WorldWideScience

Sample records for dopaminergic neurotoxicity long-term

  1. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  2. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    Science.gov (United States)

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  3. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  4. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Sammi, Shreesh Raj; Agim, Zeynep Sena; Cannon, Jason R

    2018-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  7. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    Science.gov (United States)

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  8. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  9. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    Science.gov (United States)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  10. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    Science.gov (United States)

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    Science.gov (United States)

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  13. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  14. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  15. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Directory of Open Access Journals (Sweden)

    Welinton Alessandro Oliveira de Almeida

    2014-12-01

    Full Text Available Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL and drug (Pramipexole—PPX groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  16. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  17. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  19. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    Science.gov (United States)

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  20. Neurotoxicity in long-term survivors of small cell lung cancer

    International Nuclear Information System (INIS)

    Lee, J.S.; Umsawasdi, T.; Lee, Y.Y.; Barkley, H.T. Jr.; Murphy, W.K.; Welch, S.; Valdivieso, M.

    1986-01-01

    Chronic central nervous system neurotoxicity was studied in 38 long-term survivors (greater than or equal to 3 years) of small cell lung cancer who were treated at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston between 1971 and 1980. All but one patient received combination chemotherapy with or without chest irradiation. Twenty-four patients received whole brain irradiation (Group I), 22 for elective and two for therapeutic purposes, while 14 did not (Group II). Abnormalities in computed tomographic (CT) scans of the brain were more frequently observed in Group I than in Group II (70% vs. 0%, p less than 0.01). Clinical central nervous system neurotoxicity developed in three patients in Group I, while none developed in patients in Group II (p less than 0.05). Patients who received methotrexate and procarbazine after whole brain irradiation were at a higher risk for clinical central nervous system neurotoxicity (p less than 0.05), and for development of periventricular white matter changes in CT brain scans (p less than 0.05) than were patients in Group II. Impaired methylation of the myelin sheath is proposed as a possible underlying pathogenic mechanism

  1. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  2. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson's disease.

    Science.gov (United States)

    Abbaoui, Abdellatif; Chatoui, Hicham; El Hiba, Omar; Gamrani, Halima

    2017-11-01

    Numerous findings indicate an involvement of heavy metals in the neuropathology of several neurodegenerative disorders, especially Parkinson's disease (PD). Previous studies have demonstrated that Copper (Cu) exhibits a potent neurotoxic effect on dopaminergic neurons and triggers profound neurobehavioral alterations. Curcumin is a major component of Curcuma longa rhizomes and a powerful medicinal plant that exerts many pharmacological effects. However, the neuroprotective action of curcumin on Cu-induced dopaminergic neurotoxicity is yet to be investigated. The aim of the present study was to evaluate the impact of acute Cu-intoxication (10mg/kg B.W. i.p) for 3days on the dopaminergic system and locomotor performance as well as the possible therapeutic efficacy of curcumin I (30mg/kg B.W.). Intoxicated rats showed a significant loss of Tyrosine Hydroxylase (TH) expression within substantia nigra pars compacta (SNc), ventral tegmental area (VTA) and the striatal outputs. This was correlated with a clear decrease in locomotor performance. Critically, curcumin-I co-treatment reversed these changes and showed a noticeable protective effect; both TH expression and locomotor performance was reinstated in intoxicated rats. These results demonstrate altered dopaminergic innervations following Cu intoxication and a new therapeutic potential of curcumin against Cu-induced dopaminergic neurotransmission failure. Curcumin may therefore prevent heavy metal related Parkinsonism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neurotoxicity of drugs of abuse - the case of methylenedioxy amphetamines (MDMA, ecstasy ), and amphetamines

    Science.gov (United States)

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies. PMID:19877498

  4. The role of system Xc- in methamphetamine-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Dang, Duy-Khanh; Shin, Eun-Joo; Tran, Hai-Quyen; Kim, Dae-Joong; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Sato, Hideyo; Nabeshima, Toshitaka; Yoneda, Yukio; Kim, Hyoung-Chun

    2017-09-01

    The cystine/glutamate antiporter (system Xc - , Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson's disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons.

    Science.gov (United States)

    Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun

    2015-08-01

    Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.

  6. Attenuation of methamphetamine-induced nigrostriatal dopaminergic neurotoxicity in mice by lipopolysaccharide pretreatment.

    Science.gov (United States)

    Lin, Yin Chiu; Kuo, Yu-Min; Liao, Pao-Chi; Cherng, Chianfang G; Su, Su-Wen; Yu, Lung

    2007-04-30

    Immunological activation has been proposed to play a role in methamphetamine-induced dopaminergic terminal damage. In this study, we examined the roles of lipopolysaccharide, a pro-inflammatory and inflammatory factor, treatment in modulating the methamphetamine-induced nigrostriatal dopamine neurotoxicity. Lipopolysaccharide pretreatment did not affect the basal body temperature or methamphetamine-elicited hyperthermia three days later. Such systemic lipopolysaccharide treatment mitigated methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions in a dose-dependent manner. As the most potent dose (1 mg/kg) of lipopolysaccharide was administered two weeks, one day before or after the methamphetamine dosing regimen, methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions remained unaltered. Moreover, systemic lipopolysaccharide pretreatment (1 mg/kg) attenuated local methamphetamine infusion-produced dopamine and 3,4-dihydroxyphenylacetic acid depletions in the striatum, indicating that the protective effect of lipopolysaccharide is less likely due to interrupted peripheral distribution or metabolism of methamphetamine. We concluded a critical time window for systemic lipopolysaccharide pretreatment in exerting effective protection against methamphetamine-induced nigrostriatal dopamine neurotoxicity.

  7. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH

  8. Elevated environmental temperature and methamphetamine neurotoxicity

    International Nuclear Information System (INIS)

    Miller, Diane B.; O'Callaghan, James P.

    2003-01-01

    Amphetamines have been of considerable research interest for the last several decades. More recent work has renewed interest in the role of ambient temperature in both the toxicity and neurotoxicity of these drugs. We have determined that the striatal dopaminergic neurotoxicity observed in the mouse is linked in some fashion to both body and environmental temperature. Most studies of d-methamphetamine (d-METH) neurotoxicity are conducted at standard laboratory ambient temperatures (e.g., ∼21-22 deg. C) and utilizing a repeated dosage regimen (e.g., three to four injections spaced 2 h apart). A lowering of the ambient temperature provides neuro protection, while an elevation increases neurotoxicity. d-METH causes long-term depletions of triatal dopamine (DA) that are accompanied by other changes that are indicative of nerve terminal degeneration. These include argyrophilia, as detected by silver degeneration stains, and an elevation in glial fibrillary acidic protein (GFAP), a marker of reactive gliosis in response to injury, as well as a long-term decrease in tyrosine hydroxylase (TH) protein levels. here we show that increasing the ambient temperature during and for some time following dosing increases the neurotoxicity of d-METH. Mice (female 57BL6/J) given a single dosage of d-METH (20 mg/kg s.c.) and maintained at the usual laboratory ambient temperature show minimal striatal damage (an ∼15% depletion of DA and an ∼ 86% increase in GFAP). substantial striatal damage (e.g., an ∼70% depletion of DA and an ∼200% elevation in GFAP) was induced by this regimen if mice were maintained at 27 deg. C for 24 or 72 h following dosing. An increase in neurotoxicity was also apparent in mice kept at an elevated temperature for only 5 or 9 h, but keeping animals at 27 deg. C for 24 or 72 h was the most effective in increasing the neurotoxicity of d-METH. Our data show how a relatively minor change in ambient temperature can have a major impact on the degree of

  9. D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Muralikrishnan, Dhanasekharan; Samantaray, Supriti; Mohanakumar, Kochupurackal P

    2003-10-01

    Selegiline (L-deprenyl) is believed to render protection against l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity to a significant extent via a free radical scavenging mechanism, which is independent of its ability to inhibit monoamine oxidase-B (MAO-B) in the brain. We investigated the hydroxyl radical (.OH) scavenging action and neuroprotective effect of D-deprenyl, its less active isomer, in MPTP-induced dopaminergic neurotoxicity in mice to test whether the chemical structure of the molecule or its biological effects contribute to this property. To achieve this goal we studied the effects of D-deprenyl on: (1).OH production in a Fenton reaction; (2) MPTP-induced.OH generation and dopamine (DA) depletion in vivo, employing a sensitive HPLC-electrochemical procedure; and (3) formation of MPP(+) in vivo in the striatum following systemic administration of MPTP, employing an HPLC-photodiode array detection system. D-deprenyl inhibited ferrous citrate-induced.OH in vitro (0.45 microM) and MPTP-induced.OH in vivo in substantia nigra (SN) and in the striatum (1.0 mg/kg, i.p.). D-deprenyl did not, but L-deprenyl (0.5 mg/kg dose) did significantly inhibit formation of MPP(+) in the striatum 90 min following systemic MPTP injection. It failed to affect MAO-B activity at 0.5 mg/kg in the striatum, but effectively blocked MPTP-induced striatal DA depletion. The potency of D-deprenyl to scavenge MPTP-induced.OH in vivo and to render protection against the dopaminergic neurotoxicity without affecting dopamine turnover, MAO-B activity, or formation of MPP(+) in the brain indicates a direct involvement of.OH in the neurotoxic action of MPTP and antioxidant effect in the neuroprotective action of deprenyl. Copyright 2003 Wiley-Liss, Inc.

  10. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    Science.gov (United States)

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  12. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    Science.gov (United States)

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  13. Pathophysiology of Manganese-Associated Neurotoxicity

    Science.gov (United States)

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R.; Zheng, Wei

    2012-01-01

    Conference Summary Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years later an outbreak of an atypical parkinsonian illness in a Chilean Mn mine provided a phenotypic description of a fulminant neurologic disorder with parkinsonism, dystonia, and neuropsychiatric symptoms.(Rodier J, 1955) Exposures associated with this syndrome were massive and an order of magnitude greater than modern exposures.(Rodier J, 1955; Hobson et al., 2011) The clinical syndrome associated with Mn neurotoxicity has been called manganism. Modern exposures to Mn occur primarily through occupations in the steel industry and welding. These exposures are often chronic and varied, occurring over decades in the healthy workforce. Although the severe neurologic disorder described by Rodier and Couper are no longer seen, several reports have suggested a possible increased risk of neurotoxicity in these workers.(Racette et al., 2005b; Bowler et al., 2007; Harris et al., 2011) Based upon limited prior imaging and pathologic investigations into the pathophysiology of neurotoxicity in Mn exposed workers,(Huang et al., 2003) many investigators have concluded that the syndrome spares the dopamine system distinguishing manganism from Parkinson disease (PD), the most common cause of parkinsonism in the general population, and a disease with characteristic degenerative changes in the dopaminergic system.(Jankovic, 2005) The purpose of this symposium was to highlight recent advances in the understanding of the pathophysiology of Mn associated neurotoxicity from C. elegans

  14. An autophagic mechanism is involved in the 6-hydroxydopamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    He, Xin; Yuan, Wei; Li, Zijian; Feng, Juan

    2017-10-05

    6-hydroxydopamine (6-OHDA) is one of the most common agents for modeling dopaminergic neuron degeneration in Parkinson's disease (PD). So far, the role of autophagy in 6-OHDA-induced neurotoxicity remains controversial and most evidence is collected from in vitro studies. In this study, we determined the role of autophagy activation in 6-OHDA-induced neurotoxicity in a rat model of PD. Following 6-OHDA treatment, we observed a concomitant activation of autophagy and apoptosis. To further explore the interaction between autophagy and apoptosis induced by 6-OHDA, autophagy inhibitor 3-methylademine (3-MA) or cysteine protease inhibitor Z-FA-fmk was applied. We found that both 3-MA and Z-FA-fmk could not only exert immediate protection against 6-OHDA-induced neuronal apoptosis, but also prevent dopaminergic neuron loss in the long-term, which was related to reduced autophagosome formation. Furthermore, by monitoring the sequential changes of mTOR-related signaling pathways, we found that reactive oxygen species (ROS)-mediated AKT/AMPK-mTOR signaling pathway participated in but was not the initial cause of autophagy activation by 6-OHDA. Collectively, our data suggest that 6-OHDA-induced autophagy activation contributes to its neurotoxicity and targeting autophagy activation or cysteine proteases could be promising for developing neuroprotective agents for PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    Science.gov (United States)

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  16. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  17. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Dang, Duy-Khanh; Shin, Eun-Joo; Kim, Dae-Joong; Tran, Hai-Quyen; Jeong, Ji Hoon; Jang, Choon-Gon; Ottersen, Ole Petter; Nah, Seung-Yeol; Hong, Jau-Shyong; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-02-01

    Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    Science.gov (United States)

    2014-06-01

    induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 19: 63-72, (2011). Kalia, L. V., S...1998). Zhang J, Niu N, Wang M, McNutt MA, Zhang D, Zhang B, Lu S, Liu Y, Liu Z. Neuron-derived IgG protects dopaminergic neurons from insult by 6...AD_________________ Award Number: W81XWH-08-1-0465 TITLE: Interaction of Synuclein and Inflammation in Dopaminergic

  19. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  1. Role of Inflammation in MPTP-Induced Dopaminergic Neuronal Death

    Science.gov (United States)

    2008-12-01

    of MPTP to MPP+ and MPP+ entry into dopaminergic neurons are key to the neurotoxic effects of MPTP and interference in any of these processes...presented at the Society for Neuroscience Meetings in 2006 Figure 1. Tempol Structure 29 Figure 2. Tempol protects dopaminergic neurons...in PD. Dopaminergic neurons in the SNpc were protected to a significant degree against the damaging effects of MPTP by M40401 whereas its isoforms

  2. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  3. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila

    Science.gov (United States)

    Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge

    2015-01-01

    Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689

  4. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  5. Evidence for hydroxyl radical scavenging action of nitric oxide donors in the protection against 1-methyl-4-phenylpyridinium-induced neurotoxicity in rats.

    Science.gov (United States)

    Banerjee, Rebecca; Saravanan, Karuppagounder S; Thomas, Bobby; Sindhu, Kizhake M; Mohanakumar, Kochupurackal P

    2008-06-01

    In the present study we provide evidence for hydroxyl radical (*OH) scavenging action of nitric oxide (NO*), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO* donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro *OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced *OH production in the mitochondria. We also tested whether co-administration of NO* donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced *OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in *OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO*, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of *OH in the nigrostriatal degeneration caused by MPP+, indicate the *OH scavenging ability of NO*, and demonstrate protection by NO* donors against MPP+-induced dopaminergic neurotoxicity in rats.

  6. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  7. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  8. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila.

    Science.gov (United States)

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-03-16

    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β'2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Alison Wood-Kaczmar

    2008-06-01

    Full Text Available Parkinson's disease (PD is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.

  10. Short-term use of antiepileptic drugs is neurotoxic to the immature brain

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-01-01

    Full Text Available Previous studies have shown that the long-term use of antiepileptic drugs can cause nervous system damage. However, short-term antiepileptic drug treatment is frequently given to infants, especially neonates, to control seizure. Whether the short-term use of antiepileptic drugs is neurotoxic remains unclear. In the present study, immature rats, 3-21 days of age, were intraperitoneally injected with phenobarbital and/or topiramate for 3 consecutive days. Hematoxylin-eosin and immunohistochemical staining revealed that phenobarbital and topiramate, individually or in combination, were cytotoxic to hippocampal CA1 neurons and inhibited the expression of GluR1 and NR2B, excitatory glutamate receptor subunits. Furthermore, the combination of the two drugs caused greater damage than either drug alone. The results demonstrate that the short-term use of antiepileptic drugs damages neurons in the immature brain and that the combined use of antiepileptic drugs exacerbates damage. Our findings suggest that clinicians should consider the potential neurotoxic risk associated with the combined use of antiepileptic drugs in the treatment of seizure.

  11. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  12. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    International Nuclear Information System (INIS)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-01-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  13. Role of Nitric Oxide in MPTP-Induced Dopaminergic Neuron Degeneration

    National Research Council Canada - National Science Library

    Przedborski, Serge

    2002-01-01

    ...) induced dopaminergic (DA) neuron death in this mouse model of Parkinson's Disease (PD). Our previous work demonstrated that the superoxide radical is involved in the MPTP neurotoxic process in SNpc DA neurons...

  14. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

    Science.gov (United States)

    Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu

    2003-07-01

    Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.

  15. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Science.gov (United States)

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (∼ 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 μg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: ► Mn nanoparticles activate mitochondrial cell death signaling

  17. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    Science.gov (United States)

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate

  18. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis.

    Science.gov (United States)

    Esmaeilzadeh, Emran; Gardaneh, Mossa; Gharib, Ehsan; Sabouni, Farzaneh

    2013-08-01

    We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

  19. Short post-weaning social isolation induces long-term changes in the dopaminergic system and increases susceptibility to psychostimulants in female rats.

    Science.gov (United States)

    Lampert, Carine; Arcego, Danusa Mar; de Sá Couto-Pereira, Natividade; Dos Santos Vieira, Aline; Toniazzo, Ana Paula; Krolow, Rachel; Garcia, Emily; Vendite, Deusa Aparecida; Calcagnotto, Maria Elisa; Dalmaz, Carla

    2017-10-01

    parameters evaluated, despite having modified some oxidative parameters. This study showed for the first time that a short post-weaning social isolation was able to induce long-term changes in the striatal dopaminergic system and increased the response to psychostimulants. These results emphasize the importance of stressful experiences during a short period of development on programming susceptibility to psychostimulants later in life. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP⁺, but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells.

    Science.gov (United States)

    Song, Ju-Xian; Shaw, Pang-Chui; Wong, Ngok-Shun; Sze, Cho-Wing; Yao, Xin-Sheng; Tang, Chi-Wai; Tong, Yao; Zhang, Yan-Bo

    2012-07-11

    Chrysotoxine is a naturally occurring bibenzyl compound found in medicinal Dendrobium species. We previously reported that chrysotoxine structure-specifically suppressed 6-hydroxydopamine (6-OHDA)-induced dopaminergic cell death. Whether chrysotoxine and other structurally similar bibenzyl compounds could also inhibit the neurotoxicity of 1-methyl-4-phenyl pyridinium (MPP(+)) and rotenone has not been investigated. We showed herein that chrysotoxine inhibited MPP(+), but not rotenone, induced dopaminergic cell death in SH-SY5Y cells. The overproduction of reactive oxygen species (ROS), mitochondrial dysfunction as indexed by the decrease in membrane potential, increase in calcium concentration and NF-κB activation triggered by MPP(+) were blocked by chrysotoxine pretreatment. The imbalance between the pro-apoptotic signals (Bax, caspase-3, ERK and p38 MAPK) and the pro-survival signals (Akt/PI3K/GSK-3β) induced by MPP(+) was partially or totally rectified by chrysotoxine. The results indicated that ROS inhibition, mitochondria protection, NF-κB modulation and regulation of multiple signals determining cell survival and cell death were involved in the protective effects of chrysotoxine against MPP(+) toxicity in SH-SY5Y cells. Given the different toxic profiles of 6-OHDA and MPP(+) as compared to rotenone, our results also indicated that DAT inhibition may partially account for the neuroprotective effects of chrysotoxine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells

    Science.gov (United States)

    Lin, Mengshien; Shivalingappa, Prashanth Chandramani; Jin, Huajun; Ghosh, Anamitra; Anantharam, Vellareddy; Ali, Syed; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2012-01-01

    A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and UPS dysfunction are not well understood. The present study investigates the contributions of PKC delta (PKCδ) mediated signaling events in MA-induced autophagy, UPS dysfunction and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased of PKCδ activation, caspase-3 activation, accumulation of ubiquitin positive aggregates and microtubule associated light chain-3 (LC3-II) levels. Interestingly, siRNA mediated knockdown of PKCδ or overexpression of cleavage resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3 mediated apoptotic cell death in the nigrostriatal dopaminergic

  2. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    Science.gov (United States)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  3. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  4. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan

    2001-01-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [ 3 H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli

  5. Effect of long-term estrogen therapy on dopaminergic responsivity in post-menopausal women--a preliminary study

    NARCIS (Netherlands)

    Craig, M. C.; Cutter, W. J.; Wickham, H.; van Amelsvoort, T. A. M. J.; Rymer, J.; Whitehead, M.; Murphy, D. G. M.

    2004-01-01

    Females have a higher prevalence than men of neuropsychiatric disorders in which dopaminergic abnormalities play a prominent role, e.g. very late-onset schizophrenia and Parkinson's disease (PD). The biological basis of these sex differences is unknown but may include modulation of the dopaminergic

  6. Long-term Morbidity of Testicular Cancer Treatment.

    Science.gov (United States)

    Fung, Chunkit; Fossa, Sophie D; Williams, Annalynn; Travis, Lois B

    2015-08-01

    Second malignant neoplasms, cardiovascular disease, neurotoxicity and ototoxicity, pulmonary complications, hypogonadism, and nephrotoxicity are potentially life-threatening long-term complications of testicular cancer and its therapy. This article describes the pathogenesis, risks, and management of these late effects experienced by long-term testicular cancer survivors, who are defined as individuals who are disease free 5 years or more after primary treatment. Testicular cancer survivors should follow applicable national guidelines for cancer screening and management of cardiovascular disease risk factors. In addition, health care providers should capitalize on the time of cancer diagnosis as a teachable moment to introduce and promote lifestyle changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS: a commentary

    Directory of Open Access Journals (Sweden)

    Waite Roger L

    2008-11-01

    Full Text Available Abstract Background and hypothesis Based on neurochemical and genetic evidence, we suggest that both prevention and treatment of multiple addictions, such as dependence to alcohol, nicotine and glucose, should involve a biphasic approach. Thus, acute treatment should consist of preferential blocking of postsynaptic Nucleus Accumbens (NAc dopamine receptors (D1-D5, whereas long term activation of the mesolimbic dopaminergic system should involve activation and/or release of Dopamine (DA at the NAc site. Failure to do so will result in abnormal mood, behavior and potential suicide ideation. Individuals possessing a paucity of serotonergic and/or dopaminergic receptors, and an increased rate of synaptic DA catabolism due to high catabolic genotype of the COMT gene, are predisposed to self-medicating any substance or behavior that will activate DA release, including alcohol, opiates, psychostimulants, nicotine, gambling, sex, and even excessive internet gaming. Acute utilization of these substances and/or stimulatory behaviors induces a feeling of well being. Unfortunately, sustained and prolonged abuse leads to a toxic" pseudo feeling" of well being resulting in tolerance and disease or discomfort. Thus, a reduced number of DA receptors, due to carrying the DRD2 A1 allelic genotype, results in excessive craving behavior; whereas a normal or sufficient amount of DA receptors results in low craving behavior. In terms of preventing substance abuse, one goal would be to induce a proliferation of DA D2 receptors in genetically prone individuals. While in vivo experiments using a typical D2 receptor agonist induce down regulation, experiments in vitro have shown that constant stimulation of the DA receptor system via a known D2 agonist results in significant proliferation of D2 receptors in spite of genetic antecedents. In essence, D2 receptor stimulation signals negative feedback mechanisms in the mesolimbic system to induce mRNA expression causing

  8. Long-term Neurotoxic Effects of Early-life Exposure to Tetrachloroethylene-contaminated Drinking Water.

    Science.gov (United States)

    Aschengrau, Ann; Janulewicz, Patricia A; White, Roberta F; Vieira, Veronica M; Gallagher, Lisa G; Getz, Kelly D; Webster, Thomas F; Ozonoff, David M

    2016-01-01

    Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983, widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. A retrospective cohort study (the Cape Cod Health Study) was undertaken to examine possible health consequences of early-life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the effects of prenatal and childhood exposure on neurologic outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiologic research in this unique setting. Participants were identified by cross-matching birth certificates and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (n = 1689), neuropsychological tests (n = 63), vision examinations (n = 63), and magnetic resonance imaging (n = 42). Early-life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among individuals with prenatal and early childhood PCE exposure to unexposed individuals while considering the effect of confounding variables. The study found evidence that early-life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical

  9. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice.

    OpenAIRE

    Mendieta L; Granado, Noelia; Aguilera, J.; Tizabi Y; Moratalla, Rosario

    2016-01-01

    Background: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson?s disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine w...

  10. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice.

    Science.gov (United States)

    Mendieta, Liliana; Granado, Noelia; Aguilera, José; Tizabi, Yousef; Moratalla, Rosario

    2016-08-01

    The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  11. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity.

    Science.gov (United States)

    Antenor-Dorsey, Jo Ann V; O'Malley, Karen L

    2012-02-08

    The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.

  12. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity

    Directory of Open Access Journals (Sweden)

    Antenor-Dorsey Jo Ann V

    2012-02-01

    Full Text Available Abstract Background The WldS mouse mutant ("Wallerian degeneration-slow" delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. Results Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+. Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. Conclusions Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.

  13. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro

    Science.gov (United States)

    Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.

    2014-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  14. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  15. Aspects of posttraumatic stress disorder in long-term testicular cancer survivors

    DEFF Research Database (Denmark)

    Dahl, A.; Østby-Deglum, Maria; Oldenburg, J.

    2016-01-01

    Purpose: The purpose of this research is to study the prevalence of posttraumatic stress disorder (PTSD) and variables associated with PTSD in Norwegian long-term testicular cancer survivors (TCSs) both cross-sectionally and longitudinally. Methods: At a mean of 11 years after diagnosis, 1418 TCSs....../depression, chronic fatigue, and neurotoxic adverse effects were significantly associated with Probable PTSD in bivariate analyses. Probable anxiety disorder, poor self-rated health, and neurotoxicity remained significant with Probable PTSD in multivariate analyses at the 11-year study. In bivariate analyses......, probable PTSD at that time significantly predicted socio-demographic variables, somatic health, anxiety/depression, chronic fatigue, and neurotoxicity among participants of the 19-year study, but only probable anxiety disorder remained significant in multivariable analysis. Conclusions: In spite...

  16. Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer: Clinical, Neurophysiological, Functional, and Patient-Reported Outcomes.

    Science.gov (United States)

    Kandula, Tejaswi; Farrar, Michelle Anne; Cohn, Richard J; Mizrahi, David; Carey, Kate; Johnston, Karen; Kiernan, Matthew C; Krishnan, Arun V; Park, Susanna B

    2018-05-14

    In light of the excellent long-term survival of childhood cancer patients, it is imperative to screen for factors affecting health, function, and quality of life in long-term survivors. To comprehensively assess chemotherapy-induced peripheral neuropathy in childhood cancer survivors to define disease burden and functional effect and to inform screening recommendations. In this cross-sectional observational study, cancer survivors who were treated with chemotherapy for extracranial malignancy before age 17 years were recruited consecutively between April 2015 and December 2016 from a single tertiary hospital-based comprehensive cancer survivorship clinic and compared with healthy age-matched controls. Investigators were blinded to the type of chemotherapy. A total of 169 patients met inclusion criteria, of whom 48 (28.4%) were unable to be contacted or declined participation. Chemotherapy agents known to be toxic to peripheral nerves. The clinical peripheral neurological assessment using the Total Neuropathy Score was compared between recipients of different neurotoxic chemotherapy agents and control participants and was correlated with neurophysiological, functional, and patient-reported outcome measures. Of the 121 childhood cancer survivors included in this study, 65 (53.7%) were male, and the cohort underwent neurotoxicity assessments at a median (range) age of 16 (7-47) years, a median (range) 8.5 (1.5-29) years after treatment completion. Vinca alkaloids and platinum compounds were the main neurotoxic agents. Clinical abnormalities consistent with peripheral neuropathy were common, seen in 54 of 107 participants (50.5%) treated with neurotoxic chemotherapy (mean Total Neuropathy Score increase, 2.1; 95% CI, 1.4-2.9; P neuropathy (mean amplitude reduction, 5.8 μV; 95% CI, 2.8-8.8; P Neuropathy Score. Cisplatin produced long-term neurotoxicity more frequently than vinca alkaloids. Clinical abnormalities attributable to peripheral neuropathy were common in

  17. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway

    OpenAIRE

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-01-01

    Background Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we fu...

  18. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  19. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2009-06-01

    Toxicity of HIV-1 envelope glycoprotein (gp120) for substantia nigra (SN) neurons may contribute to the Parkinsonian manifestations often seen in HIV-1-associated dementia (HAD). We studied the neurotoxicity of gp120 for dopaminergic neurons and potential neuroprotection by antioxidant gene delivery. Rats were injected stereotaxically into their caudate-putamen (CP); CP and (substantia nigra) SN neuron loss was quantified. The area of neuron loss extended several millimeters from the injection site, approximately 35% of the CP area. SN neurons, outside of this area of direct neurotoxicity, were also severely affected. Dopaminergic SN neurons (expressing tyrosine hydroxylase, TH, in the SN and dopamine transporter, DAT, in the CP) were mostly affected: intra-CP gp120 caused approximately 50% DAT+ SN neuron loss. Prior intra-CP gene delivery of Cu/Zn superoxide dismutase (SOD1) or glutathione peroxidase (GPx1) protected SN neurons from intra-CP gp120. Thus, SN dopaminergic neurons are highly sensitive to HIV-1 gp120-induced neurotoxicity, and antioxidant gene delivery, even at a distance, is protective.

