    The synthesis of a new anion-responsive molecule N,N\\'-(2,5-bis(4-(tert-butyl)phenyl)dithieno[3,2-a:2\\',3\\'-c]phenazine-9,10-diyl)bis(4-methylbenzenesulfonamide) (1) is reported. The sensitivities of the spectroscopic properties of 1 in the presence of various anions were examined using UV-vis absorption spectroscopy, fluorescence and 1H NMR titration experiments. Strong binding of 1 to carboxylate, cyanide, fluoride and dihydrogen phosphate anions results in an increase in quantum yield for emission of 1, and changes in its 1H NMR chemical shifts. A significant electrostatic interaction of the tetrabutylammonium cation with 1, upon strong binding with the counter anion, was also indicated by the chemical shifts observed in the 1H NMR titrations. Binding constants of 1 to anions are also calculated based on the binding isotherms derived from NMR and UV-Vis titrations. DFT calculations show that the anion does not significantly impact the HOMO/LUMO levels (and subsequently the S0 -> S1 transition), but rather changes the strength of the S0 -> S2 transition, which accounts for the observed changes in the UV-vis spectra.

  12. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    International Nuclear Information System (INIS)

    Stolk, P.A.; Ponomarev, Y.V.; Schmitz, J.; Brandenburg, A.C.M.C. van; Roes, R.; Montree, A.H.; Woerlee, P.H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation

  13. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives.

    Science.gov (United States)

    Gao, Pingqi; Yang, Zhenhai; He, Jian; Yu, Jing; Liu, Peipei; Zhu, Juye; Ge, Ziyi; Ye, Jichun

    2018-03-01

    By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p + - and n + -HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier-selective contacts (CSCs) can be formed directly with c-Si substrates, and thereafter form IBC cells, via a dopant-free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant-free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant-free hole-selective CSCs, i.e . , poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole-selective materials modification, interfacial passivation, contact resistivity, light-trapping structure and device architecture design, etc. By analyzing the structure-property relationships of hole-selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high-performance SCs have been highlighted.

  14. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    Science.gov (United States)

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  16. Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity

    Science.gov (United States)

    Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.

    2018-05-01

    Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.

  17. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  18. Needle counter

    International Nuclear Information System (INIS)

    Fujita, Yuzo

    1977-01-01

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  19. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  20. Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion

    International Nuclear Information System (INIS)

    Nelson, J.S.; Schultz, P.A.; Wright, A.F.

    1998-01-01

    First-principles pseudopotential calculations of dopant-vacancy exchange barriers indicate a strong dependency on dopant valence and atomic size, in contrast to current models of vacancy-mediated dopant diffusion. First-row elements (B, C, N) are found to have exchange barriers which are an order of magnitude larger than the assumed value of 0.3 eV (the Si vacancy migration energy). copyright 1998 American Institute of Physics

  1. Anion-assisted trans-cis isomerization of palladium(II) phosphine complexes containing acetanilide functionalities through hydrogen bonding interactions.

    Science.gov (United States)

    Lu, Xiao-Xia; Tang, Hau-San; Ko, Chi-Chiu; Wong, Jenny Ka-Yan; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2005-03-28

    The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.

  2. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  3. Improved optical properties and detectivity of an uncooled silicon carbide mid-wave infrared optical detector with increased dopant concentration

    International Nuclear Information System (INIS)

    Lim, Geunsik; Kar, Aravinda; Manzur, Tariq

    2012-01-01

    An n-type 4H-SiC substrate is doped with gallium using a laser doping technique and its optical response is investigated at the mid-wave infrared (MWIR) wavelength 4.21 μm as a function of the dopant concentration. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. Therefore, Ga-doped SiC can be used as an uncooled MWIR detector because an optical signal was obtained at this wavelength when the sample was at room temperature. The energy level of the Ga dopant in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. A higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15 × 10 19 to 6.25 × 10 20 cm −3 . The detectivity of the optical photodetector is found to be 1.07 × 10 10 cm Hz 1/2 W −1 for the case of doping with four laser passes. (paper)

  4. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  5. Effect of phosphorus dopant concentration on the carrier mobility in ...

    African Journals Online (AJOL)

    This study investigated the effect of phosphorus dopant concentration on mobility of crystalline silicon (c-Si). It considers different temperature ranges, from 100 K to 500 K, and dopant concentration from 1012 cm-3 to 1020 cm-3 in relation to its effect on the mobility of the crystalline silicon. This study indicates that the ...

  6. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-01-01

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  7. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  8. Stability of anionic polymers in presence of multivalent cations

    International Nuclear Information System (INIS)

    Sabbagh, Imad

    1997-01-01

    This research thesis aimed at studying the stability of poly-electrolytes in saline environments, and the interactions between ions and poly-electrolytes of different charge densities. For this purpose, the author more particularly studied specific interactions between anionic poly-electrolytes and multivalent cations. After a recall of properties of neutral polymers and poly-electrolytes in solution, the author evokes interactions between poly-electrolytes and counter-ions, and briefly presents two models of stability of poly-electrolytes in saline solutions. The next part presents various experimental spectroscopic and electrochemical techniques and results of the characterization of the used products. Spectroscopic techniques allow ion-polymer interactions at the atomic scale to be studied, and electrochemical techniques allow the behaviour of small ions to be studied. The author then discusses the main differences of solubility between poly-electrolytes containing sulphonate or sulphate groups and those containing carboxylate groups. A model is then developed to generalise phase diagrams of a poly-electrolyte with respect to the chemical affinity of its functional group with ions of opposite sign. The author then addresses the behaviour of a non charged polyacrylic acid in various saline solutions, and presents a phase diagram model [fr

  9. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  10. Atom-probe for FinFET dopant characterization

    International Nuclear Information System (INIS)

    Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.

    2011-01-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we

  11. Distributed performance counters

    Science.gov (United States)

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  12. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  13. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  14. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  15. Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Yamaki, Fuuta; Kunisada, Yuji; Sakaguchi, Norihito; Akiyama, Tomohiro

    2017-04-15

    Highlights: • Through-focus HAADF-STEM imaging was studied. • Spatial distribution of Eu atoms in Ca-α-SiAlON was analyzed. • A large convergence semi-angle increased the depth resolution. • The radial distribution function of Eu dopants was analyzed. - Abstract: Three-dimensional (3D) distributional analysis of individual dopant atoms in materials is important to development of optical, electronic, and magnetic materials. In this study, we adopted through-focus high-angle annular dark-field (HAADF) imaging for 3D distributional analysis of Eu dopant atoms in Ca-α-SiAlON phosphors. In this context, the effects of convergence semi-angle and Eu z-position on the HAADF image contrast were investigated. Multi-slice image simulation revealed that the contrast of the dopant site was sensitive to change of the defocus level. When the defocus level matched the depth position of a Eu atom, the contrast intensity was significantly increased. The large convergence semi-angle greatly increased the depth resolution because the electron beam tends spread instead of channeling along the atomic columns. Through-focus HAADF-STEM imaging was used to analyze the Eu atom distribution surrounding 10 nm cubes with defocus steps of 0.68 nm each. The contrast depth profile recorded with a narrow step width clearly analyzed the possible depth positions of Eu atoms. The radial distribution function obtained for the Eu dopants was analyzed using an atomic distribution model that was based on the assumption of random distribution. The result suggested that the Ca concentration did not affect the Eu distribution. The decreased fraction of neighboring Eu atoms along z-direction might be caused by the enhanced short-range Coulomb-like repulsive forces along the z-direction.

  16. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.

    Science.gov (United States)

    Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui

    2013-08-14

    Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies

    Science.gov (United States)

    Quevedo Lopez, Manuel Angel

    Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.

  18. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Manipulation and analysis of a single dopant atom in GaAs

    NARCIS (Netherlands)

    Wijnheijmer, A.P.

    2011-01-01

    This thesis focuses on the manipulation and analysis of single dopant atoms in GaAs by scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. The observation of ionization rings is one of the key results, showing that we can control the charge state of a single dopant atom

  20. Extended OLED operational lifetime through phosphorescent dopant profile management

    Science.gov (United States)

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  1. Carrier illumination measurement of dopant lateral diffusion

    International Nuclear Information System (INIS)

    Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.

    2005-01-01

    This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition

  2. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  3. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  4. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  5. DEVELOPMENT AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE - IMIDAZOLIUM FUNCTIONALIZED POLYSULFONE BLEND ANION EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. VELU

    2015-09-01

    Full Text Available Anion exchange membrane (AEM is one of the core components of an alkaline fuel cell influencing the fuel cell’s performance, durability and stability. Out of the many anion exchange membranes reported so far, imidazolium functionalized polysulfone (PSf-ImOH membrane has been identified to have high hydroxide ionic conductivity, reaching up to 50 mS cm-1 at 20oC. However, at high levels of ion exchange capacity, the membrane’s water uptake and swelling ratio increases significantly with temperature thus destabilizing it and making it unfit for potential use in high temperature alkaline fuel cells. This limitation of PSf-ImOH membranes has been overcome by blending it with polyvinylidene fluoride (PVDF polymer, which is a thermally stable and highly hydrophobic polymer. PSf-ImOH membrane with a high degree of chloromethylation (180% was synthesized and blended with PVDF at different weight ratios (PVDF / PSf-ImOH: 30/70, 50/50 and 70/30 to create a series of novel anion exchange membranes. The prepared membranes were characterized to study their structure, water uptake, swelling ratio, solubility in low boiling water soluble solvents, thermal stability, ion exchange capacity (IEC and ionic conductivity (IC at different temperatures. The 70% PVDF blend membrane demonstrated the better performance in terms of IEC, IC and water uptake properties compared to other membranes. Comparative studies on the water uptake and IC variation between the 70% PVDF blend membrane and pure PSfImOH membrane (having the same IEC as that of the blend membrane, clearly indicated the superiority and the promising use of the blend membrane in alkaline fuel cell especially for high temperature working condition.

  6. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Science.gov (United States)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  7. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  8. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xu Chunhui; Li Jing; Wang Xianbao; Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui

    2012-01-01

    Highlights: ► Hemin functionalized reduced graphene oxide (hemin–RGO) materials were synthesized by microwave irradiation. ► Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. ► Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin–RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH 2 groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I 3 − to I − reduction compared with RGO.

  9. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chunhui; Li Jing [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao, E-mail: wangxb68@yahoo.com.cn [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hemin functionalized reduced graphene oxide (hemin-RGO) materials were synthesized by microwave irradiation. Black-Right-Pointing-Pointer Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. Black-Right-Pointing-Pointer Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin-RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH{sub 2} groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I{sub 3}{sup -} to I{sup -} reduction compared with RGO.

  10. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  11. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  12. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  13. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  14. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    Science.gov (United States)

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  15. Capability of parasulfonato calix[6]arene, as an anion dopant, and organic solvents in enhancing the sensitivity and loading of glucose oxidase (GOx) on polypyrrole film in a biosensor: a comparative study.

    Science.gov (United States)

    Safarnavadeh, Vahideh; Zare, Karim; Fakhari, Ali Reza

    2013-11-15

    In this study, the effects of two solvents (acetonitrile and water) and an anion dopant (para sulfonato calix[6]arene ((C[6]S)(-6))), on the manufacturing and properties of a polypyrrole (Ppy)-based, glucose oxidase amperometric biosensor were studied. Pyrrole was polymerized using galvanostatic mode in two different solvents, and the effect of (C[6]S)(-6) was studied in aqueous solution. The morphology of the obtained polypyrrole films was studied by scanning electron microscopy (SEM). Glucose oxidase (GOx) was adsorbed on the Ppy films via cross-linking method. Then the amperometric responses of the Pt/Ppy/GOx electrodes were measured using the amperometric method at the potential of 0.7 V in steps of adding a glucose solution to a potassium phosphate buffer. We found that acetonitrile and (C[6]S)(-6) increase the sensitivity of the enzyme electrode up to 79.30 µA M(-1)cm(-2) in comparison with 31.60 μA M(-1)cm(-2) for the electrode synthesized in calixarene free aqueous solvent. Also (C[6]S)(-6) has the main role in preventing leaching the enzyme from the electrode. This fact increases loading of the enzyme and stability of the biosensor. So that the steady state current density of the aforementioned electrode increases linearly with increasing glucose concentration up to 190 mM. Whereas the linearity was observed up to 61 mM and 80 mM for the electrodes made using calixarene free acetonitrile and aqueous solutions, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  17. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    International Nuclear Information System (INIS)

    Gao, Hejun; Kan, Taotao; Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli; Wang, Xiaodong; Zheng, Liqiang

    2013-01-01

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent

  18. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    Science.gov (United States)

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties

  19. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  20. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  1. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  2. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    Science.gov (United States)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2017-07-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  3. One- and two-dimensional dopant/carrier profiling for ULSI

    Science.gov (United States)

    Vandervorst, W.; Clarysse, T.; De Wolf, P.; Trenkler, T.; Hantschel, T.; Stephenson, R.; Janssens, T.

    1998-11-01

    Dopant/carrier profiles constitute the basis of the operation of a semiconductor device and thus play a decisive role in the performance of a transistor and are subjected to the same scaling laws as the other constituents of a modern semiconductor device and continuously evolve towards shallower and more complex configurations. This evolution has increased the demands on the profiling techniques in particular in terms of resolution and quantification such that a constant reevaluation and improvement of the tools is required. As no single technique provides all the necessary information (dopant distribution, electrical activation,..) with the requested spatial and depth resolution, the present paper attempts to provide an assessment of those tools which can be considered as the main metrology technologies for ULSI-applications. For 1D-dopant profiling secondary ion mass spectrometry (SIMS) has progressed towards a generally accepted tool meeting the requirements. For 1D-carrier profiling spreading resistance profiling and microwave surface impedance profiling are envisaged as the best choices but extra developments are required to promote them to routinely applicable methods. As no main metrology tool exist for 2D-dopant profiling, main emphasis is on 2D-carrier profiling tools based on scanning probe microscopy. Scanning spreading resistance (SSRM) and scanning capacitance microscopy (SCM) are the preferred methods although neither of them already meets all the requirements. Complementary information can be extracted from Nanopotentiometry which samples the device operation in more detail. Concurrent use of carrier profiling tools, Nanopotentiometry, analysis of device characteristics and simulations is required to provide a complete characterization of deep submicron devices.

  4. Lifetime characteristics of Gaiger-Muller counters

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad M.

    2016-01-01

    Full Text Available This paper discusses the process of functional aging of Geiger-Muller counters. Two types of Geiger-Muller counter chambers were characterized in an experiment using a combined constant voltage. Chamber A had a coaxial geometry and chamber B had a plan-parallel geometry. The experimental results indicate that the aging process was faster in the case of chambers with a coaxial geometry. The results are explained based on the process of electrical discharges in gasses.

  5. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  6. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  7. Design of an extended range long counter using super Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mazunga, Mohamed; Li, Taosheng; Li, Yanan; Hong, Bing; Wang, Yongfeng; Ji, Xiang

    2017-01-01

    We have designed an extended range neutron long counter on the basis of work optimized using SuperMC code. The problem of the existing traditional long counters is that their response function falls rapidly above 5 MeV. We proposed a new designed by adding two layers of converter material inside the polyethylene moderator. The relatively low density chromium and high density lead metals convert high energy neutron by (n, xn) spallation reaction. This produces more neutrons of lower energies, which have higher probability of being detected by thermal 3 He-counter. The response function at lower neutron energies was improved by inserting small polyethylene cylinder in front of 3 He counter. In this design we achieved to extent the flat response function of the long counter from few keV up to 150 MeV. The total fluctuation of response curve is less than ±9% over the entire energy range. The designed long counter is suitable to be used as neutron monitor for monitoring neutron fluence at high-energy neutron source. (authors)

  8. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  9. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  10. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF{sub 3} proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-05-01

    The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)

  11. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  12. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  13. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    Science.gov (United States)

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  14. Technical Note: Characterization of a static thermal-gradient CCN counter

    Directory of Open Access Journals (Sweden)

    G. P. Frank

    2007-06-01

    Full Text Available The static (parallel-plate thermal-gradient diffusion chamber (SDC was one of the first instruments designed to measure cloud condensation nuclei (CCN concentrations as a function of supersaturation. It has probably also been the most widely used type of CCN counter. This paper describes the detailed experimental characterization of a SDC CCN counter, including calibration with respect to supersaturation and particle number concentration. In addition, we investigated the proposed effect of lowered supersaturation because of water vapor depletion with increasing particle concentration. The results obtained give a better understanding why and in which way it is necessary to calibrate the SDC CCN counter. The calibration method is described in detail and can, in parts, be used for calibrations also for other types of CCN counters.

    We conclude the following: 1 it is important to experimentally calibrate SDC CCN counters with respect to supersaturation, and not only base the supersaturation on the theoretical description of the instrument; 2 the number concentration calibration needs to be performed as a function of supersaturation, also for SDC CCN counter using the photographic technique; and 3 we observed no evidence that water vapor depletion lowered the supersaturation.

  15. Phosphorus {delta}-doped silicon: mixed-atom pseudopotentials and dopant disorder effects

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Damien J; Marks, Nigel A [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth WA 6845 (Australia); Warschkow, Oliver; McKenzie, David R, E-mail: d.carter@curtin.edu.au [Centre for Quantum Computer Technology, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-02-11

    Within a full density functional theory framework we calculate the band structure and doping potential for phosphorus {delta}-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential. These findings have implications for parameters used in device modelling.

  16. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  17. Influence of the dopant during the one step mechano-chemical synthesis of sodium alanate

    International Nuclear Information System (INIS)

    Rongeat, C; Geipel, C; Llamas-Jansa, I; Schultz, L; Gutfleisch, O

    2009-01-01

    High-pressure reactive milling under hydrogen atmosphere is used for the one-step synthesis of doped sodium alanate. In-situ monitoring of the pressure and the temperature inside the vial gives a direct feedback about the reactions occurring during the milling. This information is used to study the influence of the dopant during synthesis, e.g. the amount of dopant added. The study of the pressure variations during milling is a reliable tool for screening the efficiency of different dopants.

  18. Ultrasonically-enhanced preparation, characterization of CaFe-layered double hydroxides with various interlayer halide, azide and oxo anions (CO32-, NO3-, ClO4-).

    Science.gov (United States)

    Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2018-01-01

    An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  20. Structure and selectivity trends in crystalline urea-functionalized anion-binding capsules

    Energy Technology Data Exchange (ETDEWEB)

    Rajbanshi, Arbin [Oak Ridge National Laboratory (ORNL); Custelcean, Radu [ORNL

    2012-01-01

    A tripodal trisurea receptor (L1) persistently self-assembles with various divalent oxoanion salts M{sub n}X (M = Na, K, Mg, Ca, Cd; X = SO{sub 4}{sup 2-}, SO{sub 3}{sup 2-}, SeO{sub 4}{sup 2-}, CrO{sub 4}{sup 2-}) into isomorphous series of crystalline frameworks in three different compositions: MX(L1){sub 2}(H{sub 2}O){sub 6} (M = Mg, Ca, Cd) (1), Na{sub 2}X(L1){sub 2}(H{sub 2}O){sub 4} (2) and K{sub 2}X(L1){sub 2}(H{sub 2}O){sub 2} (3). Single-crystal X-ray structural analysis revealed that all three series of structures adopt a NaCl-type topology, consisting of alternating anionic X(L1){sub 2}{sup 2-} capsules and M(H{sub 2}O){sub 6}{sup 2+}, Na{sub 2}(H{sub 2}O){sub 4}{sup 2+} or K{sub 2}(H{sub 2}O){sub 2}{sup 2+} hydrated cations. The capsules provide a complementary environment to tetrahedral oxoanions via 12 hydrogen bonds from six urea groups lining the cavities of the capsules. The persistent formation of the capsules facilitated the investigation of structural trends and structure-selectivity relationships across series 1-3. First, it was found that the size of the capsules is relatively unresponsive to the change in the encapsulated anion, resulting in good shape and size recognition in the separation of anions by competitive crystallizations. Second, it was found that the size of the capsules varies linearly with the size of the external cation, which provides a way for tuning the anion encapsulation selectivity. However, no straightforward dependence was found between the size of the capsules and the relative selectivity for different-sized tetrahedral oxoanions in competitive crystallizations.

  1. Picosecond-precision multichannel autonomous time and frequency counter

    Science.gov (United States)

    Szplet, R.; Kwiatkowski, P.; RóŻyc, K.; Jachna, Z.; Sondej, T.

    2017-12-01

    This paper presents the design, implementation, and test results of a multichannel time interval and frequency counter developed as a desktop instrument. The counter contains four main functional modules for (1) performing precise measurements, (2) controlling and fast data processing, (3) low-noise power suppling, and (4) supplying a stable reference clock (optional rubidium standard). A fundamental for the counter, the time interval measurement is based on time stamping combined with a period counting and in-period two-stage time interpolation that allows us to achieve wide measurement range (above 1 h), high precision (even better than 4.5 ps), and high measurement speed (up to 91.2 × 106 timestamps/s). The frequency is measured up to 3.0 GHz with the use of the reciprocal method. Wide functionality of the counter includes also the evaluation of frequency stability of clocks and oscillators (Allan deviation) and phase variation (time interval error, maximum time interval error, time deviation). The 8-channel measurement module is based on a field programmable gate array device, while the control unit involves a microcontroller with a high performance ARM-Cortex core. An efficient and user-friendly control of the counter is provided either locally, through the built-in keypad or/and color touch panel, or remotely, with the aid of USB, Ethernet, RS232C, or RS485 interfaces.

  2. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  3. Cerenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Etkin, A.; Kostoulas, I.; Leith, D.W.G.S.; Thun, R.