  20. Mood disorders and serotonin transporter density in ecstasy users - the influence of long-term abstention, dose, and gender

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Reneman, Liesbeth; Reitsma, Johannes B.; den Heeten, Gerard J.; Booij, Jan; van den Brink, Wim

    2004-01-01

    Rationale. Neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on the serotonin (5-HT) system have been described in animals and humans, but little is known about long-term effects of ecstasy use on mood. Objectives. To investigate short-term and long-term effects of ecstasy

  1. Influence of the dopaminergic system, CREB, and transcription factor-κB on cocaine neurotoxicity

    International Nuclear Information System (INIS)

    Planeta, C.S.; Lepsch, L.B.; Alves, R.; Scavone, C.

    2013-01-01

    Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes

  2. Influence of the dopaminergic system, CREB, and transcription factor-κB on cocaine neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Planeta, C.S. [Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Lepsch, L.B.; Alves, R.; Scavone, C. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-10-15

    Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.

  3. Delayed Dopamine Signaling of Energy Level Builds Appetitive Long-Term Memory in Drosophila

    Directory of Open Access Journals (Sweden)

    Pierre-Yves Musso

    2015-02-01

    Full Text Available Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  4. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    Science.gov (United States)

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    Directory of Open Access Journals (Sweden)

    Margot Van de Bor

    2013-08-01

    Full Text Available In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD. Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.

  6. Behavioral Specifications of Reward-Associated Long-Term Memory Enhancement in Humans

    Science.gov (United States)

    Wittmann, Bianca C.; Dolan, Raymond J.; Duzel, Emrah

    2011-01-01

    Recent functional imaging studies link reward-related activation of the midbrain substantia nigra-ventral tegmental area (SN/VTA), the site of origin of ascending dopaminergic projections, with improved long-term episodic memory. Here, we investigated in two behavioral experiments how (1) the contingency between item properties and reward, (2) the…

  7. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of ?-synuclein aggregation and programmed cell death

    OpenAIRE

    Wang, Yi-Ting; Lin, Hui-Ching; Zhao, Wei-Zhong; Huang, Hui-Ju; Lo, Yu-Li; Wang, Hsiang-Tsui; Maan-Yuh Lin, Anya

    2017-01-01

    Clinical studies report significant increases in acrolein (an ?,?-unsaturated aldehyde) in the substantia nigra (SN) of patients with Parkinson?s disease (PD). In the present study, acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system was investigated by local infusion of acrolein (15, 50, 150?nmoles/0.5??l) in the SN of Sprague-Dawley rats. Acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was delineated by reductions in tyrosine hydroxylase (TH) leve...

  8. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    International Nuclear Information System (INIS)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.; Kuo, Y.-M.; Cherng, C.G.; Tsai, Y.-P.N.; Ho, M.-C.; Tsai, C.-W.; Lung Yu

    2008-01-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergic damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation

  9. Comprehensive neurotoxicity assessment

    NARCIS (Netherlands)

    Kulig, B.M.

    1996-01-01

    Significant progress has been made in recent years in terms of both the conceptualization of neurotoxicity assessment strategies as well as in the development of behavioral techniques for evaluating neurotoxic exposures. A tiered approach, for example, has been advocated as an assessment strategy in

  10. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  11. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  12. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    International Nuclear Information System (INIS)

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m 3 ; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks

  13. Long-Term Health of Dopaminergic Neuron Transplants in Parkinson's Disease Patients

    Directory of Open Access Journals (Sweden)

    Penelope J. Hallett

    2014-06-01

    Full Text Available To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD patients, the expression of dopamine transporters (DATs and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15–18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.

  14. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  15. Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties.

    Science.gov (United States)

    Pouresmaeili-Babaki, Elham; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Ravan, Hadi

    2018-04-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder characterized by the loss of brain dopaminergic neurons. Beside pharmacologic and symptomatic treatment of PD the neuroprotective therapy has recently attracted more attention. Apelin, a novel neuropeptide, and its receptors have numerous reported roles in regulating brain functions. In addition, this peptide has potent neuroprotective effects in some neurodegenerative situations. In this study, the effects of apelin-13 were investigated in a cell model of PD. Human neuroblastoma SH-SY5Y cell damage was induced by 150 μM 6-hydroxydopamine (6-OHDA) and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by fluorescence spectrophotometry method. Immunoblotting analysis was also employed to evaluate cytochrome c release and caspase-3 activity. Data showed that 6-OHDA could decrease cell viability and mitochondrial membrane potential and increase intracellular ROS, cytochrome c, and cleaved caspase-3 levels. Pretreatment of SH-SY5Y cells with apelin-13 (5 and 10 nM) significantly prevented the mentioned biochemical and molecular markers of 6-OHDA-induced neurotoxicity. Furthermore, the results showed that apelin receptor and PI3K signaling contributed to the observed protective effects of apelin. The results suggest that apelin-13 has protective effects against dopaminergic neural toxicity and its antioxidant and antiapoptotic properties are involved, at least in part, in such protection.

  16. Quality of life (QoL) and neurotoxicity in germ-cell cancer survivors (GCCS)

    DEFF Research Database (Denmark)

    Lauritsen, J.; Bandak, Mikkel; Mortensen, M. S.

    2016-01-01

    Background: The majority of patients with testicular cancer become long-term survivors. However, treatment is associated with late effects which may hamper QoL. The aims of the present study were to assess the impact of treatment on long-term QoL and evaluate the influence of neurotoxicity on Qo...

  17. Elucidating the neurotoxic effects of MDMA and its analogs.

    Science.gov (United States)

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exercise Does Not Protect against MPTP-Induced Neurotoxicity in BDNF Happloinsufficent Mice

    OpenAIRE

    Gerecke, Kim M.; Jiao, Yun; Pagala, Viswajeeth; Smeyne, Richard J.

    2012-01-01

    Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is depende...

  19. Protection of methamphetamine nigrostriatal toxicity by dietary selenium.

    Science.gov (United States)

    Kim, H C; Jhoo, W K; Choi, D Y; Im, D H; Shin, E J; Suh, J H; Floyd, R A; Bing, G

    1999-12-18

    Multiple dose administration of methamphetamine (MA) results in long-lasting toxic effects in the nigrostriatal dopaminergic system. These effects are considered to be primarily due to oxidative damage mediated by increased production of hydrogen peroxide or other reactive oxygen species in the dopaminergic system. The present study was designed to determine the protective effects of dietary antioxidant selenium on MA-induced neurotoxicity in the nigrostriatal dopaminergic system. Male C57BL/6J mice were fed either selenium-deficient (methamphetamine neurotoxicity and that this protection involves GPx-mediated antioxidant mechanisms. Even though Cu,Zn-SOD activity was significantly elevated by MA treatment, the role of this enzyme in MA-mediated neurotoxicity is not yet clear.

  20. 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity.

    Science.gov (United States)

    Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga

    2005-07-27

    Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.

  1. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  2. Evaluation of potential neurotoxic effects of occupational exposure to (L)-Lactates

    NARCIS (Netherlands)

    Clary, J.J.; Feron, V.J.; Velthuijsen, J.A. van

    2001-01-01

    Organo psycho syndrome (OPS) or chronic toxic encephalopathy (CTE) is a neurotoxic condition reported following long-term exposure to paints containing organic solvent and to other solvents. Lactate esters are finding wider use as solvents. Lactate esters have been well studied in standard toxicity

  3. The neurotoxicity of pyridinium metabolites of haloperidol

    Directory of Open Access Journals (Sweden)

    Agnieszka Górska

    2015-10-01

    Full Text Available Haloperydol is a butyrophenone, typical neuroleptic agent characterized as a high antipsychotics effects in the treatment of schizophrenia and in palliative care to alleviation many syndromes, such as naursea, vomiting and delirium. Clinical problems occurs during and after administration of the drug are side effects, particularly extrapyrramidal symptoms (EPS. The neurotoxicity of haloperydol may be initiated by the cationic metabolites of haloperydol, HPP+, RHPP+, formed by oxidation and reduction pathways. These metabolites are transported by human organic cation transporters (hOCT to several brain structures for exapmle, in substantia nigra, striatum, caudate nucleus, hippocampus. After reaching the dopaminergic neurons inhibits mitochondrial complex I, evidence for free radical involvement, thus leading to neurodegeneration.

  4. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction

    Science.gov (United States)

    Whittle, N; Maurer, V; Murphy, C; Rainer, J; Bindreither, D; Hauschild, M; Scharinger, A; Oberhauser, M; Keil, T; Brehm, C; Valovka, T; Striessnig, J; Singewald, N

    2016-01-01

    Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory. PMID:27922638

  5. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity

    OpenAIRE

    Antenor-Dorsey Jo Ann V; O'Malley Karen L

    2012-01-01

    Abstract Background The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic n...

  6. Long-term efficacy of rasagiline in early Parkinson's disease.

    Science.gov (United States)

    Lew, Mark F; Hauser, Robert A; Hurtig, Howard I; Ondo, William G; Wojcieszek, Joanne; Goren, Tamar; Fitzer-Attas, Cheryl J

    2010-06-01

    This study was designed to follow the long-term efficacy, safety, and tolerability of rasagiline for Parkinson's disease (PD) with data collected from all patients who had ever taken rasagiline during the 12-month TEMPO monotherapy trial (N = 398) and subsequent open-label extension. Patients were followed for up to 6.5 years with a mean of 3.5 +/- 2.1 years. After 12 months, additional PD medications were added as required. Of patients remaining in the trial at 2 years, 46% were maintained on rasagiline monotherapy. The majority of patients received a dopamine agonist prior to levodopa as the first additional dopaminergic agent. Analysis using a Kaplan-Meier method indicated that by 5.4 years only 25% of patients progressed to Hoehn & Yahr stage III. Rasagiline was well tolerated, with 11.3% of patients (45/398) withdrawing because of an adverse event. Rasagiline therapy for PD was effective, well tolerated, and safe in this long-term trial.

  7. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    International Nuclear Information System (INIS)

    Cao, Qin; Qin, Liyue; Huang, Fei; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun

    2017-01-01

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP + )-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP + in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  8. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qin; Qin, Liyue; Huang, Fei, E-mail: Fei_H@hotmail.com; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun, E-mail: xiaojunwu320@126.com

    2017-03-15

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP{sup +})-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP{sup +} in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  9. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    Science.gov (United States)

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  10. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    Science.gov (United States)

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  11. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    Science.gov (United States)

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  12. Multiple mechanisms of PCB neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A. [Univ. of New York, Albany, NY (United States)] [and others

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be caused by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.

  13. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    International Nuclear Information System (INIS)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway

  14. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China); Liu, Zengxun [Department of Psychiatry, School of Medicine, Shandong University, Jinan, Shandong, 250012 China (China); Sun, Jinhao, E-mail: sunjinhao@gmail.com [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China)

    2015-09-25

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.

  15. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term

  16. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor.

    Science.gov (United States)

    Kang, Kai-Hsiang; Liou, Horng-Hui; Hour, Mann-Jen; Liou, Houng-Chi; Fu, Wen-Mei

    2013-10-01

    Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide.

    Science.gov (United States)

    Ali, Shaheen Jafri; Rajini, Padmanabhan Sharda

    2012-12-01

    Positive correlations have been suggested between usage of pesticides and the incidence of Parkinson's disease (PD) through epidemiological as well as few experimental evidences. Organophosphorus insecticides (OPI), which are extensively used in agricultural and household insect control, have been the subject of increasing concern in the past decades due to their neurotoxic potential. However, very few studies have demonstrated the potentials of OPI to induce features of PD in model organisms. In the present study, Caenorhabditis elegans was selected as the model organism to evaluate the potential of monocrotophos (MCP), an OPI, to elicit dopaminergic features of Parkinson's disease in terms of dopamine content, basic movement and integrity of dopaminergic neurons along with its effect on acetylcholinesterase (AChE) activity and life span. All the responses elicited by MCP were compared with that elicited by 1-methyl-4-phenyl- 1, 2, 3, 6-tetrahydropyridine (MPTP) in both N2 and BZ555 worms. N2 worms were exposed to varying concentrations of MCP (50, 100 and 200 μM) or MPTP (200, 300 and 400 μM) for 48 hours and locomotory rate, as measured by the number of body bends made in 20 seconds, was enumerated. Worms subjected to the same dose paradigms were also analyzed for the dopamine content by HPLC. The results indicated a significant reduction in the dopamine levels in the worms that were treated with MCP/MPTP and this correlated with the changes in locomotion compared to untreated worms. Worms treated with MCP also exhibited significant reduction in AChE activity. Both MPTP and MCP caused a marked reduction in life span in the worms. Transgenic worms (BZ555, which has GFP tagged to its 8 dopaminergic neurons) exposed to MCP and MPTP at the above concentrations showed a dose-dependent reduction in the number of green pixels in CEP and ADE neurons which also correlated with the neurodegeneration as visualized by decreased fluorescence in photomicrographs. Taken

  18. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  19. Aspects of posttraumatic stress disorder in long-term testicular cancer survivors: cross-sectional and longitudinal findings.

    Science.gov (United States)

    Dahl, Alv A; Østby-Deglum, Marie; Oldenburg, Jan; Bremnes, Roy; Dahl, Olav; Klepp, Olbjørn; Wist, Erik; Fosså, Sophie D

    2016-10-01

    The purpose of this research is to study the prevalence of posttraumatic stress disorder (PTSD) and variables associated with PTSD in Norwegian long-term testicular cancer survivors (TCSs) both cross-sectionally and longitudinally. At a mean of 11 years after diagnosis, 1418 TCSs responded to a mailed questionnaire, and at a mean of 19 years after diagnosis, 1046 of them responded again to a modified questionnaire. Posttraumatic symptoms related to testicular cancer were self-rated with the Impact of Event Scale (IES) at the 11-year study only. An IES total score ≥35 defined Full PTSD, and a score 26-34 identified Partial PTSD, and the combination of Full and Partial PTSD defined Probable PTSD. At the 11-year study, 4.5 % had Full PTSD, 6.4 % had Partial PTSD, and 10.9 % Probable had PTSD. At both studies, socio-demographic variables, somatic health, anxiety/depression, chronic fatigue, and neurotoxic adverse effects were significantly associated with Probable PTSD in bivariate analyses. Probable anxiety disorder, poor self-rated health, and neurotoxicity remained significant with Probable PTSD in multivariate analyses at the 11-year study. In bivariate analyses, probable PTSD at that time significantly predicted socio-demographic variables, somatic health, anxiety/depression, chronic fatigue, and neurotoxicity among participants of the 19-year study, but only probable anxiety disorder remained significant in multivariable analysis. In spite of excellent prognosis, 10.9 % of long-term testicular cancer survivors had Probable PTSD at a mean of 11 years after diagnosis. Probable PTSD was significantly associated with a broad range of problems both at that time and was predictive of considerable problems at a mean of 19 year postdiagnosis. Among long-term testicular cancer survivors, 10.9 % have Probable PTSD with many associated problems, and therefore health personnel should explore stress symptoms at follow-up since efficient treatments are available.

  20. Occupational Neurotoxic Diseases in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Hung Liu

    2012-12-01

    Full Text Available Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization.

  1. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  2. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  3. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    Science.gov (United States)

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  4. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice.

    Science.gov (United States)

    Sharma, Sunita; Darland, Diane; Lei, Saobo; Rakoczy, Sharlene; Brown-Borg, Holly M

    2012-06-01

    In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.

  5. Developmental origins of adult diseases and neurotoxicity: Epidemiological and experimental studies

    DEFF Research Database (Denmark)

    Fox, Donald A; Grandjean, Philippe; de Groot, Didima

    2012-01-01

    and short-term memory in aged Rhesus monkeys following acute 24 h exposure to ketamine during early development. Overall, these presentations addressed fundamental issues in the emerging areas of lifetime neurotoxicity testing, differential vulnerable periods of exposure, nonmonotonic dose-response effects...... with neurodegeneration. Didima de Groot presented results on prenatal exposure of rats to methylazoxymethanol and discussed the results in light of the etiology of western Pacific amyotrophic lateral sclerosis and Parkinson-dementia complex. Merle G. Paule addressed the long-term changes in learning, motivation...

  6. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  7. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    OpenAIRE

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Mart?n; Burke, Christopher; Waddell, Scott

    2015-01-01

    Dopaminergic neurons provide reward learning signals in mammals and insects. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor specifically convey the short-term reinforcing effects of sweet taste. These dopamin...

  8. GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum.

    Science.gov (United States)

    Castro-Caldas, Margarida; Neves Carvalho, Andreia; Peixeiro, Isabel; Rodrigues, Elsa; Lechner, Maria Celeste; Gama, Maria João

    2009-06-01

    MPTP-induced dopaminergic neurotoxicity involves major biochemical processes such as oxidative stress and impaired energy metabolism, leading to a significant reduction in the number of nigrostriatal dopaminergic neurons. Glutathione S-transferase pi (GSTpi) is a phase II detoxifying enzyme that provides protection of cells from injury by toxic chemicals and products of oxidative stress. In humans, polymorphisms of GSTP1 affect substrate selectivity and stability increasing the susceptibility to parkinsonism-inducing effects of environmental toxins. Given the ability of MPTP to increase the levels of reactive oxygen species and the link between altered redox potential and the expression and activity of GSTpi, we investigated the effect of MPTP on GSTpi cellular concentration in an in vivo model of Parkinson's disease. The present study demonstrates that GSTpi is actively expressed in both substantia nigra pars compacta and striatum of C57BL/6 mice brain, mostly in oligodendrocytes and astrocytes. After systemic administration of MPTP, GSTpi expression is significantly increased in glial cells in the vicinity of dopaminergic neurons cell bodies and fibers. The results suggest that GSTpi expression may be part of the mechanism underlying the ability of glial cells to elicit protection against the mechanisms involved in MPTP-induced neuronal death.

  9. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    Science.gov (United States)

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the

  10. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    Science.gov (United States)

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for

  11. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage.

    Science.gov (United States)

    O'dell, Steven J; Marshall, John F

    2014-09-01

    Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts. © 2014 Wiley Periodicals, Inc.

  12. Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice.

    Science.gov (United States)

    Sonsalla, P K; Riordan, D E; Heikkila, R E

    1991-02-01

    The administration of methamphetamine (METH) to experimental animals results in damage to nigrostriatal dopaminergic neurons. We have demonstrated previously that the excitatory amino acids may be involved in this neurotoxicity. For example, several compounds which bind to the phenyclidine site within the ion channel linked to the N-methyl-D-aspartate (NMDA) receptor protected mice from the METH-induced loss of neostriatal tyrosine hydroxylase activity and dopamine content. The present study was conducted to characterize further the role of the excitatory amino acids in mediating the neurotoxic effects of METH. The administration of three or four injections of METH (10 mg/kg) every 2 hr to mice produced large decrements in neostriatal dopamine content (80-84%) and in tyrosine hydroxylase activity (65-74%). A dose-dependent protection against these METH-induced decreases was seen with two noncompetitive NMDA antagonists, ifenprodil and SL 82.0715 (25-50 mg/kg/injection), both of which are thought to bind to a polyamine or sigma site associated with the NMDA receptor complex, and with two competitive NMDA antagonists, CGS 19755 (25-50 mg/kg/injection) and NPC 12626 (150-300 mg/kg/injection). Moreover, an intrastriatal infusion of NMDA (0.1 mumol) produced a slight but significant loss of neostriatal dopamine which was potentiated in mice that also received a systemic injection of METH. The results of these studies strengthen the hypothesis that the excitatory amino acids play a critical role in the nigrostriatal dopaminergic damage induced by METH.

  13. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  14. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  15. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats.

    Science.gov (United States)

    Haleagrahara, Nagaraja; Siew, Cheng Jun; Ponnusamy, Kumar

    2013-02-01

    The catecholaminergic neurotoxin 6-hydroxydopamine is used to lesion dopaminergic pathways in the experimental animal models of Parkinson's disease. The present study was aimed to evaluate the combined treatment with bioflavonoid quercetin (QN) and desferrioxamine (DFO) on 6-hydroxydopamine (6-OHDA) - induced neurotoxicity in the striatum of rats. Adult, male Sprague - Dawley rats were divided into control, sham lesion, 6-OHDA treated (300 µg, intracisternal), 6-OHDA with QN (50 mg/kg) treated, 6-OHDA with DFO (50 mg/kg) treated and 6-OHDA with QN and DFO treated groups. Striatal dopamine, protein carbonyl content (PCC), glutathione (GSH) and superoxide dismutase (SOD) were estimated. There was a significant increase (p protection. Combined treatment has a more significant effect (p protecting the neurons and increasing the antioxidant enzymes in the striatum. In conclusion, an antioxidant with iron chelator treatment showed a significant neuroprotective effect against 6-hydroxydopamine (6-OHDA) by preventing dopaminergic neuronal loss and maintaining the striatal dopamine level.

  16. Amphetamine-metabolites of deprenyl involved in protection against neurotoxicity induced by MPTP and 2'-methyl-MPTP.

    Science.gov (United States)

    Sziráki, I; Kardos, V; Patthy, M; Pátfalusi, M; Gaál, J; Solti, M; Kollár, E; Singer, J

    1994-01-01

    The ability of 1-deprenyl to protect against the parkinsonian effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been attributed to the inhibition of conversion of MPTP to MPP+ (1-methyl-4-phenylpyridinium) catalyzed by MAO-B. We report here that deprenyl-treatment in mice has an additional neuroprotective element associated with the rapid metabolization of 1-deprenyl to 1-methamphetamine and 1-amphetamine. 1-Methamphetamine and 1-amphetamine inhibit MPP(+)-uptake into striatal synaptosomes prepared from rats. Post-treatment by 1-deprenyl, 1-methamphetamine, 1-amphetamine (at times when MPTP is no longer present in the striatum of mice) protects against neurotoxicity in C57BL mice by blocking the uptake of MPP+ into dopaminergic neurons, and even against the neurotoxicity induced by 2'CH3-MPTP, which is partly bioactivated by MAO-A. These findings may have clinical implications since deprenyl has recently been found to delay the progression of Parkinson's disease.

  17. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  18. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration.

    Science.gov (United States)

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-08-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent [i.e., postnatal day (PND) 40] rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a "challenge" high-dose METH regimen when administered at PND90. Mechanisms underlying this "resistance" were thus investigated. Results revealed that biweekly METH treatment throughout development attenuated both the acute and persistent deficits in VMAT2 function, as well as the acute hyperthermia, caused by a challenge METH treatment. Pharmacokinetic alterations did not appear to contribute to the protection afforded by the biweekly treatment. Maintenance of METH-induced hyperthermia abolished the protection against both the acute and persistent VMAT2-associated deficits suggesting that alterations in thermoregulation were caused by exposure of rats to METH during development. These findings suggest METH during development prevents METH-induced hyperthermia and the consequent METH-related neurotoxicity. Copyright © 2011 Wiley-Liss, Inc.

  19. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    Science.gov (United States)

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  20. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice.

    Directory of Open Access Journals (Sweden)

    Kim M Gerecke

    Full Text Available Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF, have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/- with strain-matched wild-type (WT mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.

  1. Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder

    Directory of Open Access Journals (Sweden)

    Grandjean Philippe

    2006-10-01

    Full Text Available Abstract Arsenic toxicity is a global health problem affecting many millions of people. The main source of exposure is drinking water contaminated by natural geological sources. Current risk assessment is based on the recognized carcinogenicity of arsenic, but neurotoxic risks have been overlooked. In 1955, an outbreak of arsenic poisoning occurred among Japanese infants, with more than 100 deaths. The source was contaminated milk powder produced by the Morinaga company. Detailed accounts of the Morinaga dried milk poisoning were published in Japanese only, and an overview of this poisoning incident and its long-term consequences is therefore presented. From analyses available, the arsenic concentration in milk made from the Morinaga milk powder is calculated to be about 4–7 mg/L, corresponding to daily doses slightly above 500 μg/kg body weight. Lower exposures would result from using diluted milk. Clinical poisoning cases occurred after a few weeks of exposure, with a total dose of about 60 mg. This experience provides clear-cut evidence for hazard assessment of the developmental neurotoxicity. At the present time, more than 600 surviving victims, now in their 50s, have been reported to suffer from severe sequelae, such as mental retardation, neurological diseases, and other disabilities. Along with more recent epidemiological studies of children with environmental arsenic exposures, the data amply demonstrate the need to consider neurotoxicity as a key concern in risk assessment of inorganic arsenic exposure.

  2. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

    2013-08-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  3. Dopaminergic agonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy....

  4. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Science.gov (United States)

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  5. Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity.

    Science.gov (United States)

    Cuevas, Carlos; Huenchuguala, Sandro; Muñoz, Patricia; Villa, Monica; Paris, Irmgard; Mannervik, Bengt; Segura-Aguilar, Juan

    2015-04-01

    U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of (14)C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.

  6. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway.

    Science.gov (United States)

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-12-11

    Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on

  7. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  8. Long-Term Protective Effects of Methamphetamine Preconditioning Against Single-Day Methamphetamine Toxic Challenges

    OpenAIRE

    Hodges, A.B; Ladenheim, B; McCoy, M.T; Beauvais, G; Cai, N; Krasnova, I.N; Cadet, J.L

    2011-01-01

    Methamphetamine (METH) use is associated with neurotoxic effects which include decreased levels of dopamine (DA), serotonin (5-HT) and their metabolites in the brain. We have shown that escalating METH dosing can protect against METH induced neurotoxicity in rats sacrificed within 24 hours after a toxic METH challenge. The purpose of the current study was to investigate if the protective effects of METH persisted for a long period of time. We also tested if a second challenge with a toxic dos...

  9. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    Science.gov (United States)

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-04-12

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit.

    Science.gov (United States)

    North, Ashley; Swant, Jarod; Salvatore, Michael F; Gamble-George, Joyonna; Prins, Petra; Butler, Brittany; Mittal, Mukul K; Heltsley, Rebecca; Clark, John T; Khoshbouei, Habibeh

    2013-05-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regimen of METH exposure in adolescent mice decreases hippocampal synaptic plasticity and produces a deficit in short-term memory. Contrary to our prediction, there was no change in the hippocampal plasticity or short-term memory when measured after 14 days of METH exposure. However, we found that at 7, 14, and 21 days of drug abstinence, METH-exposed mice exhibited a deficit in spatial memory, which was accompanied by a decrease in hippocampal plasticity. Our results support the interpretation that the deleterious cognitive consequences of neurotoxic levels of METH exposure may manifest and persist after drug abstinence. Therefore, therapeutic strategies should consider short-term as well as long-term consequences of methamphetamine exposure. Copyright © 2012 Wiley Periodicals, Inc.

  11. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  13. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  14. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    Science.gov (United States)

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  15. Chronic Methamphetamine Exposure Produces a Delayed, Long-Lasting Memory Deficit

    OpenAIRE

    North, Ashley; Swant, Jarod; Salvatore, Michael F.; Gamble-George, Joyonna; Prins, Petra; Butler, Brittany; Mittal, Mukul K.; Heltsley, Rebecca; Clark, John T.; Khoshbouei, Habibeh

    2013-01-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regi...

  16. Pharmacological Modulation of Long-Term Potentiation-Like Activity in the Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bahar Salavati

    2018-04-01

    Full Text Available Background: Long-term potentiation (LTP depends on glutamatergic neurotransmission and is modulated by cholinergic, dopaminergic and GABAergic inputs. Paired associative stimulation (PAS is a neurostimulation paradigm that, when combined with electroencephalography (EEG, assesses LTP-like activity (PAS-induced LTP in the dorsolateral prefrontal cortex (DLPFC. Thus, we conducted a study to assess the role of cholinergic, dopaminergic, GABAergic and glutamatergic neurotransmission on PAS-induced LTP in the DLPFC. We hypothesized that increasing the dopaminergic tone with L-DOPA and the cholinergic tone with rivastigmine will enhance PAS-induced LTP, while increasing the GABAergic tone with baclofen and inhibiting glutamatergic neurotransmission with dextromethorphan will reduce it compared to placebo.Methods: In this randomized controlled, double-blind cross-over within-subject study, 12 healthy participants received five sessions of PAS to the DLPFC in a random order, each preceded by the administration of placebo or one of the four active drugs. PAS-induced LTP was assessed after each drug administration and compared to PAS-induced LTP after placebo.Results: As predicted, L-DOPA and rivastigmine resulted in enhanced PAS-induced LTP in the DLPFC and dextromethorphan inhibited it compared to placebo. In contrast, baclofen did not significantly suppress PAS-induced LTP compared to placebo.Conclusions: This study provides a novel approach to study DLPFC neuroplasticity and its modulation in patients with brain disorders that are associated with abnormalities in these neurochemical systems. This study was based on a single dose administration of each drug. Given that these drugs are typically administered chronically, future studies should assess the effects of chronic administration.

  17. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  18. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson’s disease (PD. However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA, a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.

  19. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.

    Science.gov (United States)

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew; Xu, Alex; Duhart, Helen; Ali, Syed F

    2004-10-01

    The damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons. In the present study, MPP+ was shown to significantly inhibit the response to MTT by cultured PC12 cells. This inhibitory action of MPP+ could be partially reversed by the co-incubation of the cells with the acetylated form of carnitine, acetyl-L-carnitine (ALC). Since at least part of the toxic action of MPP+ is related to mitochondrial inhibition, the partial reversal of the inhibition of MTT response by ALC could involve a partial restoration of mitochondrial function. The role carnitine derivatives, such as ALC, play in attenuating MPP+ and METH-evoked toxicity is still under investigation to elucidate the contribution of mitochondrial dysfunction in mechanisms of neurotoxicity.

  20. Neuropsychiatric and metabolic aspects of dopaminergic therapy: perspectives from an endocrinologist and a psychiatrist

    Science.gov (United States)

    Athanasoulia-Kaspar, Anastasia P; Popp, Kathrin H; Stalla, Gunter Karl

    2018-01-01

    The dopaminergic treatment represents the primary treatment in prolactinomas, which are the most common pituitary adenomas and account for about 40% of all pituitary tumours with an annual incidence of six to ten cases per million population. The dopaminergic treatment includes ergot and non-ergot derivatives with high affinity for the dopamine receptors D1 or/and D2. Through the activation of the dopaminergic pathway on pituitary lactotrophs, the dopamine agonists inhibit the prolactin synthesis and secretion, therefore normalizing the prolactin levels and restoring eugonadism, but they also lead to tumour shrinkage. Treatment with dopamine agonists has been associated – apart from the common side effects such as gastrointestinal symptoms, dizziness and hypotension – with neuropsychiatric side effects such as impulse control disorders (e.g. pathological gambling, compulsive shopping, hypersexuality and binge eating) and also with behavioral changes from low mood, irritability and verbal aggressiveness up to psychotic and manic symptoms and paranoid delusions not only in patients with prolactinomas but also in patients with Parkinson’s disease and restless leg syndrome. They usually have de novo onset after initiation of the dopaminergic treatment and have been mainly reported in patients with Parkinson’s disease, who are being treated with higher doses of dopamine agonists. Moreover, dopamine and prolactin seem to play an essential role in the metabolic pathway. Patients with hyperprolactinemia tend to have increased body weight and an altered metabolic profile with hyperinsulinemia and increased prevalence of diabetes mellitus in comparison to healthy individuals and patients with non-functioning pituitary adenomas. Treatment with dopamine agonists in these patients in short-term studies seems to lead to weight loss and amelioration of the metabolic changes. Together these observations provide evidence that dopamine and prolactin have a crucial role both

  1. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    International Nuclear Information System (INIS)

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  2. Dopaminergic mesocortical projections to M1: role in motor learning and motor cortex plasticity

    Directory of Open Access Journals (Sweden)

    Jonas Aurel Hosp

    2013-10-01

    Full Text Available Although the architecture of a dopaminergic (DA system within the primary motorcortex (M1 was well characterized anatomically, its functional significance remainedobscure for a long time. Recent studies in rats revealed that the integrity ofdopaminergic fibers in M1 is a prerequisite for successful acquisition of motor skills.This essential contribution of DA for motor learning is plausible as it modulates M1circuitry at multiple levels thereby promoting plastic changes that are required forinformation storage: at the network level, DA increases cortical excitability andenhances the stability of motor maps. At the cellular level, DA induces the expressionof learning related genes via the transcription factor c-fos. At the level of synapses,DA is required for the formation of long-term potentiation (LTP, a mechanism thatlikely is a fingerprint of a motor memory trace within M1. Dopaminergic fibersinnervating M1 originate within the midbrain, precisely the ventral tegmental area(VTA and the medial portion of substantia nigra (SN. Thus, they could be part of themeso-cortico-limibic pathway – a network that provides information about saliencyand motivational value of an external stimulus and is commonly referred as

  3. Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine

    Directory of Open Access Journals (Sweden)

    Wise Phyllis M

    2001-03-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV infection continues to increase at alarming rates in drug abusers, especially in women. Drugs of abuse can cause long-lasting damage to the brain and HIV infection frequently leads to a dementing illness.To determine how these drugs interact with HIV to cause CNS damage, we used an in vitro human neuronal culture characterized for the presence of dopaminergic receptors, transporters and estrogen receptors. We determined the combined effects of dopaminergic drugs, methamphetamine, or cocaine with neurotoxic HIV proteins, gp120 and Tat. Results Acute exposure to these substances resulted in synergistic neurotoxic responses as measured by changes in mitochondrial membrane potential and neuronal cell death. Neurotoxicity occurred in a sub-population of neurons. Importantly, the presence of 17beta-estradiol prevented these synergistic neurotoxicities and the neuroprotective effects were partly mediated by estrogen receptors. Conclusion Our observations suggest that methamphetamine and cocaine may affect the course of HIV dementia, and additionally suggest that estrogens modify the HIV-drug interactions.

  4. Scoping review: Awareness of neurotoxicity from anesthesia in children in otolaryngology literature.

    Science.gov (United States)

    Earley, Marisa A; Pham, Liem T; April, Max M

    2017-08-01

    Review otolaryngology literature for awareness of neurotoxicity from general anesthesia in children. Recently, there has been increasing focus in anesthesia literature on the long-term effects of general anesthesia on neurodevelopment. Multiple animal models have demonstrated evidence of neurotoxicity from both inhalational and intravenous anesthetics. Cohort studies also have revealed modestly increased risk of adverse neurodevelopmental outcomes in children exposed to a single episode of general anesthesia prior to 3 to 4 years of age, with stronger evidence for multiple exposures in this age range. Otolaryngologists may subject children to general anesthesia via procedures or tests, including computed tomography, magnetic resonance imaging, and auditory brainstem response. PubMed, Embase, Scopus, and Web of Science Review. A scoping review using the above databases was performed limited to January 2005 through December 2015. Articles were screened and reviewed based on predefined inclusion and exclusion criteria. Initial search generated 3,909 articles. After 72 full text articles were reviewed, only seven articles mentioned neurotoxicity as a risk of general anesthesia in pediatric patients. Despite the high volume of pediatric otolaryngologic procedures performed annually, there remains limited awareness in our literature discussing neurotoxicity as an outcome. Prospective data from anesthesia literature is still pending; therefore, specific recommendations cannot be made at this time. Otolaryngologists should be aware of the concerns and work toward defining elective procedures, combining surgical procedures with other procedures or imaging, and reassessing the timing and frequency of various interventions under general anesthesia in young children. Laryngoscope, 127:1930-1937, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Molecular bases of methamphetamine-induced neurodegeneration.

    Science.gov (United States)

    Cadet, Jean Lud; Krasnova, Irina N

    2009-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.

  6. Selegiline prevents long-term changes in dopamine efflux and stress immobility during the second and third weeks of abstinence following opiate withdrawal.

    Science.gov (United States)

    Grasing, K; Ghosh, S

    1998-08-01

    Selegiline is an irreversible inhibitor of monoamine oxidase B with trophic and neuroprotective effects. Because of evidence for decreased dopaminergic function during the withdrawal syndromes associated with opiates and other medications with potential for abuse, we investigated effects of treatment with selegiline on in vitro measures of dopamine efflux following opiate withdrawal. Treatment with 2.0 mg/kg/day of selegiline did not modify the severity of opiate withdrawal, as assessed by weight loss over the first 3 days of abstinence. Opiate withdrawal increased immobility in response to a forced warm water swim test performed during the second and third weeks of abstinence following the onset of withdrawal. Brain slices obtained from the nucleus accumbens of opiate-withdrawn animals immediately following swim stress testing displayed diminished efflux of tritiated dopamine after two in vitro exposures to cocaine or amphetamine. Cocaine increases neurotransmitter efflux through blockade of dopamine reuptake, while amphetamine augments efflux by stimulating release of dopamine from intracellular storage vesicles. Although slices from opiate withdrawal subjects showed decreases in efflux after in vitro treatment with these agents, no differences were observed after exposure to 4-aminopyridine, which increases neurotransmitter release by prolonging action potential duration. These findings indicate mechanisms of action that are specific for catecholamine neurotransmitter systems are important for demonstrating long-term changes in dopaminergic function following opiate withdrawal. Selegiline prevented decreases in the efflux of tritiated dopamine in slices obtained from opiate-withdrawn subjects. In addition, selegiline decreased withdrawal-induced immobility during warm water swim testing. In conclusion, treatment with selegiline can prevent long-term changes in stress-induced immobility and deficits in presynaptic dopaminergic function that occur following the

  7. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum.

    Science.gov (United States)

    Granado, Noelia; Lastres-Becker, Isabel; Ares-Santos, Sara; Oliva, Idaira; Martin, Eduardo; Cuadrado, Antonio; Moratalla, Rosario

    2011-12-01

    Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration. Copyright © 2011 Wiley‐Liss, Inc.

  8. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology.

    Science.gov (United States)

    Li, Zeyan; Wang, Hui; Wang, Qian; Sun, Jinhao

    2016-12-01

    Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.

  9. Maneb and Paraquat-Mediated Neurotoxicity: Involvement of Peroxiredoxin/Thioredoxin System

    Science.gov (United States)

    Roede, James R.; Hansen, Jason M.; Go, Young-Mi; Jones, Dean P.

    2011-01-01

    Epidemiological and in vivo studies have demonstrated that exposure to the pesticides paraquat (PQ) and maneb (MB) increase the risk of developing Parkinson’s disease (PD) and cause dopaminergic cell loss, respectively. PQ is a well-recognized cause of oxidative toxicity; therefore, the purpose of this study was to determine if MB potentiates oxidative stress caused by PQ, thus providing a mechanism for enhanced neurotoxicity by the combination. The results show that PQ alone at a moderately toxic dose (20–30% cell death in 24 h) caused increased reactive oxygen species (ROS) generation, oxidation of mitochondrial thioredoxin-2 and peroxiredoxin-3, lesser oxidation of cytoplasmic thioredoxin-1 and peroxiredoxin-1, and no oxidation of cellular GSH/GSSG. In contrast, MB alone at a similar toxic dose resulted in no ROS generation, no oxidation of thioredoxin and peroxiredoxin, and an increase in cellular GSH after 24 h. Together, MB increased GSH and inhibited ROS production and thioredoxin/peroxiredoxin oxidation observed with PQ alone, yet resulted in more extensive (> 50%) cell death. MB treatment resulted in increased abundance of nuclear Nrf2 and mRNA for phase II enzymes under the control of Nrf2, indicating activation of cell protective responses. The results show that MB potentiation of PQ neurotoxicity does not occur by enhancing oxidative stress and suggests that increased toxicity occurs by a combination of divergent mechanisms, perhaps involving alkylation by MB and oxidation by PQ. PMID:21402726

  10. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    Science.gov (United States)

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, PVaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis

  11. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  12. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    Science.gov (United States)

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Influence of long-term treatment of the rat with clebopride on the morphology of the mammary gland.

    Science.gov (United States)

    de Lima, T C; Morato, G S; Loch, S; Tames, D R

    1990-01-01

    The substituted benzamides or orthopramides are used to treat gastrointestinal and psychotic disorders. The orthopramide clebopride, a potent dopaminergic antagonist, blocks emesis in dogs and stereotyped behavior in rodents. Since the release of prolactin is inhibited by dopamine, antidopaminergic drugs may be useful to increase lactation in nursing mothers. The present work examines the morphological and histological alterations produced by long-term treatment of puerperal and virgin female rats with clebopride. Clebopride induced significant hyperplasia of parenchymal secretory units and stimulated milk secretion in both groups of rats. However, only in virgin rats was mammary weight significantly increased.

  14. Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2013-01-01

    Full Text Available Gastrodia elata (GE Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson’s disease (PD, respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose polymerase (PARP in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms.

  15. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Xi-Xun Du; Hua-Min Xu; Hong Jiang; Ning Song; Jun Wang; Jun-Xia Xie

    2012-01-01

    [Objective] Curcumin is a plant polyphenolic compound and a major component of spice turmeric (Curcuma longa).It has been reported to possess free radical-scavenging,iron-chelating,and anti-inflammatory properties in different tissues.Our previous study showed that curcumin protects MES23.5 dopaminergic cells from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro.The present study aimed to explore this neuroprotective effect in the 6-OHDAlesioned rat model of Parkinson's disease in vivo.[Methods] Rats were given intragastric curcumin for 24 days.6-OHDA lesioning was conducted on day 4 of curcumin treatment.Dopamine content was assessed by high-performance liquid chromatography with electrochemical detection,tyrosine hydroxylase (TH)-containing neurons by immunohistochemistry,and iron-containing cells by Perls' iron staining.[Results] The dopamine content in the striatum and the number of THimmunoreactive neurons decreased after 6-OHDA treatment.Curcumin pretreatment reversed these changes.Further studies demonstrated that 6-OHDA treatment increased the number of iron-staining cells,which was dramatically decreased by curcumin pretreatment.[Conclusion]The protective effects of curcumin against 6-OHDA may be attributable to the ironchelating activity of curcumin to suppress the iron-induced degeneration of nigral dopaminergic neurons.

  16. Developmental neurotoxicity of Propylthiouracil in rats

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad; Hansen, P.; Christiansen, S.

    2007-01-01

    early in pregnancy may cause adverse effects on the offspring. This has led to increased concern about thyroid hormone disrupting chemicals (TDCs) in our environment. We have studied how developmental exposure to the known antithyroid agent propylthiouracil (PTU) affects the development of rat pups...... behaviour and hearing function. This supports that exposure to TDC's in general may cause long-lasting developmental neurotoxicity....

  17. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    Science.gov (United States)

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  18. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  19. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Mitchell, M.J.; Harik, S.I.

    1987-01-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, the authors hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. They tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [ 3 H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [ 3 H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of enzyme barriers at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson's disease

  20. Audit of long-term and short-term liabilities

    Directory of Open Access Journals (Sweden)

    Korinko M.D.

    2017-03-01

    Full Text Available The article determines the importance of long-term and short-term liabilities for the management of financial and material resources of an enterprise. It reviews the aim, objects and information generators for realization of audit of short-term and long-term obligations. The organizing and methodical providing of audit of long-term and short-term liabilities of an enterprise are generalized. The authors distinguish the stages of realization of audit of long-term and short-term liabilities, the aim of audit on each of the presented stages, and recommend methodical techniques. It is fixed that it is necessary to conduct the estimation of the systems of internal control and record-keeping of an enterprise by implementation of public accountant procedures for determination of volume and maintenance of selection realization. After estimating the indicated systems, a public accountant determines the methodology for realization of public accountant verification of long-term and short-term liabilities. The analytical procedures that public accountants are expedient to use for realization of audit of short-term and long-term obligations are determined. The authors suggest the classification of the educed defects on the results of the conducted public accountant verification of short-term and long-term obligations.

  1. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    Science.gov (United States)

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  2. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y.

    Science.gov (United States)

    Constantinescu, R; Constantinescu, A T; Reichmann, H; Janetzky, B

    2007-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in industrialized countries. Present cell culture models for PD rely on either primary cells or immortal cell lines, neither of which allow for long-term experiments on a constant population, a crucial requisite for a realistic model of slowly progressing neurodegenerative diseases. We differentiated SH-SY5Y human dopaminergic neuroblastoma cells to a neuronal-like state in a perfusion culture system using a combination of retinoic acid and mitotic inhibitors. The cells could be cultivated for two months without the need for passage. We show, by various means, that the differentiated cells exhibit, at the molecular level, many neuronal properties not characteristic to the starting line. This approach opens the possibility to develop chronic models, in which the effect of perturbations and putative counteracting strategies can be monitored over long periods of time in a quasi-stable cell population.

  3. Long-term follow-up study and long-term care of childhood cancer survivors

    Directory of Open Access Journals (Sweden)

    Hyeon Jin Park

    2010-04-01

    Full Text Available The number of long-term survivors is increasing in the western countries due to remarkable improvements in the treatment of childhood cancer. The long-term complications of childhood cancer survivors in these countries were brought to light by the childhood cancer survivor studies. In Korea, the 5-year survival rate of childhood cancer patients is approaching 70%; therefore, it is extremely important to undertake similar long-term follow-up studies and comprehensive long-term care for our population. On the basis of the experiences of childhood cancer survivorship care of the western countries and the current Korean status of childhood cancer survivors, long-term follow-up study and long-term care systems need to be established in Korea in the near future. This system might contribute to the improvement of the quality of life of childhood cancer survivors through effective intervention strategies.

  4. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.

    Science.gov (United States)

    Lou, Haiyan; Jing, Xu; Wei, Xinbing; Shi, Huanying; Ren, Dongmei; Zhang, Xiumei

    2014-04-01

    There is increasing evidence that oxidative stress is critically involved in the pathogenesis of Parkinson's disease (PD), suggesting that pharmacological targeting of the antioxidant machinery may have therapeutic value. Naringenin, a natural flavonoid compound, has been reported to possess neuroprotective effect against PD related pathology; however the mechanisms underlying its beneficial effects are poorly defined. Thus, the purpose of the present study was to investigate the potential neuroprotective role of naringenin and to delineate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in models of PD both in vitro and in vivo. Naringenin treatment resulted in an increase in nuclear factor E2-related factor 2 (Nrf2) protein levels and subsequent activation of antioxidant response element (ARE) pathway genes in SH-SY5Y cells and in mice. Exposure of SH-SY5Y cells to naringenin provided protection against 6-OHDA-induced oxidative insults that was dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity or induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In mice, oral administration of naringenin resulted in significant protection against 6-OHDA-induced nigrostriatal dopaminergic neurodegeneration and oxidative damage. Our results indicate that activation of Nrf2/ARE signaling by naringenin is strongly associated with its neuroprotective effects against 6-OHDA neurotoxicity and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in PD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Science.gov (United States)

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Maurício dos Santos Pereira

    Full Text Available Methylphenidate (MPD is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD. However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i to characterize the molecular differences in the prefrontal dopaminergic system of SHR and Wistar strains, (ii to establish the neurochemical consequences of short- (24 hours and long-term (10 days MPD withdrawal after a subchronic treatment (30 days with Ritalin® (Methylphenidate Hydrochloride; 2.5 mg/kg orally, (iii to investigate the dopaminergic synaptic functionality after a cocaine challenge in adult MPD-withdrawn SHR and Wistar rats. Our results indicate that SHR rats present reduced [3H]-Dopamine uptake and cAMP accumulation in the prefrontal cortex (PFC and are not responsive to dopaminergic stimuli in when compared to Wistar rats. After a 24-hour withdrawal of MPD, SHR did not present any alterations in [3H]-Dopamine Uptake, [3H]-SCH 23390 binding and cAMP production; nonetheless, after a 10-day MPD withdrawal, the results showed a significant increase of [3H]-Dopamine uptake, of the quantity of [3H]-SCH 23390 binding sites and of cAMP levels in these animals. Finally, SHR that underwent a 10-day MPD withdrawal and were challenged with cocaine (10 mg/kg i.p. presented reduced [3H]-Dopamine uptake and increased cAMP production. Wistar rats were affected by the 10-day withdrawal of MPD in [3H]-dopamine uptake but not in cAMP accumulation; in addition, cocaine was unable to induce significant modifications in [3H]-dopamine uptake and in cAMP levels after the 10-day withdrawal of MPD. These results indicate a mechanism that could explain the high comorbidity between ADHD adolescent patients under methylphenidate treatment and substance abuse in adult

  7. The role of hyperthermia and metabolism as mechanisms of tolerance to methamphetamine neurotoxicity.

    Science.gov (United States)

    Johnson-Davis, Kamisha L; Fleckenstein, Annette E; Wilkins, Diana G

    2003-12-15

    Pretreatment with multiple methamphetamine injections prior to a high-dose methamphetamine challenge administration can attenuate long-term deficits in striatal and hippocampal serotonin content caused by the stimulant. The present data extend previous findings by demonstrating that rats pretreated with escalating doses methamphetamine did not exhibit dopamine deficits in the striatum, nor serotonin deficits in striatal, frontal cortical, or hippocampal tissues, 7 days after a challenge methamphetamine administration. This protection was not due to attenuation of methamphetamine-induced hyperthermia or altered brain methamphetamine concentrations. These data differ from previous findings thereby highlighting that different mechanisms contribute to the tolerance of the neurotoxic effects.

  8. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  9. EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2015-01-01

    Full Text Available Background. Parkinson’s disease (PD is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−-epigallocatechin-3-gallate (EGCG against 6-hydroxydopamine- (6-OHDA- induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using 55Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry. Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p<0.05 increased divalent metal transporter-1 (DMT1 and hepcidin and decreased ferroportin 1 (Fpn1 level, whereas pretreatment with EGCG counteracted the effects. The increased 55Fe (by 96%, p<0.01 cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p<0.05, supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p<0.0001 TH+ cell count (~3-fold and neurite length (~12-fold compared to 6-OHDA alone in primary mesencephalic neurons. Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels.

  10. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  11. Biomarkers of adult and developmental neurotoxicity

    International Nuclear Information System (INIS)

    Slikker, William; Bowyer, John F.

    2005-01-01

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations

  12. The neuroprotective effects of α-iso-cubebene on dopaminergic cell death: involvement of CREB/Nrf2 signaling.

    Science.gov (United States)

    Park, Sun Young; Son, Beung Gu; Park, Young Hoon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.

  13. Anti-neuroinflammatory and antioxidant effects of N-acetyl cysteine in long-term consumption of artificial sweetener aspartame in the rat cerebral cortex

    Directory of Open Access Journals (Sweden)

    Afaf Abbass Sayed Saleh

    2015-10-01

    Long term consumption of the artificial sweetener aspartame (ASP induced large increments in cortical inflammation and oxidative stress. Daily oral NAC administration can significantly reverse brain-derived neurotrophic factor (BDNF levels, blocked the cyclooxygenase-2 (COX-2 and prostaglandin E2 (PGE2 production with selective attenuation in expression of proinflammatory cytokines of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α in the rat cerebral cortex. Also, NAC can significantly replenish and correct intracellular glutathione (GSH levels, modulate the elevated levels of total nitric oxide (TNO and lipid peroxidation (LPO. Conclusions: The present results amply support the concept that the brain oxidative stress and inflammation coexist in experimental animals chronically treated with aspartame and they represent two distinct therapeutic targets in ASP toxicity. The present data propose that NAC attenuated ASP neurotoxicity and improved neurological functions, suppressed brain inflammation, and oxidative stress responses and may be a useful strategy for treating ASP-induced neurotoxicity.

  14. Sequelae in long-term survivors of small cell lung cancer

    International Nuclear Information System (INIS)

    Oosterhout, Ansel G.M. van; Ganzevles, Paul G.J.; Wilmink, Jan T.; Geus, Bianca W.J. de; Vonderen, Rianne G.M.W. van; Twijnstra, Albert

    1996-01-01

    Purpose: Central nervous system (CNS) effects of chemotherapy and prophylactic cranial irradiation (PCI) are studied in long-term small cell lung cancer (SCLC) survivors. The exact significance and pathogenesis of the neurotoxicity is still unknown, as studies on this subject lack sufficient patient numbers and are performed in an extremely varied manner. Methods and Materials: Fifty-nine survivors (> 2 years from diagnosis) were examined neurologically and neuropsychologically, and underwent a cranial computed tomography (CT) scan or magnetic resonance (MR). Eight patients were excluded from further analysis for various reasons (not SCLC-related CNS disease, n 6; no chemotherapy nor PCI treatment, n = 2). The remaining 51 patients were divided into three groups; group 1 = chemotherapy alone (n = 21), group 2 sequential PCI (n = 19), and group 3 = concurrent or sandwiched PCI (n = 11). Groups were neuropsychologically compared to matched controls. Results: Performance status did not differ significantly between various treatment groups; all patients remained ambulatory and capable of self-care. Mental impairment (n = 20), motor abnormalities (n = 9), and visual complaints (n 1), were found in five patients in group 1 (24%), eight patients in group 2 (42%), and eight patients in group 3 (73%). Analysis of brain atrophy revealed no significant results; however, white matter abnormalities were found more frequently in group 3. Neuropsychologically no significant group differences existed, although interference sensitivity and difficulties with divided attention tended to occur more frequently in patients treated with PCI. Mean neuropsychometric results of treatment groups were significantly worse than those of matched controls. Conclusions: Although more intensively treated patients showed more neurologic impairment and patients in group 3 had more white matter abnormalities, there was no statistical evidence for additional neurotoxicity of PCI. Marked

  15. [Long-term psychiatric hospitalizations].

    Science.gov (United States)

    Plancke, L; Amariei, A

    2017-02-01

    Long-term hospitalizations in psychiatry raise the question of desocialisation of the patients and the inherent costs. Individual indicators were extracted from a medical administrative database containing full-time psychiatric hospitalizations for the period 2011-2013 of people over 16 years old living in the French region of Nord-Pas-de-Calais. We calculated the proportion of people who had experienced a hospitalization with a duration of 292 days or more during the study period. A bivariate analysis was conducted, then ecological data (level of health-care offer, the deprivation index and the size of the municipalities of residence) were included into a multilevel regression model in order to identify the factors significantly related to variability of long-term hospitalization rates. Among hospitalized individuals in psychiatry, 2.6% had had at least one hospitalization of 292 days or more during the observation period; the number of days in long-term hospitalization represented 22.5% of the total of days of full-time hospitalization in psychiatry. The bivariate analysis revealed that seniority in the psychiatric system was strongly correlated with long hospitalization rates. In the multivariate analysis, the individual indicators the most related to an increased risk of long-term hospitalization were: total lack of autonomy (OR=9.0; 95% CI: 6.7-12.2; P<001); diagnoses of psychological development disorders (OR=9.7; CI95%: 4.5-20.6; P<.001); mental retardation (OR=4.5; CI95%: 2.5-8.2; P<.001): schizophrenia (OR=3.0; CI95%: 1.7-5.2; P<.001); compulsory hospitalization (OR=1.7; CI95%: 1.4-2.1; P<.001); having experienced therapeutic isolation (OR=1.8; CI95%: 1.5-2.1; P<.001). Variations of long-term hospitalization rates depending on the type of establishment were very high, but the density of hospital beds or intensity of ambulatory activity services were not significantly linked to long-term hospitalization. The inhabitants of small urban units had

  16. Clinical Neurotoxic Disorders : Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Nag Devika

    2001-01-01

    Full Text Available Neurotoxins have existed on the earth from times immemorial. Old neurotoxic disorders were due to ingestion/ exposure of heavy metals and food like lathyrus sativus over a long period of time. The 20th Century with rapid industrialsation and expanding chemical and drug industry has spawned several new, hitherto unknown disorders. Old disorders continue to exist e.g. fluorosis, arsenicosis, lathyrism, manganism and lead neuropathy, along with new diseases like Minamata disease, subacute myelo optic neuropathy (SMON, MPTP-Parkinsonian syndorme, triorthcresyl phosphate (TOCP neuroparalytic disease, pesticide induced seizures, tremor and neuropathy, solvent encephalopthy, antipileptic drug foetal syndrome and excitotoxin induced behavioural disorders. Studies on pesticides Organochlorine and organophosphates, synthetic pyrethrins, solvents, heavy metals and substances abuse in the Indian context confirm the neurotoxic nature of many synthetic substances. Future problems envisaged are of concern to clinical neurologists as many of these neurotoxic disorders mimic syndromes of well known neurological disease. The new millenium poses a challenge to the clinician as newer compounds in industry, food, drugs and chemical war agents are being developed. Molecular genetics has advanced rapidly with release of the human genome map. Animal cloning and genetically modified plant products have entered the food chain. How safe are these new inventions for the central nervous system is a big question? India cannot afford disasters like Union Carbide′s Bhopal gas leak nor be a silent spectator to manipulative biotechnology. Unless it is proven beyond all doubt to be a safe innovation, Chemicals have to be cautiously introduced in our environment. To Study, ascertain and confirm safety or neurotoxicity is an exciting challenge for the neuroscientists of the 21st century.

  17. Long-term potentiation and long-term depression: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Timothy V.P. Bliss

    2011-01-01

    Full Text Available Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.

  18. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  20. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    Science.gov (United States)

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  1. Long-Term Symbolic Learning

    National Research Council Canada - National Science Library

    Kennedy, William G; Trafton, J. G

    2007-01-01

    What are the characteristics of long-term learning? We investigated the characteristics of long-term, symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two simple tasks...