    1977-01-01

    The Cherenkov counter described for use at Isabelle is a threshold counter in which light is focussed on phototubes. The counter is applicable in large-angle, small-aperture magnetic spectrometers for measurement of particle yields at large p/sub T/. Three of these counters will provide complete π-K-p separation in the range of 7-20 GeV/c. Other Cherenkov counters are discussed and a bibliography of relevant literature on the counters utilizing photoionization is included

  4. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Je; Kim, Chul-Woo; Punnoose, Dinah; Gopi, Chandu V.V.M.; Kim, Soo-Kyoung; Prabakar, K.; Rao, S. Srinivasa, E-mail: srinu.krs@gmail.com

    2015-02-15

    Graphical abstract: - Highlights: • First ever employment of Ni doped CoS{sub 2} counter electrode as a replacement of Pt counter electrode. • Efficiency of 5.50% was achieved using Ni doped CoS{sub 2} counter electrode in contrast to 5.21% efficiency obtained using Pt electrode. • Dependency of efficiency on Ni dopant reported for the first time. • Cost effective chemical bath deposition was used for the fabrication of the counter electrode. - Abstract: The use of cells based on cobalt sulfide (CoS{sub 2}) and nickel sulfide (NiS) has found a steep upsurge in solar cell applications and as a substitute for conventional Pt-based cells owing to their low cost, low-temperature processing ability, and promising electro-catalytic activity. In this study, CoS{sub 2}, NiS and Ni-doped CoS{sub 2} nanoparticles were incorporated on a fluorine-doped tin oxide (FTO) substrate by simple chemical bath deposition (CBD). The surface morphology of the obtained films was analyzed by scanning electron microscope. Tafel polarization, electrochemical impedance spectroscopy and cyclic voltammograms of the Ni-doped CoS{sub 2} (Ni 15%) films indicated enhanced electro-catalytic activity for I{sub 3}{sup −} reduction in dye sensitized solar cells (DSSCs) compared to a Pt CE. The Ni-doped CoS{sub 2} CE also showed an impressive photovoltaic conversion efficiency of 5.50% under full sunlight illumination (100 mW cm{sup −2}, AM 1.5 G), exceeding that of DSSCs using a Pt CE (5.21%). We show that the highest conversion efficiency mainly depends on the charge transfer resistance and adequate Ni ion doping with CoS{sub 2} nanoparticles.

  5. Model of dopant action in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2005-01-01

    The paper describes an electrochemical model, which largely explains the formation of Ba in the oxide cathode at activation and normal operation. In a non-doped oxide cathode electrolysis of BaO is, besides the exchange reaction from the activators in the cathode nickel, an important source of Ba. By doping with rare earth oxides the conductivity of the oxide layer increases, which implies that the potential difference during current drawing over the oxide layer becomes lower and electrolysis of BaO is suppressed. This implies that the part of the electronic conductivity of the (Ba,Sr)O layer induced by the dopants also controls the sensitivity for poisoning: the higher the dopant level, the larger the sensitivity for poisoning. Furthermore, the suppression of electrolysis during normal operation largely explains why doped oxide cathodes have a better life performance than non-doped cathodes. Finally a hypothesis on the enhancement of sintering upon doping is presented

  6. Real-time {sup 90}Sr Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi [Graduate School of Science, Chiba University, Chiba, (Japan); Han, Soorim [Graduate School of Science, Chiba University, Chiba, (Japan); National Institute of Radiological Science, Chiba, (Japan)

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  7. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    International Nuclear Information System (INIS)

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-01-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage (C-V) measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with 60 Co γ-rays at 100 C and zero bias, where the dopant deactivation is significant

  8. Discrimination capability of avalanche counters detecting different ionizing particles

    International Nuclear Information System (INIS)

    Prete, G.; Viesti, G.; Padua Univ.

    1985-01-01

    The discrimination capability of avalanche counters to detect different ionizing particles has been studied using a 252 Cf source. Pulse height, pulse-height resolution and timing properties have been measured as a function of the reduced applied voltage for parallel-plate and parallel-grid avalanche counters. At the highest applied voltages, space charge effects shift the pulse-height signal of the avalanche counter away from being linearly proportional to the stopping power of the detected particles and cause the pulse-height resolution to deteriorate. To optimize the avalanche counter capability, without loss of time resolution, it appears better to operate the detector at voltages well below the breakdown threshold. Measurements with 32 S ions are also reported. (orig.)

  9. Vertical detachment energies of anionic thymidine: Microhydration effects.

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F

    2010-10-14

    Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].

  10. Design of a hybrid gas proportional counter with CdTe guard counters for sup 1 sup 4 C dating system

    CERN Document Server

    Zhang, L; Hinamoto, N; Nakazawa, M; Yoshida, K

    2002-01-01

    Nowadays uniform, low-cost and large-size compound semiconductor detectors are available up to several square centimeters. We are trying to combine this technology with conventional gas detectors to upgrade an anticoincidence type proportional counter, Oeschger-type thin wall counter of 2.2 l, used for a sup 1 sup 4 C dating facility at the University of Tokyo. In order to increase the ratio of the signal to the background for smaller quantity of samples less than 1 g, an effective approach is to minimize the detector volume at higher gas pressure. However, the anticoincidence function suffers from such a small volume. Therefore we designed a new active wall gas counter of 0.13 l counting volume using CdTe compound semiconductor detectors as the wall of the gas proportional counter to perform anticoincidence. Simulation study showed that at noise thresholds less than 70 keV, the wall counters can reject above 99.8% of events arising from outer gamma rays. Measured noise levels of CdTe detectors were smaller t...

  11. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Junsheng; Chu, Tian-Shu

    2016-01-01

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F − , AcO − . Thus, the chemosensor M1 has a high selectivity for cyanide.

  12. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    Science.gov (United States)

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    -Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.

  13. Multimode pulse counter

    International Nuclear Information System (INIS)

    Natanzon, D.D.

    1982-01-01

    A pulse counter with code conversion is described. The counter is based on the integrated circuits of direct-counting devices of medium integration. The counter ensures various modes of pulse counting depending on the logical control signals: reversible, two-channel summing, one-channel summing binary, summing with ''storage'' signal code fixation without interrupting pulse counting. Arrangement of the suggested structure as a microcircuit of medium integration might contribute to reduction in the counter type nomenclature in digital families of widely used integrated circuits

  14. The reactivity of anion-exchange resins by applying OT-for-OH exchange reaction in the equilibrium state

    International Nuclear Information System (INIS)

    Kano, Naoki; Nihei, Makoto; Imaizumi, Hiroshi

    1996-01-01

    In order to reveal the behavior of hydroxyl group in isotope exchange reaction, OT-for-OH exchange reaction between each anion-exchange resin (OH - form) and tritiated water (abbreviated as HTO water below) was observed at 80degC under the equilibrium. Anion-exchange resins used were Amberlite IRA-400, IRA-410 (both strongly basic), and IRA-94S (weakly basic). It can be thought that an HTO molecule dissociates into H + +OT - (or T + +OH - ). The activity of each resin based on OT-for-OH exchange reaction was measured with a liquid scintillation counter. From the above-mentioned, the following five were found. Isotope exchange reaction as 'atomic group' occurred between the OH group in each anion-exchange resin and the OT group in HTO water. The reactivity of strongly basic anion-exchange resin is larger than that of weakly basic one. The ratio of the reactivity of these resins can roughly be expressed as follows: (IRA-410): (IRA-400): (IRA-94S)=42: 7: 1. The degree of OT-for-OH exchange reaction may be smaller than that of T-for-H exchange reaction. The method used and results obtained in this work may be helpful to obtain the data for the prevention of T-contamination, especially to obtain the data from certain atomic groups including T. (author)

  15. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    Science.gov (United States)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  16. Chromium 51 em K2CrO4: reactions of dopant atoms in solid state

    International Nuclear Information System (INIS)

    Valim, J.B.; Nascimento, R.L.G. do; Collins, C.H.; Collins, K.E.

    1986-01-01

    The study of the chemistry of 'dopant' 51 Cr(III) atoms in crystalline Cr(VI) compounds began as a sub-field of Hot Atom Chemistry. We shall review the attempts to use 'dopant' chromium-51 atoms as surrogate chromium recoil atoms with the special property of having a low-energy, recoil-dam-age-free history. These dopant atoms have shown behaviors very similar to those of high energy recoil 51 Gr atoms, thus offering little hope of learning about special damage site structures and reactions by behavioral differences. Recent work has shown that at least some of the 'dopant' 51 Cr(III) is present as a second, non-chromate solid phase in 'doped crystal' experiments. Monodisperse 51 Cr(OH) 3 particles mixed with pure K 2 CrO 4 are very reactive. (Author) [pt

  17. Practical methods for the functioning evaluation of the whole body counter system Accuscan II of the ININ

    International Nuclear Information System (INIS)

    Alfaro L, M. M.; Ramirez J, F. J.; Mondragon C, L.

    2013-10-01

    The whole body counter system Accuscan II of the Instituto Nacional de Investigaciones Nucleares (ININ), was designed and built to quantify and to measure radionuclides fission product as well as gamma emitters, with a maximum sensibility of less than 10 n Ci for cobalt 60 at one time of counting of 5 minutes. The system has two detectors of Ge(Hp) with Beryllium window to a relative efficiency of 25% in a counting configuration of vertical scanning, this configuration gives a plane response of constant efficiency. In this work some practical methods developed in the Internal Dosimetry Laboratory to carry out the functioning evaluation of the whole body counter system Accuscan II of the ININ are described. With the obtained results of this evaluation we can decide fine adjustments will be necessary for the optimization of the equipment operation. The evaluation of this equipment was especially necessary, due to its 21 years-old antiquity and for the gradual changes that has in its functioning. The equipment is intrinsically a gamma spectrometry system and some described experiences could be applied too in other gamma spectrometry systems. (Author)

  18. Variation of thermophysical parameters of PCM CaCl2.6H2O with dopant from T-history data analysis

    Science.gov (United States)

    Sutjahja, I. M.; Silalahi, Alfriska O.; Sukmawati, Nissa; Kurnia, D.; Wonorahardjo, S.

    2018-03-01

    T-history is a powerful method for deriving the thermophysical parameters of a phase change material (PCM), which consists of solid and liquid specific heats as well as latent heat enthalpy. The performance of a PCM for thermal energy storage could be altered by chemical dopants added directly to the PCM in order to form a stable suspension. We described in this paper the role of chemical dopants in the variation of thermophysical parameters for CaCl2 · 6H2O inorganic PCM with 1 wt% and 2 wt% dopant concentration and BaSO4 (1 wt%) as a nucleator using the T-history method. The dopant consists graphite and CuO nanoparticles. The data analysis follows the original method proposed by (Zhang et al 1999 Meas. Sci. Technol. 10 201–205) and its modification by (Hong et al 2004 Int. J. Refrig. 27 360–366). In addition, the enthalpy-temperature curve is obtained by adopting a method proposed by (Marín et al 2003 Meas. Sci. Technol. 14 184–189). We found that the solid specific heat tends to increase non-linearly with increased dopant concentration for all dopants. The increased liquid specific heat, however, indicates the optimum value for 1 wt% graphite dopant. In contrast, the CuO dopant shows a smaller increase in dopant concentration. The specific heat data are analyzed based on the interacting mesolayer model for a nanofluid. The heat of fusion show strong variation with dopant type, in agreement with other experimental data for various PCMs and dopant particles.

  19. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  20. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  1. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  2. Profiling N-Type Dopants in Silicon

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Miloš; Mika, Filip; Mikulík, P.; Frank, Luděk

    2010-01-01

    Roč. 51, č. 2 (2010), s. 237-242 ISSN 1345-9678 R&D Projects: GA ČR GP102/09/P543; GA AV ČR IAA100650803 Institutional research plan: CEZ:AV0Z20650511 Keywords : silicon * dopant contrast * photoemission electron microscopy * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.779, year: 2010 http://www.jim.or.jp/journal/e/51/02/237.html

  3. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  4. Search for an optimum time response of spark counters

    International Nuclear Information System (INIS)

    Devismes, A.; Finck, Ch.; Kress, T.; Gobbi, A.; Eschke, J.; Herrmann, N.; Hildenbrand, K.D.; Koczon, P.; Petrovici, M.

    2002-01-01

    A spark counter of the type developed by Pestov has been tested with the aim of searching for an optimum time response function, changing voltage, content of noble and quencher gases, pressure and energy-loss. Replacing the usual argon by neon has brought an improvement of the resolution and a significant reduction of tails in the time response function. It has been proven that a counter as long as 90 cm can deliver, using neon gas mixture, a time resolution σ<60 ps with about 1% absolute tail and an efficiency of about 90%

  5. Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers

    International Nuclear Information System (INIS)

    Chin, S.-C.; Chang, Y.-C.; Chang, C.-S.; Tsong, T T; Hsu, Chen-Chih; Wu, Chih-I; Lin, W-H; Woon, W-Y; Lin, L-T; Tao, H-J

    2008-01-01

    A two-dimensional (2D) dopant profiling technique is demonstrated in this work. We apply a unique cantilever probe in electrostatic force microscopy (EFM) modified by the attachment of a multiwalled carbon nanotube (MWNT). Furthermore, the tip apex of the MWNT was trimmed to the sharpness of a single-walled carbon nanotube (SWNT). This ultra-sharp MWNT tip helps us to resolve dopant features to within 10 nm in air, which approaches the resolution achieved by ultra-high vacuum scanning tunnelling microscopy (UHV STM). In this study, the CNT-probed EFM is used to profile 2D buried dopant distribution under a nano-scale device structure and shows the feasibility of device characterization for sub-45 nm complementary metal-oxide-semiconductor (CMOS) field-effect transistors

  6. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    International Nuclear Information System (INIS)

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/π ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the Dφ uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/π ratio

  7. Defect evolution and dopant activation in laser annealed Si and Ge

    DEFF Research Database (Denmark)

    Cristiano, F.; Shayesteh, M.; Duffy, R.

    2016-01-01

    Defect evolution and dopant activation are intimately related to the use of ion implantation and annealing, traditionally used to dope semiconductors during device fabrication. Ultra-fast laser thermal annealing (LTA) is one of the most promising solutions for the achievement of abrupt and highly...... doped junctions. In this paper, we report some recent investigations focused on this annealing method, with particular emphasis on the investigation of the formation and evolution of implant/anneal induced defects and their impact on dopant activation. In the case of laser annealed Silicon, we show...

  8. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Junsheng [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tian-Shu, E-mail: tschu@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber, Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2016-11-15

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F{sup −}, AcO{sup −}. Thus, the chemosensor M1 has a high selectivity for cyanide.

  9. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  10. Dopant structural distortions in high-temperature superconductors: an active or a passive role?

    International Nuclear Information System (INIS)

    Haskel, D.; Stern, E.A.; Dogan, F.; Moodenbaugh, A.R.

    2001-01-01

    The parent compounds of high-temperature superconductors, such as YBa 2 Cu 3 O 6 and La 2 CuO 4 , are strongly interacting electron systems, rendering them insulators with Mott-Hubbard gaps of a few electron volts. Charge carriers (holes) are introduced by chemical doping, causing an insulator-metal (IM) transition and, at low temperatures, superconductivity. The role of dopants is widely seen as limited to the introduction of holes into the CuO 2 planes (i.e. occupying electronic states derived from Cu 3d x2-y2 and O 2p x,y atomic orbitals). Most theories of high-T c superconductivity deal with pairing interactions between these planar holes. Local distortions around dopants are poorly understood, because of the experimental difficulty in obtaining such information, particularly at low doping. This has resulted in the neglect, in most theories, of the effect of such distortions on the chemical and electronic structure of high-T c superconductors. Angular-resolved X-ray absorption fine structure (XAFS) spectroscopy on oriented samples is an ideal technique to elucidate the dopant distortions. Element specificity, together with a large orientation dependence of the XAFS signal in these layered structures, allows the local structure around dopants to be resolved. Results are presented here on (Sr, Ba) and Ni dopants, which substitute at the La and Cu sites, respectively, of insulating La 2 CuO 4 . The relevance of the measured local distortions for a complete understanding of the normal and superconducting properties of cuprates is discussed. (au)

  11. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  12. Infrared multiple photon dissociation spectroscopy of sodium and potassium chlorate anions.

    Science.gov (United States)

    Dain, Ryan P; Leavitt, Christopher M; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Van Stipdonk, Michael J

    2010-01-01

    The structures of gas-phase, metal chlorate anions with the formula [M(ClO(3))(2)](-), M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species with those predicted by density functional theory (DFT) and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO(3))(2)](-). However, for [K(ClO(3))(2)](-) the best agreement between experimental and theoretical spectra is obtained from a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory. Copyright 2009 John Wiley & Sons, Ltd.

  13. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)

  14. An extended five-stream model for diffusion of ion-implanted dopants in monocrystalline silicon

    International Nuclear Information System (INIS)

    Khina, B.B.

    2007-01-01

    Low-energy high-dose ion implantation of different dopants (P, Sb, As, B and others) into monocrystalline silicon with subsequent thermal annealing is used for the formation of ultra-shallow p-n junctions in modern VLSI circuit technology. During annealing, dopant activation and diffusion in silicon takes place. The experimentally observed phenomenon of transient enhanced diffusion (TED), which is typically ascribed to the interaction of diffusing species with non-equilibrium point defects accumulated in silicon due to ion damage, and formation of small clusters and extended defects, hinders further down scaling of p-n junctions in VLSI circuits. TED is currently a subject of extensive experimental and theoretical investigation in many binary and multicomponent systems. However, the state-of-the-art mathematical models of dopant diffusion, which are based on the so-called 'five-stream' approach, and modern TCAD software packages such as SUPREM-4 (by Silvaco Data Systems, Ltd.) that implement these models encounter severe difficulties in describing TED. Solving the intricate problem of TED suppression and development of novel regimes of ion implantation and rapid thermal annealing is impossible without elaboration of new mathematical models and computer simulation of this complex phenomenon. In this work, an extended five-stream model for diffusion in silicon is developed which takes into account all possible charge states of point defects (vacancies and silicon self-interstitials) and diffusing pairs 'dopant atom-vacancy' and 'dopant atom-silicon self-interstitial'. The model includes the drift terms for differently charged point defects and pairs in the internal electric field and the kinetics of interaction between unlike 'species' (generation and annihilation of pairs and annihilation of point defects). Expressions for diffusion coefficients and numerous sink/source terms that appear in the non-linear, non-steady-state reaction-diffusion equations are derived

  15. Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach.

    Science.gov (United States)

    Kumar, E Mathan; Rajkamal, A; Thapa, Ranjit

    2017-11-14

    First-principles based calculations are performed to investigate the dehydrogenation kinetics considering doping at various layers of MgH 2 (110) surface. Doping at first and second layer of MgH 2 (110) has a significant role in lowering the H 2 desorption (from surface) barrier energy, whereas the doping at third layer has no impact on the barrier energy. Molecular dynamics calculations are also performed to check the bonding strength, clusterization, and system stability. We study in details about the influence of doping on dehydrogenation, considering the screening factors such as formation enthalpy, bulk modulus, and gravimetric density. Screening based approach assist in finding Al and Sc as the best possible dopant in lowering of desorption temperature, while preserving similar gravimetric density and Bulk modulus as of pure MgH 2 system. The electron localization function plot and population analysis illustrate that the bond between Dopant-Hydrogen is mainly covalent, which weaken the Mg-Hydrogen bonds. Overall we observed that Al as dopant is suitable and surface doping can help in lowering the desorption temperature. So layer dependent doping studies can help to find the best possible reversible hydride based hydrogen storage materials.

  16. Polyvinyl alcohol (PVA) and sulfonated polyetheretherketone (SPEEK) anion exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available less than proton exchange membrane systems using alcohol as fuel. Many anion exchange membranes based on quaternised polymers have been developed and studied for AMFC3-5. The quaternary ammonium functional groups are the anion conductors...

  17. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  18. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    International Nuclear Information System (INIS)

    Inoue, K.; Yano, F.; Nishida, A.; Takamizawa, H.; Tsunomura, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  19. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Science.gov (United States)

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  20. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  1. Controlling energy transfer between multiple dopants within a single nanoparticle

    Science.gov (United States)

    DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John

    2008-01-01

    Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307

  2. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  3. Dynamics of δ-dopant redistribution during heterostructure growth

    Science.gov (United States)

    Pankratov, E. L.

    2007-06-01

    It has recently been shown that growth of a multilayer structure with one or more delta-layers at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example, E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss, Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus', B.N. Zvonkov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland, C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999); G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick's second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an overlayer.

  4. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Thuy, Chau Thi Thanh; Park, Ji Young; Lee, Seung Woo; Suresh, Thogiti; Kim, Jae Hong

    2016-05-01

    In our present study, polypyrrole-1 (PPy1), polypyrrole-2 (PPy2), and polypyrrole-2/multi wall carbon nanotube composite film (PPy2/MWCNT) were proposed as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) to replace the precious Pt CE. These films were fabricated on fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CEs in DSSCs. It is shown that the introduction of anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the catalytic activity, thus leading to an improvement in the performance of PPy2. Further, introduction of MWCNT resulted in increase in conversion efficiency of DSSCs with PPy2/MWCNT composite film. The Tafel and electrochemical impedance analysis revealed that the PPy2 and PPy2/MWCNT CEs prepared with anionic surfactant possessed more catalytic activity and lower charge transfer resistance in comparison with PPy1 -based CE. This resulted in a better conversion efficiency of 5.88% for PPy2/MWCNT-based DSSC under 1 sun condition, reaching 86% of the DSSC based on reference Pt counter electrode (6.86%). These results indicate that the composite film with high catalytic properties for I3- reduction can potentially be used as the CE in a high-performance DSSC.