  2. Pediatric polytrauma : Short-term and long-term outcomes

    NARCIS (Netherlands)

    vanderSluis, CK; Kingma, J; Eisma, WH; tenDuis, HJ

    Objective: To assess the short-term and long-term outcomes of pediatric polytrauma patients and to analyze the extent to which short-term outcomes can predict long-term outcomes. Materials and Methods: Ail pediatric polytrauma patients (Injury Severity Score of greater than or equal to 16, less than

  3. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    Science.gov (United States)

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  4. Nicotine Modulates the Long-Lasting Storage of Fear Memory

    Science.gov (United States)

    Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin

    2013-01-01

    Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…

  5. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  7. DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment.

    Science.gov (United States)

    Wittmann, Bianca C; Tan, Geoffrey C; Lisman, John E; Dolan, Raymond J; Düzel, Emrah

    2013-09-01

    Previous studies have shown that appetitive motivation enhances episodic memory formation via a network including the substantia nigra/ventral tegmental area (SN/VTA), striatum and hippocampus. This functional magnetic resonance imaging (fMRI) study now contrasted the impact of aversive and appetitive motivation on episodic long-term memory. Cue pictures predicted monetary reward or punishment in alternating experimental blocks. One day later, episodic memory for the cue pictures was tested. We also investigated how the neural processing of appetitive and aversive motivation and episodic memory were modulated by dopaminergic mechanisms. To that end, participants were selected on the basis of their genotype for a variable number of tandem repeat polymorphism of the dopamine transporter (DAT) gene. The resulting groups were carefully matched for the 5-HTTLPR polymorphism of the serotonin transporter gene. Recognition memory for cues from both motivational categories was enhanced in participants homozygous for the 10-repeat allele of the DAT, the functional effects of which are not known yet, but not in heterozygous subjects. In comparison with heterozygous participants, 10-repeat homozygous participants also showed increased striatal activity for anticipation of motivational outcomes compared to neutral outcomes. In a subsequent memory analysis, encoding activity in striatum and hippocampus was found to be higher for later recognized items in 10-repeat homozygotes compared to 9/10-repeat heterozygotes. These findings suggest that processing of appetitive and aversive motivation in the human striatum involve the dopaminergic system and that dopamine plays a role in memory for both types of motivational information. In accordance with animal studies, these data support the idea that encoding of motivational events depends on dopaminergic processes in the hippocampus. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  8. Elamipretide (SS-31 Ameliorates Isoflurane-Induced Long-Term Impairments of Mitochondrial Morphogenesis and Cognition in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yang

    2017-04-01

    Full Text Available Mitochondria are supposed to be involved in the early pathogenesis of general anesthesia (GA-induced neurotoxicity and long-term cognitive deficits in developing brains. However, effective pharmacologic agents targeted on mitochondria during GA exposure are lacking. This study explores the protective effects of mitochondrion-targeted antioxidant elamipretide (SS-31 on mitochondrial morphogenesis and cognition in developing rats exposed to isoflurane. Rat pups at postnatal day (PND 7 were exposed to 1.5% isoflurane for 6 h following intraperitoneal administration of elamipretide or vehicle with 30 min interval. The hippocampus was immediately removed for biochemical assays. Histopathological studies were conducted at PND 21, and behavioral tests were performed at PND 40 or 60. We found that early exposure to isoflurane caused remarkable reactive oxygen species (ROS accumulation, mitochondrial deformation and neuronal apoptosis in hippocampus. The injury occurrence ultimately gave rise to long-term cognitive deficits in developing rats. Interestingly, pretreatment with elamipretide not only provided protective effect against oxidative stress and mitochondrial damages, but also attenuated isoflurane-induced cognitive deficits. Our data support the notion that mitochondrial damage is an early and long lasting event of GA-induced injury and suggest that elamipretide might have clinically therapeutic benefits for pediatric patients undertaking GA.

  9. A holistic view of anesthesia-related neurotoxicity in children

    Directory of Open Access Journals (Sweden)

    Clausen NG

    2015-11-01

    Full Text Available Nicola G Clausen, Tom G Hansen Department of Anesthesia and Intensive Care, Odense University Hospital, Odense, Denmark Introduction: Animal studies (including in nonhuman primates have shown that most general anesthetics cause enhanced neuroapoptosis in the immature brain with subsequent long-term neurocognitive deficits later in life. Whether human neurons are equally affected is yet unknown, but a final answer to this issue is still pending. To date, most human studies within the field are of observational nature and the results are conflicting. Some studies indicate an association between exposure to anesthesia and surgery while others do not. Objective: This review summarizes results from preclinical and observational studies. Controversies and challenges regarding the interpretation of these results are presented. Crucial aspects of neurocognitive safety during pediatric anesthesia and surgery are highlighted. International initiatives aiming to improve the safe conductance of pediatric anesthesia are introduced. Conclusion: So far, anesthesia-related neurotoxicity in humans remains an area of concern but it cannot be completely excluded. Clinical practice should not be changed until there are definite proofs that anesthetic exposure causes neurocognitive impairment later in life. Withholding necessary and timely surgeries as a consequence of any such concerns could result in worse harm. Focus of current research should also be redirected to include other factors, than merely anesthetics and surgery, that influence the neurocognitive safety of children perioperatively. Keywords: pediatric anesthesia, neurotoxicity, anesthesia safety, neurocognitive development 

  10. Near-Term Actions to Address Long-Term Climate Risk

    Science.gov (United States)

    Lempert, R. J.

    2014-12-01

    Addressing climate change requires effective long-term policy making, which occurs when reflecting on potential events decades or more in the future causes policy makers to choose near-term actions different than those they would otherwise pursue. Contrary to some expectations, policy makers do sometimes make such long-term decisions, but not as commonly and successfully as climate change may require. In recent years however, the new capabilities of analytic decision support tools, combined with improved understanding of cognitive and organizational behaviors, has significantly improved the methods available for organizations to manage longer-term climate risks. In particular, these tools allow decision makers to understand what near-term actions consistently contribute to achieving both short- and long-term societal goals, even in the face of deep uncertainty regarding the long-term future. This talk will describe applications of these approaches for infrastructure, water, and flood risk management planning, as well as studies of how near-term choices about policy architectures can affect long-term greenhouse gas emission reduction pathways.

  11. Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ramesh Pariyar

    2017-12-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS and disruption of mitochondrial membrane potential (MMP. Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.

  12. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures.

    Science.gov (United States)

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-12-28

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.

  13. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    Science.gov (United States)

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  14. Long Term Financing of Infrastructure

    OpenAIRE

    Sinha, Sidharth

    2014-01-01

    Infrastructure projects, given their long life, require long term financing. The main sources of long term financings are insurance and pension funds who seek long term investments with low credit risk. However, in India household financial savings are mainly invested in bank deposits. Insurance and pension funds account for only a small percentage of household financial savings. In addition most infrastructure projects do not qualify for investment by insurance and pension funds because of t...

  15. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    Science.gov (United States)

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease. PMID:26074768

  16. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system.

    Science.gov (United States)

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  17. Endogenous 17ß-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    Directory of Open Access Journals (Sweden)

    Alessandro eTozzi

    2015-05-01

    Full Text Available 17β-estradiol (E2, a neurosteroid synthesized by P450-aromatase (ARO, modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs and dopamine (DA receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP in both medium spiny neurons (MSNs and cholinergic interneurons (ChIs. Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  18. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  19. A subpopulation of dopaminergic neurons co-expresses serotonin in ventral mesencephalic cultures but not after intrastriatal transplantation in a rat model of Parkinsons disease

    DEFF Research Database (Denmark)

    Di Santo, Stefano; Seiler, Stefanie; Ducray, Angélique

    2017-01-01

    Cell replacement therapy is a promising avenue into the investigation and treatment of Parkinson’s disease (PD) and in some cases significant long-term motor improvements have been demonstrated. The main source of donor tissue is the human fetal ventral mesencephalon (VM), which consists...... 30% of the dopaminergic neurons in the donor tissue co-expressed serotonin, no co-localization could be detected in grafts one month after intrastriatal transplantation into hemi-parkinsonian rats. In conclusion, a significant and susceptible sub-population of dopaminergic neurons in fetal VM tissues...... both fetal rat and human dissociated, organotypic and neurosphere VM cultures as well as an animal model of PD were investigated. In dissociated rat VM cultures approximately 30% of the TH positive neurons co-expressed serotonin, while no co-localization with GABA was observed. Interestingly, co...

  20. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  1. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  2. Developmental neurotoxicity: methylmercury and prenatal exposure protection in the context of the Minamata Convention

    Directory of Open Access Journals (Sweden)

    Ana Boischio

    2015-09-01

    Full Text Available Mercury is a global pollutant of public environmental health concern due to its long-range atmospheric distribution, environmental distribution, and neurotoxic effects. Following biological methylation, methylmercury (MeHg can be un-evenly bioaccumulated within aquatic food chains. Fish consumption can be a significant route of human exposure to MeHg. MeHg exposure in the prenatal stage, at relatively low levels, has recently been established as harmful during neurological development, potentially leading to intellectual disability. The Minamata Convention on Mercury is a global agreement, currently under ratification, to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds. The resolution regarding the role of the World Health Organization and ministries of health in the implementation of the Convention includes protection of human health from critical exposures to MeHg. Riverside populations living in areas with artisanal small-scale gold mining, and relying heavily on fish consumption, have been identified as the most vulnerable population in terms of MeHg exposure and developmental neurotoxicity. This article focuses on the proper design and dissemination of fish advisories within the context of implementation of the Convention.

  3. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  4. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    Science.gov (United States)

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Immunosuppressant-Associated Neurotoxicity Responding to Olanzapine

    Directory of Open Access Journals (Sweden)

    James A. Bourgeois

    2014-01-01

    Full Text Available Immunosuppressants, particularly tacrolimus, can induce neurotoxicity in solid organ transplantation cases. A lower clinical threshold to switch from tacrolimus to another immunosuppressant agent has been a common approach to reverse this neurotoxicity. However, immunosuppressant switch may place the graft at risk, and, in some cases, continuation of the same treatment protocol may be necessary. We report a case of immunosuppressant-associated neurotoxicity with prominent neuropsychiatric manifestation and describe psychiatric intervention with olanzapine that led to clinical improvement while continuing tacrolimus maintenance.

  6. Dopaminergic Dysregulation, Artistic Expressiveness, and Parkinson's Disease

    Science.gov (United States)

    López-Pousa, S.; Lombardía-Fernández, C.; Olmo, J. Garre; Monserrat-Vila, S.; Vilalta-Franch, J.; Calvó-Perxas, L.

    2012-01-01

    Background The most frequent behavioral manifestations in Parkinson's disease (PD) are attributed to the dopaminergic dysregulation syndrome (DDS), which is considered to be secondary to the iatrogenic effects of the drugs that replace dopamine. Over the past few years some cases of patients improving their creative abilities after starting treatment with dopaminergic pharmaceuticals have been reported. These effects have not been clearly associated to DDS, but a relationship has been pointed out. Methods Case study of a patient with PD. The evolution of her paintings along medication changes and disease advance has been analyzed. Results The patient showed a compulsive increase of pictorial production after the diagnosis of PD was made. She made her best paintings when treated with cabergolide, and while painting, she reported a feeling of well-being, with loss of awareness of the disease and reduction of physical limitations. Conclusions Dopaminergic antagonists (DA) trigger a dopaminergic dysfunction that alters artistic creativity in patients having a predisposition for it. The development of these skills might be due to the dopaminergic overstimulation due to the therapy with DA, which causes a neurophysiological alteration that globally determines DDS. PMID:23185168

  7. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  8. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease.

    Science.gov (United States)

    Shim, Jin Sup; Kim, Hyo Geun; Ju, Mi Sun; Choi, Jin Gyu; Jeong, Seo Young; Oh, Myung Sook

    2009-11-12

    While the hook of Uncaria rhynchophylla (URH) is a traditional herb used in northeast Asia for the treatment of Parkinson's disease (PD)-like symptoms such as tremor, it has not been experimentally evaluated in a PD model. We investigated the effects of URH on 6-hydroxydapamine (6-OHDA)-induced neurotoxicity in in vitro and in vivo models of PD. The cell viability, anti-oxidative activity, and anti-apoptotic activity of a water extract of URH (URE) were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, reactive oxygen species (ROS), total glutathione (GSH), and caspase-3 assays in PC12 cells stressed by 6-OHDA. We also investigated the behavioral recovery and dopaminergic neuron protection of URE using an apomorphine-induced rotation test and tyrosine hydroxylase immunohistochemistry in the hemi-parkinsonian rat model of the unilateral 6-OHDA lesion of the medial forebrain bundle. In PC12 cells, URE significantly reduced cell death and the generation of ROS, increased GSH levels, and inhibited caspase-3 activity induced by 6-OHDA. In 6-OHDA-lesioned rats, posttreatment with URE (5 mg/kg/day for 14 days) significantly reduced apomorphine-induced rotation, and it lowered dopaminergic neuronal loss in substantia nigra pars compacta. URE possesses neuroprotective activity against 6-OHDA-induced toxicity through anti-oxidative and anti-apoptotic activities in PD models.

  9. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  10. Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat.

    Science.gov (United States)

    Shepard, P D; German, D C

    1988-11-01

    The electrophysiological and pharmacological properties of dopaminergic neurons were systematically examined throughout the anterior-posterior extent of the substantia nigra zona compacta in the rat. Cells were characterized in terms of their (1) firing pattern, (2) firing rate, (3) antidromic response properties, and (4) inhibition in firing rate following dopaminergic agonist administration. These properties were then related to the cell's position within one of four anterior-posterior segments of the nucleus. There were three types of neuronal discharge pattern encountered; irregular, burst and regular. Cells which exhibited different firing patterns exhibited different firing rates and anatomical locations within the substantia nigra zona compacta. All neurons were antidromically activated from the striatum, however, the burst- and regular-firing cells exhibited significantly faster estimated conduction velocities than irregular-firing cells. The irregular-firing cells were most sensitive to dopaminergic autoreceptor agonists whereas the burst-firing cells were most sensitive to an indirect-acting dopaminergic agonist. These experiments provide both electrophysiological and pharmacological evidence to indicate that nigrostriatal dopaminergic neurons are composed of distinct subpopulations which are characterized by their firing pattern.

  11. The neurotoxic effects of prenatal gabapentin and oxcarbazepine exposure on newborn rats.

    Science.gov (United States)

    Erisgin, Zuleyha; Ayas, Bulent; Nyengaard, Jens R; Ercument Beyhun, N; Terzi, Yuksel

    2017-10-05

    Teratogenicity is a problematic issue for pregnant women because of X-ray radiation, drugs, and genetic and unknown variables. First-generation antiepileptic drugs (AED) like valproic acid are well-known teratogens for developing fetuses. However, their usage is necessary in order to prevent maternal seizures. The underlying mechanism of birth defects associated with AED exposure remains unclear and information about the neurotoxic effects of prenatal exposure to AED is still limited. Oxcarbazepine (OXC) and gabapentin (GBP) are second-generation AED. It still remains unclear how much these drugs are safe during pregnancy. This study aimed to investigate whether any neurotoxic effect of OXC and GBP in utero exposure on the developing brain. Eighteen pregnant Wistar albino rats were divided into six groups. The first group was exposed to OXC at 100 mg/kg/day, the second to GBP at 50 mg/kg/day, and third to saline (0.9% NaCl) at 1.5 ml/day between the first and the fifth days of gestation. The same procedure was applied at the same dosages between the 6th and the 15th days of gestation for the 2nd three groups. Five female offspring (total n = 30, 45 days old) were taken from each group and stereological methods were applied in order to analyze the total and dopaminergic neuron number of the substantia nigra pars compacta (SNc). The result is that the OXC and GBP exposure at different gestational periods may not give rise to congenital malformation and it appears that the GBP exposure during the organogenesis period proliferatively affects the total number of neurons.

  12. Long-term urethral catheterisation.

    Science.gov (United States)

    Turner, Bruce; Dickens, Nicola

    This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.

  13. Managing Parkinson's disease with continuous dopaminergic stimulation

    NARCIS (Netherlands)

    Wolters, Erik; Lees, Andrew J.; Volkmann, Jens; van Laar, Teus; Hovestadt, Ad

    The pathophysiology of Parkinson's disease is marked by the loss of dopaminergic neurons, which leads to striatal dopaminergic deficiency. This causes resting tremor, hypokinesia, rigidity, bradykinesia, and loss of postural reflexes. Most current treatments for Parkinson's disease aim to restore

  14. Long-term changes in brain following continuous phencyclidine administration: An autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-3H(N)-TCP, and AMPA receptor ligands

    International Nuclear Information System (INIS)

    Ellison, Gaylord; Keys, Alan; Noguchi, Kevin

    1999-01-01

    Phencyclidine induces a model psychosis which can persist for prolonged periods and presents a strong drug model of schizophrenia. When given continuously for several days to rats, phencyclidine and other N-methyl-D-aspartate (NMDA) antagonists induce neural degeneration in a variety of limbic structures, including retrosplenial cortex, hippocampus, septohippocampal projections, and piriform cortex. In an attempt to further clarify the mechanisms underlying these degeneration patterns, autoradiographic studies using a variety of receptor ligands were conducted in animals 21 days after an identical dosage of the continuous phencyclidine administration employed in the previous degeneration studies. The results indicated enduring alterations in a number of receptors: these included decreased piperidyl-3,4- 3 H(N)-TCP (TCP), flunitrazepam, and mazindol binding in many of the limbic regions in which degeneration has been reported previously. Quinuclidinyl benzilate and (AMPA) binding were decreased in anterior cingulate and piriform cortex, and in accumbens and striatum. Piperidyl-3,4- 3 H(N)-TCP binding was decreased in most hippocampal regions. Many of these long-term alterations would not have been predicted by prior studies of the neurotoxic effects of continuous phencyclidine, and these results do not suggest a unitary source for the neurotoxicity. Whereas retrosplenial cortex, the structure which degenerates earliest, showed minimal alterations, some of the most consistent, long term alterations were in structures which evidence no immediate signs of neural degeneration, such as anterior cingulate cortex and caudate nucleus. In these structures, some of the receptor changes appeared to develop gradually (they were not present immediately after cessation of drug administration), and thus were perhaps due to changed input from regions evidencing neurotoxicity. Some of these findings, particularly in anterior cingulate, may have implications for models of

  15. CALBINDIN CONTENT AND DIFFERENTIAL VULNERABILITY OF MIDBRAIN EFFERENT DOPAMINERGIC NEURONS IN MACAQUES

    Directory of Open Access Journals (Sweden)

    Iria G Dopeso-Reyes

    2014-12-01

    Full Text Available Calbindin (CB is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%, followed by neurons located in the SNcd (34.7%. As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%, whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%. Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus. As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not

  16. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    Science.gov (United States)

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  17. General anesthetics in children: neurotoxic or neuroprotective?

    Directory of Open Access Journals (Sweden)

    Jéssica Farias Rebouças

    2017-02-01

    Full Text Available Introduction: general anesthetics are involved in neuroprotection in adults after ischemic events and cognitive impairment, thus, they also may be associated with learning disorders in children exposed to them before three years of age. Objective: Describe about the neurotoxic effects of general anesthetics in experimental animals and children. Method: This is a systematic review, performed from search in databases and on PubMed using the keywords "neurotoxicity" and "general anesthetics," and "general anesthetics," "neurotoxicity", "children", "young child "and" pediatric ". Results: The search resulted in 185 articles. Out of these, 78 met our inclusion criteria. We found that there was a significant evidence of neurotoxicity induced by general anesthetics in experimental animals that were just born, resulting in late and permanent cognitive deficits. This effect was associated with multiple exposures, exposure length of time and combination of drugs. However, some studies found cognitive impairment after a single exposure to anesthetic. Conclusion: There is insufficient evidence to state that general anesthetics are neurotoxic and have the potential to trigger learning and behavior disabilities in children. However, we suggest caution in indicating surgery in children under three years old, analyzing risk-benefit and inserting the family in the decision process.   Keywords: Neurotoxicity; Neuroprotection; Cognitive Impairment; Children; General Anesthesics

  18. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    Science.gov (United States)

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  19. Central neurotoxicity of immunomodulatory drugs in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Urmeel H. Patel

    2015-03-01

    Full Text Available Immunomodulatory drugs (IMiDs currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient, lenalidomide (4 patients, and pomalidomide (1 patient was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  20. Central neurotoxicity of immunomodulatory drugs in multiple myeloma.

    Science.gov (United States)

    Patel, Urmeel H; Mir, Muhammad A; Sivik, Jeffrey K; Raheja, Divisha; Pandey, Manoj K; Talamo, Giampaolo

    2015-02-24

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  1. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  2. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2015-12-01

    Full Text Available Interleukin (IL-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS-induced inflammatory Parkinson’s disease (PD cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL 1 h prior to LPS (50 ng/mL treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2 were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.

  3. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  4. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  5. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase.

    Science.gov (United States)

    Block, M L; Wu, X; Pei, Z; Li, G; Wang, T; Qin, L; Wilson, B; Yang, J; Hong, J S; Veronesi, B

    2004-10-01

    The contributing role of environmental factors to the development of Parkinson's disease has become increasingly evident. We report that mesencephalic neuron-glia cultures treated with diesel exhaust particles (DEP; 0.22 microM) (5-50 microg/ml) resulted in a dose-dependent decrease in dopaminergic (DA) neurons, as determined by DA-uptake assay and tyrosine-hydroxylase immunocytochemistry (ICC). The selective toxicity of DEP for DA neurons was demonstrated by the lack of DEP effect on both GABA uptake and Neu-N immunoreactive cell number. The critical role of microglia was demonstrated by the failure of neuron-enriched cultures to exhibit DEP-induced DA neurotoxicity, where DEP-induced DA neuron death was reinstated with the addition of microglia to neuron-enriched cultures. OX-42 ICC staining of DEP treated neuron-glia cultures revealed changes in microglia morphology indicative of activation. Intracellular reactive oxygen species and superoxide were produced from enriched-microglia cultures in response to DEP. Neuron-glia cultures from NADPH oxidase deficient (PHOX-/-) mice were insensitive to DEP neurotoxicity when compared with control mice (PHOX+/+). Cytochalasin D inhibited DEP-induced superoxide production in enriched-microglia cultures, implying that DEP must be phagocytized by microglia to produce superoxide. Together, these in vitro data indicate that DEP selectively damages DA neurons through the phagocytic activation of microglial NADPH oxidase and consequent oxidative insult.

  6. Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning

    International Nuclear Information System (INIS)

    Takahashi, Hirohide; Snow, B.J.; Bhatt, M.H.; Peppard, R.; Eisen, A.; Calne, D.B.

    1993-01-01

    Although rare, the chronic neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and idiopathic parkinsonism coexist to a greater degree than expected by chance. This suggests that patients with ALS may have subclinical lesions of the nigrostriatal dopaminergic pathway. To study this hypothesis, the authors did positron emission tomography with 6-fluorodopa on 16 patients with sporadic ALS and without extrapyramidal disease, and compared the results with age-matched controls. They found a significant progressive fall in 6-fluorodopa uptake with time since diagnosis, and reduced dopaminergic function in 3 patients with ALS of long duration. This supports the hypothesis that ALS and IP may share pathogenesis, and, perhaps, etiology

  7. Long-term changes in brain following continuous phencyclidine administration: An autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-{sup 3}H(N)-TCP, and AMPA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Gaylord; Keys, Alan; Noguchi, Kevin [Univ. of California Los Angeles, Dept. of Psychology, Los Angeles, CA (United States)

    1999-05-01

    Phencyclidine induces a model psychosis which can persist for prolonged periods and presents a strong drug model of schizophrenia. When given continuously for several days to rats, phencyclidine and other N-methyl-D-aspartate (NMDA) antagonists induce neural degeneration in a variety of limbic structures, including retrosplenial cortex, hippocampus, septohippocampal projections, and piriform cortex. In an attempt to further clarify the mechanisms underlying these degeneration patterns, autoradiographic studies using a variety of receptor ligands were conducted in animals 21 days after an identical dosage of the continuous phencyclidine administration employed in the previous degeneration studies. The results indicated enduring alterations in a number of receptors: these included decreased piperidyl-3,4-{sup 3}H(N)-TCP (TCP), flunitrazepam, and mazindol binding in many of the limbic regions in which degeneration has been reported previously. Quinuclidinyl benzilate and (AMPA) binding were decreased in anterior cingulate and piriform cortex, and in accumbens and striatum. Piperidyl-3,4-{sup 3}H(N)-TCP binding was decreased in most hippocampal regions. Many of these long-term alterations would not have been predicted by prior studies of the neurotoxic effects of continuous phencyclidine, and these results do not suggest a unitary source for the neurotoxicity. Whereas retrosplenial cortex, the structure which degenerates earliest, showed minimal alterations, some of the most consistent, long term alterations were in structures which evidence no immediate signs of neural degeneration, such as anterior cingulate cortex and caudate nucleus. In these structures, some of the receptor changes appeared to develop gradually (they were not present immediately after cessation of drug administration), and thus were perhaps due to changed input from regions evidencing neurotoxicity. Some of these findings, particularly in anterior cingulate, may have implications for models of

  8. The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption.

    Science.gov (United States)

    Miranda, María Isabel; Rangel-Hernández, José Alejandro; Vera-Rivera, Gabriela; García-Medina, Nadia Edith; Soto-Alonso, Gerardo; Rodríguez-García, Gabriela; Núñez-Jaramillo, Luis

    2017-09-17

    The nucleus accumbens (NAcc) is a forebrain region that may significantly contribute to the integration of taste and visceral signals during food consumption. Changes in dopamine release in the NAcc have been observed during consumption of a sweet taste and during compulsive consumption of dietary sugars, suggesting that NAcc dopaminergic transmission is strongly correlated with taste familiarity and the hedonic value content. NAcc core and shell nuclei are differentially involved during and after sugar exposure and, particularly, previous evidence suggests that dopamine D2 receptors could be related with the strength of the latent inhibition (LI) of conditioned taste aversion (CTA), which depends on the length of the taste stimulus pre-exposure. Thus, the objective of this work was to evaluate, after long-term exposure to sugar, the function of dopaminergic D2 receptors in the NAcc core during taste memory retrieval preference test, and during CTA. Adult rats were exposed during 14days to 10% sugar solution as a single liquid ad libitum. NAcc core bilateral injections of D2 dopamine receptor antagonist, haloperidol (1μg/μL), were made before third preference test and CTA acquisition. We found that sugar was similarly preferred after 3 acute presentations or 14days of continued sugar consumption and that haloperidol did not disrupt this appetitive memory retrieval. Nevertheless, D2 receptors antagonism differentially affects aversive memory formation after acute or long-term sugar consumption. These results demonstrate that NAcc dopamine D2 receptors have a differential function during CTA depending on the degree of sugar familiarity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  10. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem...... cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in Parkinson's disease....

  11. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laxton Kevin

    2010-05-01

    Full Text Available Abstract Background One pathological hallmark of Alzheimer's disease (AD is amyloid plaques, composed primarily of amyloid-β peptide (Aβ. Over-production or diminished clearance of the 42 amino acid form of Aβ (Aβ42 in the brain leads to accumulation of soluble Aβ and plaque formation. Soluble oligomeric Aβ (oAβ has recently emerged to be as a likely proximal cause of AD. Results Here we demonstrate that endocytosis is critical in mediating oAβ42-induced neurotoxicity and intraneuronal accumulation of Aβ. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAβ42-induced neurotoxicity or intraneuronal accumulation of Aβ. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Aβ accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Aβ42-induced neurotoxicity and intraneuronal Aβ accumulation.

  12. Reforming Long-Term Care Funding in Alberta.

    Science.gov (United States)

    Crump, R Trafford; Repin, Nadya; Sutherland, Jason M

    2015-01-01

    Like many provinces across Canada, Alberta is facing growing demand for long-term care. Issues with the mixed funding model used to pay long-term care providers had Alberta Health Services concerned that it was not efficiently meeting the demand for long-term care. Consequently, in 2010, Alberta Health Services introduced the patient/care-based funding (PCBF) model. PCBF is similar to activity-based funding in that it directly ties the complexity and care needs of long-term care residents to the payment received by long-term care providers. This review describes PCBF and discusses some of its strengths and weaknesses. In doing so, this review is intended to inform other provinces faced with similar long-term care challenges and contemplating their own funding reforms.