  5. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    Science.gov (United States)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  6. Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraaman, B. [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India); Maruthamuthu, P., E-mail: pmaruthu@yahoo.com [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India)

    2011-09-01

    Highlights: > Incorporation of a {pi}-electron donor compound as dopant in poly(vinylidene fluoride) along with redox couple (I{sup -}/I{sub 3}{sup -}) which forms brush like nanotubes. > Investigations about the use of conducting carbon coated FTO as a durable counter electrode and its effects in DSC. > High charge separation and the channelized flow of electrons in the nanotubes in electrolyte favors stable performance. - Abstract: In the present work, we report the incorporation of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) in poly(vinylidene fluoride) (PVDF) along with the redox couple (I{sup -}/I{sub 3}{sup -}). When ABTS, a {pi}-electron donor, is used to dope PVDF, the polymer composite forms brush-like nanotubes and has been successfully used as a solid polymer electrolyte in dye-sensitized solar cells. Under the given conditions, the electrolyte composition forms nanotubes while it is doped with ABTS, a {pi}-electron donor. With this new electrolyte, a dye-sensitized solar cell was fabricated using N3 dye adsorbed over TiO{sub 2} nanoparticles as the photoanode and conducting carbon cement coated FTO as counter electrode.

  7. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  8. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    Science.gov (United States)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  9. Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite

    International Nuclear Information System (INIS)

    Dhal, Jharana; Bose, Susmita; Bandyopadhyay, Amit

    2013-01-01

    Influence of pentavalent tantalum doping in bulk hydroxyapatite (HAp) ceramics has been investigated for polarizability and bioactivity. Phase analysis from X-ray diffraction measurement indicates that increasing dopant concentration decreased the amount of HAp phase and increased β-TCP and/or α-TCP phases during sintering at 1250 °C in a muffle furnace. Results from thermally stimulated depolarization current (TSDC) measurements showed that doping hindered charge storage ability in HAp ceramics, and doped samples stored fewer charge compared to pure HAp. However, doping enhanced wettability of HAp samples, which was improved further due to polarization. In vitro human osteoblast cell–material interaction study revealed an increase in bioactivity due to dopant addition and polarization compared to pure HAp. This increase in bioactivity was attributed to the increase in wettability due to surface charge and dopant addition. - Highlights: • Tantalum doping makes HAp unstable during sintering at 1250 °C and forms TCP. • Tantalum doping reduces charge storage ability of HAp ceramics. • Even with lower charge storage ability tantalum doping improves wettability. • Tantalum doping enhances bioactivity of calcium phosphate based sintered compacts

  10. Organic anion transporter (Slc22a) family members as mediators of toxicity

    International Nuclear Information System (INIS)

    Sweet, Douglas H.

    2005-01-01

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents

  11. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  12. A survey of acceptor dopants for β-Ga2O3

    Science.gov (United States)

    Lyons, John L.

    2018-05-01

    With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.

  13. Anion Rreceptors Based on Intramolecularly Bridged Calix[4]arenes Bearing Ureido Functions.

    Czech Academy of Sciences Publication Activity Database

    Řezanková, M.; Budka, J.; Mikšátko, J.; Eigner, V.; Císařová, I.; Cuřínová, Petra; Lhoták, P.

    2017-01-01

    Roč. 73, č. 6 (2017), s. 742-749 ISSN 0040-4020 Institutional support: RVO:67985858 Keywords : calixarene * reductive coupling * anion recognition Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.651, year: 2016

  14. The time response function of spark counters and RPCs

    International Nuclear Information System (INIS)

    Gobbi, A.; Mangiarotti, A.

    2003-01-01

    The fluctuation theory for the avalanche growth with and without space charge effects is briefly summarized and compared to a broad field of applications. These include spark counters as well as timing and trigger RPCs operated in avalanche mode. A large domain in electrical field strength, pressure, gap size and gas mixture type is covered. A reasonable agreement with the experiment is observed, giving confidence on the validity of both assumptions and treatment of the theory

  15. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  16. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  17. Green Ultrasound versus Conventional Synthesis and Characterization of Specific Task Pyridinium Ionic Liquid Hydrazones Tethering Fluorinated Counter Anions: Novel Inhibitors of Fungal Ergosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    Nadjet Rezki

    2017-11-01

    Full Text Available A series of specific task ionic liquids (ILs based on a pyridiniumhydrazone scaffold in combination with hexafluorophosphate (PF6−, tetrafluoroboron (BF4− and/or trifluoroacetate (CF3COO− counter anion, were designed and characterized by IR, NMR and mass spectrometry. The reactions were conducted under both conventional and green ultrasound procedures. The antifungal potential of the synthesized compounds 2–25 was investigated against 40 strains of Candida (four standard and 36 clinical isolates. Minimum inhibitory concentrations (MIC90 of the synthesized compounds were in the range of 62.5–2000 μg/mL for both standard and oral Candida isolates. MIC90 results showed that the synthesized 1-(2-(4-chlorophenyl-2-oxoethyl-4-(2-(4-fluorobenzylidenehydrazinecarbonyl-pyridin-1-ium hexafluorophosphate (11 was found to be most effective, followed by 4-(2-(4-fluorobenzylidenehydrazinecarbonyl-1-(2-(4-nitrophenyl-2-oxoethyl-pyridin-1-ium hexafluorophosphate (14 and 1-(2-ethoxy-2-oxoethyl-4-(2-(4-fluorobenzylidenehydrazinecarbonylpyridin-1-ium hexafluorophosphate (8. All the Candida isolates showed marked sensitivity towards the synthesized compounds. Ergosterol content was drastically reduced by more active synthesized compounds, and agreed well with MIC90 values. Confocal scanning laser microscopy (CLSM results showed that the red colored fluorescent dye enters the test agent treated cells, which confirms cell wall and cell membrane damage. The microscopy results obtained suggested membrane-located targets for the action of these synthesized compounds. It appears that the test compounds might be interacting with ergosterol in the fungal cell membranes, decreasing the membrane ergosterol content and ultimately leading to membrane disruption as visible in confocal results. The present study indicates that these synthesized compounds show significant antifungal activity against Candida which forms the basis to carry out further in vivo experiments

  18. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed E.; Yakout, Amr A.; Osman, Maher M.

    2009-01-01

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g -1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  19. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  20. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao; Chroneos, Alexander; Schwingenschlö gl, Udo

    2013-01-01

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  1. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao

    2013-02-28

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  2. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  3. Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode

    International Nuclear Information System (INIS)

    Kim, Byung-Man; Son, Min-Kyu; Kim, Soo-Kyoung; Hong, Na-Yeong; Park, Songyi; Jeong, Myeong-Soo; Seo, Hyunwoong; Prabakar, Kandasamy; Kim, Hee-Je

    2014-01-01

    Highlights: • PbS QDs synthesized using the SILAR method act not only as the electrochemical catalysts but as donors providing additional electrons under illumination. • The electrochemical and optical properties of the PbS QDs were enhanced considerably after Mn 2+ doping. • The electron supply from the counter electrode was significantly activated by Mn 2+ doping, improving the performance of QDSSC. - Abstract: This study reports the enhanced catalytic ability of Mn-doped PbS QDs synthesized using a successive ionic layer adsorption and reaction (SILAR) method for quantum dot-sensitized solar cells (QDSSCs). Electrochemical and optical analysis of each material showed that the catalytic ability of the PbS electrode was improved significantly by Mn 2+ doping. Two factors can explain this behavior. The first is that intentional impurities have an impact on the structure of the host material, such as increases in surface roughness. The other is that dopants create new energy states that delay the exciton recombination time and allow charge separation to be activated. As a result, the photoelectron supply from the counter electrode is accelerated, resulting in vigorous redox reactions at the polysulfide electrolyte. The performance of the CdS/CdSe QDSSC using a Mn-doped PbS counter electrode was compared with those using the Pt and PbS counter electrodes. Finally, a power conversion efficiency of 3.61% was achieved with the Mn-doped PbS counter electrode (V OC = 0.61 V, J SC = 11.67 mA cm −2 , FF = 0.51) under one sun illumination (100 mW cm −2 ), which is ∼40% higher than that of CdS/CdSe QDSSCs with the bare PbS counter electrode

  4. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  5. Effect of Cu-Dopant on the Structural, Magnetic and Electrical Properties of ZnO

    Science.gov (United States)

    Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Sebayang, P.; Ginting, M.; Siregar, S. M. K.; Nasruddin, M. N.

    2017-05-01

    Zn1- x Cu x O (x = 0, 2, 3, and 4 at.%) was synthesized by using solid-state reaction technique. The ZnO and CuO powders were mixed and then milled by using high-speed shaker mill. The influence of Cu dopants on the structure, magnetic, and electrical properties was investigated by using XRD, VSM, and I-V and C-V measurements. The XRD analysis showed that the Zn1- x Cu x O had hexagonal wurtzite polycrystalline. The diffraction intensity decreased and the peak position shifted directly to a higher 2θ angle with increasing the dopant concentration. Furthermore, the lattice parameters decreased when the ZnO was doped with x = 0.04, which indicated that the crystal structure changed. The increase of Cu dopants was believed to affect the magnetic and electrical properties of ZnO.

  6. Technical report Development of a piezoelectric inkjet dopant delivery device for an atmospheric pressure photoionization source with liquid chromatography/mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2013-01-01

    This paper describes a simple robust and integrated piezoelectric actuated printhead as a dopant delivery system for atmospheric pressure photoionization with liquid chromatography/mass spectrometry The newly designed dopant delivery system avoids problems associated with traditional liquid delivery systems such as solvent immiscibility backpressure and increased post-column dead volume issues The performance of the new device was tested and evaluated using chlorobenzene as a dopant with a test mixture consisting of 18 different polycyclic aromatic hydrocarbons (PAHs) The results show that the new system works robustly at low dopant consumption level (16 uL min-1) consuming only approximately 5% of the amount used by conventional sources The low dopant consumption has resulted in up to a 20-fold reduction in signal intensity of tested PAH molecules but has led to less presence of background cluster ions and dopant trace contaminant background ions in the source area Consequently all tested PAHs were detected with excellent signal-to-noise ratio with at least two-to ten-fold improvements in the limit of detection and quantification compared to those obtained with traditional dopant assistance using a post-column addition method © IM Publications LLP 2013.

  7. Synthesis of Terpyridine-Terminated Polymers by Anionic Polymerization

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Lohmeijer, B.G.G.; Meier, M.A.R.; Schubert, U.S.

    2005-01-01

    The synthesis of terpyridine-functionalized polystyrene was achieved by reacting 4‘-chloro-2,2‘:6‘,2‘ ‘-terpyridine (terminating agent) with "living" polymeric carbanions synthesized by anionic polymerization. The obtained polymers were characterized by gel permeation chromatography, nuclear

  8. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    Science.gov (United States)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  9. Intermolecular proton transfer in anionic complexes of uracil with alcohols

    International Nuclear Information System (INIS)

    Haranczyk, Maciej; Rak, Janusz; Gutowski, Maciej S.; Radisic, Dunja; Stokes, Sarah T.; Bowen, Kit H.

    2005-01-01

    A series of eighteen alcohols (ROH) has been designed with an enthalpy of deprotonation (H DP ) in a range of 13.8-16.3 eV. The effects of excess electron attachment to the binary alcohol-uracil (ROH...U) complexes have been studied at the density functional level with a B3LYP exchange-correlation functional and at the second order Moeller-Plesset perturbation theory level. The photoelectron spectra of anionic complexes of uracil with three alcohols (ethanol, 2,2,3,3,3-pentafluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol) have been measured with 2.54 eV photons. For ROHs with deprotonation enthalpies larger than 14.8 eV only the ROH...U - minimum exists on the potential energy surface of the anionic complex. For alcohols with deprotonation enthalpies in a range of 14.3-14.8 eV two minima might exist on the anionic potential energy surface, which correspond to the RO - ...HU . and ROH...U - structures. For ROHs with deprotonation enthalpies smaller than 14.3 eV, the excess electron attachment to the ROH...U complex always induces a barrier-free proton transfer from the hydroxyl group of ROH to the O8 atom of U, with the product being RO - ...HU . . A driving force for the intermolecular proton transfer is to stabilize the excess negative charge localized on a orbital of uracil. Therefore, these complexes with proton transferred to the anionic uracil are characterized by larger values of electron vertical detachment energy (VDE). The values of VDE for anionic complexes span a range from 1.0 to 2.3 eV and roughly correlate with the acidity of alcohols. However, there is a gap of ∼0.5 eV in the values of VDE, which separates the two families, ROH...U - and RO - ...HU . , of anionic complexes. The energy of stabilization for the anionic complexes spans a range from 0.6 to 1.7 eV and roughly correlates with the acidity of alcohols. The measured photoelectron spectra are in good agreement with the theoretical predictions

  10. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  11. Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions

    Science.gov (United States)

    Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.

    2018-02-01

    Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.

  12. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants*

    International Nuclear Information System (INIS)

    Li Chang-Sheng; Ma Lei; Guo Jie-Rong

    2017-01-01

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density. (paper)

  13. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Science.gov (United States)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  14. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    Science.gov (United States)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  15. A low-level needle counter

    International Nuclear Information System (INIS)

    Fujita, Y.; Taguchi, Y.; Imamura, M.; Inoue, T.; Tanaka, S.

    1977-01-01

    A small end-window type gas-flow counter which has a sharpened needle (anode) against the end-window plane (cathode) was developed for low-level counting of β particles to the amount of less than one count per hour in solid sources of relatively high specific activity. The advantage of the needle counter for low-level work is that being of a conical shape the active volume as against the window area is small. The background count rate of 0.0092+-0.0005 cpm was obtained for a 10 mm dia needle counter operating in GM mode and in anticoincidence with a well-type NaI(Tl) guard crystal with massive shields. The counter design and the counter characteristics are presented in detail. The needle counter is simple in design, low-cost and stable in long time operation. (author)

  16. Role of nitrogen vacancies in cerium doped aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com [Department of Physics, University of Gujrat, Gujrat (Pakistan); Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Asghar, Farzana [Department of Physics, University of Gujrat, Gujrat (Pakistan); Rana, Usman Ali; Ud-Din Khan, Salah [Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421 (Saudi Arabia); Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Hussain, Fayyaz [Physics Department, Bahauddin Zakarya University, Multan (Pakistan); Ahmad, Iftikhar [Department of Mathematics, University of Gujrat, Gujrat (Pakistan)

    2016-08-15

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce{sub Al}–V{sub N} complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce{sub Al}–V{sub N} complex is favorable in Ce:AlN.

  17. Role of nitrogen vacancies in cerium doped aluminum nitride

    International Nuclear Information System (INIS)

    Majid, Abdul; Asghar, Farzana; Rana, Usman Ali; Ud-Din Khan, Salah; Yoshiya, Masato; Hussain, Fayyaz; Ahmad, Iftikhar

    2016-01-01

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce Al –V N complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce Al –V N complex is favorable in Ce:AlN.

  18. Application of dopant-free hole transport materials for perovskite solar cells

    International Nuclear Information System (INIS)

    Franckevincius, M.; Gulbinas, V.; Gratzel, M.; Zakeeruddin, S.; Pauerle, P.; Mishra, A.; Steck, C.

    2015-01-01

    In this work we present the synthesis, characterization and application of a series of additive and dopant free hole transport materials (HTM) for solid-state perovskite-based solar cells. Newly synthesized HTMs showed strong absorption in the visible spectral range and suitable HOMO-LUMO energy levels for the application for methylammonium lead(II) iodide (CH_3NH_3PbI_3) perovskite. Dopant-free perovskite solar cells have been fabricated using CH_3NH_3PbI_3 perovskite and the newly synthesized HTMs following sequential deposition method, which allows us to reach power conversion efficiencies as high as 11.4 %. The easy of synthesis, low cost and relatively high performance of newly synthesized HTMs has great prospects for commercial applications in the near-future. (authors)

  19. Modulation of the acidity of niobic acid by ion-doping: Effects of nature and amount of the dopant ions

    Energy Technology Data Exchange (ETDEWEB)

    Carniti, Paolo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Marzo, Matteo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, (IRCELYON), Villeurbanne (France)

    2013-09-10

    Highlights: ► Mitigation of the surface acidity of niobic acid was pursued by K-, Ba-, and Nd-doping. ► Thermal techniques of study were effective for the acidity study. ► The nature of the dopant influences the effectiveness of the acidity tuning of niobic acid. ► The acidity of the doped surfaces decreased with increasing the dopant species added to niobic acid. ► The samples showed different acidity when measured in gas–solid phase (intrinsic acidity) and water (effective acidity). - Abstract: The acidity of niobic acid (NBO) has been successfully mitigated and tuned by addition of K{sup +}, Ba{sup 2+} and Nd{sup 3+} dopant species in amounts from 1 to 15 atom nm{sup −2}. The characterization of the intrinsic acid properties of the samples was performed by adsorption of NH{sub 3} in a volumetric–microcalorimetric coupled line and by temperature programmed desorption (TPD) of 2-phenylethylamine in a thermogravimetric apparatus. The K-dopant was more effective in decreasing the acidity of niobic acid than the Ba- and Nd-dopants. Complementary measurements of the effective acidity of the samples in water by base titrations with 2-phenylethylamine completed the study and revealed a different picture of the effect of the three dopants on the NBO acidity in water. All the results indicated that the K-dopant targeted more selectively the Brønsted acid sites, acting as an ion-exchanger, while Ba- and Nd-species predominantly acted on the Lewis acid sites of the NBO surface.

  20. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  1. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  2. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  3. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K., E-mail: JulienKouadio.Dangbegnon@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Talla, K.; Roro, K.T.; Botha, J.R. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  4. Counter-Radiation Balm and its Medical Properties at Radiation Injuries and Functional Disorders in Gastrointestinal Tract

    International Nuclear Information System (INIS)

    Melkadze, R.; Shalamberidze, M.

    2006-01-01

    It has been shown that the Counter-Radiation Balm (CRB) is fairly effective in normalization of secretory phenomena and eubiotic state of the digestive tract in conditions of their functional disorders induced by various causes. The CRB has normalizing effect on an intestional flora during experimental dysbacterioses, induced with irradiation and starvation. This holds true in both bone marrow- and mixed patterns of acute radiation disease (ARD). The CRB somewhat decreases a toxic constituent of ARD, increases colonization resistance of the intestine to external microbial invasions and precludes extension of intestinal area for conditionally-pathogene flora. (author)

  5. The use of isoprene as a novel dopant in negative ion atmospheric pressure photoionization mass spectrometry coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Dousty, Faezeh; O'Brien, Rob

    2015-06-15

    As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  7. Proportional counter system for radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M; Okudera, S

    1970-11-21

    A gas such as Xe or Kr employed in counter tubes is charged into the counter tube of a gas-flow type proportional counter for radiation measurement and into a vessel having a volume larger than that of the counter tube. The vessel communicates with the counter tube to circulate the gas via a pump through both the vessel and tube during measurement. An organic film such as a polyester synthetic resin film is used for the window of the counter tube to measure X-rays in the long wavelength range. Accordingly, a wide range of X-rays can be measured including both long and short wavelengths ranges by utilizing only one counter tube, thus permitting the gases employed to be effectively used.

  8. The research on the failure regularity of GM counter tubes

    International Nuclear Information System (INIS)

    Li Jiyuan; Huai Guangli; Xie Bo; Zhang Hao

    2002-01-01

    The reliability of GM counter tubes should be described by useful time before failure-life and failure rate during life. A new method to study the failure regularity of GM counter tubes is advanced and adopted. The essential point of the method is that after the GM counter tubes of the instruments in use is tested, both the performance parameters and other information of the GM counter tubes and the instruments collected are recorded. Then database is created. Failure criterion is ascertained. The GM counter tubes are inspected to determine whether they are failure. Failure mode should be decided if the GM counter tubes failure. The GM counter tubes with the same useful year come together to make up a subsample. According to the relevant information, the number of the subsample is restored to the number of the sample that initially put into use. Then the number of failure sample is counted and at the same time the distribution of failure mode is got. The parameter m, γ, t 0 of Weibull distribution function are calculated with method of linear fit. Thus mean life, failure rate and other character values are obtained. Using this method, useful life and failure rate are determined. The conclusion is that the useful life is 18-20 years and the failure rate is 5 x 10 -6 and 4 x 10 -6 /h respectively during the course

  9. Effect of substrate type, dopant and thermal treatment on ...

    Indian Academy of Sciences (India)

    Effect of substrate type, dopant and thermal treatment on physicochemical properties of TiO2–SnO2 sol–gel films. I STAMBOLOVA. ∗. , V BLASKOV, S VASSILEV†, M SHIPOCHKA and A LOUKANOV‡. Institute of General and Inorganic Chemistry, †Institute of Electrochemistry and Energy Systems, BAS,. Acad. G. Bonchev ...

  10. Counter-discourse in Zimbabwean literature

    NARCIS (Netherlands)

    Mangena, Tendai

    2015-01-01

    Counter-Discourse in Zimbabwean Literature is a study of specific aspects of counter-discursive Zimbabwean narratives in English. In discussing the selected texts, my thesis is based on Terdiman’s (1989) the postcolonial concept of counter-discourse. In Zimbabwean literature challenges to a dominant

  11. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Ryu, Dae Hyun [Department of Information Technology, Hansei University, Gunpo (Korea, Republic of); Wood, Richard [Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada); Moon, C.-B. [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2013-11-15

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE{sub x,y}) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE{sub x,y} coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source.

  13. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    International Nuclear Information System (INIS)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn; Ryu, Dae Hyun; Wood, Richard; Moon, C.-B.; Kim, Woo Young

    2013-01-01

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE x,y ) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE x,y coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source

  14. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    Science.gov (United States)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  15. Exciton-dopant and exciton-charge interactions in electronically doped OLEDs

    International Nuclear Information System (INIS)

    Williams, Christopher; Lee, Sergey; Ferraris, John; Zakhidov, A. Anvar

    2004-01-01

    The electronic dopants, like tetrafluorocyanoquinodimethane (F 4 -TCNQ) molecules, used for p-doping of hole transport layers in organic light-emitting diodes (OLEDs) are found to quench the electroluminescence (EL) if they diffuse into the emissive layer. We observed EL quenching in OLED with F 4 -TCNQ doped N,N'-diphenyl-N'N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine hole transport layer at large dopant concentrations, >5%. To separate the effects of exciton-dopant quenching, from exciton-polaron quenching we have intentionally doped the emissive layer of (8-tris-hydroxyquinoline) with three acceptors (A) of different electron affinities: F 4 -TCNQ, TCNQ, and C 60 , and found that C 60 is the strongest EL-quencher, while F 4 -TCNQ is the weakest, contrary to intuitive expectations. The new effects of charge transfer and usually considered energy transfer from exciton to neutral (A) and charged acceptors (A - ) are compared as channels for non-radiative Ex-A decay. At high current loads the EL quenching is observed, which is due to decay of Ex on free charge carriers, hole polarons P + . We consider contributions to Ex-P + interaction by short-range charge transfer and describe the structure of microscopic charge transfer (CT)-processes responsible for it. The formation of metastable states of 'charged excitons' (predicted and studied by Agranovich et al. Chem. Phys. 272 (2001) 159) by electron transfer from a P to an Ex is pointed out, and ways to suppress non-radiative Ex-P decay are suggested

  16. Solvent effects on dopant-free pH-falling polymerization of aniline

    Czech Academy of Sciences Publication Activity Database

    Rakić, A. A.; Vukomanović, M.; Trifunovic, S.; Travas-Sejdic, J.; Chaudhary, O. J.; Horský, Jiří; Ciric-Marjanovic, G.

    2015-01-01

    Roč. 209, November (2015), s. 279-296 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : dopant-free template -free method * nanostructures * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.299, year: 2015

  17. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET

    Science.gov (United States)

    Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh

    2017-09-01

    We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.

  18. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  19. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  20. What is Counter-Enlightenment?

    OpenAIRE

    Darrin M. McMahon

    2017-01-01

    This article counters recent suggestions that there was no such thing as a “Counter-Enlightenment” or “Counter-Enlightenments,” and that such terms ought thus to be abandoned.   While acknowledging inevitable difficulties with the terms, the article argues that there can be no doubting the reality.   European countries faced a variety of vehement and self-conscious movements that defined themselves precisely through their opposition to what they took to be the corrosive effects of the Enlight...

  1. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  2. Reactions of laser-ablated Co, Rh, and Ir with CO: Infrared spectra and density functional calculations of the metal carbonyl molecules, cations and anions in solid neon

    International Nuclear Information System (INIS)

    Zhou, M.; Andrews, L.

    1999-01-01

    Laser ablation produces metal atoms, cations, and electrons for reaction with CO during condensation in excess neon at 4 K. Infrared spectra are observed for the metal carbonyls, cations, and anions, which are identified from isotopic shifts ( 13 CO, C 18 O) and splittings using mixed isotopic precursors. Density functional calculations with pseudopotentials for Rh and Ir predict the observed carbonyl stretching frequencies within 1--2%. This characterization of the simple RhCO + , RhCO, and RhCO - (and Ir) species over a 350 cm -1 range provides a scale for comparison of larger catalytically active Rh and Ir carbonyl complexes in solution and on surfaces to estimate charge on the metal center. This work provides the first spectroscopic characterization of Rh and Ir carbonyl cations and anions except for the stable tetracarbonyl anions in solution

  3. The side-on response of a standard long counter to fast neutrons

    International Nuclear Information System (INIS)

    Johnson, F.A.

    1979-01-01

    The response of a standard long counter to neutrons incident into its front face relative to its response to those incident into its side was measured for a range of neutron energies, and an increasing sensitivity to high-energy neutrons incident into the side was evident. The effect of a shadow bar in contributing to an initial degradation in energy of neutrons which then scatter from the surroundings into the counter was suggested by the response of the counter in the side-on orientation as a function of the separation distance of the bar from a source. (Auth.)

  4. Reaction of N,N'-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Science.gov (United States)

    Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.

    2018-05-01

    Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  5. Reaction of N,N’-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Directory of Open Access Journals (Sweden)

    A. Fukui

    2018-05-01

    Full Text Available Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2 is a semiconducting material composed of atomically thin (∼0.7 nm thickness layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4 is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N’-dimethylformamide (DMF, by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  6. CEDAR counter (internal part)

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Here on the mounting bench. The counter is a differential Cerenkov, corrected for chromaticity, able to differentiate pions from kaons up to 350 GeV. Counters of this type were used in all SPS hadron beams.

  7. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  8. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  9. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  10. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  11. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.

    1994-02-01

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs + and Sr 2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs + and Sr 2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  12. Over-the-Counter Medicines

    Science.gov (United States)

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. ... medicine is safe enough to sell over-the-counter. Taking OTC medicines still has risks. Some interact ...

  13. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes

    International Nuclear Information System (INIS)

    Moli, Ch.

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10 -2 M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO 3 = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)

  14. Self-assembling nano-diameter needlelike pinning centers in YBCO, utilizing a foreign element dopant

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Weinstein, Roy [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Obot, Victor [Department of Mathematics, Texas Southern University, 3100 Cleburne St, Houston Texas 77004-4597 (United States); Parks, Drew [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Gandini, Alberto [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Skorpenske, Harley [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States)

    2006-06-01

    Although pinning centers created by irradiation presently produce the highest J{sub c}, it is probable that ultimately these will be emulated by chemical pinning centers. The best pinning centers produced by irradiation nevertheless provide guidelines for desirable morphology of chemical pinning structures. The highest J{sub c} produced earlier in textured HTS was obtained using isotropic high-energy ions produced by fission of {sup 235}U. This so-called U/n process produces pinning centers of diameter {<=} 4.5 nm, with an effective length of {approx}2.7 {mu}m. Maximum J{sub c} occurs for pinning center density of {approx}10{sup 10} cm{sup -3}. We use this as a model for desired chemical pinning centers. Our approach to introducing chemical pinning centers has been to produce precipitates within the HTS containing elements not native to the HTS, and to seek needlelike (columnar) deposits of small diameter. We report here on the formation of needlelike or columnar deposits in textured Y123 containing a dopant foreign to Y123. It serves as a demonstration that self-assembling nanometer diameter columns utilizing a dopant foreign to the HTS system are a feasible goal. These deposits, however, do not fully meet the ultimate requirements of pinning centers because the desired deposits should be smaller. The self-assembling columns formed contain titanium, are {approx}500 nm in diameter, and up to 10 {mu}m long. The size and morphology of the deposits vary with the mass of admixed Ti dopant. J{sub c} is decreased for small dopant mass. At larger dopant masses needlelike precipitates form, and J{sub c} increases again. A small range of mass of admixed Ti exists in which J{sub c} is enhanced by pinning. In the range of admixed Ti mass studied in these experiments there is a negligible effect on T{sub c}. Magnetization studies of J{sub c} are also reported.

  15. In-vivo radiation counter

    International Nuclear Information System (INIS)

    Pollard, D.E.

    1983-01-01

    This patent specification describes a radiation counter utilizing at least one detector for sensing radiation from a living body. The radiation counter also includes an aperture for forming a corridor between the body and the detector. A shield outside the corridor prevents passage of background radiation through the corridor and gaining access to the detector. The counter also includes a device for isolating a selected portion of the body from the corridor such that radiation counting is restricted to a region of the body through a separate detector. The corridor formation permits a user to stand in an upright position while the detector and detectors are able to separately monitor different sections of the body. The radiation counter overcomes the problem of obtaining accurate and quick measurements or radiation doses sustained by a large group of persons. (author)

  16. Predicting Low Energy Dopant Implant Profiles in Semiconductors using Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beardmore, K.M.; Gronbech-Jensen, N.

    1999-05-02

    The authors present a highly efficient molecular dynamics scheme for calculating dopant density profiles in group-IV alloy, and III-V zinc blende structure materials. Their scheme incorporates several necessary methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and pair specific screened Coulomb potentials. Accumulative damage is accounted for using a Kinchin-Pease type model, inelastic energy loss is represented by a Firsov expression, and electronic stopping is described by a modified Brandt-Kitagawa model which contains a single adjustable ion-target dependent parameter. Thus, the program is easily extensible beyond a given validation range, and is therefore truly predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy and to situations where a predictive capability is required with the minimum of experimental validation. They give examples of using the code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon and gallium-arsenide. Here they can predict the experimental profile over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  17. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.; Leitner, D.; Jones, D. L.; Zygalakis, K. C.; Schnepf, A.; Roose, T.

    2011-01-01

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal

  18. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flá vio; Rodrigues, Joã o M M; Farinha, Andreia; Cavaleiro, José A S; Tomé , Joã o P C

    2016-01-01

    promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  19. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  20. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    Science.gov (United States)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  1. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  2. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  3. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  4. On the roles of the dopants in LiF: Mg,Cu,Na,Si thermoluminescent material

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Chang, S. Y.; Chung, K. S.; Choe, H. S.

    2005-01-01

    In this paper, some results of the study on the roles of the dopants in the LiF:Mg,Cu,Na,Si thermoluminescent (TL) material that was developed at the Korea Atomic Energy Research Inst. for radiation protection are presented. Although there have been many studies to investigate the roles of the dopants in LiF:Mg,Cu,P TL material in the TL process, there are some discrepancies in the understanding of the roles of Cu and P between various researchers. In case of LiF:Mg,Cu,Na,Si TL material, there are a few studies on the roles of the dopants. Three kinds of samples in each of which one dopant is excluded, and the optimised sample, were prepared for this study. The measurements and analysis of the three-dimensional TL spectra, based on the temperature, wavelength and intensity, and the glow curves for those samples are used in this study. The results show that Mg plays a role in the trapping of the charge carriers and Cu plays a role in the luminescence recombination process; however, the effect of Na and Si on the glow curve structure and the TL emission spectra is much less than that of Mg and Cu. It is considered that Na and Si each plays a role in the improvement of the luminescence efficiency. (authors)

  5. Probing structure, thermochemistry, electron affinity, and magnetic moment of thulium-doped silicon clusters TmSi n (n = 3-10) and their anions with density functional theory.

    Science.gov (United States)

    Huang, Xintao; Yang, Jucai

    2017-12-26

    The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.

  6. An integrated photosensor readout for gas proportional scintillation counters

    International Nuclear Information System (INIS)

    Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    A xenon gas proportional scintillation counter has been instrumented with a novel photosensor that replaces the photomultiplier tube normally used to detect the VUV secondary scintillation light. In this implementation, the collection grid of a planar gas proportional scintillation counter also functions as a multiwire proportional chamber to amplify and detect the photoelectrons emitted by a reflective CsI photocathode in direct contact with the xenon gas. This integrated concept combines greater simplicity, compactness, and ruggedness (no optical window is used) with low power consumption. An energy resolution of 12% was obtained for 59.6 keV x-rays

  7. Photochemistry and infrared spectrum of single-bridged diborane(5) anion isolated in solid argon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng-Chen; Chin, Chih-Hao; Chen, Sian-Cong; Huang, Tzu-Ping [National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Chen, Hui-Fen; Huang, Wei-Jie [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Wu, Yu-Jong, E-mail: yjw@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Applied Chemistry, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)

    2016-08-21

    Three-center two-electron bonds are important for understanding electron-deficient molecules. To examine such a molecule, we produced a diborane(5) anion with a single-bridged structure upon electron bombardment during matrix deposition of Ar containing a small proportion of diborane(6). The diborane(5) anion was destroyed upon photolysis at 180, 220, 385, and 450 nm, but not at 532 nm. Moreover, the possible formation of neutral diborane(5) was observed upon photolysis at 385 and 450 nm, whereas neutral diborane(3) was observed upon photolysis at 180 and 220 nm. The observed line wavenumbers, relative intensities, and isotopic ratios of the diborane(5) anion agreed satisfactorily with those predicted by density functional theory calculations at the B3LYP/aug-cc-pVTZ level of theory. Thus, this method produced the boron hydride anion of interest with few other fragments, which enabled us to clearly identify the IR spectrum of the diborane(5) anion.

  8. A Neutron Rem Counter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Braun, J

    1964-01-15

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF{sub 3} proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF{sub 3} counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60.

  9. Evaluation of calix[4]arene tethered Schiff bases for anion recognition

    International Nuclear Information System (INIS)

    Chawla, H.M.; Munjal, Priyanka

    2016-01-01

    Two calix[4]arene tethered Schiff base derivatives (L1 and L2) have been synthesized and their ion recognition capability has been evaluated through NMR, UV–vis and fluorescence spectroscopy. L1 interacts with cyanide ions very selectively to usher a significant change in color and fluorescence intensity. On the other hand L2 does not show selectivity for anion sensing despite having the same functional groups as those present in L1. The differential observations may be attributed to plausible stereo control of anion recognition and tautomerization in the synthesized Schiff base derivatives.

  10. Evaluation of calix[4]arene tethered Schiff bases for anion recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, H.M., E-mail: hmchawla@chemistry.iitd.ac.in; Munjal, Priyanka

    2016-11-15

    Two calix[4]arene tethered Schiff base derivatives (L1 and L2) have been synthesized and their ion recognition capability has been evaluated through NMR, UV–vis and fluorescence spectroscopy. L1 interacts with cyanide ions very selectively to usher a significant change in color and fluorescence intensity. On the other hand L2 does not show selectivity for anion sensing despite having the same functional groups as those present in L1. The differential observations may be attributed to plausible stereo control of anion recognition and tautomerization in the synthesized Schiff base derivatives.

  11. Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Goris, Bart; Meledina, Maria; Turner, Stuart [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Zhong, Zhichao [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Batenburg, K. Joost [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA Leiden (Netherlands); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-12-15

    Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe{sup 2+} dopants is correlated with a reduction of the Ce atoms from Ce{sup 4+} towards Ce{sup 3+}. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle. - Highlights: • A direct tomographic reconstruction technique is proposed for spectroscopic data. • Spectrum fitting is combined with a tomography reconstruction in a single step. • The technique yields superior results for data with a low signal to noise ratio. • The technique is applied to map Fe dopants in ceria nanoparticles.

  12. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kardynał, B.E. [Peter Grünberg Institute 9, Forschungszentrum Jülich, D-52425 Jülich (Germany); Barnes, C.H.W. [Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dunin-Borkowski, R.E., E-mail: rafaldb@gmail.com [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2013-11-15

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness.

  13. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    International Nuclear Information System (INIS)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A.; Kardynał, B.E.; Barnes, C.H.W.; Dunin-Borkowski, R.E.

    2013-01-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness

  14. Site-selective dopant profiling of p-n junction specimens in the dual-beam FIB/SEM system

    International Nuclear Information System (INIS)

    Chee, K W A; Beanland, R; Midgley, P A; Humphreys, C J

    2010-01-01

    Results from site-specific dopant profiling in a dual-beam FIB/SEM system are reported. Si specimens containing p-n junctions were milled using Ga + ion beam energies ranging from 30 keV to 2 keV, and analysed in situin the vacuum chamber. We compare the dopant contrast observed when milling a cleaved surface to that obtained from a side-wall of a trench cut using 30 kV Ga + ions, and using successively lower ion beam energies. The latter technique is suitable for site-specific dopant profiling. We find that lower energy ion beam milling significantly improves contrast, but only achieves 50 % of that observed on a freshly-cleaved surface. Furthermore, the contrast on a side-wall previously milled using high energy Ga + ions is less than that of a cleaved surface subjected to the same ion beam energy.

  15. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.

    Science.gov (United States)

    Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi

    2018-02-01

    Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Understanding and controlling transient enhanced dopant diffusion in silicon

    International Nuclear Information System (INIS)

    Stolk, P.A.; Gossmann, H.J.; Eaglesham, D.J.; Jacobson, D.C.; Poate, J.M.; Luftman, H.S.

    1995-01-01

    Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, the authors have used B doping marker layers in Si to probe the injection of interstitials from near-surface, non-amorphizing Si implants during annealing. The in-diffusion of interstitials is limited by trapping at impurities and has an activation energy of ∼3.5 eV. Substitutional C is the dominant trapping center with a binding energy of 2--2.5 eV. The high interstitial supersaturation adjacent to the implant damage drives substitutional B into metastable clusters at concentrations below the B solid solubility limit. Transmission electron microscopy shows that the interstitials driving TED are emitted from {311} defect clusters in the damage region at a rate which also exhibits an activation energy of 3.6 eV. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ∼10 19 /cm 3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation

  17. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  18. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  19. Determination of distribution function of refraction index and anion diffusion depth in porous alumina photonic crystals

    Directory of Open Access Journals (Sweden)

    H. Kaviani

    2007-09-01

    Full Text Available   Band structure of porous alumina photonic crystal in the Γ X direction was calculated using order-N method . In a comparison of calculated results with experimental data of reflective and absorptive index, the variation of refractive index of alumina in the external region of oxide layer, around the pores were studied. A Gaussian distribution function was adopted for phosphate anions in the external oxide layer and the variation of refractive index and diffusion depth were determined. The structure of the first four bands was calculated using the obtained distribution of refractive index in the external oxide layer for both TE and TM mode. This results show a narrow full band gap in the TM mode.

  20. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  1. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2006-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN - , Cl - , Br - , NO 3 - ClO 3 - andClO 4 - as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X=SCN, Cl, Br, NO 3 , ClO 3 and ClO 4 . The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene

  2. Permanently calibrated interpolating time counter

    International Nuclear Information System (INIS)

    Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

    2015-01-01

    We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

  3. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  4. Lattice site location of electrical dopant impurities in group-III nitrides

    CERN Document Server

    Amorim, Lígia; Temst, Kristiaan; Wahl, Ulrich

    Dopants are impurities introduced in semiconductors in small quantities to tailor the material characteristics, the effects of which depend on the exact site the dopant occupies in the crystal lattice. The lattice location of impurities is, thus, crucial for the overall understanding of the semiconductor characteristics. In general, several techniques can be used to investigate the lattice site of an impurity, the most accurate and dedicated being emission channeling. However, a characteristic of this technique is that it requires the implantation of radioactive probes, usually created and accelerated in a radioactive ion beam facility. In some cases, emission channeling might however be the only technique capable to investigate the lattice sites occupied by the impurity atoms, provided an appropriate isotope for this technique can be used. For instance, the use of other methods such as Rutherford backscattering spectrometry, perturbed angular correlations, Mössbauer spectroscopy and extended X-ray absorptio...

  5. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs).

    Science.gov (United States)

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  6. Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs

    Directory of Open Access Journals (Sweden)

    Ingo eDreyer

    2012-11-01

    Full Text Available Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant SLAC-like and 422 (402 non-redundant ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  7. A helium-3 proportional counter technique for estimating fast and intermediate neutrons

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-11-01

    3 He proportional counter was employed to determine the fast and intermediate neutron spectra of wide energy region. The mixed gas ( 3 He, Kr) type counter response and the spectrum unfolding code were prepared and applied to some neutron fields. The counter response calculation was performed by using the Monte Carlo code, paying regards to dealing of the particle range calculation of the mixed gas. An experiment was carried out by using the van de Graaff accelerator to check the response function. The spectrum unfolding code was prepared so that it may have the function of automatic evaluation of the higher energy spectrum's effect to the pulse hight distribution of the lower energy region. The neutron spectra of the various neutron fields were measured and compared with the calculations such as the discrete ordinate Sn calculations. It became clear that the technique developed here can be applied to the practical use in the neutron energy range from about 150 KeV to 5 MeV. (auth.)

  8. Acute and chronic influence of temperature on red blood cell anion exchange.

    Science.gov (United States)

    Jensen, F B; Wang, T; Brahm, J

    2001-01-01

    Unidirectional (36)Cl(-) efflux via the red blood cell anion exchanger was measured under Cl(-) self-exchange conditions (i.e. no net flow of anions) in rainbow trout Oncorhynchus mykiss and red-eared freshwater turtle Trachemys scripta to examine the effects of acute temperature changes and acclimation temperature on this process. We also evaluated the possible adaptation of anion exchange to different temperature regimes by including our previously published data on other animals. An acute temperature increase caused a significant increase in the rate constant (k) for unidirectional Cl(-) efflux in rainbow trout and freshwater turtle. After 3 weeks of temperature acclimation, 5 degrees C-acclimated rainbow trout showed only marginally higher Cl(-) transport rates than 15 degrees C-acclimated trout when compared at the same temperature. Apparent activation energies for red blood cell Cl(-) exchange in trout and turtle were lower than values reported in endothermic animals. The Q(10) for red blood cell anion exchange was 2.0 in trout and 2.3 in turtle, values close to those for CO(2) excretion, suggesting that, in ectothermic animals, the temperature sensitivity of band-3-mediated anion exchange matches the temperature sensitivity of CO(2) transport (where red blood cell Cl(-)/HCO(3)(-) exchange is a rate-limiting step). In endotherms, such as man and chicken, Q(10) values for red blood cell anion exchange are considerably higher but are no obstacle to CO(2) transport, because body temperature is normally kept constant at values at which anion exchange rates are high. When compared at constant temperature, red blood cell Cl(-) permeability shows large differences among species (trout, carp, eel, cod, turtle, alligator, chicken and man). Cl(-) permeabilities are, however, remarkable similar when compared at preferred body temperatures, suggesting an appropriate evolutionary adaptation of red blood cell anion exchange function to the different thermal niches occupied

  9. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu-(cytidine) and Cu-(uridine)

    Science.gov (United States)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H.; Guevara-García, Alfredo; Martínez, Ana

    2011-02-01

    The copper-nucleoside anions, Cu-(cytidine) and Cu-(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu-(cytidine) and Cu-(uridine), respectively. According to our calculations, Cu-(cytidine) and Cu-(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu-(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  10. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu(-)(cytidine) and Cu(-)(uridine).

    Science.gov (United States)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H; Guevara-García, Alfredo; Martínez, Ana

    2011-02-07

    The copper-nucleoside anions, Cu(-)(cytidine) and Cu(-)(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu(-)(cytidine) and Cu(-)(uridine), respectively. According to our calculations, Cu(-)(cytidine) and Cu(-)(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu(-)(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  11. Portable microcomputer controlled radiation counter

    International Nuclear Information System (INIS)

    Mason, E.W.; Weber, J.M.