  13. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans

    Science.gov (United States)

    Caito, Samuel W.; Aschner, Michael

    2016-01-01

    Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson’s disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD+) may be affected by MeHg and whether supplementation of NAD + may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD + levels, which was prevented by NAD + supplementation prior to MeHg treatment. NAD + supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD + from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD + in MeHg toxicity. In wildtype worms, NAD + supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD + levels in the response to MeHg exposure. NAD + supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson’s disease. PMID:26865665

  14. The long-term outcome of orthostatic tremor.

    Science.gov (United States)

    Ganos, Christos; Maugest, Lucie; Apartis, Emmanuelle; Gasca-Salas, Carmen; Cáceres-Redondo, María T; Erro, Roberto; Navalpotro-Gómez, Irene; Batla, Amit; Antelmi, Elena; Degos, Bertrand; Roze, Emmanuel; Welter, Marie-Laure; Mestre, Tiago; Palomar, Francisco J; Isayama, Reina; Chen, Robert; Cordivari, Carla; Mir, Pablo; Lang, Anthony E; Fox, Susan H; Bhatia, Kailash P; Vidailhet, Marie

    2016-02-01

    Orthostatic tremor is a rare condition characterised by high-frequency tremor that appears on standing. Although the essential clinical features of orthostatic tremor are well established, little is known about the natural progression of the disorder. We report the long-term outcome based on the largest multicentre cohort of patients with orthostatic tremor. Clinical information of 68 patients with clinical and electrophysiological diagnosis of orthostatic tremor and a minimum follow-up of 5 years is presented. There was a clear female preponderance (76.5%) with a mean age of onset at 54 years. Median follow-up was 6 years (range 5-25). On diagnosis, 86.8% of patients presented with isolated orthostatic tremor and 13.2% had additional neurological features. At follow-up, seven patients who initially had isolated orthostatic tremor later developed further neurological signs. A total 79.4% of patients reported worsening of orthostatic tremor symptoms. These patients had significantly longer symptom duration than those without reported worsening (median 15.5 vs 10.5 years, respectively; p=0.005). There was no change in orthostatic tremor frequency over time. Structural imaging was largely unremarkable and dopaminergic neuroimaging (DaTSCAN) was normal in 18/19 cases. Pharmacological treatments were disappointing. Two patients were treated surgically and showed improvement. Orthostatic tremor is a progressive disorder with increased disability although tremor frequency is unchanged over time. In most cases, orthostatic tremor represents an isolated syndrome. Drug treatments are unsatisfactory but surgery may hold promise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Industrial Foundations as Long-Term Owners

    DEFF Research Database (Denmark)

    Thomsen, Steen; Poulsen, Thomas; Børsting, Christa Winther

    Short-termism has become a serious concern for corporate governance, and this has inspired a search for institutional arrangements to promote long-term decision-making. In this paper, we call attention to long-term ownership by industrial foundations, which is common in Northern Europe but little...... known in the rest of the world. We use a unique Danish data set to document that industrial foundations are long-term owners that practice long-term governance. We show that foundation ownership is highly stable compared to other ownership structures. Foundation-owned companies replace managers less...... frequently. They have conservative capital structures with low financial leverage. They score higher on an index of long-termism in finance, investment, and employment. They survive longer. Overall, our paper supports the hypothesis that corporate time horizons are influenced by ownership structures...

  16. Long-term associative learning predicts verbal short-term memory performance

    OpenAIRE

    Jones, Gary; Macken, Bill

    2017-01-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term...

  17. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    Science.gov (United States)

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  18. Neurotoxic effects of ecstasy on the thalamus

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D.; Ramsey, Nick F.; den Heeten, Gerard J.; van den Brink, Wim

    2008-01-01

    Background Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. Aims To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine,

  19. Management of paclitaxel-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Manisha Bhutani

    2011-12-01

    Full Text Available Paclitaxel exerts its antitumor activity by promoting microtubule assembly and stabilizing microtubules. Microtubules are important for the development and maintenance of neurons. As a consequence, neurotoxicity is one of the drug’s major side effects. The risk of neurotoxicity depends on dose, duration and schedule of paclitaxel. Risk increases for patients with pre-existing conditions that may cause neuropathy (such as alcohol consumption, diabetes, or renal disease or with simultaneous or prior exposure to other neurotoxic chemotherapy such as platinum-based drugs, vinca alkaloids, immunomodulators, proteasome inhibitors, and epothilones. Patients with paclitaxel-induced neurotoxicity (PINT experience a constellation of symptoms over the course of treatment and beyond, ranging from mild to severe. Typically, the clinical presentation reflects an axonal peripheral neuropathy with glove-and-stocking distribution sensory loss, combined with features suggestive of nerve hyperexcitability including paresthesia, dysesthesia, and pain. Proprioceptive and motor effects become apparent as neuropathy becomes more advanced. These symptoms may be prolonged, severe, disabling, relatively resistant to intervention and adversely affect activities of daily living and thereby quality of life. Management is mainly symptomatic and supportive. Despite attempts to minimize PINT with changes in dose, vehicle, delivery systems, infusion schedule and premedication or co-treatment with neuroprotective agents, PINT remains dose-limiting in many instances and is a barrier to achieving the desired clinical response.

  20. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin

    Science.gov (United States)

    Satomi, Machiko; Asama, Toshiyuki; Ebisawa, Yoshiaki; Chisato, Naoyuki; Suno, Manabu; Karasaki, Hidenori; Furukawa, Hiroyuki; Matsubara, Kazuo

    2010-01-01

    Calcium and magnesium replacement is effective in reducing oxaliplatin-induced neurotoxicity. However, cetuximab treatment has been associated with severe hypomagnesaemia. Therefore, we retrospectively investigated whether cetuximab-induced hypomagnesaemia exacerbated oxaliplatin-induced neurotoxicity. Six patients with metastatic colorectal cancer who were previously treated with oxaliplatin-fluorouracil combination therapy were administered cetuximab in combination with irinotecan alone or irinotecan and fluorouracil as a second-line treatment. All patients had normal magnesium levels before receiving cetuximab. The Common Terminology Criteria for Adverse Events version 3.0 was used to evaluate the grade of neurotoxicity, hypomagnesaemia, hypocalcaemia, and hypokalemia every week. All six patients had grade 1 or higher hypomagnesaemia after starting cetuximab therapy. The serum calcium and potassium levels were within the normal range at the onset of hypomagnesaemia. Oxaliplatin-induced neurotoxicity occurred in all patients at the beginning of cetuximab therapy, with grade 1 neurotoxicity in five patients and grade 2 in one patient. After cetuximab administration, the neurotoxicity worsened in all six patients, and three progressed to grade 3. Among the three patients with grade 3 neurotoxicity, two required a dose reduction and one had to discontinue cetuximab therapy. A discontinuation or dose reduction in cetuximab therapy was associated with exacerbated oxaliplatin-induced neurotoxicity due to cetuximab-induced hypomagnesaemia in half of patients who had previously received oxaliplatin. Therefore, when administering cetuximab after oxaliplatin therapy, we suggest serially evaluating serum magnesium levels and neurotoxicity. PMID:22811813

  1. Long-term collections

    CERN Multimedia

    Collectes à long terme

    2007-01-01

    The Committee of the Long Term Collections (CLT) asks for your attention for the following message from a young Peruvian scientist, following the earthquake which devastated part of her country a month ago.

  2. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.

    Science.gov (United States)

    Cheung, Yuen-Ting; Lau, Way Kwok-Wai; Yu, Man-Shan; Lai, Cora Sau-Wan; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-01-01

    Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied. Therefore, we aim to re-evaluate the differentiation property of RA on this cell line. We hypothesize that modulation of signaling pathways and neuronal properties during RA-mediated differentiation in SH-SY5Y cells can affect their susceptibility to neurotoxins. The differentiation property of RA was confirmed by showing an extensive outgrowth of neurites, increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin and synaptic associated protein-97, and decreased expression of inhibitor of differentiation-1. While undifferentiated SH-SY5Y cells were susceptible to 6-OHDA and MPP+, RA-differentiation conferred SH-SY5Y cells higher tolerance, potentially by up-regulating survival signaling, including Akt pathway as inhibition of Akt removed RA-induced neuroprotection against 6-OHDA. As a result, the real toxicity cannot be revealed in RA-differentiated cells. Therefore, undifferentiated SH-SY5Y is more appropriate for studying neurotoxicity or neuroprotection in experimental Parkinson's disease research.

  3. Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways.

    Directory of Open Access Journals (Sweden)

    Uli S Herrmann

    2015-02-01

    Full Text Available Prions induce lethal neurodegeneration and consist of PrPSc, an aggregated conformer of the cellular prion protein PrPC. Antibody-derived ligands to the globular domain of PrPC (collectively termed GDL are also neurotoxic. Here we show that GDL and prion infections activate the same pathways. Firstly, both GDL and prion infection of cerebellar organotypic cultured slices (COCS induced the production of reactive oxygen species (ROS. Accordingly, ROS scavenging, which counteracts GDL toxicity in vitro and in vivo, prolonged the lifespan of prion-infected mice and protected prion-infected COCS from neurodegeneration. Instead, neither glutamate receptor antagonists nor inhibitors of endoplasmic reticulum calcium channels abolished neurotoxicity in either model. Secondly, antibodies against the flexible tail (FT of PrPC reduced neurotoxicity in both GDL-exposed and prion-infected COCS, suggesting that the FT executes toxicity in both paradigms. Thirdly, the PERK pathway of the unfolded protein response was activated in both models. Finally, 80% of transcriptionally downregulated genes overlapped between prion-infected and GDL-treated COCS. We conclude that GDL mimic the interaction of PrPSc with PrPC, thereby triggering the downstream events characteristic of prion infection.

  4. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  5. Malaria Prevention, Mefloquine Neurotoxicity, Neuropsychiatric Illness, and Risk-Benefit Analysis in the Australian Defence Force

    Directory of Open Access Journals (Sweden)

    Stuart McCarthy

    2015-01-01

    Full Text Available The Australian Defence Force (ADF has used mefloquine for malaria chemoprophylaxis since 1990. Mefloquine has been found to be a plausible cause of a chronic central nervous system toxicity syndrome and a confounding factor in the diagnosis of existing neuropsychiatric illnesses prevalent in the ADF such as posttraumatic stress disorder and traumatic brain injury. Overall health risks appear to have been mitigated by restricting the drug’s use; however serious risks were realised when significant numbers of ADF personnel were subjected to clinical trials involving the drug. The full extent of the exposure, health impacts for affected individuals, and consequences for ADF health management including mental health are not yet known, but mefloquine may have caused or aggravated neuropsychiatric illness in large numbers of patients who were subsequently misdiagnosed and mistreated or otherwise failed to receive proper care. Findings in relation to chronic mefloquine neurotoxicity were foreseeable, but this eventuality appears not to have been considered during risk-benefit analyses. Thorough analysis by the ADF would have identified this long-term risk as well as other qualitative risk factors. Historical exposure of ADF personnel to mefloquine neurotoxicity now also necessitates ongoing risk monitoring and management in the overall context of broader health policies.

  6. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    Science.gov (United States)

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  7. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  8. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  9. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content...... of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells...

  10. Sexuality and Physical Intimacy in Long Term Care: Sexuality, long term care, capacity assessment

    OpenAIRE

    Lichtenberg, Peter A.

    2014-01-01

    Sexuality and sexual needs in older adults remains a neglected area of clinical intervention, particularly so in long term care settings. Because older adults in medical rehabilitation and long term care beds present with significant frailties, and often significant neurocognitive disorders it makes it difficult for occupational therapists and other staff to evaluate the capacity of an older adult resident to participate in sexual relationships. The current paper reviews the current literatur...

  11. Differences in health status between long-term and short-term benzodiazepine users.

    NARCIS (Netherlands)

    Zandstra, S.M.; Furer, J.W.; Lisdonk, E.H. van de; Bor, J.H.J.; Zitman, F.G.; Weel, C. van

    2002-01-01

    BACKGROUND: Despite generally accepted advice to keep treatment short, benzodiazepines are often prescibed for more than six months. Prevention of long-term benzodiazepine use could be facilitated by the utilisation of risk indicators for long-term use. However, the characteristics of long-term

  12. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    Science.gov (United States)

    Gosz, J.

    2001-12-01

    The network dedicated to Long Term Ecological Research (LTER) in the United States has grown to 24 sites since it was formed in 1980. Long-term research and monitoring are performed on parameters thatare basic to all ecosystems and are required to understand patterns, processes, and relationship to change. Collectively, the sites in the LTER Network provide opportunities to contrast marine, coastal, and continental regions, the full range of climatic gradients existing in North America, and aquatic and terrestrial habitats in a range of ecosystem types. The combination of common core areas and long-term research and monitoring in many habitats have allowed unprecedented abilities to understand and compare complex temporal and spatial dynamics associated with issues like climate change, effects of pollution, biodiversity and landuse. For example, McMurdo Dry Valley in the Antarctic has demonstrated an increase in glacier mass since 1993 which coincides with a period of cooler than normal summers and more than average snowfall. In contrast, the Bonanza Creek and Toolik Lake sites in Alaska have recorded a warming period unprecedented in the past 200 years. Nitrogen deposition effects have been identified through long-term watershed studies on biogeochemical cycles, especially at Coweeta Hydrological Lab, Harvard Forest, and the Hubbard Brook Experimental Forest. In aquatic systems, such as the Northern Temperate Lakes site, long-term data revealed time lags in effects of invaders and disturbance on lake communities. Biological recovery from an effect such as lake acidification was shown to lag behind chemical recovery. The long-term changes documented over 2 decades have been instrumental in influencing management practices in many of the LTER areas. In Puerto Rico, the Luquillo LTER demonstrated that dams obstruct migrations of fish and freshwater shrimp and water abstraction at low flows can completely obliterate downstream migration of juveniles and damage

  13. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    Science.gov (United States)

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-04-18

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  14. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations

    Directory of Open Access Journals (Sweden)

    Bohr Iwo

    2008-12-01

    Full Text Available Abstract There is increasing evidence for a role of dopamine in the development of obesity. More specifically, dopaminergic hypofunction might lead to (overcompensatory food intake. Overeating and resulting weight gain may be induced by genetic predisposition for lower dopaminergic activity, but might also be a behavioral mechanism of compensating for decreased dopamine signaling after dopaminergic overstimulation, for example after smoking cessation or overconsumption of high palatable food. This hypothesis is in line with our incidental finding of increased weight gain after discontinuation of pharmaceutical dopaminergic overstimulation in rats. These findings support the crucial role of dopaminergic signaling for eating behaviors and offer an explanation for weight-gain after cessation of activities associated with high dopaminergic signaling. They further support the possibility that dopaminergic medication could be used to moderate food intake.

  15. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  16. Very long-term sequelae of craniopharyngioma.

    Science.gov (United States)

    Wijnen, Mark; van den Heuvel-Eibrink, Marry M; Janssen, Joseph A M J L; Catsman-Berrevoets, Coriene E; Michiels, Erna M C; van Veelen-Vincent, Marie-Lise C; Dallenga, Alof H G; van den Berge, J Herbert; van Rij, Carolien M; van der Lely, Aart-Jan; Neggers, Sebastian J C M M

    2017-06-01

    Studies investigating long-term health conditions in patients with craniopharyngioma are limited by short follow-up durations and generally do not compare long-term health effects according to initial craniopharyngioma treatment approach. In addition, studies comparing long-term health conditions between patients with childhood- and adult-onset craniopharyngioma report conflicting results. The objective of this study was to analyse a full spectrum of long-term health effects in patients with craniopharyngioma according to initial treatment approach and age group at craniopharyngioma presentation. Cross-sectional study based on retrospective data. We studied a single-centre cohort of 128 patients with craniopharyngioma treated from 1980 onwards (63 patients with childhood-onset disease). Median follow-up since craniopharyngioma presentation was 13 years (interquartile range: 5-23 years). Initial craniopharyngioma treatment approaches included gross total resection ( n  = 25), subtotal resection without radiotherapy ( n  = 44), subtotal resection with radiotherapy ( n  = 25), cyst aspiration without radiotherapy ( n  = 8), and 90 Yttrium brachytherapy ( n  = 21). Pituitary hormone deficiencies (98%), visual disturbances (75%) and obesity (56%) were the most common long-term health conditions observed. Different initial craniopharyngioma treatment approaches resulted in similar long-term health effects. Patients with childhood-onset craniopharyngioma experienced significantly more growth hormone deficiency, diabetes insipidus, panhypopituitarism, morbid obesity, epilepsy and psychiatric conditions compared with patients with adult-onset disease. Recurrence-/progression-free survival was significantly lower after initial craniopharyngioma treatment with cyst aspiration compared with other therapeutic approaches. Survival was similar between patients with childhood- and adult-onset craniopharyngioma. Long-term health conditions were comparable after

  17. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    OpenAIRE

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microg...

  18. Taxane-Induced Peripheral Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Roser Velasco

    2015-04-01

    Full Text Available Taxane-derived agents are chemotherapy drugs widely employed in cancer treatment. Among them, paclitaxel and docetaxel are most commonly administered, but newer formulations are being investigated. Taxane antineoplastic activity is mainly based on the ability of the drugs to promote microtubule assembly, leading to mitotic arrest and apoptosis in cancer cells. Peripheral neurotoxicity is the major non-hematological adverse effect of taxane, often manifested as painful neuropathy experienced during treatment, and it is sometimes irreversible. Unfortunately, taxane-induced neurotoxicity is an uncertainty prior to the initiation of treatment. The present review aims to dissect current knowledge on real incidence, underlying pathophysiology, clinical features and predisposing factors related with the development of taxane-induced neuropathy.

  19. Long-term prisoner in prison isolation

    Directory of Open Access Journals (Sweden)

    Karolina Grudzińska

    2013-06-01

    Full Text Available Long-term prisoner belongs to a particular category of people who are imprisoned in prisons. On the one hand in this group are often heavily demoralized people who committed the most serious crimes, on the other hand it is a group of prisoners, who should be well thought out and programmed the impact of rehabilitation. The situation of man trapped for years poses in a complicated situation not only the prisoners, but also the entire prison staff. They have to take care of the fact that the prison isolation did not cause the state in which convicts form itself in learned helplessness and lack of skills for self-planning and decision-making. In addition, planning the rehabilitation impact of long-term prisoners should not be forgotten that these prisoners in the short or the long term will return to the libertarian environment therefore, should prevent any negative effects of long-term imprisonment. This article presents the main issues related to the execution of imprisonment against long-term prisoners. It is an attempt to systematize the knowledge of this category of people living in prison isolation.

  20. Sexually dimorphic activation of dopaminergic areas depends on affiliation during courtship and pair formation

    Directory of Open Access Journals (Sweden)

    Mai eIwasaki

    2014-06-01

    Full Text Available For many species, dyadic interaction during courtship and pair bonding engage intense emotional states that control approach or avoidance behavior. Previous studies have shown that one component of a common social brain network (SBN, dopaminergic areas, are highly engaged during male songbird courtship of females. We tested whether the level of activity in dopaminergic systems of both females and males during courtship is related to their level of affiliation. In order to objectively quantify affiliative behaviors, we developed a system for tracking the position of both birds during free interaction sessions. During a third successive daily interaction session, there was a range of levels of affiliation among bird pairs, as quantified by several position and movement parameters. Because both positive and negative social interactions were present, we chose to characterize affiliation strength by pair valence. As a potential neural system involved in regulating pair valence, the level of activity of the dopaminergic group A11 (within the central gray was selectively reduced in females of positive valence pairs. Further, activation of non-dopaminergic neurons in VTA was negatively related to valence, with this relationship strongest in ventral VTA of females. Together, these results suggest that inhibition of fear or avoidance networks may be associated with development of close affiliation, and highlight the importance of negative as well as positive emotional states in the process of courtship, and in development of long-lasting social bonds.

  1. Dopaminergic Polymorphisms, Academic Achievement, and Violent Delinquency.

    Science.gov (United States)

    Yun, Ilhong; Lee, Julak; Kim, Seung-Gon

    2015-12-01

    Recent research in the field of educational psychology points to the salience of self-control in accounting for the variance in students' report card grades. At the same time, a novel empirical study from molecular genetics drawing on the National Longitudinal Study of Adolescent Health (Add Health) data has revealed that polymorphisms in three dopaminergic genes (dopamine transporter [DAT1], dopamine D2 receptor [DRD2], and dopamine D4 receptor [DRD4]) are also linked to adolescents' grade point averages (GPAs). Juxtaposing these two lines of research, the current study reanalyzed the Add Health genetic subsample to assess the relative effects of these dopaminergic genes and self-control on GPAs. The results showed that the effects of the latter were far stronger than those of the former. The interaction effects between the dopaminergic genes and a set of environmental factors on academic performance were also examined, producing findings that are aligned with the "social push hypothesis" in behavioral genetics. Finally, based on the criminological literature on the link between academic performance and delinquency, we tested whether dopaminergic effects on violent delinquency were mediated by GPAs. The results demonstrated that academic performance fully mediated the linkage between these genes and violent delinquency. © The Author(s) 2014.

  2. Dopaminergic profile of new heterocyclic N-phenylpiperazine derivatives

    Directory of Open Access Journals (Sweden)

    Neves G.

    2003-01-01

    Full Text Available Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/kg in three experimental models: 1 blockade of amphetamine (30 mg/kg, ip-induced stereotypy in rats; 2 the catalepsy test in mice, and 3 apomorphine (1 mg/kg, ip-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip and a hypothermic response (30 mg/kg, ip which was not prevented by haloperidol (0.5 mg/kg, ip. Compound 5 (30 mg/kg, ip also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip. Only compound 4 (30 mg/kg, ip significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D2/D3 receptors.

  3. The effect of developmental exposure to the fungicide triadimefon on behavioral sensitization to triadimefon during adulthood

    International Nuclear Information System (INIS)

    Reeves, Ruth; Thiruchelvam, Mona; Richfield, Eric K.; Cory-Slechta, Deborah A.

    2004-01-01

    Triadimefon (TDF) is a triazole fungicide that acts as an indirect dopamine (DA) agonist by binding to the dopamine transporter (DAT) and increasing levels of synaptic DA. Studies in this laboratory have found that repeated dosing with TDF in adult mice leads to the development and robust expression of behavioral sensitization, a response mediated by dopaminergic and glutamatergic neurotransmitter systems, and causing long-term changes in dopaminergic function. Few studies have focused on the potential for TDF to be a developmental neurotoxicant. As such, the objective of the present study was to determine whether postnatal exposure to TDF would permanently alter DA systems and thereby influence TDF-induced expression of behavioral sensitization during adulthood. Male C57BL/6 mice were dosed intraperitoneally (i.p.) with 25 mg/kg TDF (TDF25), or oil (veh) from postnatal day (PND) 8 to 21. At 8-9 weeks of age, mice were split into four groups and treated with 75 mg/kg TDF (TDF75) or vehicle twice a week for a total of seven injections, with locomotor activity measured immediately after each injection. After a 2-week withdrawal period, mice were further split into eight groups, and challenged with TDF75 or vehicle to test for the expression of behavioral sensitization. Postnatal TDF exposure attenuated both the induction and expression of TDF-induced vertical but not horizontal sensitization in adults. Postnatal TDF exposure also produced long-term decreases in basal striatal dihydroxyphenylacetic acid (DOPAC) levels and nucleus accumbens shell DAT binding. These results indicate for the first time that TDF may be considered an environmental risk factor for developmental dopaminergic neurotoxicity

  4. Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding

    International Nuclear Information System (INIS)

    Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah

    2016-01-01

    Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.

  5. Competitive short-term and long-term memory processes in spatial habituation.

    Science.gov (United States)

    Sanderson, David J; Bannerman, David M

    2011-04-01

    Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.

  6. Acrylamide neurotoxicity on the cerebrum of weaning rats

    Directory of Open Access Journals (Sweden)

    Su-min Tian

    2015-01-01

    Full Text Available The mechanism underlying acrylamide-induced neurotoxicity remains controversial. Previous studies have focused on acrylamide-induced toxicity in adult rodents, but neurotoxicity in weaning rats has not been investigated. To explore the neurotoxic effect of acrylamide on the developing brain, weaning rats were gavaged with 0, 5, 15, and 30 mg/kg acrylamide for 4 consecutive weeks. No obvious neurotoxicity was observed in weaning rats in the low-dose acrylamide group (5 mg/kg. However, rats from the moderate- and high-dose acrylamide groups (15 and 30 mg/kg had an abnormal gait. Furthermore, biochemical tests in these rats demonstrated that glutamate concentration was significantly reduced, and γ-aminobutyric acid content was significantly increased and was dependent on acrylamide dose. Immunohistochemical staining showed that in the cerebral cortex, γ-aminobutyric acid, glutamic acid decarboxylase and glial fibrillary acidic protein expression increased remarkably in the moderate- and high-dose acrylamide groups. These results indicate that in weaning rats, acrylamide is positively associated with neurotoxicity in a dose-dependent manner, which may correlate with upregulation of γ-aminobutyric acid and subsequent neuronal degeneration after the initial acrylamide exposure.

  7. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    Science.gov (United States)

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  8. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  9. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    Science.gov (United States)

    2005-07-01

    K. (1995) Methamphetamine -induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents...glutamate receptors is protective against methamphetamine neurotoxicity . JNeurosci 22, 2135-2141. Beer R., Franz G., Srinivasan A., Hayes R. L., Pike B. R...1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole

  10. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  11. Long term liquidity analysis of the firm

    Directory of Open Access Journals (Sweden)

    Jaroslav Gonos

    2009-09-01

    Full Text Available Liquidity control is a very difficult and important function. If the business is not liquid in the long term, it is under threatof bankruptcy, and on the other hand surplus of the cash in hand threaten its future efficiency, because the cash in hand is a sourceof only limited profitability. Long term liquidity is related to the ability of the short term and long term liabilities payment. Articleis trying to point out to the monitoring and analyzing of the long term liquidity in the concrete business, in this case the printing industrycompany. Hereby at the end of the article mentioned monitored and analyzed liquidity is evaluated in the five years time period.

  12. Renin angiotensin system and gender differences in dopaminergic degeneration

    Directory of Open Access Journals (Sweden)

    Rodriguez-Perez Ana I

    2011-08-01

    Full Text Available Abstract Background There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD. It has been shown that the local renin angiotensin system (RAS plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1 receptors. Results In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen. However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. Conclusions The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

  13. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models

    NARCIS (Netherlands)

    Karpinar, D.P.; Giller, K.; Becker, S.; Baldus, M.

    2009-01-01

    The relation of -synuclein (S) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated S species have in neurotoxicity in

  14. Long-term contracts vs. short-term trade of natural gas - a European perspective

    International Nuclear Information System (INIS)

    Neuhoff, Karsten; Hirschhausen, Christian von

    2005-01-01

    This paper analyses the economics of long-term gas contracts under changing institutional conditions, mainly gas sector liberalisation. The paper is motivated by the increasingly tense debate in continental Europe, UK and the US on the security of long-term gas supply. We discuss the main issues regarding long-term contracts, i.e. the changing role of the flexibility clause, the effect of abandoning the destination clause, and the strategic behaviour of producers between long-term sales and spot-sales. The literature suggests consumers and producers benefit from risk hedging through long-term contracts. Furthermore long-term contracts may reduce exercise of market power. Our analysis adds an additional benefit if the long-run demand elasticity is significantly lower than the short-run elasticity, both strategic producers and consumers benefit from lower prices and larger market volume. Some policy implications of the findings are also discussed. (Author)

  15. The uranium industry: long-term planning for short-term competition

    International Nuclear Information System (INIS)

    Vottero, X.; Georges Capus, G.

    2001-01-01

    Long term planning for short term competition Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. Firstly, the risk of investing in new mining projects in western countries is growing because, on the one hand, of very erratic market conditions and, on the other hand, of increasingly lengthy, complex and unpredictable regulatory conditions. Secondly, the supply of other sources of uranium (uranium derived from nuclear weapons, uranium produced in CIS countries, ...) involve other risks, mainly related to politics and commercial restrictions. Consequently, competitive uranium supply requires not only technical competence but also financial strength and good marketing capabilities in order to anticipate long-term market trends, in terms of both demand and supply. It also requires taking into account new parameters such as politics, environment, regulations, etc. Today, a supplier dedicated to the sustainable production of nuclear electricity must manage a broad range of long-term risks inherent to the procurement of uranium. Taking into account all these parameters in a context of short-term, fast-changing market is a great challenge for the future generation. World Uranium Civilian Supply and Demand. (authors)

  16. Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice.

    Science.gov (United States)

    Hirata, H; Ladenheim, B; Carlson, E; Epstein, C; Cadet, J L

    1996-04-01

    Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [(125)I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.