    1984-01-01

    A portable microcomputer controlled counter for use as a radiation counter is described. The counter uses digital processing of input pulses from a radiation detector. The number of counts received by the microcomputer per unit time is used to calculate a value for display using a calibration factor obtained during physical calibration of the instrument with a radiation source or with a pulse generator. The keyboard is used to enter calibration points. The number of calibration points which may be entered depends on the degree of accuracy desired by the user. The high voltage generator which drives the detector is triggered by pulses from the microcomputer in relation to the count rate. After processing the count, the resulting count rate or dose rate is displayed on the liquid crystal display. The counter is autoranging in which the decimal point is shifted as necessary by the microcomputer. The units displayed are determined by the user by means of a multiposition switch. Low battery and an overrange condition are displayed. An interface is provided via a connector to allow parallel transmission of data to peripheral devices. Low battery power consumption is featured. The counter is capable of providing more accurate readings than currently available counters

  12. Counter-Democratic Surveillance: The Watchful Eye of a Local Institution

    DEFF Research Database (Denmark)

    Hjelholt, Morten

    2014-01-01

    mechanisms similar to those described by Foucault, but in the service of society. From this perspective democracy is seen as a composite of two realms – a sphere of electoral representation and a constellation of counter-democratic organizations – in constant tension with each other (Rosanvallon 2008......). The watchful eyes of counter-democratic organizations are particularly made powerful by the rise of the Internet with its spontaneous adaption of watchful functions. However increased awareness and mistrust have led not to broader participation in traditional liberal institutions but to a greater social...... in the interest of the national overseers but correspondingly given as responds to fulfill legal requirements or more loosely defined public concerns. Consequently the watchful eye of a local institution form a counter-democratic sight aimed at the strategic intentions of the Government. The paper introduces...

  13. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant

    International Nuclear Information System (INIS)

    Tang, Dingguo; Zhao, Wenyu; Yu, Jian; Wei, Ping; Zhou, Hongyu; Zhu, Wanting; Zhang, Qingjie

    2014-01-01

    Highlights: • The interstitial In dopant leads to the local structural perturbations in β-Zn 4 Sb 3 . • The simultaneous increases in α and σ are observed in the In-doped Zn 4 Sb 3 compounds. • The In dopant plays different doping behaviors by the dopant contents in the samples. • A maximum ZT of 1.41 at 700 K is achieved for the In-doped Zn 4 Sb 3 compounds. - Abstract: In-doped β-Zn 4 Sb 3 compounds (Zn 4−x In x Sb 3 , 0 ⩽ x ⩽ 0.24) were prepared by melt-quenching and spark plasma sintering technology in the work. The resultant samples were systematically investigated by X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermoelectric property measurements. The In dopant was identified to preferentially occupy the interstitial site in β-Zn 4 Sb 3 and led to the local structural perturbations near the 12c Sb2 and 36f Zn1 sites. The Auger parameters of Zn and Sb indicated that the increase in the valence of Zn was attributed to the charge transfer from Zn to In atoms. The binding energies of In 3d 5/2 core level showed that the interstitial In dopant was n-type dopant (In 3+ ) in slightly In-doped Zn 4−x In x Sb 3 , but acted as acceptor and was p-type dopant (In + ) in heavily In-doped ones. The discovery provides a reasonable explanation for the puzzled relation between σ and x for Zn 4−x In x Sb 3 . Simultaneously increasing the electrical conductivity and Seebeck coefficient of Zn 4−x In x Sb 3 can be realized through the local structural perturbations. The significantly enhanced power factor and the intrinsic low thermal conductivity resulted in a remarkable increase in the dimensionless figure of merit (ZT). The highest ZT reached 1.41 at 700 K for Zn 3.82 In 0.18 Sb 3 and increased by 68% compared with that of the undoped β-Zn 4 Sb 3

  15. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    Science.gov (United States)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  16. What is Counter-Enlightenment?

    Directory of Open Access Journals (Sweden)

    Darrin M. McMahon

    2017-02-01

    Full Text Available This article counters recent suggestions that there was no such thing as a “Counter-Enlightenment” or “Counter-Enlightenments,” and that such terms ought thus to be abandoned.   While acknowledging inevitable difficulties with the terms, the article argues that there can be no doubting the reality.   European countries faced a variety of vehement and self-conscious movements that defined themselves precisely through their opposition to what they took to be the corrosive effects of the Enlightenment.  In the process, they defined the main terms of an enduring vision of the world that we now associate with the Right.

  17. An insight into the dopant selection for CeO2-based resistive-switching memory system: a DFT and experimental study

    Science.gov (United States)

    Hussain, Fayyaz; Imran, Muhammad; Rana, Anwar Manzoor; Khalil, R. M. Arif; Khera, Ejaz Ahmad; Kiran, Saira; Javid, M. Arshad; Sattar, M. Atif; Ismail, Muhammad

    2018-03-01

    The aim of this study is to figure out better metal dopants for CeO2 for designing highly efficient non-volatile memory (NVM) devices. The present DFT work involves four different metals doped interstitially and substitutionally in CeO2 thin films. First principle calculations involve electron density of states (DOS) and partial density of states (PDOS), and isosurface charge densities are carried out within the plane-wave density functional theory using GGA and GGA + U approach by employing the Vienna ab initio simulation package VASP. Isosurface charge density plots confirmed that interstitial doping of Zr and Ti metals truly assists in generating conduction filaments (CFs), while substitutional doping of these metals cannot do so. Substitutional doping of W may contribute in generating CFs in CeO2 directly, but its interstitial doping improves conductivity of CeO2. However, Ni-dopant is capable of directly generating CFs both as substitutional and interstitial dopants in ceria. Such a capability of Ni appears acting as top electrode in Ni/CeO2/Pt memory devices, but its RS behavior is not so good. On inserting Zr layer to make Ni/Zr:CeO2/Pt memory stacks, Ni does not contribute in RS characteristics, but Zr plays a vital role in forming CFs by creating oxygen vacancies and forming ZrO2 interfacial layer. Therefore, Zr-doped devices exhibit high-resistance ratio of 104 and good endurance as compared to undoped devices suitable for RRAM applications.

  18. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  19. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Z., E-mail: zknez@irb.h [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Lee, J.I.; Kim, J.L. [Korea Atomic Energy Research Institute, P.O. Box 105 Yuseong, Daejon 305-600 (Korea, Republic of); Music, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2011-03-15

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  20. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    International Nuclear Information System (INIS)

    Knezevic, Z.; Ranogajec-Komor, M.; Miljanic, S.; Lee, J.I.; Kim, J.L.; Music, S.

    2011-01-01

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  1. Nuclear timer/counter

    International Nuclear Information System (INIS)

    Wuthayavanich, S.

    1978-01-01

    This thesis represents the development of a Timer/COUNTER compatible to the standard Nuclear Instrument Module Specifications. The unit exhibits high accuracy, light weight and ease of maintenance. The unit also has a built-in precision discriminator to discriminate unwanted signals that may cause interference in counting. With line frequency time base the timer can be preset in steps from 0.1 sec. to 9 x 10 5 min. The counter with six digits miniature display and an overflow output has a maximum counting rate of 10 MHz. The accumulated counting data can be transferred to a teletype or printer for hard copy printout with the aid of ORTEC 777 Line Printer or 432 A Print-out Control or any print out interface with input compatible to the print output of the Timer/Counter. Owing to its NIM compatibility the unit is directly powered by the NIM power supply

  2. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    Science.gov (United States)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; Vuitton, V.; Crary, F. J.; González-Caniulef, D.; Shebanits, O.; Jones, G. H.; Lewis, G. R.; Waite, J. H.; Cordiner, M.; Taylor, S. A.; Kataria, D. O.; Wahlund, J.-E.; Edberg, N. J. T.; Sittler, E. C.

    2017-08-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q-1 which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  3. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Paredes, Yolanda A.; Campos, Andrea P.C.; Achete, Carlos A.; Cremona, Marco

    2015-01-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy)_3] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy)_3] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy)_3]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy)_3] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy)_3 dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  4. New cyclometalated iridium(III) complex as a phosphorescent dopant in organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2014-05-01

    A new cyclometalated iridium (III) bis[2-(4-chlorophenyl)benzothiazolato-N,C2]-acetylacetonate, (Cl-bt)2Ir(acac), was synthesized and identified by 1H NMR and elemental analysis. The application was studied of the new compound as a dopant in the hole transporting layer (HTL) of the following organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) or N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), incorporated in a poly(N-vinylcarbazole) (PVK) matrix; EL was an electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy) aluminum (BAlq); and ETL was an electron-transporting layer of bis[2-(2-benzothiazoly) phenolato]zinc(II) (Zn(btz)2). We established that the electroluminescence spectra of the OLEDs at different dopant concentrations were basically the sum of the greenish-blue emission of BAlq and the yellowish-green emission of the Ir complex. It was also found that increasing the dopant concentration resulted in an increase in the relative electroluminescent intensity of the Ir complex emission, while that of BAlq decreased, thus a fine tuning of the OLED color was observed.

  5. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    Science.gov (United States)

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride.

    Science.gov (United States)

    Shyichuk, Andrii; Runowski, Marcin; Lis, Stefan; Kaczkowski, Jakub; Jezierski, Andrzej

    2015-01-30

    Several computational methods, both semiempirical and ab initio, were used to study the influence of the amount of dopant on crystal cell dimensions of CeF3 doped with Tb(3+) ions (CeF3 :Tb(3+) ). AM1, RM1, PM3, PM6, and PM7 semiempirical parameterization models were used, while the Sparkle model was used to represent the lanthanide cations in all cases. Ab initio calculations were performed by means of GGA+U/PBE projector augmented wave density functional theory. The computational results agree well with the experimental data. According to both computation and experiment, the crystal cell parameters undergo a linear decrease with increasing amount of the dopant. The computations performed using Sparkle/PM3 and DFT methods resulted in the best agreement with the experiment with the average deviation of about 1% in both cases. Typical Sparkle/PM3 computation on a 2×2×2 supercell of CeF3:Tb3+ lasted about two orders of magnitude shorter than the DFT computation concerning a unit cell of this material. © 2014 Wiley Periodicals, Inc.

  7. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  8. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim; Amad, Maan H.; Al-Talla, Zeyad

    2012-01-01

    with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs

  9. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals

    KAUST Repository

    Abdelhady, Ahmed L.

    2016-01-02

    Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi3+, Au3+, or In3+) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi3+ incorporation that leads to bandgap tuning (∼300 meV), 104 fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. © 2016 American Chemical Society.

  10. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  11. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals

    KAUST Repository

    Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Banavoth, Murali; Adinolfi, Valerio; Voznyy, Oleksandr; Katsiev, Khabiboulakh; Alarousu, Erkki; Comin, Riccardo; Dursun, Ibrahim; Sinatra, Lutfan; Sargent, Edward H.; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi3+, Au3+, or In3+) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi3+ incorporation that leads to bandgap tuning (∼300 meV), 104 fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. © 2016 American Chemical Society.

  12. The first CEDAR counter

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The first differential Cerenkov counter with chromatic corrections (called CEDAR) successfully tested at the PS in July 75. These counters were used in the SPS hadronic beams for particle identification. Some of the eight photomultipliers can be seen: they receive the light reflected back through the annular diaphragm. René Maleyran stands on the left.

  13. Low-energy electron-induced dissociation in condensed-phase L-cysteine I: Desorption of anions from chemisorbed films

    International Nuclear Information System (INIS)

    Alizadeh, E; Rowntree, P A; Massey, S; Sanche, L

    2015-01-01

    Among amino acids, cysteine has been widely studied, becoming a standard for molecular self-assembly experiments, because its mercapto group (-SH) allows the formation of self-assembled monolayers (SAMs) on metal surfaces. Dissociative electron attachment (DEA) on L-cysteine SAMs is investigated utilizing a time-of-flight mass spectrometer coupled with a low-energy electron gun. The results show that electrons with kinetic energies of 3 to 15 eV attach to L-cysteine producing anionic fragments of different masses (e.g., H - , O - , OH - , S - , SH - ) via dissociation of intermediate transient anions. The anion yield functions exhibited purely resonant behaviour with electron energies below 15 eV, indicating that the formation of transient anions is the predominant mechanism of production of anionic fragments from L-cysteine dissociation. (paper)

  14. New cyclometalated Iridium(III) beta-dicetone complex as phosphorescent dopant in Organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Petrova, P.; Stanimirov, S.; Tomova, R.

    2017-01-01

    A new Bis[4-(benzothiazolato-N,C2‧-2-yl)-N,N-dimethylaniline]Iridium(III) acetylacetonate (Me2N-bt) 2Ir(acac) was synthesized and identified by 1H NMR and elemental analysis. The application of the new compound as a dopant in the hole transporting layer (HTL) of Organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (TPD), incorporated in Poly(N-vinylcarbazole) (PVK) matrix, EL - electroluminescent layer of Bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy)aluminum (BAlq) and ETL - electron-transporting layer of Tris-(8-hydroxyquinoline) aluminum (Alq3) or Bis[2-(2-benzothiazoly) phenolato]zinc (Zn(btz)2). We established that the electroluminescent spectra of OLEDs at different concentrations of the dopant were basically the sum of the greenish-blue emission of BAlq and yellowish-green emission of Ir complex. It was found that with increasing of the dopant concentration the relative electroluminescent intensity of Iridium complex emission increased and this of BAlq decreased and as a result the fine tuning of OLED color was observed.

  15. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Y.Q. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: yqzhan@fudan.edu.cn; Zhou, J. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Zhou, Y.C. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Yang, H. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Li, F.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Ding, X.M. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Hou, X.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: xyhou@fudan.edu.cn

    2007-05-07

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light.

  16. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhan, Y.Q.; Zhou, J.; Zhou, Y.C.; Wu, Y.; Yang, H.; Li, F.Y.; Ding, X.M.; Hou, X.Y.

    2007-01-01

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light

  17. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    Science.gov (United States)

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  19. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  1. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  2. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Guo Wei; Shen Yihua; Boschloo, Gerrit; Hagfeldt, Anders; Ma Tingli

    2011-01-01

    Highlights: → Three different types of nanocrystalline N-doped TiO 2 synthesized by several nitrogen dopants. → N-doped DSCs achieves a high conversion efficiency of 8.32%. → Ammonia acts as good nitrogen dopants. → Enhanced photocurrent of ca. 36% in N-doped DSCs. → Less charge are needed to get a high open-circuit voltage in N-doped films. - Abstract: Three different types of nanocrystalline, N-doped TiO 2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO 2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO 2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO 2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO 2 solar cells also differed from those in the pure TiO 2 -based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.

  3. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    Science.gov (United States)

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  5. An ab initio study on BeX 3- superhalogen anions (X = F, Cl, Br)

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2002-06-01

    The vertical electron detachment energies (VDE) of 10 BeX 3- (X = F, Cl, Br) anions were calculated at the outer valence Green function (OVGF) level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for BeF 3- system (7.63 eV). All negatively charged species possess the vertical electron detachment energies that are larger than 5.5 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the BeX 3- species on the ligand-central atom (Be-X) distance and on the partial atomic charge localized on Be was observed and discussed, as well as the other factors that may influence the electronic stability of such anions. In addition, the usefulness of the various theoretical treatments for estimating the VDEs of superhalogen anions was tested and analyzed.

  6. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  7. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.edu

    2006-04-21

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. The results derived from anodic polymerization of {alpha}-tetrathiophene using SCN{sup -}, Cl{sup -}, Br{sup -}, NO{sub 3}{sup -}ClO{sub 3}{sup -}andClO{sub 4}{sup -} as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X=SCN, Cl, Br, NO{sub 3}, ClO{sub 3} and ClO{sub 4}. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene.

  8. Lithium-conducting ionic melt electrolytes from polyether-functionalized fluorosulfonimide anions

    International Nuclear Information System (INIS)

    Hallac, B.B.; Geiculescu, O.E.; Rajagopal, R.V.; Creager, S.E.; DesMarteau, D.D.

    2008-01-01

    Solvent-free lithium-conducting ionic melt (IM) electrolytes were synthesized and characterized with respect to chemical structure, purity, and ion transport properties. The melts consist of lithium (perfluorovinylether)sulfonimide salts attached covalently to a lithium-solvating polyether chain. Ionic conductivities are relatively high which is a consequence of the favorable combination of the low lattice energy of the lithium fluorosulfonimide salt (low basicity of the fluorosulfonimide anion), the relatively low viscosity of the polyether matrix, and the relatively high salt content of the melts. Galvanostatic dc polarization experiments, using cells with non-blocking Li electrodes, indicate that salt concentration polarization does not occur in these electrolytes as dc current is passed through them

  9. Direct imaging of dopant distribution in polycrystalline ZnO films

    Czech Academy of Sciences Publication Activity Database

    Lorenzo, F.; Aebersold, A.B.; Morales-Masis, M.; Ledinský, Martin; Escrig, S.; Vetushka, Aliaksi; Alexander, D.T.L.; Hessler-Wyser, A.; Fejfar, Antonín; Hébert, C.; Nicolay, S.; Ballif, C.

    2017-01-01

    Roč. 9, č. 8 (2017), s. 7241-7248 ISSN 1944-8244 R&D Projects: GA ČR GC16-10429J Institutional support: RVO:68378271 Keywords : dopant distribution * film polarity * grain boundaries * NanoSIMS * polycrystalline film * zinc oxide Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  10. Large thermoelectric efficiency of doped polythiophene junction: A density functional study

    Science.gov (United States)

    Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid

    2018-06-01

    The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.

  11. Effects of co-dopants on the magnetic properties of Ni–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sea-Fue, E-mail: sfwang@ntut.edu.tw; Hsu, Yung-Fu; Chou, Kai-Mou; Tsai, Jeng-Ting

    2015-01-15

    In this study, substitution of co-dopants into the Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} ceramic was performed. Al{sup 3+}, Sn{sup 4+} and Ti{sup 4+} ions were added to the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Fe{sub 2.10}O{sub 4} ceramic to improve magnetic properties. After sintering, all samples were indexed on a spinel structure and no detectable second phase was observed. When the concentration of dopants increased, the grain size of the Ni–Zn ferrites increased from 1.40 to 6.05 μm and the saturation magnetization declined from 428.8 emu/cm{sup 3} to 374.0 emu/cm{sup 3}. Amongst the systems investigated, the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4}, Ni{sub 0.4}Zn{sub 0.425}Li{sub 0.10}Ti{sub 0.025}Fe{sub 2.050}O{sub 4}, and Ni{sub 0.4}Zn{sub 0.450}Li{sub 0.10}Ti{sub 0.050}Fe{sub 2.000}O{sub 4} ceramics revealed promising magnetic properties for applications. The measured initial permeability and quality factor were respectively 291.9 and 45.1 for the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4} ceramic, 316.9 and 42.5 for the Ni{sub 0.4}Zn{sub 0.425}Li{sub 0.10}Ti{sub 0.025}Fe{sub 2.050}O{sub 4} ceramic, 429.4 and 34.8 for the Ni{sub 0.4}Zn{sub 0.450}Li{sub 0.10}Ti{sub 0.050}Fe{sub 2.000}O{sub 4} ceramic. The high initial permeability and quality factor values associated with good electrical resistivity (>10{sup 6} Ω-cm) qualify the ceramics for high frequency applications. - Highlights: • Co-dopants Al{sup 3+}–Li{sup +}, Sn{sup 4+}–Li{sup +}, and Ti{sup 4}–Li{sup +} were substituted into Ni–Zn lattices. • Grain size of Ni–Zn ferrites grew from 1.40 to 6.05 μm with rising dopants content. • Saturation magnetization declined from 428.8 to 374.0 emu/cm{sup 3} with adding dopants. • Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4} ceramic showed an μ{sub i} of 291.9 and a Q{sub f} of 45.1.

  12. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Wang, Tao [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Jiang, Yadong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jiangyd@uestc.edu.cn; Wei, Bangxiong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-03-15

    Conventional fluorescent dyes, i.e., 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 5,12-dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene), were used to investigate the performance of organic light-emitting diodes (OLEDs) based on indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3})/MgAg. The dyes were either inserted into devices as an ultra-thin film at the NPB/Alq{sub 3} interface by sequential evaporation, or doped into the Alq{sub 3} emission layer by co-evaporation with the doping ratio about 2%. Electroluminescence (EL) spectra of devices indicated that concentration quenching effect (CQE) of the dye-dopant was slightly bigger in the former than in the latter, while the degrees of CQE for three dopants are in the order of DMQA > DCJTB > Rubrene suggested by the difference in EL spectra and performances of devices. In addition, EL process of device with an ultra-thin layer of dopant is dominated by direct carrier trapping (DCT) process due to almost no holes recombine with electrons in Alq{sub 3}-host layer.

  13. Counter-Narratives and the Unrehearsed Stories Counter-Terrorists Unwittingly Produce

    Directory of Open Access Journals (Sweden)

    Beatrice de Graaf

    2010-11-01

    Full Text Available Governments produce both deliberate and involuntary (and less conscious narratives when countering terrorism. The thesis of this article is that such unintended messages can be much more powerful and consequential than is realized; in fact, they can completely contradict the intended official 'counter-narrative'. To substantiate this hypothesis, the author looks at the experience of the German Federal Republic in the 1970s and beyond when state and society were confronted with the Red Army Faction (RAF and similar left-wing "revolutionaries" like those of the 2nd of June Movement or the Red Zora.

  14. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  15. Plea and counter-plea

    International Nuclear Information System (INIS)

    1979-06-01

    The bulk of papers written during the hearing 'Plea and counter-plea', the so-called 'Gorleben hearing', which was held from 28th March until 3rd April 1979, comprises ca. 4,200 pages. It consists of the written comments put forward by the critics of nuclear energy, the minutes of the hearing as well as the supplementary statements of the counter-critics. This report is trying to confront those essential objections made by the critics which put in doubt the feasibility of a fuel-cycle centre with regard to safety engineering with the facts which are considered correct from the view of the DWK. The oral and written explanations of the counter-critics are particularly referred to in this debate. (orig./HP) [de

  16. Neutron spectrometry with proton recoil proportional counters at the research and measurement reactor Braunschweig - status of the technique

    International Nuclear Information System (INIS)

    Knauf, K.; Wittstock, J.

    1987-07-01

    This status report is concerned with the facilities set up for neutron spectrometry at the Research and Measurement Reactor Braunschweig, based on proton recoil proportional counters. Cylindrical counters for irradiation by a neutron beam normal to the counter wire and commercial spherical counters are employed. They can be filled with hydrogen or a hydrogeneous gas up to a pressure of 1 MPa depending on their use. The filling method and the electronic pulse processing are described. The pulse analysis system includes a pulse shape discrimination branch in order to separate γ-ray induced pulses. Finally, experimental investigations with spherical counters are discussed regarding the region of proportionality and the influence of the counter voltage on the shape of the response function. (orig./HP) [de

  17. Multiple channel programmable coincidence counter

    Science.gov (United States)

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  18. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; González-Caniulef, D.; Jones, G. H.; Lewis, G. R.; Taylor, S. A.; Kataria, D. O. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Surrey RH5 6NT (United Kingdom); Vuitton, V. [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Crary, F. J. [Laboratory for Atmospheric and Space Physics, University of Colorado, Innovation Drive, Boulder, CO 80303 (United States); Shebanits, O.; Wahlund, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Waite, J. H. [Space Science and Engineering Division, Southwest Research Institute (SWRI), 6220 Culebra Road, San Antonio, TX 78238 (United States); Cordiner, M.; Sittler, E. C. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Edberg, N. J. T., E-mail: r.t.desai@ucl.ac.uk [Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala (Sweden)

    2017-08-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q{sup −1}. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q{sup −1} and between 49.0–50.1 u q{sup −1} which are identified as belonging to the carbon chain anions, CN{sup −}/C{sub 3}N{sup −} and/or C{sub 2}H{sup −}/C{sub 4}H{sup −}, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q{sup −1} could be attributed to the further carbon chain anions C{sub 5}N{sup −}/C{sub 6}H{sup −} but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q{sup −1}) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  19. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    International Nuclear Information System (INIS)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; González-Caniulef, D.; Jones, G. H.; Lewis, G. R.; Taylor, S. A.; Kataria, D. O.; Vuitton, V.; Crary, F. J.; Shebanits, O.; Wahlund, J.-E.; Waite, J. H.; Cordiner, M.; Sittler, E. C.; Edberg, N. J. T.

    2017-01-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q"−"1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q"−"1 and between 49.0–50.1 u q"−"1 which are identified as belonging to the carbon chain anions, CN"−/C_3N"− and/or C_2H"−/C_4H"−, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q"−"1 could be attributed to the further carbon chain anions C_5N"−/C_6H"− but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q"−"1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  20. Impact of dopant profiles on the end of range defects for low energy germanium preamorphized silicon

    International Nuclear Information System (INIS)

    Camillo-Castillo, R.A.; Law, M.E.; Jones, K.S.

    2004-01-01

    As the industry continues to aggressively scale CMOS technology, the shift to lower energy ion implantation becomes essential. The consequent shallower amorphous layers result in dopant profiles that are in closer proximity to the end of range (EOR) damage and therefore a better understanding of the interaction between the dopant atoms and the EOR is required. A study is conducted on the influence of dopant profiles on the behavior of the EOR defects. Czochralski-grown silicon wafers are preamorphized with 1 x 10 15 cm -2 , 10 keV Ge + ions and subsequently implanted with 1 x 10 15 cm -2 , 1 keV B + ions. A sequence of rapid thermal and furnace anneals are performed at 750 deg. C under a nitrogen ambient for periods of 1 s up to 6 h. Plan view transmission electron microscopy (PTEM) reveals a significant difference in the defect evolution for samples with and without boron, suggesting that the boron influences the evolution of the EOR defects. The extended defects observed for samples which contain boron appear as dot-like defects which are unstable and dissolve after very short anneal times. The defect evolution however, in samples without boron follows an Oswald ripening behavior and form {3 1 1}-type defects and dislocation loops. Hall effect measurements denote a high initial activation and subsequent deactivation of the dopant atoms which is characteristic of the formation of boron interstitial clusters. Diffusion analyses via secondary ion mass spectroscopy (SIMS) support this theory

  1. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Yolanda A. [Center of Nanotechnology and Nanoscience, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171-5-31B (Ecuador); Campos, Andrea P.C.; Achete, Carlos A. [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Cremona, Marco [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Rio de Janeiro, RJ 22453-970 (Brazil)

    2015-12-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy){sub 3}] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy){sub 3}] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy){sub 3}]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy){sub 3}] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy){sub 3} dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  2. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  3. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  4. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Blazquez, J.B.; Barrado, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hidrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Montecarlo application and the other one analytical at all. Results of both methods have been compared. (author) [es

  5. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno Casado, J.L.; Blazquez Martinez, J.B.; Barrado Menendez, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hydrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Monte Carlo application and the other one analytica at all. Results of both methods have been compared. (Author)

  6. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  7. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  8. An introduction to automatic radioactive sample counters

    International Nuclear Information System (INIS)

    1980-01-01

    The subject is covered in chapters, entitled; the detection of radiation in sample counters; nucleonic equipment; liquid scintillation counting; basic features of automatic sample counters; statistics of counting; data analysis; purchase, installation, calibration and maintenance of automatic sample counters. (U.K.)

  9. Two dimensional dopant diffusion study by scanning capacitance microscopy and TSUPREM IV process simulation

    International Nuclear Information System (INIS)

    Kim, J.; McMurray, J. S.; Williams, C. C.; Slinkman, J.

    1998-01-01

    We report the results of a 2-step two-dimensional (2D) diffusion study by Scanning Capacitance Microscopy (SCM) and 2D TSUPREM IV process simulation. A quantitative 2D dopant profile of gate-like structures consisting heavily implanted n+ regions separated by a lighter doped n-type region underneath 0.56 μm gates is measured with the SCM. The SCM is operated in the constant-change-in-capacitance mode. The 2-D SCM data is converted to dopant density through a physical model of the SCM/silicon interaction. This profile has been directly compared with 2D TSUPREM IV process simulation and used to calibrate the simulation parameters. The sample is then further subjected to an additional diffusion in a furnace for 80 minutes at 1000C. The SCM measurement is repeated on the diffused sample. This final 2D dopant profile is compared with a TSUPREM IV process simulation tuned to fit the earlier profile with no change in the parameters except the temperature and time for the additional diffusion. Our results indicate that there is still a significant disagreement between the two profiles in the lateral direction. TSUPREM IV simulation considerably underestimates the diffusion under the gate region

  10. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  11. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  12. Low oxidation state aluminum-containing cluster anions: Cp{sup ∗}Al{sub n}H{sup −}, n = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit, E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Eichhorn, Bryan [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Mayo, Dennis [EOD Technology Division, Naval Surface Warfare Center, Indian Head, Maryland 20640 (United States); Sawyer, William H.; Gill, Ann F.; Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of PA, West Chester, Pennsylvania 19383 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)

    2016-08-21

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*Al{sub n}H{sup −}, n = 1–3, were prepared via reactions between aluminum hydride cluster anions, Al{sub n}H{sub m}{sup −}, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  13. Anion Binding Studies on Receptors Derived from the Indolo[2,3-a]carbazole Scaffold Having Different Binding Cavity Sizes

    Directory of Open Access Journals (Sweden)

    Guzmán Sánchez

    2014-07-01

    Full Text Available The indolo[2,3-a]carbazole scaffold is a fused polyheteroaromatic system bearing two NH groups which suitably converge as hydrogen bond donor sites for the recognition of anions. A simple derivatisation of the indolocarbazole system at positions 1 and 10 with different functional groups, namely alcohols and amides, has contributed to modulate the anion binding selectivity and sensibility. A particularly good response has been obtained for the benzoate anion.

  14. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  15. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  16. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  17. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  18. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO 3 single crystals has been studied by means of 18 O 2 / 16 O 2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The

  19. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  20. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  1. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  2. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO3

    Directory of Open Access Journals (Sweden)

    Useong Kim

    2014-05-01

    Full Text Available We studied the conduction mechanism in Sb-doped BaSnO3 epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO3. We found that the electron mobility in BaSnO3 films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO3 system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO3 films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  3. A reliable method for the counting and control of single ions for single-dopant controlled devices

    International Nuclear Information System (INIS)

    Shinada, T; Kurosawa, T; Nakayama, H; Zhu, Y; Hori, M; Ohdomari, I

    2008-01-01

    By 2016, transistor device size will be just 10 nm. However, a transistor that is doped at a typical concentration of 10 18 atoms cm -3 has only one dopant atom in the active channel region. Therefore, it can be predicted that conventional doping methods such as ion implantation and thermal diffusion will not be available ten years from now. We have been developing a single-ion implantation (SII) method that enables us to implant dopant ions one-by-one into semiconductors until the desired number is reached. Here we report a simple but reliable method to control the number of single-dopant atoms by detecting the change in drain current induced by single-ion implantation. The drain current decreases in a stepwise fashion as a result of the clusters of displaced Si atoms created by every single-ion incidence. This result indicates that the single-ion detection method we have developed is capable of detecting single-ion incidence with 100% efficiency. Our method potentially could pave the way to future single-atom devices, including a solid-state quantum computer

  4. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    Science.gov (United States)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  5. Chemical and Electrochemical Synthesis of Polypyrrole Using Carrageenan as a Dopant: Polypyrrole/Multi-Walled Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mostafizur Rahaman

    2018-06-01

    Full Text Available In this article, iota-carrageenan (IC and kappa-carrageenan (KC are used as dopants for the chemical and electrochemical synthesis of polypyrrole (PPy. The composites of chemically synthesized PPy with multi-walled carbon nanotubes (MWNTs were prepared using an in situ technique. Both the dialyzed and non-dialyzed IC and KC were used as dopants for electrochemical polymerization of pyrrole. Chemically synthesized PPy and PPy/MWNTs composites were studied by ultraviolet visible (UV-vis absorption spectra to investigate the effect of the concentration and the incorporation of MWNTs. In addition, the electrical, thermal, mechanical, and microscopic characterizations of these films were performed to examine the effect of the dopants and MWNTs on these properties, along with their surface morphology. The films of electrochemically polymerized PPy were characterized using UV-vis absorption spectra, scanning electron microscopy, and cyclic voltammetry (CV. The results were then compared with the chemical polymerized PPy.

  6. A molecular dynamics study on the oxygen diffusion in doped fluorites: the effect of the dopant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, A. [M2E/XaRMAE/IREC, Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Josep Pla 2, Torre 2, B2, 08019 Barcelona (Spain); Morata, A.; Peiro, F. [MIND/XaRMAE/IN2UB, Department of Electronics, University of Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Dezanneau, G. [Laboratoire Structures, Proprietes et Modelisation des Solides, Grande Voie des Vignes, Ecole Centrale Paris, F-92295 Chatenay-Malabry Cedex (France)

    2011-02-15

    The effect of the dopant distribution on the oxygen diffusion in doped fluorites typically used for solid oxide fuel cells electrolyte applications has been analysed by using molecular dynamics simulations. The oxygen mass transport in both yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria has been studied and compared in the range of temperatures between 1,159 and 1,959 K. A new methodology based on the analysis of local environments is used to describe the diffusion process at an atomic scale. Preferred vacancy migration pathways, most suitable conduction models, energy landscapes and jump efficiency have been detailed for each material. Finally, a particular case of non-random distribution of dopants in YSZ is presented in order to quantitatively evaluate the effect of the dopant pattern on the mass transport properties and the potential of the methodology developed here for understanding and foreseeing real configurations at the nanoscale. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Counter-cryptanalysis

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); R. Canetti; J.A. Garay

    2013-01-01

    textabstractWe introduce \\emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead,

  8. Relationship between knee kinetic outcome measures in vertical counter movement jumps and self-reported function in ACL reconstructed subjects

    DEFF Research Database (Denmark)

    Brekke, Anders Falk

    2014-01-01

    Relationship between knee kinetic outcome measures in counter movement jumps and self-reported function in ACL reconstructed subjects Brekke AF1,2, Nielsen DB2, Holsgaard-Larsen A2 1School of physiotherapy, University College Zealand, Denmark 2Orthopaedic Research Unit, Department of Orthopaedics...... and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark Introduction: Altered loading pattern of the medial aspect of the knee has been associated with the development of knee osteoarthritis (OA). Anterior cruciate ligament (ACL) injuries are associated...... with early-onset OA with associated pain, functional limitations, and decreased quality of life. However, specific knee loading pattern of the medial aspect has not been investigated during different jump-tasks in ACL-reconstructed patients. The purpose was to investigate potential kinetic differences...

  9. Over-the-counter codeine use in Iceland

    DEFF Research Database (Denmark)

    Almarsdóttir, A B; Grimsson, A

    2000-01-01

    BACKGROUND: The objective of this study was to test the assumption that liberalizing community pharmacy ownership in Iceland would lead to increased irrational use of over-the-counter pain relievers containing codeine. METHODS: Based on this assumption we built and tested a model using an interru......BACKGROUND: The objective of this study was to test the assumption that liberalizing community pharmacy ownership in Iceland would lead to increased irrational use of over-the-counter pain relievers containing codeine. METHODS: Based on this assumption we built and tested a model using...... an interrupted time series design that contrasts the monthly sales data for over-the-counter pain relievers containing codeine before and after the legislation took effect. RESULTS: The total use of over-the-counter pain relievers containing codeine as well as those containing paracetamol and codeine has risen...... leads to irrational use of over-the-counter medicines is not substantiated in the case of over-the-counter pain relievers containing codeine....

  10. Putting the pieces together: a crystal clear window into CLC anion channel regulation.

    Science.gov (United States)

    Strange, Kevin

    2011-01-01

    CLC anion transport proteins function as Cl (-) channels and Cl (-) /H (+) exchangers and are found in all major groups of life including archaebacteria. Early electrophysiological studies suggested that CLC anion channels have two pores that are opened and closed independently by a "fast" gating process operating on a millisecond timescale, and a "common" or "slow" gate that opens and closes both pores simultaneously with a timescale of seconds (Figure 1A). Subsequent biochemical and molecular experiments suggested that CLC channels/transporters are homodomeric proteins ( 1-3) .

  11. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  12. Response functions of the Andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV

    CERN Document Server

    Mares, V; Schraube, H

    2002-01-01

    This work is devoted to the calculation of responses as functions of neutron energy for a paired set of Andersson-Braun rem counters, which is commercially available. Different Monte Carlo codes such as MCNP, LAHET, HADRON and MCNPX were applied in the calculations. The study extended to frontal, lateral and isotropic neutron incidence. For an estimation of the contribution of charged high-energy particles to the reading, the responses to protons and pions were also determined. The results obtained give good bases for the practical use of the new instrument in high-energy neutron fields.

  13. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  14. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    International Nuclear Information System (INIS)

    Huang Wei; Lu Chao; Yu Jue; Wei Jiang-Bin; Chen Chao-Wen; Wang Jian-Yuan; Xu Jian-Fang; Li Cheng; Chen Song-Yan; Lai Hong-Kai; Wang Chen; Liu Chun-Li

    2016-01-01

    High-performance Ge n + /p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n + /p junction has a rectification ratio of 5.6× 10 4 and a forward current of 387 A/cm 2 at −1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. (paper)

  15. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-01-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on–off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices. (paper)

  16. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  17. Synthesis, thermogravimetric study and crystal structure of an N-rich copper(II) compound with tren ligands and nitrate counter-anions

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Choquesillo-Lazarte, Duane [Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, E-18100 Armilla, Granada (Spain); Vílchez-Rodríguez, Esther [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Castiñeiras, Alfonso [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Niclós-Gutiérrez, Juan, E-mail: jniclos@ugr.es [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain)

    2014-10-10

    The N-rich salt [{Cu(tren)}{sub 3}(μ{sub 3}-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been studied by XRD and by coupled TG and FT-IR spectroscopy of the evolved gases. After water loss, thermal decomposition of the nitrate ions and some tren ligands in the salt are overlapped. - Highlights: • A novel N-rich copper(II)-tren complex has been crystallized as a 3-hydrated nitrate salt. • Tren acts both as tripodal tetradentate and as μ{sub 3}-tren bridging ligand. • Copper(II) centers exhibit distorted trigonal bipyramidal coordination. • Coupled thermogravimetry and FT-IR spectra of evolved gases have been used. • Decomposition of nitrate anions and tren ligands occurs in an overlapped step. - Abstract: The compound [{Cu(tren)}{sub 3}(μ3-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been synthesized, crystallized and characterized by single crystal X-ray diffraction, thermogravimetry (TG) coupled to FT-IR spectroscopy of the evolved gases, TG–differential scanning calorimetry (DSC) and electronic (diffuse reflectance) and FT-IR spectroscopies. The sample loses the crystallization water between room temperature and 200 °C. The decomposition of the salt begins with an overlapped decomposition of nitrate anions and some tren ligands where CO{sub 2}, H{sub 2}O, CO, NH{sub 3}, N{sub 2}O, NO and NO{sub 2} are evolved (205–235 °C). Then decomposition of additional tren ligands takes place (235–725 °C). Finally a non-pure CuO residue is obtained at 725 °C.

  18. Effect of rare earth dopants on structural and mechanical properties of nanoceria synthesized by combustion method

    International Nuclear Information System (INIS)

    Akbari-Fakhrabadi, A.; Meruane, V.; Jamshidijam, M.; Gracia-Pinilla, M.A.; Mangalaraja, R.V.

    2016-01-01

    Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

  19. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  20. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  1. A fast photo-counter with multi-level buffers

    International Nuclear Information System (INIS)

    Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan

    1992-01-01

    Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer

  2. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  3. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  4. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.

    Science.gov (United States)

    Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R

    2015-07-20

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan

    2015-06-18

    Dimers of 2-substituted N,N\\'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Bredas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.

    2015-01-01

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  8. Counter-responses as organizers in adolescent analysis and therapy.

    Science.gov (United States)

    Richmond, M Barrie

    2004-01-01

    The author introduces Counter-response as a phenomological term to replace theory-burdened terms like counter-transference, counter-identification, and counter-resistance. He discusses the analyst's use of self (drawing on the comparison with Winnicott's use of the object) in processing the expectable destabilizing counter-reactions that occur in working therapeutically with disturbed adolescents and their parents. Further; he discusses the counter-reaction to the patient's narrative, acting-out, and how re-enactments can serve as an organizer for understanding the patient's inner life when the analyst formulates his/her counter-response. Emphasis is placed on the therapist forming his or her own narrative with the adolescent that takes into account the evoked counter-reaction. For this purpose, the author recommends the use of a combined counter-response and metaphor-orienting perspective to acknowledge and work with the denial, illusions, reversal of perspective, and catastrophic anxieties experienced with these adolescents. The counter-response perspective permits the emergence of the disturbed adolescent's novel narrative; however, since these experiences can be destabilizing or disruptive, the author also recommends the use of a personal metaphor to anticipate the reluctance to examining, processing, and formulating the analyst's dysphoric counter-reaction. With the use of the counter-response, the analyst's therapeutic ideal is to achieve a more optimal balance between using accepted narrative theories and exploring novel enactment experiences. His swimming metaphor stratagem is designed to keep the analyst in these difficult encounters.

  9. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  10. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  11. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    Science.gov (United States)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  12. Ternary logic implemented on a single dopant atom field effect silicon transistor

    NARCIS (Netherlands)

    Klein, M.; Mol, J.A.; Verduijn, J.; Lansbergen, G.P.; Rogge, S.; Levine, R.D.; Remacle, F.

    2010-01-01

    We provide an experimental proof of principle for a ternary multiplier realized in terms of the charge state of a single dopant atom embedded in a fin field effect transistor (Fin-FET). Robust reading of the logic output is made possible by using two channels to measure the current flowing through

  13. Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism.

    Science.gov (United States)

    Riddell, Imogen A; Smulders, Maarten M J; Clegg, Jack K; Hristova, Yana R; Breiner, Boris; Thoburn, John D; Nitschke, Jonathan R

    2012-09-01

    Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.

  14. The Micro Trench Gas Counter

    International Nuclear Information System (INIS)

    Schmitz, J.

    1991-07-01

    A novel design is presented for a gas avalanche chamber with micro-strip gas readout. While existing gaseous microstrip detectors (Micro-strip Gas Counters, Knife edge chambers) have a minimum anode pitch of the order of 100 μm, the pitch of the discussed Micro Trench Gas Counter goes down to 30-50 μm. This leads to a better position resolution and two track separation, and a higher radiation resistivity. Its efficiency and signal speed are expected to be the same as the Microstrip Gas Counter. The energy resolution of the device is expected to be equal to or better than 10 percent for the 55 Fe peak. Since the anode strip dimensions are larger than those in a MSGC, the device may be not as sensitive to discharges and mechanical damage. In this report production of the device is briefly described, and predictions on its operation are made based on electric field calculations and experience with the Microstrip Gas Counter. The authors restrict themselves to the application in High Energy Physics. (author). 10 refs.; 9 figs

  15. Anion dynamics in the first 10 milliseconds of an argon-acetylene radio-frequency plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Beckers, J; Kroesen, G M W

    2012-01-01

    The time evolution of the smallest anions (C 2 H - and H 2 CC - ), just after plasma ignition, is studied by means of microwave cavity resonance spectroscopy (MCRS) in concert with laser-induced photodetachment under varying gas pressure and temperature in an argon-acetylene radio-frequency (13.56 MHz) plasma. These anions act as an initiator for spontaneous dust particle formation in these plasmas. With an intense 355 nm Nd:YAG laser pulse directed through the discharge, electrons are detached only from these anions present in the laser path. This results in a sudden increase in the electron density in the plasma, which can accurately and with sub-microsecond time resolution be measured with MCRS. By adjusting the time after plasma ignition at which the laser is fired through the discharge, the time evolution of the anion density can be studied. We have operated in the linear regime: the photodetachment signal is proportional to the laser intensity. This allowed us to study the trends of the photodetachment signal as a function of the operational parameters of the plasma. The density of the smallest anions steadily increases in the first few milliseconds after plasma ignition, after which it reaches a steady state. While keeping the gas density constant, increasing the gas temperature in the range 30-120 °C limits the number of smallest anions and saturates at a temperature of about 90 °C. A reaction pathway is proposed to explain the observed trends.