  17. Long-term biodosimetry Redux

    International Nuclear Information System (INIS)

    Simon, Steven L.; Bouville, Andre

    2016-01-01

    This paper revisits and reiterates the needs, purposes and requirements of bio-dosimetric assays for long-term dose and health risk assessments. While the most crucial need for bio-dosimetric assays is to guide medical response for radiation accidents, the value of such techniques for improving our understanding of radiation health risk by supporting epidemiological (long-term health risk) studies is significant. As new cohorts of exposed persons are identified and new health risk studies are undertaken with the hopes that studying the exposed will result in a deeper understanding of radiation risk, the value of reliable dose reconstruction is underscored. The ultimate application of biodosimetry in long-term health risk studies would be to completely replace model-based dose reconstruction-a complex suite of methods for retrospectively estimating dose that is commonly fraught with large uncertainties due to the absence of important exposure-related information, as well as imperfect models. While biodosimetry could potentially supplant model-based doses, there are numerous limitations of presently available techniques that constrain their widespread application in health risk research, including limited ability to assess doses received far in the past, high cost, great inter-individual variability, invasiveness, higher than preferred detection limits and the inability to assess internal dose (for the most part). These limitations prevent the extensive application of biodosimetry to large cohorts and should be considered a challenge to researchers to develop new and more flexible techniques that meet the demands of long-term health risk research. Events in recent years, e.g. the Fukushima reactor accident and the increased threat of nuclear terrorism, underscore that any event that results in significant radiation exposures of a group of people will also produce a much larger population, exposed at lower levels, but that likewise needs (or demands) an exposure

  18. Neurotoxic Alkaloids: Saxitoxin and Its Analogs

    Directory of Open Access Journals (Sweden)

    Troco K. Mihali

    2010-07-01

    Full Text Available Saxitoxin (STX and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs. PSTs are the causative agents of paralytic shellfish poisoning (PSP and are mostly associated with marine dinoflagellates (eukaryotes and freshwater cyanobacteria (prokaryotes, which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.

  19. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  20. Modeling long-term dynamics of electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Garces, Francisco; Haubrich, H.-J.

    2006-01-01

    In the last decade, many countries have restructured their electricity industries by introducing competition in their power generation sectors. Although some restructuring has been regarded as successful, the short experience accumulated with liberalized power markets does not allow making any founded assertion about their long-term behavior. Long-term prices and long-term supply reliability are now center of interest. This concerns firms considering investments in generation capacity and regulatory authorities interested in assuring the long-term supply adequacy and the stability of power markets. In order to gain significant insight into the long-term behavior of liberalized power markets, in this paper, a simulation model based on system dynamics is proposed and the underlying mathematical formulations extensively discussed. Unlike classical market models based on the assumption that market outcomes replicate the results of a centrally made optimization, the approach presented here focuses on replicating the system structure of power markets and the logic of relationships among system components in order to derive its dynamical response. The simulations suggest that there might be serious problems to adjust early enough the generation capacity necessary to maintain stable reserve margins, and consequently, stable long-term price levels. Because of feedback loops embedded in the structure of power markets and the existence of some time lags, the long-term market development might exhibit a quite volatile behavior. By varying some exogenous inputs, a sensitivity analysis is carried out to assess the influence of these factors on the long-run market dynamics

  1. Short-term memory and long-term memory are still different.

    Science.gov (United States)

    Norris, Dennis

    2017-09-01

    A commonly expressed view is that short-term memory (STM) is nothing more than activated long-term memory. If true, this would overturn a central tenet of cognitive psychology-the idea that there are functionally and neurobiologically distinct short- and long-term stores. Here I present an updated case for a separation between short- and long-term stores, focusing on the computational demands placed on any STM system. STM must support memory for previously unencountered information, the storage of multiple tokens of the same type, and variable binding. None of these can be achieved simply by activating long-term memory. For example, even a simple sequence of digits such as "1, 3, 1" where there are 2 tokens of the digit "1" cannot be stored in the correct order simply by activating the representations of the digits "1" and "3" in LTM. I also review recent neuroimaging data that has been presented as evidence that STM is activated LTM and show that these data are exactly what one would expect to see based on a conventional 2-store view. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Galanin-like peptide stimulates feeding and sexual behavior via dopaminergic fibers within the medial preoptic area of adult male rats.

    Science.gov (United States)

    Taylor, A; Madison, F N; Fraley, G S

    2009-03-01

    Galanin-like peptide (GALP) is located in the arcuate nucleus (Arc) of the hypothalamus and is known to regulate both food intake and sexual behaviors in adult male rats. We have previously demonstrated that ICV GALP administration elicits a significant fos response within the medial preoptic area (mPOA). GALP is known to stimulate both food intake and male-typical sex behavior, presumably by direct actions within the mPOA. Recent data from our and other labs have led us to suspect that GALP effects on sex behaviors are due to activation of incertohypothalamic dopaminergic neurons that terminate within the mPOA. To test the hypothesis that GALP activates mPOA dopaminergic systems, we utilized an immunolesion technique to eliminate dopaminergic fiber input to the mPOA via a dopamine transporter-specific toxin (DATSAP, n=8) and compared to control injections (SAP, n=8). All animals were sexually experienced adult male Long-Evans rats. DATSAP-treated male rats showed a significant (psexual behaviors compared to SAP controls. We found that elimination of dopaminergic fibers within the mPOA significantly (psexual behavior under normal mating paradigms. Injections of GALP (5.0 nmol) significantly increased (psexual behaviors in male rats by stimulating dopaminergic neurons that terminate within the mPOA.

  3. Protective effect of quercetin on bupivacaine-induced neurotoxicity ...

    African Journals Online (AJOL)

    certain side effects, especially neurotoxicity. It has been shown that neurotoxicity caused by local anesthetics such as lidocaine and bupivacaine are related to changes in calcium homeostasis, resulting in intracellular calcium overload [1]. Calcium homeostasis is regulated by many different kinds of calcium channels such.

  4. Long-Term Collections

    CERN Multimedia

    Comité des collectes à long terme

    2011-01-01

    It is the time of the year when our fireman colleagues go around the laboratory for their traditional calendars sale. A part of the money of the sales will be donated in favour of the long-term collections. We hope that you will welcome them warmly.

  5. Adrenal androgen secretion and dopaminergic activity in anorexia nervosa.

    Science.gov (United States)

    Devesa, J; Pérez-Fernández, R; Bokser, L; Gaudiero, G J; Lima, L; Casanueva, F F

    1988-01-01

    The aim of the present study was to investigate if the postulated deficient adrenal androgen secretion in Anorexia Nervosa (AN), could be associated with a status of sustained dopaminergic hyperactivity. The adrenal responses to ACTH and PRL response to dopaminergic receptor blockade were studied in seven patients with Anorexia Nervosa and seven regularly menstruating women. AN patients showed lower baseline DHEA-sulphate (DHEA-S), androstenedione (Adione) and prolactin (PRL) levels than controls. The response to ACTH revealed evidences of significantly decreased 17-20 desmolase activity in AN, with apparent predominance of glucocorticoid over androgenic pathways relative to controls. Because dopaminergic receptor blockade with Domperidone (DOM) showed intense dopaminergic hyperactivity in AN, we postulate that the adrenal regression seen in the disease is the consequence of a reduced zona reticularis as a consequence of the lack of trophic support by PRL and/or intermediate lobe proopiomelanocortin (IL-POMC). This is consistent with our previous results in pre-adrenarchal dogs and rabbits.

  6. Long-Term Memory Performance in Adult ADHD.

    Science.gov (United States)

    Skodzik, Timo; Holling, Heinz; Pedersen, Anya

    2017-02-01

    Memory problems are a frequently reported symptom in adult ADHD, and it is well-documented that adults with ADHD perform poorly on long-term memory tests. However, the cause of this effect is still controversial. The present meta-analysis examined underlying mechanisms that may lead to long-term memory impairments in adult ADHD. We performed separate meta-analyses of measures of memory acquisition and long-term memory using both verbal and visual memory tests. In addition, the influence of potential moderator variables was examined. Adults with ADHD performed significantly worse than controls on verbal but not on visual long-term memory and memory acquisition subtests. The long-term memory deficit was strongly statistically related to the memory acquisition deficit. In contrast, no retrieval problems were observable. Our results suggest that memory deficits in adult ADHD reflect a learning deficit induced at the stage of encoding. Implications for clinical and research settings are presented.

  7. A Long-term Plan for Kalk

    DEFF Research Database (Denmark)

    2017-01-01

    In this case, the author demonstrates together with the owner-manager of KALK A/S, Mr Rasmus Jorgensen, how to use the Family Business Map to frame a constructive discussion about long-term planning. The Family Business Map is a tool for long-term planning in family firms developed by Professor...

  8. Virtual Models of Long-Term Care

    Science.gov (United States)

    Phenice, Lillian A.; Griffore, Robert J.

    2012-01-01

    Nursing homes, assisted living facilities and home-care organizations, use web sites to describe their services to potential consumers. This virtual ethnographic study developed models representing how potential consumers may understand this information using data from web sites of 69 long-term-care providers. The content of long-term-care web…

  9. Sleep facilitates long-term face adaptation

    OpenAIRE

    Ditye, Thomas; Javadi, Amir Homayoun; Carbon, Claus-Christian; Walsh, Vincent

    2013-01-01

    Adaptation is an automatic neural mechanism supporting the optimization of visual processing on the basis of previous experiences. While the short-term effects of adaptation on behaviour and physiology have been studied extensively, perceptual long-term changes associated with adaptation are still poorly understood. Here, we show that the integration of adaptation-dependent long-term shifts in neural function is facilitated by sleep. Perceptual shifts induced by adaptation to a distorted imag...

  10. Prevalence of Long-Term Opioid Use in Long-Stay Nursing Home Residents.

    Science.gov (United States)

    Hunnicutt, Jacob N; Chrysanthopoulou, Stavroula A; Ulbricht, Christine M; Hume, Anne L; Tjia, Jennifer; Lapane, Kate L

    2018-01-01

    Overall and long-term opioid use among older adults have increased since 1999. Less is known about opioid use in older adults in nursing homes (NHs). Cross-sectional. U.S. NHs (N = 13,522). Long-stay NH resident Medicare beneficiaries with a Minimum Data Set 3.0 (MDS) assessment between April 1, 2012, and June 30, 2012, and 120 days of follow-up (N = 315,949). We used Medicare Part D claims to measure length of opioid use in the 120 days from the index assessment (short-term: ≤30 days, medium-term: >30-89 days, long-term: ≥90 days), adjuvants (e.g., anticonvulsants), and other pain medications (e.g., corticosteroids). MDS assessments in the follow-up period were used to measure nonpharmacological pain management use. Modified Poisson models were used to estimate adjusted prevalence ratios (aPR) and 95% confidence intervals (CI) for age, gender, race and ethnicity, cognitive and physical impairment, and long-term opioid use. Of all long-stay residents, 32.4% were prescribed any opioid, and 15.5% were prescribed opioids long-term. Opioid users (versus nonusers) were more commonly prescribed pain adjuvants (32.9% vs 14.9%), other pain medications (25.5% vs 11.0%), and nonpharmacological pain management (24.5% vs 9.3%). Long-term opioid use was higher in women (aPR = 1.21, 95% CI = 1.18-1.23) and lower in racial and ethnic minorities (non-Hispanic blacks vs whites: APR = 0.93, 95% CI = 0.90-0.94) and those with severe cognitive impairment (vs no or mild impairment, aPR = 0.82, 95% CI = 0.79-0.83). One in seven NH residents was prescribed opioids long-term. Recent guidelines on opioid prescribing for pain recommend reducing long-term opioid use, but this is challenging in NHs because residents may not benefit from nonpharmacological and nonopioid interventions. Studies to address concerns about opioid safety and effectiveness (e.g., on pain and functional status) in NHs are needed. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics

  11. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.

    Science.gov (United States)

    Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-06-01

    Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.

  12. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    Directory of Open Access Journals (Sweden)

    Glenda E. Gillies

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester, we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA and substantia nigra pars compacta (SNc (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites that impact on the adult brain. The effects of antenatal GC treatment (AGT were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked

  13. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  14. Long-Term Stewardship Baseline Report and Transition Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, Keith

    2001-11-01

    Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after facility cleanup is complete. As the Department of Energy’s (DOE) lead laboratory for environmental management programs, the Idaho National Engineering and Environmental Laboratory (INEEL) administers DOE’s long-term stewardship science and technology efforts. The INEEL provides DOE with technical, and scientific expertise needed to oversee its long-term environmental management obligations complexwide. Long-term stewardship is administered and overseen by the Environmental Management Office of Science and Technology. The INEEL Long-Term Stewardship Program is currently developing the management structures and plans to complete INEEL-specific, long-term stewardship obligations. This guidance document (1) assists in ensuring that the program leads transition planning for the INEEL with respect to facility and site areas and (2) describes the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete. Additionally, this document summarizes current information on INEEL facilities, structures, and release sites likely to enter long-term stewardship at the completion of DOE’s cleanup mission. This document is not intended to function as a discrete checklist or local procedure to determine readiness to transition. It is an overarching document meant as guidance in implementing specific transition procedures. Several documents formed the foundation upon which this guidance was developed. Principal among these documents was the Long-Term Stewardship Draft Technical Baseline; A Report to Congress on Long-Term Stewardship, Volumes I and II; Infrastructure Long-Range Plan; Comprehensive Facility Land Use Plan; INEEL End-State Plan; and INEEL Institutional Plan.

  15. Development of clinical study and application on dopaminergic neurotransmitters and neuroreceptor imaging

    International Nuclear Information System (INIS)

    Wang Rongfu

    2000-01-01

    In recent years, the neurotransmitter mapping has been rapidly developed from a lot of fundamental researches to the studies of clinical applications. At present, the dopaminergic neurotransmitter and receptor imaging in the central neurotransmitter mapping study are the most active area including dopaminergic receptor, dopaminergic neurotransmitter and dopaminergic transporter imaging, etc,. The nuclear medicine functional imaging technique with positron emission tomography and single photon emission computed tomography possesses potential advantages in the diagnosis and distinguished diagnosis of neuropsychiatric disorders and movement disorders, and in the study of recognition function

  16. Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2008-05-01

    Full Text Available Abstract Background Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. Methods For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS- and 1-methyl-4-phenylpyridinium-(MPP+-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP- induced PD mouse model was used. Results FLZ showed potent efficacy in protecting dopaminergic (DA neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-α (TNF-α, nitric oxide (NO and prostaglandin E2 (PGE2. Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX, the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1 FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2 FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal

  17. Long-Term Prognosis of Plantar Fasciitis

    DEFF Research Database (Denmark)

    Hansen, Liselotte; Krogh, Thøger Persson; Ellingsen, Torkell

    2018-01-01

    , exercise-induced symptoms, bilateral heel pain, fascia thickness, and presence of a heel spur) could predict long-term outcomes, (3) to assess the long-term ultrasound (US) development in the fascia, and (4) to assess whether US-guided corticosteroid injections induce atrophy of the heel fat pad. Study....... The risk was significantly greater for women (P heel...... regardless of symptoms and had no impact on prognosis, and neither did the presence of a heel spur. Only 24% of asymptomatic patients had a normal fascia on US at long-term follow-up. A US-guided corticosteroid injection did not cause atrophy of the heel fat pad. Our observational study did not allow us...

  18. Long-term dependence in exchange rates

    Directory of Open Access Journals (Sweden)

    A. Karytinos

    2000-01-01

    Full Text Available The extent to which exchange rates of four major currencies against the Greek Drachma exhibit long-term dependence is investigated using a R/S analysis testing framework. We show that both classic R/S analysis and the modified R/S statistic if enhanced by bootstrapping techniques can be proven very reliable tools to this end. Our findings support persistence and long-term dependence with non-periodic cycles for the Deutsche Mark and the French Franc series. In addition a noisy chaos explanation is favored over fractional Brownian motion. On the contrary, the US Dollar and British Pound were found to exhibit a much more random behavior and lack of any long-term structure.

  19. Short-term versus long-term contracting for uranium enrichment services

    International Nuclear Information System (INIS)

    Rudy, G.P.

    1990-01-01

    The US Department of Energy (US DOE) is the world's largest and most experienced supplier of uranium enrichment services. Through the late 1970s and early 1980s, emerging market forces transformed what was once a monopoly into a highly competitive industry. In the early 1980's the DOE lost market share. But as we enter the 1990s, new market forces have emerged. The US DOE believes a responsible balance between long-term and short-term contracting will be the key to success and the key to assuring the long-term health and reliability of the nuclear fuel industry. The US DOE intends to be in this nuclear business for a long time and will continue to offer reliable and responsive services second to none

  20. Long-term protective effects of methamphetamine preconditioning against single-day methamphetamine toxic challenges.

    Science.gov (United States)

    Hodges, A B; Ladenheim, B; McCoy, M T; Beauvais, G; Cai, N; Krasnova, I N; Cadet, J L

    2011-03-01

    Methamphetamine (METH) use is associated with neurotoxic effects which include decreased levels of dopamine (DA), serotonin (5-HT) and their metabolites in the brain. We have shown that escalating METH dosing can protect against METH induced neurotoxicity in rats sacrificed within 24 hours after a toxic METH challenge. The purpose of the current study was to investigate if the protective effects of METH persisted for a long period of time. We also tested if a second challenge with a toxic dose of METH would cause further damage to monoaminergic terminals. Saline-pretreated rats showed significant METH-induced decreases in striatal DA and 5-HT levels in rats sacrificed 2 weeks after the challenge. Rats that received two METH challenges showed no further decreases in striatal DA or 5-HT levels in comparison to the single METH challenge. In contrast, METH-pretreated rats showed significant protection against METH-induced striatal DA and 5-HT depletion. In addition, the METH challenge causes substantial decreases in cortical 5-HT levels which were not further potentiated by a second drug challenge. METH preconditioning provided almost complete protection against METH -induced 5-HT depletion. These results are consistent with the idea that METH pretreatment renders the brain refractory to METH-induced degeneration of brain monoaminergic systems.

  1. Long-Term Dynamics of Autonomous Fractional Differential Equations

    Science.gov (United States)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  2. The Womanly World of Long Term Care: The Plight of the Long Term Care Worker. Gray Paper.

    Science.gov (United States)

    Older Women's League, Washington, DC.

    Long-term care workers (those who are paid to provide custodial care for long-term patients in nursing homes or at home) must care for a growing number of increasingly disabled or dependent persons. They are working for agencies and institutions under growing pressure to increase productivity. They face new training and competency requirements,…

  3. Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels.

    Science.gov (United States)

    Sevy, Serge; Hassoun, Youssef; Bechara, Antoine; Yechiam, Eldad; Napolitano, Barbara; Burdick, Katherine; Delman, Howard; Malhotra, Anil

    2006-10-01

    Converging evidences from animal and human studies suggest that addiction is associated with dopaminergic dysfunction in brain reward circuits. So far, it is unclear what aspects of addictive behaviors are related to a dopaminergic dysfunction. We hypothesize that a decrease in dopaminergic activity impairs emotion-based decision-making. To demonstrate this hypothesis, we investigated the effects of a decrease in dopaminergic activity on the performance of an emotion-based decision-making task, the Iowa gambling task (IGT), in 11 healthy human subjects. We used a double-blind, placebo-controlled, within-subject design to examine the effect of a mixture containing the branched-chain amino acids (BCAA) valine, isoleucine and leucine on prolactin, IGT performance, perceptual competency and visual aspects of visuospatial working memory, visual attention and working memory, and verbal memory. The expectancy-valence model was used to determine the relative contributions of distinct IGT components (attention to past outcomes, relative weight of wins and losses, and choice strategies) in the decision-making process. Compared to placebo, the BCAA mixture increased prolactin levels and impaired IGT performance. BCAA administration interfered with a particular component process of decision-making related to attention to more recent events as compared to more distant events. There were no differences between placebo and BCAA conditions for other aspects of cognition. Our results suggest a direct link between a reduced dopaminergic activity and poor emotion-based decision-making characterized by shortsightedness, and thus difficulties resisting short-term reward, despite long-term negative consequences. These findings have implications for behavioral and pharmacological interventions targeting impaired emotion-based decision-making in addictive disorders.

  4. Residual neurotoxicity in ovarian cancer patients in clinical remission after first-line chemotherapy with carboplatin and paclitaxel: The Multicenter Italian Trial in Ovarian cancer (MITO-4 retrospective study

    Directory of Open Access Journals (Sweden)

    Danese Saverio

    2006-01-01

    Full Text Available Abstract Background Carboplatin/paclitaxel is the chemotherapy of choice for advanced ovarian cancer, both in first line and in platinum-sensitive recurrence. Although a significant proportion of patients have some neurotoxicity during treatment, the long-term outcome of chemotherapy-induced neuropathy has been scantly studied. We retrospectively assessed the prevalence of residual neuropathy in a cohort of patients in clinical remission after first-line carboplatin/paclitaxel for advanced ovarian cancer. Methods 120 patients have been included in this study (101 participating in a multicentre phase III trial evaluating the efficacy of consolidation treatment with topotecan, and 19 treated at the National Cancer Institute of Naples after the end of the trial. All patients received carboplatin (AUC 5 plus paclitaxel (175 mg/m2 every 3 weeks for 6 cycles, completing treatment between 1998 and 2003. Data were collected between May and September 2004. Residual sensory and motor neurotoxicity were coded according to the National Cancer Institute – Common Toxicity Criteria. Results 55 patients (46% did not experience any grade of neurological toxicity during chemotherapy and of these none had signs of neuropathy during follow-up. The other 65 patients (54% had chemotherapy-induced neurotoxicity during treatment and follow-up data are available for 60 of them. Fourteen out of 60 patients (23% referred residual neuropathy at the most recent follow-up visit, after a median follow up of 18 months (range, 7–58 months: 12 patients had grade 1 and 2 patients grade 2 peripheral sensory neuropathy; 3 patients also had grade 1 motor neuropathy. The remaining 46/60 patients (77% had no residual neuropathy at the moment of interview: recovery from neurotoxicity had occurred in the first 2 months after the end of chemotherapy in 22 (37%, between 2 and 6 months in 15 (25%, or after more than 6 months in 9 patients (15%. Considering all 120 treated patients

  5. Residual neurotoxicity in ovarian cancer patients in clinical remission after first-line chemotherapy with carboplatin and paclitaxel: The Multicenter Italian Trial in Ovarian cancer (MITO-4) retrospective study

    International Nuclear Information System (INIS)

    Pignata, Sandro; Manzione, Luigi; Cartenì, Giacomo; Nardi, Mario; Danese, Saverio; Valerio, Maria Rosaria; Matteis, Andrea de; Massidda, Bruno; Gasparini, Giampietro; Di Maio, Massimo; Pisano, Carmela; De Placido, Sabino; Perrone, Francesco; Biamonte, Rosalbino; Scambia, Giovanni; Di Vagno, Giovanni; Colucci, Giuseppe; Febbraro, Antonio; Marinaccio, Marco; Vernaglia Lombardi, Alessandra

    2006-01-01

    Carboplatin/paclitaxel is the chemotherapy of choice for advanced ovarian cancer, both in first line and in platinum-sensitive recurrence. Although a significant proportion of patients have some neurotoxicity during treatment, the long-term outcome of chemotherapy-induced neuropathy has been scantly studied. We retrospectively assessed the prevalence of residual neuropathy in a cohort of patients in clinical remission after first-line carboplatin/paclitaxel for advanced ovarian cancer. 120 patients have been included in this study (101 participating in a multicentre phase III trial evaluating the efficacy of consolidation treatment with topotecan, and 19 treated at the National Cancer Institute of Naples after the end of the trial). All patients received carboplatin (AUC 5) plus paclitaxel (175 mg/m 2 ) every 3 weeks for 6 cycles, completing treatment between 1998 and 2003. Data were collected between May and September 2004. Residual sensory and motor neurotoxicity were coded according to the National Cancer Institute – Common Toxicity Criteria. 55 patients (46%) did not experience any grade of neurological toxicity during chemotherapy and of these none had signs of neuropathy during follow-up. The other 65 patients (54%) had chemotherapy-induced neurotoxicity during treatment and follow-up data are available for 60 of them. Fourteen out of 60 patients (23%) referred residual neuropathy at the most recent follow-up visit, after a median follow up of 18 months (range, 7–58 months): 12 patients had grade 1 and 2 patients grade 2 peripheral sensory neuropathy; 3 patients also had grade 1 motor neuropathy. The remaining 46/60 patients (77%) had no residual neuropathy at the moment of interview: recovery from neurotoxicity had occurred in the first 2 months after the end of chemotherapy in 22 (37%), between 2 and 6 months in 15 (25%), or after more than 6 months in 9 patients (15%). Considering all 120 treated patients, there was a 15% probability of persistent

  6. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  7. Long-Term Collections

    CERN Multimedia

    Staff Association

    2016-01-01

    45 years helping in developing countries! CERN personnel have been helping the least fortunate people on the planet since 1971. How? With the Long-Term Collections! Dear Colleagues, The Staff Association’s Long-Term Collections (LTC) Committee is delighted to share this important milestone in the life of our Laboratory with you. Indeed, whilst the name of CERN is known worldwide for scientific discoveries, it also shines in the many humanitarian projects which have been supported by the LTC since 1971. Several schools and clinics, far and wide, carry its logo... Over the past 45 years, 74 projects have been supported (9 of which are still ongoing). This all came from a group of colleagues who wanted to share a little of what life offered them here at CERN, in this haven of mutual understanding, peace and security, with those who were less fortunate elsewhere. Thus, the LTC were born... Since then, we have worked as a team to maintain the dream of these visionaries, with the help of regular donat...

  8. Long-Term Collection

    CERN Multimedia

    Staff Association

    2016-01-01

    Dear Colleagues, As previously announced in Echo (No. 254), your delegates took action to draw attention to the projects of the Long-Term Collections (LTC), the humanitarian body of the CERN Staff Association. On Tuesday, 11 October, at noon, small Z-Cards were widely distributed at the entrances of CERN restaurants and we thank you all for your interest. We hope to have achieved an important part of our goal, which was to inform you, convince you and find new supporters among you. We will find out in the next few days! An exhibition of the LTC was also set up in the Main Building for the entire week. The Staff Association wants to celebrate the occasion of the Long-Term Collection’s 45th anniversary at CERN because, ever since 1971, CERN personnel have showed great support in helping the least fortunate people on the planet in a variety of ways according to their needs. On a regular basis, joint fundraising appeals are made with the Directorate to help the victims of natural disasters around th...

  9. In vivo binding of tritiated dopaminergic ligands in mouse brain

    International Nuclear Information System (INIS)

    Baudry, Michel; Martres, M.-P.; Le Sellin, Michel; Schwartz, J.-C.; Guyon, Anne; Morgat, J.-L.

    1977-01-01

    The regional distribution of various dopaminergic radiolabelled ligands has been studied in the mouse brain after their intravenous injections. Among them, 3 H-pimozide and, to a lesser extent, 3 H-apomorphine are preferentially accumulated in the striatum, a region rich in dopaminergic receptors, as compared to cerebellum, a region believed not to contain dopaminergic receptors. For 3 H-pimozide, this preferential retention is due to a more rapid disappearance from the cerebellum than from the striatum. Moreover, prior administration of various neuroleptics which do not modify 3 H-pimozide levels recovered in the cerebellum, abolishes the differential retention of 3 H-pimozide in the striatum. These results indicate that the retention of 3 H-pimozide in the brain may be regarded as the sum of two components: a non-specific retention evaluated by 3 H-pimozide level in the cerebellum and the binding to dopaminergic receptors [fr

  10. Changing incentives for long-term gas contracts

    International Nuclear Information System (INIS)

    Bohi, D.R.

    1992-01-01

    There is much concern about the absence of long-term gas contracts with fixed price and quantity conditions, which until recent years was the standard way of doing business in the gas industry. These types of contracts performed a valuable service in the development of the gas industry, and there comparative absence today is sometimes thought to be one reason for the current malaise in the industry. One hears the argument that there must be some kind of 'market failure' that prevents buyers and sellers from entering into these long term arrangements, and recent changes in state and federal regulations are often cited as the cause of the problem. The purpose of the author's remarks is to argue that what is taken as a breakdown in the market may be simply a reaction to a decline in economic incentives to enter into long-term contracts with rigid price and quantity terms. This is, in other words, simply one more aspect of change in the gas business that Frank Heintz referred to in his opening remarks this morning. The author starts by giving a brief description of the motives for engaging in long-term contracts, and then describes how incentives to use long-term contracts have declined for both gas buyers and gas sellers. He concludes that the decline in the use of long-term contracts is not cause for regulatory concern, but a result of the continuing transformation of the gas business to one that more closely resembles other commodity markets

  11. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  12. Energy in 2010 - 2020. Long term challenges; Energie 2010-2020. Les defis du long terme

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, Benjamin [ed.] [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    2000-02-02

    This report presents the results of a workshop intending to anticipate the long term challenges, to guide better the short term power options, to understand the available political, economical and technical assumptions for the prospective world situation, to give some strategic hints on the necessary transition. Indeed, the difficult issue which the workshop tried to tackle was how should we prepare to reveal the energetic challenge of the development of the eight to ten billion inhabitants of our Planet in the next century without jeopardizing its existence. The energetic problems, a hardcore of the international preoccupation of both growth and environment, as it was recently evidenced by the climatic conference in Kyoto, have ever been the object of a particular attention on the part of General Commissariat of Plan. Thus, the commission 'Energy in 2010 - 2020' has been instituted in April 1996 in order to update the works done in 1990 - 1991 by the commission 'Energy 2010'. Soon it occurred to this new commission the task of illuminating its works by a long term (2050 - 2100) world prospective analysis of the challenges and problems linked to energy, growth and environment. In conclusion, this document tried to find answers to questions like: - which are the risks the energy consumption augmentation entail? - can we control them by appropriate urbanism and transport policies or technological innovation?. Four options for immediate action are suggested: - the energy efficiency should become a priority objective of policies; -coping with the long term challenges requires acting at present; - building the transition between governmental leadership and market; - taking profit of all the possible synergies between short and long term planning.