  16. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3

    Science.gov (United States)

    Chen, Hungru; Umezawa, Naoto

    2014-07-01

    Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.

  17. The 'miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Bellettini, G.

    2002-01-01

    Muon detection is fundamental to many of the interesting analyses at CDF II. For more efficient muon registration in Run II it was decided to increase geometrical coverage. The so-called 'miniskirt' counters are part of this upgrade. The original design parameters of the 'miniskirt' and mixed 'miniskirt' scintillation counters for the CDF Muon System are presented. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of mixed 'miniskirt' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns

  18. A new multifunctional 1, 10-phenanthroline based fluorophore for anion and cation sensing

    Energy Technology Data Exchange (ETDEWEB)

    Alreja, Priya; Kaur, Navneet, E-mail: neet_chem@yahoo.co.in

    2015-12-15

    We report a new multi-ion responsive fluorophore 1 possessing an amide functionality featuring with 1, 10-phenanthroline unit with appropriately placed coordination sites for sensing Cu{sup 2+} and Zn{sup 2+} ions in 1:2 stoichiometry. Also, various functionalities of 1 organize to create an appropriate cavity to accommodate weakly basic and larger iodide ion generating 1:1 complex. The fluorescence intensity was greatly quenched on coordination of Cu{sup 2+}, Zn{sup 2+} and I{sup −} ions with appropriately placed multiple donor sites of 1 which was further supported by Density Functional Theory (DFT) computational studies. - Highlights: • A novel multifunctional 1, 10- Phenanthroline based fluorophore for sensing anion and cations. • First report on applicability of amides as multiple users for anion and cations. • Fluorescence quenching observed with Cu{sup 2+}, Zn{sup 2+} and I{sup -}. • Fluorescence titration experiments are well supported by DFT calculations.

  19. The effect of random dopant fluctuation on threshold voltage and drain current variation in junctionless nanotransistors

    International Nuclear Information System (INIS)

    Rezapour, Arash; Rezapour, Pegah

    2015-01-01

    We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel. (paper)

  20. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  1. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  2. Physical properties of high-Tc superconducting oxides. Modification of tc using organic dopants. Final report. Proprietes physiques d'oxydes supraconducteurs a haute Tc. Modification de tc sous l'effet de dopants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Brau, A

    1993-01-01

    An attempt was made to significantly modify the Tc transition temperature of certain copper-based superconducting oxides by introducing organic or mineral dopants, and to study the mobility of 300K-carriers in crystallized tallium-base superconducting oxides. Since the critical transition temperature of superconducting oxides is highly influenced by the density of the free carriers they contain, the authors tried making superconducting powders react with either an organic electron acceptor or a mineral compound. The goal was to increase the density of the holes by altering the copper's degree of oxidation. Their preparatory work showed a direct charge-transfer reaction between the electron-donor copper and the acceptor TCNQ and studied the degree to which the electron acceptor can alter the copper's oxidation. Initial results also showed that dopants can affect superconducting Tc and the course of R(T) curves.

  3. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Useong; Park, Chulkwon; Kim, Rokyeon; Mun, Hyo Sik; Kim, Hoon Min; Kim, Namwook; Yu, Jaejun; Char, Kookrin, E-mail: kchar@phya.snu.ac.kr [Center for Strongly Correlated Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taewoo; Kim, Jae Hoon [Department of Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyung Joon; Kim, Tai Hoon; Kim, Kee Hoon [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-05-01

    We studied the conduction mechanism in Sb-doped BaSnO{sub 3} epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO{sub 3}. We found that the electron mobility in BaSnO{sub 3} films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO{sub 3} system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO{sub 3} films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  4. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes.

    Science.gov (United States)

    Lin, Chih-Kai

    2018-03-05

    As nitrogen-doped graphene has been widely applied in optoelectronic devices and catalytic reactions, in this work we have investigated where the nitrogen atoms tend to reside in the material and how they affect the electron density and spectroscopic properties from a theoretical point of view. DFT calculations on N-doped hexagonal and rectangular graphene nanoflakes (GNFs) showed that nitrogen atoms locating on zigzag edges are obviously more stable than those on armchair edges or inside flakes, and interestingly, the N-hydrogenated pyridine moiety could be preferable to pure pyridine moiety in large models. The UV-vis absorption spectra of these nitrogen-doped GNFs display strong dependence on flake sizes, where the larger flakes have their major peaks in lower energy ranges. Moreover, the spectra exhibit different connections to various dopant types and positions: the graphitic-type dopant species present large variety in absorption profiles, while the pyridinic-type ones show extraordinary uniform stability and spectra independent of dopant positions/numbers and hence are hardly distinguishable from each other. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  6. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  7. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  8. Counter-diabatic driving for Dirac dynamics

    Science.gov (United States)

    Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi

    2018-03-01

    In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.

  9. An analytical model on thermal performance evaluation of counter flow wet cooling tower

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2017-01-01

    Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.

  10. Counter traction makes endoscopic submucosal dissection easier.

    Science.gov (United States)

    Oyama, Tsuneo

    2012-11-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable counter traction thereby making ESD more efficient and safe. The author published this method in 2002. The name ESD was not established in those days; the name cutting endoscopic mucosal resection (EMR) or EMR with hook knife was used. The other traction methods such as external grasping forceps, internal traction, double channel scope, and double scopes method are introduced in this paper. A good strategy for creating counter traction makes ESD easier.

  11. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  12. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  13. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  14. Microsystems for anion exchange separation of radionuclides in nitric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Losno, M.; Brennetot, R.; Mariet, C. [DEN/Service d' Etudes Analytiques et de Reactivite des Surfaces - SEARS, CEA, Centre de Saclay, Universite Paris-Saclay, F-91191, Gif sur Yvette (France); Ferrante, I.; Descroix, S. [MMBM Group, Institut Curie Research Center, CNRS UMR 168, Paris (France)

    2016-07-01

    An efficient and reproducible photo-polymerized poly(ethylene glycol methacrylate methacrylate-co- allyl methacrylate) monolith was synthesized and a photo-grafting process based on the ene-thiol click-chemistry has been performed to give anion exchange properties to the monolith. Since their introduction in the early 1990's polymethacrylate monoliths have emerged as a powerful alternative for microscale separations or sample treatment. Their relatively simple implementation in columns with small internal diameters makes them particularly attractive for the new chromatographic challenges of complex matrices analysis and on-chip separations. Despite their relatively poor ion-exchange capacity due to their highly porous structure, their use as anion exchangers is of large interest for nuclear analysis as numerous separations are based on this process. This paper presents a systematic study of the synthesis of the polymeric porous monolith and the versatile and robust functionalization method developed for the specific strong acidic media used in radiochemical procedures. The robustness of the stationary phase was tested in concentrated nitric acid. It appears that the C-S bond formed via thiol-ene chemistry is strong enough to be used to graft function of interest for separation in strong nitric acid medium. The photo-grafted anion exchanger, a quaternary ammonium, presents sufficient resistance to be used for radionuclide separation in [HNO{sub 3}]=5 mol.L{sup -1}so the next step is its integration in the cyclo olefin copolymer (COC) micro-system.

  15. Crystal structure, chemical bond and enhanced performance of β-Zn{sub 4}Sb{sub 3} compounds with interstitial indium dopant

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Dingguo [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Key Laboratory of Catalysis and Materials Science of the State Ethnic Affair Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zhao, Wenyu, E-mail: wyzhao@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jian; Wei, Ping; Zhou, Hongyu; Zhu, Wanting [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Qingjie, E-mail: zhangqj@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2014-07-15

    Highlights: • The interstitial In dopant leads to the local structural perturbations in β-Zn{sub 4}Sb{sub 3}. • The simultaneous increases in α and σ are observed in the In-doped Zn{sub 4}Sb{sub 3} compounds. • The In dopant plays different doping behaviors by the dopant contents in the samples. • A maximum ZT of 1.41 at 700 K is achieved for the In-doped Zn{sub 4}Sb{sub 3} compounds. - Abstract: In-doped β-Zn{sub 4}Sb{sub 3} compounds (Zn{sub 4−x}In{sub x}Sb{sub 3}, 0 ⩽ x ⩽ 0.24) were prepared by melt-quenching and spark plasma sintering technology in the work. The resultant samples were systematically investigated by X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermoelectric property measurements. The In dopant was identified to preferentially occupy the interstitial site in β-Zn{sub 4}Sb{sub 3} and led to the local structural perturbations near the 12c Sb2 and 36f Zn1 sites. The Auger parameters of Zn and Sb indicated that the increase in the valence of Zn was attributed to the charge transfer from Zn to In atoms. The binding energies of In 3d{sub 5/2} core level showed that the interstitial In dopant was n-type dopant (In{sup 3+}) in slightly In-doped Zn{sub 4−x}In{sub x}Sb{sub 3}, but acted as acceptor and was p-type dopant (In{sup +}) in heavily In-doped ones. The discovery provides a reasonable explanation for the puzzled relation between σ and x for Zn{sub 4−x}In{sub x}Sb{sub 3}. Simultaneously increasing the electrical conductivity and Seebeck coefficient of Zn{sub 4−x}In{sub x}Sb{sub 3} can be realized through the local structural perturbations. The significantly enhanced power factor and the intrinsic low thermal conductivity resulted in a remarkable increase in the dimensionless figure of merit (ZT). The highest ZT reached 1.41 at 700 K for Zn{sub 3.82}In{sub 0.18}Sb{sub 3} and increased by 68% compared with that of the undoped β-Zn{sub 4}Sb{sub 3}.

  16. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  17. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  18. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes; Etude de la complexation simultanee d'un cation et d'un anion par des calixarenes fonctionnalises

    Energy Technology Data Exchange (ETDEWEB)

    Moli, Ch [CEA Cadarache, Dept. d' Etudes des Dechets, DED, 13 - Saint Paul lez Durance (France); [Universite Louis Pasteur, 67 - Strasbourg (France)

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10{sup -2} M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO{sub 3} = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)

  19. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  20. Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance

    Directory of Open Access Journals (Sweden)

    Christopher B. Divito

    2017-05-01

    Full Text Available Excitatory amino acid transporters (EAATs are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3 and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or “leak” channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

  1. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  2. COUNTER-PUNISHMENT, COMMUNICATION AND COOPERATION AMONG PARTNERS

    Directory of Open Access Journals (Sweden)

    Giulia eAndrighetto

    2016-04-01

    Full Text Available We study how communication affects cooperation in an experimental public goods environment with punishment and counter-punishment opportunities. Participants interacted over thirty rounds in fixed groups with fixed identifiers that allowed them to trace other group members’ behavior over time. The two dimensions of communication we study are asking for a specific contribution level and having to express oneself when choosing to counter-punish. We conduct four experimental treatments, all involving a contribution stage, a punishment stage and a counter-punishment stage in each round. In the first treatment communication is not possible at any of the stages. The second treatment allows participants to ask for a contribution level at the punishment stage and in the third treatment participants are required to send a message if they decide to counter-punishment. The fourth combines the two communication channels of the second and third treatments. We find that the three treatments involving communication at any of the two relevant stages lead to significantly higher contributions than the baseline treatment. We find no difference between the three treatments with communication. We also relate our results to previous results from treatments without counter-punishment opportunities and do not find that the presence of counter-punishment leads to lower cooperation level. The overall pattern of results shows that given fixed identifiers the key factor is the presence of communication. Whenever communication is possible contributions and earnings are higher than when it is not, regardless of counter-punishment opportunities.

  3. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  4. MOS Capacitance—Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)

  5. Trivalent dopants on ZnO semiconductor obtained by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C., E-mail: damonte@fisica.unlp.edu.a [Dto. De Fisica, UNLP, IFLP-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n, 46071 Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain)

    2009-08-26

    Al-doped ZnO powders were obtained by mechanical milling. This n-type oxide material is of interest for application in electronic devices as solar cells. The incorporation of the metal dopant into the ZnO wurtzite structure has been verified by X-ray diffraction, positron annihilation spectroscopy and optical analysis. The optical reflection measurements were strongly affected by the Al incorporation. The positron annihilation spectroscopy constituted an adequate probe to sense the cation substitution in the doped semiconductor.

  6. Trivalent dopants on ZnO semiconductor obtained by mechanical milling

    International Nuclear Information System (INIS)

    Damonte, L.C.; Donderis, V.; Hernandez-Fenollosa, M.A.

    2009-01-01

    Al-doped ZnO powders were obtained by mechanical milling. This n-type oxide material is of interest for application in electronic devices as solar cells. The incorporation of the metal dopant into the ZnO wurtzite structure has been verified by X-ray diffraction, positron annihilation spectroscopy and optical analysis. The optical reflection measurements were strongly affected by the Al incorporation. The positron annihilation spectroscopy constituted an adequate probe to sense the cation substitution in the doped semiconductor.

  7. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Li-Wei [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Luo, Tzuoo-Tsair [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Wang, Chih-Min [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lee, Gene-Hsiang; Peng, Shie-Ming [Department of Chemistry, National Taiwan University, Taipei 107, Taiwan (China); Liu, Yen-Hsiang [Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan (China); Lee, Sheng-Long [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Lu, Kuang-Lieh [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  8. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  9. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally

  10. Consumer Preferences for High Welfare Meat in Germany: Self-service Counter or Service Counter?

    Directory of Open Access Journals (Sweden)

    Ramona Weinrich

    2015-01-01

    Full Text Available Many people view animal welfare standards in the agricultural industry as critical and some consumers would prefer to buy high welfare meat. In order to successfully introduce high welfare meat products onto the market, some important marketing decisions must be made. Due to limited shelf space in retail outlets, niche products like high welfare meat cannot be placed both at the self-service counter and at the service counter. In order to analyze where to place it best an online survey of 642 German consumers was conducted. By means of factor and cluster analyses, consumers’ animal welfare attitudes and their preference for a point of purchase were combined. The different target groups were joint using cross tabulation analysis. The results reveal that consumers in the target group show a more positive attitude to the service counter.

  11. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    International Nuclear Information System (INIS)

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-01

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  12. A physiologically based nonhomogeneous Poisson counter model of visual identification

    DEFF Research Database (Denmark)

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus

    2018-01-01

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...

  13. Size limit on the phosphorous doped silicon nanocrystals for dopant activation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: pengyuan.yang@surrey.ac.uk [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Gwilliam, R.M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Crowe, I.F.; Papachristodoulou, N.; Halsall, M.P. [Photon Science Institute, School of Electrical and Electronic Engineering, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Hylton, N.P. [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hulko, O.; Knights, A.P. [Department of Engineering Physics and the Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Ontario (Canada); Shah, M.; Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2013-07-15

    We studied the photoluminescence spectra of silicon nanocrystals doped with and without phosphorus as a function of isothermal annealing time. Silicon nanocrystals were prepared by the implantation of 80 keV Si{sup +} into a 500 nm SiO{sub 2} film to an areal density of 8 × 10{sup 16} at/cm{sup 2}. Half of the samples were co-implanted with P{sup +} at 80 keV to 5 × 10{sup 15} at/cm{sup 2}. The photoluminescence of the annealed samples were photo-excited at wavelength of 405 nm. For short anneal times, when the nanocrystal size distribution has a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts to the red. Our results indicate the donor electron generation depends strongly on the nanocrystal size. We also found a critical limit above which it allows dopant activation.

  14. Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun, E-mail: zhangjundoc@sina.co [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Li Xiaoxue [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Guo Wei [College of Environmental and Resource Sciences, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Hreid Tubshin [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Hou Jinfeng [Test Center, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot 010051 (China); Su Haiquan [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Yuan Zhuobin [College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, 19(A) Yuquan Road, Beijing 100049 (China)

    2011-03-30

    Graphical abstract: Display Omitted Research highlights: PEDOT-MWCNT and PEDOT as the counter electrodes of DSSCs. The counter electrodes fabricated by a electropolymerization method. PEDOT-MWCNT films were more porous than PEDOT films. The energy conversion efficiency with PEDOT-MWCNT was 13.0% higher than with PEDOT. - Abstract: Composite films of poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes (PEDOT-MWCNT) were fabricated by a simple oxidative electropolymerization method. These films were formed on fluorine-doped, tin oxide, glass substrates as counter electrodes (CEs) of platinum-free, dye-sensitized solar cells (DSSCs). The surface morphology, formation mechanism and electrochemical nature of PEDOT-MWCNT films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The SEM and AFM images showed that PEDOT-MWCNT films were more porous than PEDOT films. CV and AC impedance spectroscopy revealed that the PEDOT-MWCNT electrode had higher electrocatalytic activity for the I{sub 3}{sup -}/I{sup -} redox reaction and a smaller charge transfer resistance than the PEDOT electrodes. The energy conversion efficiency of the DSSC with a PEDOT-MWCNT CE was 13.0% higher than with a PEDOT CE using the same conditions with a ruthenium sensitizer.

  15. Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance

    International Nuclear Information System (INIS)

    Zhang Jun; Li Xiaoxue; Guo Wei; Hreid Tubshin; Hou Jinfeng; Su Haiquan; Yuan Zhuobin

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → PEDOT-MWCNT and PEDOT as the counter electrodes of DSSCs. → The counter electrodes fabricated by a electropolymerization method. → PEDOT-MWCNT films were more porous than PEDOT films. → The energy conversion efficiency with PEDOT-MWCNT was 13.0% higher than with PEDOT. - Abstract: Composite films of poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes (PEDOT-MWCNT) were fabricated by a simple oxidative electropolymerization method. These films were formed on fluorine-doped, tin oxide, glass substrates as counter electrodes (CEs) of platinum-free, dye-sensitized solar cells (DSSCs). The surface morphology, formation mechanism and electrochemical nature of PEDOT-MWCNT films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The SEM and AFM images showed that PEDOT-MWCNT films were more porous than PEDOT films. CV and AC impedance spectroscopy revealed that the PEDOT-MWCNT electrode had higher electrocatalytic activity for the I 3 - /I - redox reaction and a smaller charge transfer resistance than the PEDOT electrodes. The energy conversion efficiency of the DSSC with a PEDOT-MWCNT CE was 13.0% higher than with a PEDOT CE using the same conditions with a ruthenium sensitizer.

  16. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  17. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  18. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  19. The application of safeguards design principles to the spent fuel bundle counter for 600 MW

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1978-10-01

    The irradiated fuel bundle counters for CANDU 600 MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent fuel storage bay at each inspection. Their function is straightforward: to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ΣintelligentΣ instruments which have required a major development program. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A Microprocessor analyzes the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnomal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  20. Discrimination of the wall effect in a thin counter with micro-gap structure for neutron position sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, Takeji; Manabe, Tohru; Kitamura, Yasunori; Nohtomi, Akihiro [Kyushu Univ., Fukuoka (Japan); Sakamoto, Sigeyasu

    1996-07-01

    Simulation by the Monte Carlo method is applied to estimate the wall effect in a thermal neutron counter having a new function for discriminating the effect. The counter is designed to have paralleled electrodes with micro-gap structure. A resistive anode is used for position sensing on the center of a set of the three electrode. The structure can be made by simple arrangement of anode and cathode wires on an insulator plane. The calculation shows discrimination of the wall effect can be achieved by coincident counting of two or three elements included in the counter. By using the coincident counting, the thickness of the neutron counter can be made into 1 mm with the information of the total energy created in the neutron detection. (author)

  1. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  2. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  3. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, {beta}''-(DODHT){sub 2}TaF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, H; Oshio, H; Yasuzuka, S [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Higa, M; Kondo, R; Kagoshima, S [Department of Basic Science, University of Tokyo, Tokyo 153-8902 (Japan); Nakao, A; Sawa, H [Photon Factory, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Murata, K [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)], E-mail: nishikaw@chem.tsukuba.ac.jp

    2008-10-15

    Physical properties of isostructural {beta}''-(DODHT){sub 2}X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF{sub 6}, AsF{sub 6}, and SbF{sub 6}] at ambient pressure have been compared. The insulating phase of {beta}''-(DODHT){sub 2}PF{sub 6} salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of {beta}''-(DODHT){sub 2}SbF{sub 6} salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF{sub 6} salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, {beta}''-(DODHT){sub 2}TaF{sub 6}, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of {beta}''-(DODHT){sub 2}SbF{sub 6} salt.

  4. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Manoranjan; Wu Bing; Zhu Liying; Jacobson, Craig; Wang Weining; Jones, Kristen; Goyal, Yogesh; Tang, Yinjie J; Biswas, Pratim, E-mail: pbiswas@wustl.edu [Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2011-10-14

    The properties of Cu-doped TiO{sub 2} nanoparticles (NPs) were independently controlled in a flame aerosol reactor by varying the molar feed ratios of the precursors, and by optimizing temperature and time history in the flame. The effect of the physico-chemical properties (dopant concentration, crystal phase and particle size) of Cu-doped TiO{sub 2} nanoparticles on inactivation of Mycobacterium smegmatis (a model pathogenic bacterium) was investigated under three light conditions (complete dark, fluorescent light and UV light). The survival rate of M. smegmatis (in a minimal salt medium for 2 h) exposed to the NPs varied depending on the light irradiation conditions as well as the dopant concentrations. In dark conditions, pristine TiO{sub 2} showed insignificant microbial inactivation, but inactivation increased with increasing dopant concentration. Under fluorescent light illumination, no significant effect was observed for TiO{sub 2}. However, when TiO{sub 2} was doped with copper, inactivation increased with dopant concentration, reaching more than 90% (>3 wt% dopant). Enhanced microbial inactivation by TiO{sub 2} NPs was observed only under UV light. When TiO{sub 2} NPs were doped with copper, their inactivation potential was promoted and the UV-resistant cells were reduced by over 99%. In addition, the microbial inactivation potential of NPs was also crystal-phase-and size-dependent under all three light conditions. A lower ratio of anatase phase and smaller sizes of Cu-doped TiO{sub 2} NPs resulted in decreased bacterial survival. The increased inactivation potential of doped TiO{sub 2} NPs is possibly due to both enhanced photocatalytic reactions and leached copper ions.

  5. Development of photocathodes for gas counters

    International Nuclear Information System (INIS)

    Chalot, J.F.

    1982-03-01

    A lot of ways of physics needs the development of high sensibility imaging devices with large sensitive surface. The problems brought by the building of such devices may be solved by the use of gaz counters. But we must sensitize these counters to low energy photons ( [fr

  6. Geometric covers, graph orientations, counter games

    DEFF Research Database (Denmark)

    Berglin, Edvin

    -directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... example is Line Cover, also known as Point-Line Cover, where a set of points in a geometric space are to be covered by placing a restricted number of lines. We present new FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for Hyperplane Cover restricted to R 3 (i...... are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent...

  7. Body load in heel-strike running: the effect of a firm heel counter.

    Science.gov (United States)

    Jørgensen, U

    1990-01-01

    The effect of a firm heel counter in the shoe was studied in 11 athletes during submaximal heel-strike running on a treadmill under standardized conditions. The runners were tested in identical shoes with and without the distal 2 cm of the firm heel counter. Body load was expressed by absolute and relative VO2, surface EMG on the right leg, and g-force registration from an accelerometer below the right tibial tuberosity. The heel counter caused a 2.4% significant decrease in VO2, a reduction in musculoskeletal transients, and a decrease in the activity of the triceps surae and quadriceps muscles at heel strike. The changes found are expressions of kinematic adaptations in the body to increased or decreased load and provide functional evidence for the loading factor in the pathophysiology of overuse injuries.

  8. 21 CFR 866.2180 - Manual colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter. (a) Identification. A manual colony counter is a device intended for medical purposes that consists...

  9. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    Science.gov (United States)

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  10. Co2 chemosorption by functionalized amino acid derivatives

    DEFF Research Database (Denmark)

    2015-01-01

    The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid.......The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid....

  11. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  12. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H; Mitsudharmadi, Hatsari; Budiman, A C; Hasheminejad, S M; Nadesan, T; Tandiono; Low, H T; Lee, T S

    2015-01-01

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  13. Transient enhanced diffusion of dopants in preamorphized Si layers

    International Nuclear Information System (INIS)

    Claverie, A.; Bonafos, C.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Martinez, A.; Alquier, D.; Mathiot, D.

    1997-01-01

    Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects. For this reason, the authors discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphized Si layers

  14. Controlled light emission from white organic light-emitting devices with a single blue-emitting host and multiple fluorescent dopants

    International Nuclear Information System (INIS)

    Chin, Byung Doo; Kim, Jai Kyeong; Park, O Ok

    2007-01-01

    In this work, we fabricated white organic light-emitting devices (WOLEDs) containing a layered light-emitting region composed of a single blue-emitting host and different fluorescent dopant materials. The effects of varying the dye-doping ratio and emitting layer thickness on the efficiency, lifetime, spectral voltage-dependence and white balance were investigated for devices with a blue/orange stacked layer structure. Addition of a blue host layer doped with a green-emitting dopant, to give a blue/green/orange emitter, resulted in a broadband white spectrum without the need for a charge-blocking interlayer. The composition of blue, green and orange dopants in the host and the thickness of each emitting layer were optimized, resulting in a device efficiency of 9-11 cd A -1 even at a high brightness of 10 000 cd m -2 (achieved at a bias voltage of less than 9 V) with an emission spectrum suitable for lighting applications

  15. Counter Traction Makes Endoscopic Submucosal Dissection Easier

    OpenAIRE

    Oyama, Tsuneo

    2012-01-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable co...

  16. Israel's Counter-Terrorism Strategy and its Effectiveness

    National Research Council Canada - National Science Library

    Smith, Jerry D

    2005-01-01

    This thesis analyzes Israeli counter-terrorism strategy and its effectiveness. Because of ongoing suicide attacks from Palestinian and other terrorist organizations, Israel will continue to have an aggressive counter-terrorism strategy...

  17. A pill-box design, flow type, gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.; Bhati, S.; Somasundaram, S.

    1982-01-01

    A gas scintillation proportional counter of 'pill-box' design operated with argon + 2.5% nitrogen gas in continuous flow, has been developed. An energy resolution of 1.6% is obtained for 239 Pu α-particles emitted from a mixed nuclide source of 239 Pu- 241 Am- 244 Cm and injected into the counter parallel to the anode. The risetime of the scintillation pulse is found to be less than 0.5 μs. Measurements have been made of charge and light gain factors as a function of anode voltage. It is found that for a given anode voltage, the scintillation pulse amplitude increases sharply with the addition of nitrogen to argon and reaches a maximum at about 2.5% and then decreases slowly, whereas the charge pulse amplitude reduces monotonically. Nitrogen improvement factors with the addition of 2.5% nitrogen to argon are found to be different for two photomultipliers with different photocathode responses. The improvement in energy resolution as a result of addition of nitrogen to argon is discussed. Comments are made on the intrinsic energy resolution capabilities of such a counter. (orig.)

  18. The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry

    Science.gov (United States)

    Begum, Mahfuza; Mizanur Rahman, A. K. M.; Zubair, H. T.; Abdul-Rashid, H. A.; Yusoff, Z.; Begum, Mahbuba; Alkhorayef, M.; Alzimami, K.; Bradley, D. A.

    2017-12-01

    In thermoluminescence (TL) material dopant concentration has an important effect on their characteristics as a ;radiation-sensor;. The study investigates dosimetric properties of four different concentration (4 mol%, 5 mol%, 7 mol% and 25 mol%) tailor-made Ge-doped silica fibers. The intention is to seek development of alternative TL materials that offer exceptional advantages over existing passive systems of dosimetry, including improved spatial resolution, a water impervious nature and low cost. Photon beams (6 MV and 10 MV) from a clinical linear accelerator were used for irradiation of the fiber samples over radiation therapy doses, ranging from 0.5 Gy to 8 Gy. SEM-EDX analysis was also performed to investigate the homogeneity of distribution of Ge dopant concentration from the fiber samples. The results of measurement were also compared with two of the more commonly used standard TLDs, TLD-100 (LiF: Mg,Ti-7.5% 6LiF) and TLD-700 ((7LiF: Mg,Ti-99.9%7LiF) chips respectively. The TL intensity of the fiber samples was found to strongly depend on Ge dopant concentration, with samples showing enhanced TL yields with decreasing Ge dopant concentration. 4 mol% Ge-doped silica fiber provided the greatest response whereas the 25 mol% samples showed the least, indicative of the well-known concentration quenching effects All fiber TLDs provided linear dose response over the delivered radiotherapy dose-range, the fibers also showing a weak dependence on photon beam energies in comparing the TL yields at 6 and 10 MV. The fading behavior of the different concentration Ge doped TLD-materials were also measured over a period of thirty (30) days subsequent to irradiation. The relative sensitivity of the samples with respect to standard TLD-100 were found to be 0.37, 0.26, 0.13 and 0.02 in respect of the 4, 5, 7 and 25 mol% fibers. The primary dosimetry peak, which was by far the most prominent of any other feature covered by the glow curve, was found to be around 244 °C using

  19. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  20. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  1. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    Science.gov (United States)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-03

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  2. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  3. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  4. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  5. CORNELL: CLEO's counters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Particle identification by measuring ionization is complicated by the fact that the energy lost to ionization in passing through matter has large fluctuations, first calculated by Landau. These large fluctuations imply that many measurements must be made in order to determine the most probable ionization value that is characteristic of the particle type. The JADE chamber at PETRA and the TPC chamber at PEP measure both the ionization and the momenta of tracks in the same device. In the CLEO experiment at Cornell's CESR ring, ionization is measured in dedicated energy loss counters contained in each of the eight octants surrounding the drift chamber and superconducting coil. The last of these were installed in the summer of 1981, replacing Cherenkov counters that were used while the energy loss counters were being developed and built

  6. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    Science.gov (United States)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  7. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  8. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  9. Imaging of dopant distribution in optical fibers with an orthogonal TOF SIMS

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Kašík, Ivan; Vaniš, Jan; Sedláček, L.; Dluhoš, J.

    2014-01-01

    Roč. 46, č. 1 (2014), s. 238-240 ISSN 0142-2421. [19th International Conference on Secondary Ion Mass Spectrometry ( SIMS ). Jeju, 29.09.2013-04.10.2013] Grant - others:GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 Keywords : TOF SIMS * Optical fibers * Dopant Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.245, year: 2014

  10. The effect of dopants on laser imprint mitigation

    Science.gov (United States)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Dahlburg, Jill

    1999-11-01

    An intact implosion of a pellet for direct-drive ICF requires that the perturbations imprinted by the laser be kept below some threshold. We report on simulations of targets that incorporate very small concentrations of a high-Z dopant in the ablator, to increase the electron density in the ablating plasma, causing the laser to be absorbed far enough from the solid ablator to achieve a substantial degree of thermal smoothing. These calculations were performed using NRL's FAST radiation hydrodynamics code(J.H. Gardner, A.J. Schmitt, et al., Phys. Plasmas) 5, 1935 (1998), incorporating the flux-corrected transport algorithm and opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method.

  11. Reduced work function of graphene by metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Kais, Sabre [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Department of Chemistry and Physics, Purdue University, West Lafayette, IN 46323 (United States); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar); Alharbi, Fahhad H., E-mail: falharbi@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2017-02-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  12. Reduced work function of graphene by metal adatoms

    International Nuclear Information System (INIS)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E.; Fisher, Timothy S.; Kais, Sabre; Alharbi, Fahhad H.

    2017-01-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  13. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  14. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  15. A theory of timing in scintillation counters based on maximum likelihood estimation

    International Nuclear Information System (INIS)

    Tomitani, Takehiro

    1982-01-01

    A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)

  16. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  17. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-03-01

    Full Text Available X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1 mid- or high-Z dopants absorb hard X-rays (M-band flux and re-emit isotropically, which helps to smooth the asymmetric M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2 the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3 placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF experiments very near the performance cliffs of asymmetric X-ray drives.

  18. Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2014-10-01

    Full Text Available The present paper reports the synthesis and characterization of Ti doped ZrO2 nanophosphors. The effects of variable concentration of titanium on thermoluminescence (TL behaviour are studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for nano phosphors. The starting material used for sample preparation are Zr(NO33 and Ti(NO33 and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ti (0.05–0.5 mol% there is no any phase change found with increase the concentration of Ti. Sample shows cubic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique for optimized concentration of dopant. The good connectivity with grains and the semi-sphere like structure was found by FEGSEM. The functional group analysis was determined by Fourier transform infrared (FTIR spectroscopic techniques. The prepared phosphor examined by thermoluminescence technique. For recording TL glow curve every time 2 mg phosphor was irradiated by UV 254 nm source and fixed the heating rate at 5 °C s−1. Sample shows well resolved peak at 167 °C with a shoulder peak at 376 °C. The higher temperature peak shows the well stability and less fading in prepared phosphor. Also the effect of Ti concentration at fixed UV exposure time was studied. The effect of UV exposure time and dose versus intensity plot was studied. Sample shows linear response with dose and broaden peak with high temperature shows the more stability and less fading in TL glow curve. The linear dose response, high stability and less fading phenomenon shows the sample may be useful for thermoluminescence dosimetry application. Trapping parameters are calculated for every recorded glow curve. The

  19. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  20. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  1. Study of the chlorine as dopant in synthesized polymers by plasma; Estudio del cloro como dopante en polimeros sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Timoshina, T. [ESIQIE, IPN, 07738 Mexico D.F. (Mexico); Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    In the search of new and better dopants for semiconductor polymers, in this work the synthesis by plasma and the characterization of two doped polymers with chlorine, Pyrrole (PPy) and Thiophene (PTh) is presented. The characterization of the polymers it was carried out by FT-lR, it shows the C-Cl vibration that it is confirmed with the X-ray photoelectron spectroscopy technique (XPS). The elementary analysis shows a greater quantity of Cl in the PTh-CI compared with PPy-CI. However, this effect is not reflected in the electric conductivity since the PTh-Cl presents a lightly greater conductivity than the PPy-CI. SEM shows a formed structure of small agglomerated spheres of different size. (Author)

  2. Synthesis and prospective study of the use of thiophene thiosemicarbazones as signalling scaffolding for the recognition of anions

    OpenAIRE

    Raposo, M. Manuela M.; García-Acosta, Beatriz; Ábalos, Tatiana; Calero, P.; Martínez-Máñez, Ramón; Ros-Lis, José Vicente; Soto, Juan

    2010-01-01

    A family of phenyl-thiosemicarbazone dyes have been prepared and their interactions with anions monitorized via UV-Vis, fluorescence and 1H NMR titrations. Additionally quantum chemical calculations and electrochemical studies completed the studies carried out. The phenyl-thiosemicarbazone dyes show a modulation of their hydrogen-bonding and electron-donating capabilities as a function of the chemical groups attached and display two different chromo-fluorogenic responses towards anions in ace...

  3. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  4. Application of safeguards design principles to the spent-fuel bundle counters for 600-MW CANDU reactors

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1979-01-01

    The irradiated fuel bundle counters for CANDU 600-MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent-fuel storage bay at each inspection. Their function is straightforward - to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ''intelligent'' instruments which have required a major development programme. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper-resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel-bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A microprocessor analyses the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnormal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  5. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    Science.gov (United States)

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  7. Generalization of the development of liquid-sparkling counter

    International Nuclear Information System (INIS)

    Bian Zhengzhu; Zhang Jue; Zhang Jinwei

    2006-01-01

    This paper includes five parts. It not only reviews the development history of liquid-sparkling counter but refers that the appearance of coincident circuit is its milestone. The paper summarizes the resembled hard ware and soft ware and soft ware of liquid-sparkling counter of indoor and overseas, and prospects the development of liquid-sparkling counter in our country. (authors)

  8. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  9. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  10. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  11. Copper(I) coordination compounds with closododecaborate anion

    International Nuclear Information System (INIS)

    Malinina, E.A.; Drozdova, V.V.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Yu.; Kuznetsov, N.T.

    2006-01-01

    Cu(I) Complexes with closo-dodecaborate anion Cat[CuB 12 H 12 ], where Cat= Cs + , Ph 4 P + , Ph 4 As + , R x NH 4-x + (R=Me, Et, Pr, Bu, X=3-4) are synthesized. Synthesis of complexes was conducted in the copper(II) salt-salt of dodecaborate anion-sulfur dioxide (sodium sulfite) system. Structure of the complex [Cu 2 (NCCH 3 ) 4 B 12 H 12 ] assigned by X-ray structural analysis discloses that B 12 H 12 2- anion enters into the inner sphere of metal-complexing agent, and connection of closo-borate ligand with the metal is caused by the formation of three-centric metal-hydrogen-boron bonds [ru

  12. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  13. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.; Sioud, Salim

    2012-01-01

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  14. Advertising health: the case for counter-ads.

    Science.gov (United States)

    Dorfman, L; Wallack, L

    1993-01-01

    Public service advertisements have been used by many in hopes of "selling" good health behaviors. But selling good behavior--even if it could be done more effectively--is not the best goal for using mass media to prevent health problems. Personal behavior is only part of what determines health status. Social conditions and the physical environment are important determinants of health that are usually ignored by health promotion advertising. Public service advertising may be doing more harm than good if it is diverting attention from more effective socially based health promotion strategies. Counter-ads are one communications strategy that could be used to promote a broader responsibility for rectifying health problems. In the tradition of advocacy advertising directly promoting policy rather than products, counter-ads promote views consistent with a public health perspective. Counter-ads set the agenda for health issues, conferring status on policy-oriented strategies for addressing health problems. The primary purpose of counter-ads is to challenge the dominant view that public health problems reflect personal health habits. They are controversial because they place health issues in a social and political context. Advertising strategies for health promotion range over a spectrum from individually oriented public service advertising to socially oriented counter-advertising. The recent anti-tobacco campaign from the California Department of Health Services represents advertisements across the spectrum. Counter-ads that focus on a politically controversial definition for health problems are an appropriate and necessary alternative to public service advertising. PMID:8265756

  15. Time-Dependent Density Functional Theory Analysis of Triphenylamine-Functionalized Graphene Doped with Transition Metals for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Mota, Elder A V; Neto, Abel F G; Marques, Francisco C; Mota, Gunar V S; Martins, Marcelo G; Costa, Fabio L P; Borges, Rosivaldo S; Neto, Antonio M J C

    2018-07-01

    The electronic structures and optical properties of triphenylamine-functionalized graphene (G-TPA) doped with transition metals, using water as a solvent, were theoretically investigated to verify the efficiency of photocatalytic hydrogen production with the use of transition metals. This study was performed by Density Functional Theory and Time-dependent Density Functional Theory through Gaussian 09W software, adopting the B3LYP functional for all structures. The 6-31g(d) basis set was used for H, C and N atoms, and the LANL2DZ basis set for transition metals using the Effective Core Potentials method. Two approaches were adopted: (1) using single metallic dopants (Ni, Pd, Fe, Os and Pt) and (2) using combinations of Ni with the other dopants (NiPd, NiPt, NiFe and NiOs). The DOS spectra reveal an increase of accessible states in the valence shell, in addition to a gap decrease for all dopants. This doping also increases the absorption in the visible region of solar radiation where sunlight is most intense (400 nm to 700 nm), with additional absorption peaks. The results lead us to propose the G-TPA structures doped with Ni, Pd, Pt, NiPt or NiPd to be novel catalysts for the conversion of solar energy for photocatalytic hydrogen production, since they improve the absorption of solar energy in the range of interest for solar radiation; and act as reaction centers, reducing the required overpotential for hydrogen production from water.

  16. Comfort and Functional Properties of Far-Infrared/Anion-Releasing Warp-Knitted Elastic Composite Fabrics Using Bamboo Charcoal, Copper, and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-02-01

    Full Text Available Elastic warp-knitted composite fabrics with far-infrared emissivity and an anion-releasing property were prepared using bamboo charcoal (BC, copper (Cu, and phase-change material (PCM. The functional composite fabric, which was composed of self-made complex yarns with various twisting degrees and material composition, were created using a rotor twister and ring-spinning technique. The fabric structure was diversified by the feeding modes of weft yarn into a crochet-knitting machine. The twist number of complex yarns was optimized by tensile tenacity, twist contraction, and hairiness, and analysis showed that twisting at 12 twists per inch produced the highest tensile tenacity and appropriate twist contraction and hairiness. Comfort evaluation showed that the elastic composite fabrics with BC weft yarns exhibited higher water–vapor transmission rate and air permeability, reaching 876 g/m2∙ day and 73.2 cm3/s/cm2, respectively. Three structures of composite fabric with various weft yarns had >0.85 ε far-infrared emissivity and 350–420 counts/cm3 anion amount. The prepared elastic warp-knitted fabrics can provide a comfortable, dry, and breathable environment to the wearer and can thus be applied as health-care textiles in the future.

  17. Effects of Lithium Dopant on Size and Morphology of Magnesium Oxide Nano powders

    International Nuclear Information System (INIS)

    Mohd Sufri Mastuli; Siti Nur Hazlinda Hasbu; Noraziahwati Ibrahim; Mohd Azizi Nawawi; Mohd Sufri Mastuli

    2014-01-01

    Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 degree Celsius for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications. (author)

  18. Photoreflection investigations of the dopant activation in InP doped with beryllium ions

    International Nuclear Information System (INIS)

    Avakyants, L.P.; Bokov, P.Yu.; Chervyakov, A.V.

    2005-01-01

    The processes of the dopant activation in the InP crystals implanted with Be + ions (energy 100 keV, dose 10 13 cm -2 and subsequent thermal annealing during 10 s) have been studied by means of photoreflection spectroscopy. Spectral lines of the crystal InP were absent in the photoreflection spectra of the samples annealed at temperatures less then 400 Deg C. This fact is connected with the disordering of the crystal structure due to the ion implantation. In the temperature range 400-700 Deg C the lines from InP band gap (1.34 eV) and conductance band-spin-orbit splitting valence subband (1.44 eV) have been observed due to the recovery of the crystal structure. In the photoreflectance spectra of a 800 Deg C annealed sample the Franz-Keldysh oscillations have been observed, which can be an evidence in favour of the dopant activation. Carrier concentration calculated from the period of Franz-Keldysh oscillations was equal to 2.2 x 10 16 cm -3 [ru

  19. Density functional theory calculation of monolayer WTe2 transition metal dichalcogenides doped with H, Li and Be

    Science.gov (United States)

    Igumbor, E.; Mapasha, R. E.; Meyer, W. E.

    2018-04-01

    Results based on density functional theory modelling of electronic and structural properties of single layer WTe2 dichalcogenides doped with X (X=H, Li and Be) were presented. The generalized gradient approximation functional of Perdew, Burke, and Ernzerhof exchange correlation was used for all calculations. Formation energies of X dopant substituted for W (XW) were obtained to be between 3.59 and 2.61 eV. The LiW defect with energy of formation of 2.14 eV was energetically the most favourable. For all dopants considered, while the HW induced no magnetic moment, the LiW and BeW induced magnetic moments of 3.44 and 0.05 μB, respectively. The band gap of the WTe2 as a result of the dopants was populated with several orbital ground states, and thus reduced within a few eV. While all XW behave as p - type dopant, the LiW defect posses half metallic character.

  20. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes; Etude de la complexation simultanee d'un cation et d'un anion par des calixarenes fonctionnalises

    Energy Technology Data Exchange (ETDEWEB)

    Moli, Ch. [CEA Cadarache, Dept. d' Etudes des Dechets, DED, 13 - Saint Paul lez Durance (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10{sup -2} M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO{sub 3} = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)