  13. Current status of developmental neurotoxicity: regulatory view

    DEFF Research Database (Denmark)

    Hass, Ulla

    2003-01-01

    in the testing strategy for new and existing substances, and biocides. Hopefully, this will lead to an improved database for risk assessment of potential developmental neurotoxicants. However, the regulatory authorities and toxicologists will also be faced with the challenge that decisions have to be made......The need for developmental neurotoxicity testing has been recognized for decades and guidelines are available, as the USEPA guideline and the OECD draft TG 426. Regulatory testing of industrial chemicals for developmental neurotoxicity is required to some extent, especially for pesticides in the US....... Until recently, however, developmental neurotoxicity testing of industrial chemicals has not been a clear regulatory requirement in EU, probably due to the lack of an accepted OECD TG. The revised EU Technical Guidance Document for Risk Assessment (EU-TGD) has now included the OECD draft TG 426...

  14. Opening remarks for a panel discussion on short-term vs long-term procurement

    International Nuclear Information System (INIS)

    Courtenay, R.H.

    1990-01-01

    Long-term contracting in the late 1970's and early 1980's is blamed for some of the inequities that plague the uranium industry today. Utilities are obliged to pay prices far above prevailing levels and relatively low cost producers are forced to shut down while watching less efficient suppliers stay in business thanks to their long term supply agreements. Furthermore, it is argued that long-term contracts have contributed to supply instability by forcing the buildup of surplus inventories and by supporting excess incremental production by suppliers who have a baseload of long-term contracts. The depressed prices resulting from this oversupply are in turn jeopardizing future resource development and damaging supply reliability. In summary, the author's argument is that supply reliability will be greatly enhanced by the assurance of adequate primary supply from traditional sources such as Canada. This will not happen without long-term contracts. This conclusion may not be expected coming from a representative of Canada's largest uranium producer. But the final comment is less self serving. Many of the critics of long term contracts apparently expect a continuing and plentiful supply of East Bloc uranium to the spot market. A further question is to what extent East Bloc suppliers will eventually require long-term contracts in order to maintain production facilitates in economies that are no longer centrally planned, and where there is open competition for capital. Ultimately, reliability of supply from the non-traditional suppliers may also depend on long-term contracts

  15. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9).

    Science.gov (United States)

    Daniel, Guillaume; Musso, Alessandra; Tsika, Elpida; Fiser, Aris; Glauser, Liliane; Pletnikova, Olga; Schneider, Bernard L; Moore, Darren J

    2015-01-01

    Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Long-term risks of kidney living donation

    DEFF Research Database (Denmark)

    Maggiore, Umberto; Budde, Klemens; Heemann, Uwe

    2017-01-01

    Two recent matched cohort studies from the USA and Norway published in 2014 have raised some concerns related to the long-term safety of kidney living donation. Further studies on the long-term risks of living donation have since been published. In this position paper, Developing Education Science...... and Care for Renal Transplantation in European States (DESCARTES) board members critically review the literature in an effort to summarize the current knowledge concerning long-term risks of kidney living donation to help physicians for decision-making purposes and for providing information...... to the prospective live donors. Long-term risk of end-stage renal disease (ESRD) can be partially foreseen by trying to identify donors at risk of developing ‘de novo’ kidney diseases during life post-donation and by predicting lifetime ESRD risk. However, lifetime risk may be difficult to assess in young donors...

  17. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    Directory of Open Access Journals (Sweden)

    Roberto De Gregorio

    2018-04-01

    Full Text Available Summary: The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. : In this article, Bellenchi and colleagues show that the microRNA miR-34b/c is expressed in FACS-purified Pitx3-GFP+ neurons and promotes dopaminergic differentiation by negative modulating Wnt1 and the downstream WNT signaling pathway. Induced dopaminergic cells, expressing miR-34b/c, synthesize dopamine and show the electrophysiological properties featured by brain dopaminergic neurons. Keywords: microRNA, dopamine, mESC, miR34b/c, epiSC, transdifferentiation, Wnt1, Wnt pathway, reprogramming

  18. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  19. Local Anesthetic-Induced Neurotoxicity

    NARCIS (Netherlands)

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk

  20. Illicit stimulant use in humans is associated with a long-term increase in tremor.

    Directory of Open Access Journals (Sweden)

    Stanley C Flavel

    Full Text Available Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is a significant health problem. The United Nations Office on Drugs and Crime estimates that 14-57 million people use stimulants each year. Chronic use of illicit stimulants can cause neurotoxicity in animals and humans but the long-term functional consequences are not well understood. Stimulant users self-report problems with tremor whilst abstinent. Thus, the aim of the current study was to investigate the long-term effect of stimulant use on human tremor during rest and movement. We hypothesized that individuals with a history of stimulant use would exhibit abnormally large tremor during rest and movement. Tremor was assessed in abstinent ecstasy users (n = 9; 22 ± 3 yrs and abstinent users of amphetamine-like drugs (n = 7; 33 ± 9 yrs and in two control groups: non-drug users (n = 23; 27 ± 8 yrs and cannabis users (n = 12; 24 ± 7 yrs. Tremor was measured with an accelerometer attached to the index finger at rest (30 s and during flexion and extension of the index finger (30 s. Acceleration traces were analyzed with fast-Fourier transform. During movement, tremor amplitude was significantly greater in ecstasy users than in non-drug users (frequency range 3.9-13.3 Hz; P<0.05, but was unaffected in cannabis users or users of amphetamine-like drugs. The peak frequency of tremor did not significantly differ between groups nor did resting tremor. In conclusion, abstinent ecstasy users exhibit an abnormally large tremor during movement. Further work is required to determine if the abnormality translates to increased risk of movement disorders in this population.

  1. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    Science.gov (United States)

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  2. Long-term home care scheduling

    DEFF Research Database (Denmark)

    Gamst, Mette; Jensen, Thomas Sejr

    In several countries, home care is provided for certain citizens living at home. The long-term home care scheduling problem is to generate work plans spanning several days such that a high quality of service is maintained and the overall cost is kept as low as possible. A solution to the problem...... provides detailed information on visits and visit times for each employee on each of the covered days. We propose a branch-and-price algorithm for the long-term home care scheduling problem. The pricing problem generates one-day plans for an employee, and the master problem merges the plans with respect...

  3. Analysing long term discursive processes

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    which extend beyond the single interaction, for instance negotiations or planning processes, seems to have played a less important role, with studies such as Iedema 2001 and Wodak 2000 as exceptions. These long term processes, however, are central to the constitution and workings of organizations......What do timescales - the notion that processes take place or can be viewed within a shorter or longer temporal range (Lemke 2005) - mean for the analysis of discourse? What are the methodological consequences of analyzing discourse at different timescales? It may be argued that discourse analysis...... in general has favored either the analysis of short term processes such as interviews, discussions, and lessons, or the analysis of non-processual entities such as (multimodal) texts, arguments, discursive repertoires, and discourses (in a Foucaultian sense). In contrast, analysis of long term processes...

  4. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  5. What are the differences between long-term, short-term, and working memory?

    OpenAIRE

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rath...

  6. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  7. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  8. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  9. Long-term hearing preservation in vestibular schwannoma

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  10. Long-Term Patency of Lymphovenous Anastomoses: A Systematic Review.

    Science.gov (United States)

    Tourani, Saam S; Taylor, G Ian; Ashton, Mark W

    2016-08-01

    With advancements in technology and microsurgical techniques, lymphovenous anastomosis has become a popular reconstructive procedure in the treatment of chronic lymphedema. However, the long-term patency of these anastomoses is not clear in the literature. A systematic review of the MEDLINE and EMBASE databases was performed to assess the reported long-term patency of lymphovenous anastomoses. A total of eight studies satisfied the inclusion criteria. Pooled data from four similar experiments in normal dogs showed an average long-term (≥5 months) patency of 52 percent. The only experiment in dogs with chronic lymphedema failed to show any long-term patency. The creation of peripheral lymphovenous anastomoses with a moderate long-term patency rate has become technically possible. However, the long-term results in chronic lymphedema are limited.

  11. Long-Term Orientation in Trade

    NARCIS (Netherlands)

    Hofstede, G.J.; Jonker, C.M.; Verwaart, D.

    2008-01-01

    Trust does not work in the same way across cultures. This paper presents an agent model of behavior in trade across Hofstedes cultural dimension of long-term vs. short-term orientation. The situation is based on a gaming simulation, the Trust and Tracing game. The paper investigates the

  12. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course.

    Science.gov (United States)

    Comfort, Nicole; Re, Diane B

    2017-12-01

    This review discusses the sex-specific effects of exposure to various organophosphate (OP) pesticides throughout the life course and potential reasons for the differential vulnerabilities observed across sexes. Sex is a crucial factor in the response to toxicants, yet the sex-specific effects of OP exposure, particularly in juveniles and adults, remain unresolved. This is largely due to study design and inconsistencies in exposure and outcome assessments. Exposure to OPs results in multiple adverse outcomes influenced by many factors including sex. Reported sex-specific effects suggest that males are more susceptible to OPs, which reflects the sex-dependent prevalence of various neurodevelopmental and neurodegenerative disorders such as autism and amyotrophic lateral sclerosis (ALS), in which males are at greater risk. Thus, this review proposes that the biological sex-specific effects elicited by OP exposure may in part underlie the dimorphic susceptibilities observed in neurological disorders. Understanding the immediate and long-term effects of OP exposure across sexes will be critical in advancing our understanding of OP-induced neurotoxicity and disease.

  13. Long-term effects of childbirth in MS

    NARCIS (Netherlands)

    D'hooghe, M.B.; Nagels, G.; Uitdehaag, B.M.J.

    2010-01-01

    Background: The uncertainty about long-term effects of childbirth presents MS patients with dilemmas. Methods: Based on clinical data of 330 female MS patients, the long-term effects of childbirth were analysed, using a cross-sectional study design. Four groups of patients were distinguished: (1)

  14. Neuroprotective Effects of Erucin against 6-Hydroxydopamine-Induced Oxidative Damage in a Dopaminergic-like Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Giorgio Cantelli-Forti

    2012-08-01

    Full Text Available Oxidative stress (OS contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD. A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2 enzymes. In this study, we demonstrated that treatment of the dopaminergic-like neuroblastoma SH-SY5Y cell line with isothiocyanate erucin (ER, a compound of cruciferous vegetables, resulted in significant increases of both total glutathione (GSH levels and total antioxidant capacity at the cytosolic level. The increase of GSH levels was associated with an increase in the resistance of SH-SY5Y cells to neuronal death, in terms of apoptosis, induced by 6-hydroxydopamine (6-OHDA. The pretreatment of SH-SY5Y cells with ER was also shown to prevent the redox status impairment, in terms of intracellular ROS and O2•− formation, and loss of mitochondrial membrane potential, early events that are initiators of the apoptotic process, induced by 6-OHDA. Last, the antiapoptotic and antioxidant effects of ER were abolished by buthionine sulfoximine, supporting the main role of GSH in the neuroprotective effects recorded by ER. These results suggest that ER may prevent the oxidative damage induced by 6-OHDA.

  15. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  16. [Psychosocial issues of long-term cancer survivors].

    Science.gov (United States)

    Weis, J; Faller, H

    2012-04-01

    Although cancer incidence rates are increasing, recent statistical studies suggest that cancer patients are showing higher cure rates as well as improved overall survival rates for most cancer locations. These advances are explained by improved strategies in early diagnoses as well as improved cancer therapies. Therefore, the number of long-term cancer survivors has also increased, but only few studies, especially within the last years, have focused on psychosocial issues of this subgroup. Some studies show that overall quality of life of long-term cancer survivors is quite high and comparable to that of the normal population. Nevertheless, a substantial percentage of former patients shows reduced quality of life and suffers from various sequelae of cancer and its treatment. This review focuses on the most common psychosocial issue of long-term survivors such as reduced psychological wellbeing, neuropsychological deficits and cancer-related fatigue syndrome. Finally, recommendations for problem-oriented interventions as well as improvement of psychosocial care of long-term survivors are given.

  17. Are long-term bisphosphonate users a reality?

    DEFF Research Database (Denmark)

    Abrahamsen, B

    2012-01-01

    The prevalence of long-term bisphosphonate use may be low due to low refill compliance and gaps in treatment. An analysis of the prescription history of 58,674 bisphosphonate users in Denmark found that only 2.8 % had received ten dose years of treatment or above. INTRODUCTION: This study aims...... to describe the demographics of present bisphosphonate (BP) users, to determine the prevalence of long-term BP use, and to establish if long-term use (a 10-year history of osteoporosis treatment) translated to ten dose years of bisphosphonate prescriptions filled, given the propensity for treatment gaps...... more than ten dose years of a BP. For any osteoporosis drug, 3.0 % had received ten dose years or more, while 23.2 % had received between 5 and 10 years of treatment. CONCLUSION: Long-term users with ten dose years or more of a BP are rare due to periods of low compliance and gaps, with a discrepancy...

  18. A security/safety survey of long term care facilities.

    Science.gov (United States)

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  19. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  20. The Structure and Content of Long-Term and Short-Term Mate Preferences

    Directory of Open Access Journals (Sweden)

    Peter K. Jonason

    2013-12-01

    Full Text Available This study addresses two limitations in the mate preferences literature. First, research all-too-often relies on single-item assessments of mate preferences precluding more advanced statistical techniques like factor analysis. Second, when factor analysis could be done, it exclusively has done for long-term mate preferences, at the exclusion of short-term mate preferences. In this study (N = 401, we subjected 20 items designed to measure short- and long-term mate preferences to both principle components (n = 200 and confirmatory factor analysis (n = 201. In the long-term context, we replicated previous findings that there are three different categories of preferences: physical attractiveness, interpersonal warmth, and social status. In the short-term context, physical attractiveness occupied two parts of the structure, social status dropped out, and interpersonal warmth remained. Across short- and long-term contexts, there were slight changes in what defined the shared dimensions (i.e., physical attractiveness and interpersonal warmth, suggesting prior work that applies the same inventory to each context might be flawed. We also replicated sex differences and similarities in mate preferences and correlates with sociosexuality and mate value. We adopt an evolutionary paradigm to understand our results.

  1. Fifty Years in the Development of a Glutaminergic-Dopaminergic Optimization Complex (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome: A Pictorial

    Science.gov (United States)

    Blum, K; Febo, M; Badgaiyan, RD

    2016-01-01

    Dopamine along with other chemical messengers like serotonin, cannabinoids, endorphins and glutamine, play significant roles in brain reward processing. There is a devastating opiate/opioid epidemicin the United States. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day due to narcotic overdose and alarmingly heroin overdose is on the rise. The Food and Drug Administration (FDA) has approved some Medication-Assisted Treatments (MATs) for alcoholism, opiate and nicotine dependence, but nothing for psychostimulant and cannabis abuse. While these pharmaceuticals are essential for the short-term induction of “psychological extinction,” in the long-term caution is necessary because their use favors blocking dopaminergic function indispensable for achieving normal satisfaction in life. The two institutions devoted to alcoholism and drug dependence (NIAAA & NIDA) realize that MATs are not optimal and continue to seek better treatment options. We review, herein, the history of the development of a glutaminergic-dopaminergic optimization complex called KB220 to provide for the possible eventual balancing of the brain reward system and the induction of “dopamine homeostasis.” This complex may provide substantial clinical benefit to the victims of Reward Deficiency Syndrome (RDS) and assist in recovery from iatrogenically induced addiction to unwanted opiates/opioids and other addictive behaviors. PMID:27840857

  2. Long-Term Memory and Learning

    Science.gov (United States)

    Crossland, John

    2011-01-01

    The English National Curriculum Programmes of Study emphasise the importance of knowledge, understanding and skills, and teachers are well versed in structuring learning in those terms. Research outcomes into how long-term memory is stored and retrieved provide support for structuring learning in this way. Four further messages are added to the…

  3. A least squares approach for efficient and reliable short-term versus long-term optimization

    DEFF Research Database (Denmark)

    Christiansen, Lasse Hjuler; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    The uncertainties related to long-term forecasts of oil prices impose significant financial risk on ventures of oil production. To minimize risk, oil companies are inclined to maximize profit over short-term horizons ranging from months to a few years. In contrast, conventional production...... optimization maximizes long-term profits over horizons that span more than a decade. To address this challenge, the oil literature has introduced short-term versus long-term optimization. Ideally, this problem is solved by a posteriori multi-objective optimization methods that generate an approximation...... the balance between the objectives, leaving an unfulfilled potential to increase profits. To promote efficient and reliable short-term versus long-term optimization, this paper introduces a natural way to characterize desirable Pareto points and proposes a novel least squares (LS) method. Unlike hierarchical...

  4. Sacrococcygeal teratoma: Clinical characteristics and long-term ...

    African Journals Online (AJOL)

    Background/Purpose : The excision of sacrococcygeal teratoma (SCT) may be associated with significant long-term morbidity for the child. We reviewed our experience with SCT in a tertiary health care facility in a developing country with particular interest on the long-term sequelae. Methods : Between January 1990 and ...

  5. Managerial Long-Term Responsibility in Family-Controlled Firms

    Directory of Open Access Journals (Sweden)

    Dietmar Sternad

    2013-01-01

    Full Text Available Evidence suggests that long-term orientation (LTO as a dominantstrategic logic contributes to the sustainable performance offamily-controlled firms (FCFS. Combining a review of the literatureon lto with stewardship theory and upper echelons theoryreasoning, this article presents a typology of managerial responsibilityand introduces the concept of long-term responsibility as amanagerial characteristic constituting a major driving force behindcreating lto. The antecedents of long-term responsibilityunder family firm-specific conditions (stemming from the familysystem, the governance system, and family-firm managers’ personalcharacteristics are also identified and presented in an integratedmodel. The paper contributes to a more comprehensiveunderstanding of intertemporal choice in fcfs and explains whythey tend to be more long-term oriented than other types of firms.

  6. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  7. Short-term exposure and long-term consequences of neonatal exposure to Δ(9)-tetrahydrocannabinol (THC) and ibuprofen in mice.

    Science.gov (United States)

    Philippot, Gaëtan; Nyberg, Fred; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2016-07-01

    Both Δ(9)-tetrahydrocannabinol (THC) and ibuprofen have analgesic properties by interacting with the cannabinoid receptor type 1 (CB1R) and the cyclooxygenase (COX) systems, respectively. Evaluation of these analgesics is important not only clinically, since they are commonly used during pregnancy and lactation, but also to compare them with acetaminophen, with a known interaction with both CB1R and the COX systems. Short-term exposure of neonatal rodents to acetaminophen during the first weeks of postnatal life, which is comparable with a period from the third trimester of pregnancy to the first years of postnatal life in humans, induces long-term behavioral disturbances. This period, called the brain growth spurt (BGS) and is characterized by series of rapid and fundamental changes and increased vulnerability, peaks around postnatal day (PND) 10 in mice. We therefore exposed male NMRI mice to either THC or ibuprofen on PND 10. At 2 months of age, the mice were subjected to a spontaneous behavior test, consisting of a 60min recording of the variables locomotion, rearing and total activity. Mice exposed to THC, but not ibuprofen, exhibited altered adult spontaneous behavior and habituation capability in a dose-dependent manner. This highlights the potency of THC as a developmental neurotoxicant, since a single neonatal dose of THC was enough to affect adult cognitive function. The lack of effect from ibuprofen also indicates that the previously seen developmental neurotoxicity of acetaminophen is non-COX-mediated. These results might be of importance in future research as well as in the ongoing risk/benefit assessment of THC. Copyright © 2016. Published by Elsevier B.V.

  8. Collectes à long terme

    CERN Multimedia

    Collectes à long terme

    2014-01-01

    En cette fin d’année 2014 qui approche à grands pas, le Comité des Collectes à Long Terme remercie chaleureusement ses fidèles donatrices et donateurs réguliers pour leurs contributions à nos actions en faveur des plus démunis de notre planète. C’est très important, pour notre Comité, de pouvoir compter sur l’appui assidu que vous nous apportez. Depuis plus de 40 ans maintenant, le modèle des CLT est basé principalement sur des actions à long terme (soit une aide pendant 4-5 ans par projet, mais plus parfois selon les circonstances), et sa planification demande une grande régularité de ses soutiens financiers. Grand MERCI à vous ! D’autres dons nous parviennent au cours de l’année, et ils sont aussi les bienvenus. En particulier, nous tenons à remercier...

  9. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    Science.gov (United States)

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P neuropathy (P peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  10. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  11. Multiple neurotoxic effects of haloperidol resulting in neuronal death.

    Science.gov (United States)

    Nasrallah, Henry A; Chen, Alexander T

    2017-08-01

    Several published studies have reported an association between antipsychotic medications, especially first-generation agents, and a decline in gray matter volume. This prompted us to review the possible neurotoxic mechanisms of first-generation antipsychotics (FGAs), especially haloperidol, which has been widely used over the past several decades. A PubMed search was conducted using the keywords haloperidol, antipsychotic, neurotoxicity, apoptosis, oxidative stress, and neuroplasticity. No restrictions were placed on the date of the articles or language. Studies with a clearly described methodology were included. Animal, cell culture, and human tissue studies were identified. Thirty reports met the criteria for the search. All studies included haloperidol; a few also included other FGAs (fluphenazine and perphenazine) and/or second-generation agents (SGAs) (aripiprazole, paliperidone, and risperidone). A neurotoxic effect of haloperidol and other FGAs was a common theme across all studies. Minimal (mainly at high doses) or no neurotoxic effects were noted in SGAs. A review of the literature suggests that haloperidol exerts measurable neurotoxic effects at all doses via many molecular mechanisms that lead to neuronal death. A similar effect was observed in 2 other FGAs, but the effect in SGAs was much smaller and occurred mainly at high doses. A stronger binding to serotonin 5HT-2A receptors than to dopamine D2 receptors may have a neuroprotective effect among SGAs. Further studies are warranted to confirm these findings.

  12. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  13. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    Science.gov (United States)

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.

  14. Impact of long-term and short-term therapies on seminal parameters

    Directory of Open Access Journals (Sweden)

    Jlenia Elia

    2013-04-01

    Full Text Available Aim: The aim of this work was: i to evaluate the prevalence of male partners of subfertile couples being treated with long/short term therapies for non andrological diseases; ii to study their seminal profile for the possible effects of their treatments on spermatogenesis and/or epididymal maturation. Methods: The study group was made up of 723 subjects, aged between 25 and 47 years. Semen analysis was performed according to World Health Organization (WHO guidelines (1999. The Superimposed Image Analysis System (SIAS, which is based on the computerized superimposition of spermatozoa images, was used to assess sperm motility parameters. Results: The prevalence of subjects taking pharmacological treatments was 22.7% (164/723. The prevalence was 3.7% (27/723 for the Short-Term Group and 18.9% (137/723 for the Long-Term Group. The subjects of each group were also subdivided into subgroups according to the treatments being received. Regarding the seminal profile, we did not observe a significant difference between the Long-Term, Short-Term or the Control Group. However, regarding the subgroups, we found a significant decrease in sperm number and progressive motility percentage in the subjects receiving treatment with antihypertensive drugs compared with the other subgroups and the Control Group. Conclusions: In the management of infertile couples, the potential negative impact on seminal parameters of any drugs being taken as Long-Term Therapy should be considered. The pathogenic mechanism needs to be clarified.

  15. A cost of long-term memory in Drosophila

    OpenAIRE

    Mery, Frederic; Kawecki, Tadeusz J.

    2005-01-01

    Two distinct forms of consolidated associative memory are known in Drosophila: long-term memory and so-called anesthesia-resistant memory. Long-term memory is more stable, but unlike anesthesia-resistant memory, its formation requires protein synthesis. We show that flies induced to form long-term memory become more susceptible to extreme stress (such as desiccation). In contrast, induction of anesthesia-resistant memory had no detectable effect on desiccation resistance. This finding may hel...

  16. Do Substantia Nigra Dopaminergic Neurons Differentiate Between Reward and Punishment?

    Institute of Scientific and Technical Information of China (English)

    Michael J. Frank; D. James Surmeier

    2009-01-01

    The activity of dopaminergic neurons are thought to be increased by stimuli that predict reward and decreased by stimuli that predict aversive outcomes. Recent work by Matsumoto and Hikosaka challenges this model by asserting that stimuli associated with either rewarding or aversive outcomes increase the activity of dopaminergic neurons in the substantia nigra pars compacta.

  17. Assessing the Developmental Neurotoxicity of 27 ...

    Science.gov (United States)

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for developmental neurotoxicity. As such, we are exploring a behavioral testing paradigm that can assess the effects of sublethal and subteratogenic concentrations of developmental neurotoxicants on zebrafish (Danio rerio). This in vivo assay quantifies the locomotor response to light stimuli under tandem light and dark conditions in a 96-well plate using a video tracking system on 6 day post fertilization zebrafish larvae. Each of twenty-seven organophosphorus pesticides was tested for their developmental neurotoxic potential by exposing zebrafish embryos/larvae to the pesticide at several concentrations (≤ 100 μM nominal concentration) during the first five days of development, followed by 24 hours of depuration and then behavioral testing. Approximately 22% of the chemicals (Acephate, Dichlorvos, Diazoxon, Bensulide,Tribufos, Tebupirimfos) did not produce any behavioral changes after developmental exposure, while many (Malaoxon Fosthiazate, Dimethoate, Dicrotophos, Ethoprop, Malathion, Naled, Diazinon, Methamidophos, Terbufos, Trichlorfon, Phorate, Pirimiphos-methyl, Profenofos, Z-Tetrachlorvinphos, Chlorpyrifos, Coumaphos, Phosmet, Omethoate) produced changes in swi

  18. A study of the long-term effect of malar fat repositioning in face lift surgery: short-term success but long-term failure.

    Science.gov (United States)

    Hamra, Sam T

    2002-09-01

    In 1990, the author reported on a series of 403 cases of deep plane face lifts, the first published technique describing the repositioning of the cheek fat, known as malar fat, in face lift surgery. This study examines the long-term results of 20 of the original series in an attempt to determine what areas of the rejuvenated face (specifically, the malar fat) showed long-term improvement. The results were judged by comparing the preoperative and long-term postoperative views in a half-and-half same-side hemiface photograph. The anatomy of the jawline (superficial musculoaponeurotic system [SMAS]), the nasolabial fold (malar fat), and the periorbital diameter were evaluated. The results confirmed that repositioning of the SMAS remained for longer than improvement in the nasolabial fold and that the vertical diameter of the periorbit did not change at all. The early results of malar fat repositioning shown at 1 to 2 years were successful, but the long-term results showed failure of the early improvement, manifested by recurrence of the nasolabial folds. There was, however, continuation of the improved results of the forehead lift and SMAS maneuvers of the original procedure. The conclusion is that only a direct excision will produce a permanent correction of the aging nasolabial fold.

  19. Dopaminergic and clinical correlates of pathological gambling in Parkinson's disease

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Hansen, K V; Gjedde, A

    2013-01-01

    Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-mak...... decision-making. Overall, the findings are consistent with the hypothesis of medication-related PG in PD and underscore the importance of taking clinical variables, such as age and personality, into account when patients with PD are medicated, to reduce the risk of PG.......Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-making......, and altered striatal dopaminergic neurotransmission. Using [(11)C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with PD and concomitant PG. We noted a marked decrease in [(11)C...

  20. Neurotoxicity of fragrance compounds: A review.

    Science.gov (United States)

    Pinkas, Adi; Gonçalves, Cinara Ludvig; Aschner, Michael

    2017-10-01

    Fragrance compounds are chemicals belonging to one of several families, which are used frequently and globally in cosmetics, household products, foods and beverages. A complete list of such compounds is rarely found on the ingredients-list of such products, as "fragrance mixtures" are defined as "trade secrets" and thus protected by law. While some information regarding the general toxicity of some of these compounds is available, their neurotoxicity is known to a lesser extent. Here, we discuss the prevalence and neurotoxicity of fragrance compounds belonging to the three most common groups: phthalates, synthetic musks and chemical sensitizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Developmental Dyslexia and Explicit Long-Term Memory

    Science.gov (United States)

    Menghini, Deny; Carlesimo, Giovanni Augusto; Marotta, Luigi; Finzi, Alessandra; Vicari, Stefano

    2010-01-01

    The reduced verbal long-term memory capacities often reported in dyslexics are generally interpreted as a consequence of their deficit in phonological coding. The present study was aimed at evaluating whether the learning deficit exhibited by dyslexics was restricted only to the verbal component of the long-term memory abilities or also involved…

  2. Neurotoxic shellfish poisoning: A review

    NARCIS (Netherlands)

    Apeldoorn ME van; Egmond HP van; Speijers GJA; CSR; ARO

    2001-01-01

    Dit literatuuroverzicht bevat informatie betreffende het "neurotoxic shellfish poisoning" (NSP) syndroom en de veroorzakende toxines, nl.de brevetoxines, welke geproduceerd worden door de dinoflagellaat Gymnodinium breve. Chemische structuren en detectie-methodes van de brevetoxines,

  3. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    DEFF Research Database (Denmark)

    Dodson, Paul D.; Dreyer, Jakob K.; Jennings, Katie Ann

    2016-01-01

    receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types......Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates...... of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine...

  4. Advancing an ethical framework for long-term care.

    Science.gov (United States)

    Carter, Mary Whelan

    2002-02-01

    This article represents an effort to formulate an ethical framework for long-term care with the explicit purpose of providing a catalyst to promote further discourse and expand consideration of what an ethic of long-term care might entail. Grounding the discussion, an introduction to traditional ethical philosophy is presented, focusing mainly on the fundamentals of deontological and teleological ethical theories. Attention then shifts to a review of the more frequently cited principles found in the long-term care ethics literature, followed by a critique of the current reliance upon principlism to resolve ethical dilemmas in long-term care. In response to this criticism, an agent-driven ethical framework stressing dignity and respect for personhood, drawn from the philosophy of Immanuel Kant, is advanced.

  5. Long-term memory, sleep, and the spacing effect.

    Science.gov (United States)

    Bell, Matthew C; Kawadri, Nader; Simone, Patricia M; Wiseheart, Melody

    2014-01-01

    Many studies have shown that memory is enhanced when study sessions are spaced apart rather than massed. This spacing effect has been shown to have a lasting benefit to long-term memory when the study phase session follows the encoding session by 24 hours. Using a spacing paradigm we examined the impact of sleep and spacing gaps on long-term declarative memory for Swahili-English word pairs by including four spacing delay gaps (massed, 12 hours same-day, 12 hours overnight, and 24 hours). Results showed that a 12-hour spacing gap that includes sleep promotes long-term memory retention similar to the 24-hour gap. The findings support the importance of sleep to the long-term benefit of the spacing effect.

  6. Long-term course of opioid addiction.

    Science.gov (United States)

    Hser, Yih-Ing; Evans, Elizabeth; Grella, Christine; Ling, Walter; Anglin, Douglas

    2015-01-01

    Opioid addiction is associated with excess mortality, morbidities, and other adverse conditions. Guided by a life-course framework, we review the literature on the long-term course of opioid addiction in terms of use trajectories, transitions, and turning points, as well as other factors that facilitate recovery from addiction. Most long-term follow-up studies are based on heroin addicts recruited from treatment settings (mostly methadone maintenance treatment), many of whom are referred by the criminal justice system. Cumulative evidence indicates that opioid addiction is a chronic disorder with frequent relapses. Longer treatment retention is associated with a greater likelihood of abstinence, whereas incarceration is negatively related to subsequent abstinence. Over the long term, the mortality rate of opioid addicts (overdose being the most common cause) is about 6 to 20 times greater than that of the general population; among those who remain alive, the prevalence of stable abstinence from opioid use is low (less than 30% after 10-30 years of observation), and many continue to use alcohol and other drugs after ceasing to use opioids. Histories of sexual or physical abuse and comorbid mental disorders are associated with the persistence of opioid use, whereas family and social support, as well as employment, facilitates recovery. Maintaining opioid abstinence for at least five years substantially increases the likelihood of future stable abstinence. Recent advances in pharmacological treatment options (buprenorphine and naltrexone) include depot formulations offering longer duration of medication; their impact on the long-term course of opioid addiction remains to be assessed.

  7. Essays on long-term mortality and interest rate risk

    NARCIS (Netherlands)

    de Kort, J.P.

    2017-01-01

    This dissertation comprises a study of long-term risks which play a major role in actuarial science. In Part I we analyse long-term mortality risk and its impact on consumption and investment decisions of economic agents, while Part II focuses on the mathematical modelling of long-term interest

  8. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity.

    Science.gov (United States)

    Ryan, Kristen R; Sirenko, Oksana; Parham, Fred; Hsieh, Jui-Hua; Cromwell, Evan F; Tice, Raymond R; Behl, Mamta

    2016-03-01

    Due to the increasing prevalence of neurological disorders and the large number of untested compounds in the environment, there is a need to develop reliable and efficient screening tools to identify environmental chemicals that could potentially affect neurological development. Herein, we report on a library of 80 compounds screened for their ability to inhibit neurite outgrowth, a process by which compounds may elicit developmental neurotoxicity, in a high-throughput, high-content assay using human neurons derived from induced pluripotent stem cells (iPSC). The library contains a diverse set of compounds including those that have been known to be associated with developmental neurotoxicity (DNT) and/or neurotoxicity (NT), environmental compounds with unknown neurotoxic potential (e.g., polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs)), as well as compounds with no documented neurotoxic potential. Neurons were treated for 72h across a 6-point concentration range (∼0.3-100μM) in 384-well plates. Effects on neurite outgrowth were assessed by quantifying total outgrowth, branches, and processes. We also assessed the number ofviable cells per well. Concentration-response profiles were evaluated using a Hill model to derive benchmark concentration (BMC) values. Assay performance was evaluated using positive and negative controls and test replicates. Compounds were ranked by activity and selectivity (i.e., specific effects on neurite outgrowth in the absence of concomitant cytotoxicity) and repeat studies were conducted to confirm selectivity. Among the 80 compounds tested, 38 compounds were active, of which 16 selectively inhibited neurite outgrowth. Of these 16 compounds, 12 were known to cause DNT/NT and the remaining 4 compounds included 3 PAHs and 1 FR. In independent repeat studies, 14/16 selective compounds were reproducibly active in the assay, of which only 6 were selective for inhibition of neurite outgrowth. These 6 compounds were

  9. ERDA's long-term waste management goals and programs

    International Nuclear Information System (INIS)

    Perge, A.F.; Trice, V.G. Jr.; Walton, R.D. Jr.

    1976-01-01

    This paper presents an overview of the ERDA's major program for the long-term waste management of radioactive waste and provides a perspective for symposium participants with regard to the interrelationship of specific components of the program that are discussed in detail in other ERDA-sponsored papers. Needs, goals, and plans are reviewed for ERDA's management of the commercially generated wastes which are expected to be delivered to ERDA in accordance with Federal regulations. At present, ERDA responsibilities include long-term management of commercial-level wastes. Possible future regulations may give ERDA responsibility for the long-term management of commercial low-level solid wastes contaminated with transuranic nuclides. Primary planning goals and programs for the development of terminal storage facilities and waste processing technology to produce acceptable waste forms for long-term management are reviewed for each of the waste types identified above. The status of development programs for the long-term management of airborne radionuclides, which may be required at some time in the future, is also reviewed. (author)

  10. Long-Term Clock Behavior of GPS IIR Satellites

    National Research Council Canada - National Science Library

    Epstein, Marvin; Dass, Todd; Rajan, John; Gilmour, Paul

    2007-01-01

    .... Rubidium clocks, as opposed to cesium clocks, have significant long-term drift. The current literature describes an initial model of drift aging for rubidium atomic clocks followed by a long-term characteristic...

  11. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for the long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are related to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product

  12. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are ralated to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product. (author)

  13. Space ventures and society long-term perspectives

    Science.gov (United States)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  14. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human

    International Nuclear Information System (INIS)

    Vidair, Charles A.

    2004-01-01

    One important aspect of risk assessment for the organophosphate and carbamate pesticides is to determine whether their neurotoxicity occurs at lower dose levels in human infants compared to adults. Because these compounds probably exert their neurotoxic effects through the inhibition of acetylcholinesterase (AChE), the above question can be narrowed to whether the cholinesterase inhibition and neurotoxicity they produce is age-dependent, both in terms of the effects produced and potency. The rat is the animal model system most commonly used to address these issues. This paper first discusses the adequacy of the postnatal rat to serve as a model for neurodevelopment in the postnatal human, concluding that the two species share numerous pathways of postnatal neurodevelopment, and that the rat in the third postnatal week is the neurodevelopmental equivalent of the newborn human. Then, studies are discussed in which young and adult rats were dosed by identical routes with organophosphates or carbamates. Four pesticides were tested in rat pups in their third postnatal week: aldicarb, chlorpyrifos, malathion, and methamidophos. The first three, but not methamidophos, caused neurotoxicity at dose levels that ranged from 1.8- to 5.1-fold lower (mean 2.6-fold lower) in the 2- to 3-week-old rat compared to the adult. This estimate in the rat, based on a limited data set of three organophosphates and a single carbamate, probably represents the minimum difference in the neurotoxicity of an untested cholinesterase-inhibiting pesticide that should be expected between the human neonate and adult. For the organophosphates, the greater sensitivity of postnatal rats, and, by analogy, that expected for human neonates, is correlated with generally lower levels of the enzymes involved in organophosphate deactivation

  15. Short-term and long-term sick-leave in Sweden

    DEFF Research Database (Denmark)

    Blank, N; Diderichsen, Finn

    1995-01-01

    The primary aim of the study was to analyse similarities and differences between repeated spells of short-term sick-leave (more than 3 spells of less than 7 days' duration in a 12-month period) and long-term absence through sickness (at least 1 spell of more than 59 days' duration in a 12-month p...

  16. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Schmitz, Nicole; Figee, Martijn; Abeling, Nico; Hasler, Gregor; van der Meer, Johan; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-01-01

    Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity

  17. Neuroprotective effects of statins against amyloid β-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Li

    2018-01-01

    Full Text Available A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD. In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ levels by affecting amyloid precursor protein (APP cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.

  18. Experimental Researches on Long-Term Strength of Granite Gneiss

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2015-01-01

    Full Text Available It is important to confirm the long-term strength of rock materials for the purpose of evaluating the long-term stability of rock engineering. In this study, a series of triaxial creep tests were conducted on granite gneiss under different pore pressures. Based on the test data, we proposed two new quantitative methods, tangent method and intersection method, to confirm the long-term strength of rock. Meanwhile, the isochronous stress-strain curve method was adopted to make sure of the accuracy and operability of the two new methods. It is concluded that the new methods are suitable for the study of the long-term strength of rock. The effect of pore pressure on the long-term strength of rock in triaxial creep tests is also discussed.

  19. Long-term skeletal findings in Menkes disease

    International Nuclear Information System (INIS)

    Amador, Eva; Domene, Ruth; Fuentes, Cristian; Carreno, Juan-Carlos; Enriquez, Goya

    2010-01-01

    Skeletal findings in infants with Menkes disease, the most characteristic of which are metaphyseal spurs, long-bone fractures and wormian bones, have been widely reported. However, the changes in skeletal features over time are not well known. The long-term findings differ completely from those initially observed and consist of undertubulation and metaphyseal flaring, similar to the findings seen in some types of bone dysplasia. The initial and long-term radiological features in an 8-year-old boy with Menkes disease are illustrated. (orig.)

  20. The interaction of short-term and long-term memory in phonetic category formation

    Science.gov (United States)

    Harnsberger, James D.

    2002-05-01

    This study examined the role that short-term memory capacity plays in the relationship between novel stimuli (e.g., non-native speech sounds, native nonsense words) and phonetic categories in long-term memory. Thirty native speakers of American English were administered five tests: categorial AXB discrimination using nasal consonants from Malayalam; categorial identification, also using Malayalam nasals, which measured the influence of phonetic categories in long-term memory; digit span; nonword span, a short-term memory measure mediated by phonetic categories in long-term memory; and paired-associate word learning (word-word and word-nonword pairs). The results showed that almost all measures were significantly correlated with one another. The strongest predictor for the discrimination and word-nonword learning results was nonword (r=+0.62) and digit span (r=+0.51), respectively. When the identification test results were partialed out, only nonword span significantly correlated with discrimination. The results show a strong influence of short-term memory capacity on the encoding of phonetic detail within phonetic categories and suggest that long-term memory representations regulate the capacity of short-term memory to preserve information for subsequent encoding. The results of this study will also be discussed with regards to resolving the tension between episodic and abstract models of phonetic category structure.

  1. Synthetic bovine proline-rich-polypeptides generate hydroxyl radicals and fail to protect dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Knaryan, Varduhi H; Samantaray, Supriti; Varghese, Merina; Srinivasan, Ambika; Galoyan, Armen A; Mohanakumar, Kochupurackal P

    2006-08-01

    Proline-rich-polypeptides (PRPs) isolated from bovine hypothalamus have been shown to render protection against neuronal injury of the brain and spinal cord. We examined two PRPs containing 15 and 10 amino acid residues (PRP-1 and PRP-4 synthetic polypeptide) for their effect, if any, on dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effects of these PRPs on hydroxyl radical ((*)OH) generation in a Fenton-like reaction as well as from isolated mitochondria were monitored, employing a sensitive salicylate hydroxylation procedure. Balb/c mice treated (i.p., twice, 16 h apart) with MPTP (30 mg/kg) or PRP-1 (1.6 mg/kg), but not PRP-4 (1.6 mg/kg) showed significant loss of striatal dopamine and norepinephrine as assayed by an HPLC-electrochemical procedure. Pretreatment with the PRPs, 30 min prior to the neurotoxin administration failed to attenuate MPTP-induced striatal dopamine or norepinephrine depletion, but significantly attenuated the MPTP-induced decrease in dopamine turnover. A significant increase in the generation of (*)OH by the PRPs in a Fenton-like reaction or from isolated mitochondria suggests their pro-oxidant action, and explains their failure to protect against MPTP-induced parkinsonism in mice.

  2. Neurotoxicity to DRG neurons varies between rodent strains treated with cisplatin and bortezomib.

    Science.gov (United States)

    Podratz, Jewel L; Kulkarni, Amit; Pleticha, Josef; Kanwar, Rahul; Beutler, Andreas S; Staff, Nathan P; Windebank, Anthony J

    2016-03-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose limiting side effect that can lead to long-term morbidity. Approximately one-third of patients receiving chemotherapy with taxanes, vinca alkaloids, platinum compounds or proteasome inhibitors develop this toxic side effect. It is not possible to predict who will get CIPN, however, genetic susceptibility may play a role. We explored this hypothesis using an established in vitro dorsal root ganglia neurite outgrowth (DRG-NOG) assay to assess possible genetic influences for cisplatin- and bortezomib-induced neurotoxicity. Almost all previous in vitro studies have used rats or mice. We compared DRG-NOG between four genetically defined, inbred mouse strains (C57BL/6J, DBA/2J, BALB/cJ, and C3H/HeJ) and one rat strain (Sprague Dawley). Our studies found differences in cisplatin and bortezomib-induced neurotoxicity between mouse and rat strains and between the different mouse strains. C57BL/6J and Balb/cJ DRG-NOG was more sensitive to cisplatin than DBA/2J and C3H/HeJ DRG-NOG, and all mouse strains were more sensitive to cisplatin than rat. Bortezomib induced a biphasic dose response in DBA/2J and C3H/H3J mice. C57BL/6J DRG-NOG was most sensitive and Balb/cJ DRG-NOG was least sensitive to bortezomib. Our animal data supports the hypothesis that genetic background may play a role in CIPN and care must be taken when rodent models are used to better understand the contribution of genetics in patient susceptibility to CIPN. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 3-aminopyridazine derivatives with atypical antidepressant, serotonergic, and dopaminergic activities.

    Science.gov (United States)

    Wermuth, C G; Schlewer, G; Bourguignon, J J; Maghioros, G; Bouchet, M J; Moire, C; Kan, J P; Worms, P; Biziere, K

    1989-03-01

    Minaprine [3-[(beta-morpholinoethyl)amino]-4-methyl-6-phenylpyridazine dihydrochloride] is active in most animal models of depression and exhibits in vivo a dual dopaminomimetic and serotoninomimetic activity profile. In an attempt to dissociate these two effects and to characterize the responsible structural requirements, a series of 47 diversely substituted analogues of minaprine were synthesized and tested for their potential antidepressant, serotonergic, and dopaminergic activities. The structure-activity relationships show that dopaminergic and serotonergic activities can be dissociated. Serotonergic activity appears to be correlated mainly with the substituent in the 4-position of the pyridazine ring whereas the dopaminergic activity appears to be dependent on the presence, or in the formation, of a para-hydroxylated aryl ring in the 6-position of the pyridazine ring.

  4. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  5. Astaxanthin attenuates neurotoxicity in a mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    B. Grimmig, L. Daly

    2017-08-01

    Full Text Available Background: Astaxanthin (AXT is a natural carotenoid with diverse biological activities. Although it is best known as a potent antioxidant, recent work suggests additional mechanisms of action that have the potential to oppose the ongoing pathophysiology of Parkinson’s disease (PD. For example, AXT has a putative role in modulating microglial activity and preserving mitochondrial function, thereby implicating this compound as a neuroprotective agent. Both oxidative stress and inflammation are involved in the progression of many neurodegenerative diseases. Therefore, we examined the efficacy for AXT to reduced neurotoxicity in a toxic model of PD in mice. Methods: In this study, we used a 4-week dietary supplementation of algae derived AXT to reduce 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP induced dopaminergic cell death. Results: AXT treated mice were protected against the loss of tyrosine hydroxylase (TH staining in the substantia nigra (SN after MPTP exposure compared to the control diet. This effect of preserved TH immunoreactivity was also observed in the striatum. Furthermore, AXT administration was able to interrupt the neuroinflammatory process known to contribute to neurodegeneration in this model. Conclusions: We demonstrate that AXT neuroprotection was associated with attenuated microglial activation as indicated by reduced immunohistochemical detection of IBA-1 in the SN and striatum of AXT treated mice. Altogether, these studies suggest that AXT has neuroprotective property in the central nervous system against MPTP neurodegeneration.

  6. [Participation as Target of Social Medicine and Nursing Care: - Legal Definition of Long-Term Care Dependency - Strategies to Prevent Long-Term Care Dependency].

    Science.gov (United States)

    Nüchtern, Elisabeth; Gansweid, Barbara; Gerber, Hans; von Mittelstaedt, Gert

    2017-01-01

    Objective: By the "Second Bill to Strengthen Long-Term Care", a new concept of long-term care dependency will be introduced, valid from 2017. Long-term care dependency according to Social Code XI will be defined covering more aspects than today. Therefore, the working group "Nursing Care" of the division "Social Medicine in Practice and Rehabilitation" in the German Society for Social Medicine and Prevention presents their results after working on the social medicine perspective of the definition and prevention of long-term care dependency. Methods: Both the definition and strategies to prevent long-term care dependency are systematically taken into consideration from the point of view of social medicine on the basis of the International Classification of Functioning, Disability and Health (ICF), as long-term care dependency means a defined condition of disability. Results: Both the current and the new concept of long-term care dependency focus activity limitations. The perspective of social medicine considers the interactions of health condition, its effects on daily activities and personal as well as environmental factors. From this point of view approaches for social benefits concerning prevention and rehabilitation can be identified systematically so as to work against the development and progression of long-term care dependency. The reference to the ICF can facilitate the communication between different professions. The new "graduation" of long-term care dependency would allow an international "translation" referring to the ICF. Conclusion: Experts from the field of social medicine as well as those of nursing care, care-givers and nursing researchers have in common the objective that persons in need of nursing care can participate in as many aspects of life of importance to them in an autonomous and self-determined way. The point of view of social medicine on long-term care dependency is fundamental for all occupational groups that are involved and for their

  7. Neurotoxic shellfish poisoning: A review

    NARCIS (Netherlands)

    Apeldoorn ME van; Egmond HP van; Speijers GJA; CSR; ARO

    2001-01-01

    This review contains information on the neurotoxic shellfish poisoning (NSP) syndrome and the provoking toxins called brevetoxins, produced by the dinoflagellate Gymnodinium breve. Data on chemical structures and detection methods for brevetoxins, sources for brevetoxins, marine organisms associated

  8. A new image for long-term care.

    Science.gov (United States)

    Wager, Richard; Creelman, William

    2004-04-01

    To counter widely held negative images of long-term care, managers in the industry should implement quality-improvement initiatives that include six key strategies: Manage the expectations of residents and their families. Address customers' concerns early. Build long-term customer satisfaction. Allocate resources to achieve exceptional outcomes in key areas. Respond to adverse events with compassion. Reinforce the facility's credibility.

  9. Long-term multipactor discharge in multicarrier systems

    International Nuclear Information System (INIS)

    Anza, S.; Vicente, C.; Gimeno, B.; Boria, V. E.; Armendariz, J.

    2007-01-01

    A new mechanism of long-term multipactor in multicarrier systems is studied employing both analytical and numerical methods. In particular, the investigation is focused on the impact that a realistic secondary emission yield at low energies produces on the development of long term multipactor. A novel analytical model for this interperiod charge accumulation is presented using the traditional multipactor theory for parallel plates, and approximating the multicarrier signal as a single-carrier signal modulated by a pulsed signal envelope. The analytical predictions are verified by numerical simulations for a typical rectangular waveguide. The analytical and numerical results demonstrate that the susceptibility of the system to develop a long-term multipactor discharge increases with higher values of low-energy secondary emission yield

  10. Long-term characteristics of nuclear emulsion

    International Nuclear Information System (INIS)

    Naganawa, N; Kuwabara, K

    2010-01-01

    Long-term characteristics of the nuclear emulsion so called 'OPERA film' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  11. Long-term characteristics of nuclear emulsion

    Science.gov (United States)

    Naganawa, N.; Kuwabara, K.

    2010-02-01

    Long-term characteristics of the nuclear emulsion so called ``OPERA film'' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  12. In search of the elusive long-term price

    International Nuclear Information System (INIS)

    Connor, M.J.; Combs, J.

    1989-01-01

    The Uranium Institute, WNFM, and past USCEA sessions described and compared existing price reporting systems. The McGraw-Hill conference led to a rather heated discussion as to the propriety of spot prices having the influence they do on amounts paid in long-term contracts. The Ux representative proposed a future's market as a way that producers could hedge against some of the uncertainty of volatile spot market. In discussing the search for the elusive long-term price, there are two interrelated issues. The first is obvious-the search for a starting or initializing price that is representative of recently-signed or pending long-term contracts. The second is less obvious, but perhaps more important-the search for a successful mechanism for determining later delivery values in long-term contracts. This paper addresses the question of pricing mechanisms first

  13. Very-long-term and short-term chromatic adaptation: are their influences cumulative?

    Science.gov (United States)

    Belmore, Suzanne C; Shevell, Steven K

    2011-02-09

    Very-long-term (VLT) chromatic adaptation results from exposure to an altered chromatic environment for days or weeks. Color shifts from VLT adaptation are observed hours or days after leaving the altered environment. Short-term chromatic adaptation, on the other hand, results from exposure for a few minutes or less, with color shifts measured within seconds or a few minutes after the adapting light is extinguished; recovery to the pre-adapted state is complete in less than an hour. Here, both types of adaptation were combined. All adaptation was to reddish-appearing long-wavelength light. Shifts in unique yellow were measured following adaptation. Previous studies demonstrate shifts in unique yellow due to VLT chromatic adaptation, but shifts from short-term chromatic adaptation to comparable adapting light can be far greater than from VLT adaptation. The question considered here is whether the color shifts from VLT adaptation are cumulative with large shifts from short-term adaptation or, alternatively, does simultaneous short-term adaptation eliminate color shifts caused by VLT adaptation. The results show the color shifts from VLT and short-term adaptation together are cumulative, which indicates that both short-term and very-long-term chromatic adaptation affect color perception during natural viewing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    Science.gov (United States)

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  15. Marketing in the long-term care continuum.

    Science.gov (United States)

    Laurence, J Nathan; Kash, Bita A

    2010-04-01

    Today, long-term care facilities are composed of independent, assisted living, and skilled nursing facilities along with many variations of those themes in between. The clientele for these various types of facilities differ because of the level of care the facility provides as well as the amenities long-term care consumers are looking for. However, there many similarities and common approaches to how reaching the target audience through effective marketing activities. Knowing who the target audience is, how to reach them, and how to communicate with them will serve any facility well in this competitive market. Developing marketing strategies for long-term care settings is as important as understanding what elements of care can be marketed individually as a niche market. Determining the market base for a facility is equally crucial since the target populations differ among the three types of facilities. By reviewing current marketing articles and applying marketing practices, we have crafted some general principles for which each facility type can learn from. Finally, we will discuss the types of marketing and how they related to the spectrum of long-term care facilities.

  16. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence.

    Science.gov (United States)

    Ersche, Karen D; Bullmore, Edward T; Craig, Kevin J; Shabbir, Shaila S; Abbott, Sanja; Müller, Ulrich; Ooi, Cinly; Suckling, John; Barnes, Anna; Sahakian, Barbara J; Merlo-Pich, Emilio V; Robbins, Trevor W

    2010-06-01

    There are no effective pharmacotherapies for stimulant dependence but there are many plausible targets for development of novel therapeutics. We hypothesized that dopamine-related targets are relevant for treatment of stimulant dependence, and there will likely be individual differences in response to dopaminergic challenges. To measure behavioral and brain functional markers of drug-related attentional bias in stimulant-dependent individuals studied repeatedly after short-term dosing with dopamine D(2)/D(3) receptor antagonist and agonist challenges. Randomized, double-blind, placebo-controlled, parallel-groups, crossover design using pharmacological functional magnetic resonance imaging. Clinical research unit (GlaxoSmithKline) and local community in Cambridge, England. Stimulant-dependent individuals (n = 18) and healthy volunteers (n = 18). Amisulpride (400 mg), pramipexole dihydrochloride (0.5 mg), or placebo were administered in counterbalanced order at each of 3 repeated testing sessions. Attentional bias for stimulant-related words was measured during functional magnetic resonance imaging by a drug-word Stroop paradigm; trait impulsivity and compulsivity of dependence were assessed at baseline by questionnaire. Drug users demonstrated significant attentional bias for drug-related words, which was correlated with greater activation of the left prefrontal and right cerebellar cortex. Attentional bias was greater in people with highly compulsive patterns of stimulant abuse; the effects of dopaminergic challenges on attentional interference and related frontocerebellar activation were different between high- and low-compulsivity subgroups. Greater attentional bias for and greater prefrontal activation by stimulant-related words constitute a candidate neurocognitive marker for dependence. Individual differences in compulsivity of stimulant dependence had significant effects on attentional bias, its brain functional representation, and its short-term modulation

  17. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    Science.gov (United States)

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Designing indicators of long-term energy supply security

    International Nuclear Information System (INIS)

    Jansen, J.C.; Van Arkel, W.G.; Boots, M.G.

    2004-01-01

    To our knowledge, so far amazingly little research work has been undertaken to construct meaningful indicators of long-run energy supply security for a particular nation or region. Currently, in addressing energy supply security, policy makers tend to emphasise short-term supply disruptions. In contrast, this pre-study accords with the broader Sustainability Outlook in considering the long-term perspective. This report starts with taking stock, in a concise way, of the official EU energy outlook and issues related to the opportunities to administer changes in the energy mix at the level of major energy use categories. Then a brief survey of relevant literature is made on long-term strategies to ensure survival of systems - be it biological, social, etc. - in an environment largely characterised by high uncertainty and a lot of unchartered territory. We found the work of Andrew Stirling very inspiring in this context. Based on his work and considering the limitations of the present research activity, we retained the Shannon index as the best 'simple' indicator of diversity. In the core of the report, the Shannon index is elaborated into four indicators of long-term energy supply security. Stepwise, additional aspects of long-term energy supply security are introduced. These aspects are: Diversification of energy sources in energy supply; Diversification of imports with respect to imported energy sources; Long-term political stability in regions of origin; The resource base in regions of origin, including the home region/country itself. After small adjustments to allow for data availability, these indicators were applied to the reference year 2030 of four long-term scenarios with data of base year 1995 and projections for underlying variables provided by the Netherlands Environmental Assessment Agency (MNP). Preliminary interpretation of the results suggests the usefulness of the indicators presented in this report. A second activity undertaken in this report was

  19. Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease.

    Science.gov (United States)

    Arkadir, David; Bergman, Hagai; Fahn, Stanley

    2014-03-25

    Neurodegenerative diseases become clinically apparent only after a substantial population of neurons is lost. This raises the possibility of compensatory mechanisms in the early phase of these diseases. The importance of understanding these mechanisms cannot be underestimated because it may guide future disease-modifying strategies. Because the anatomy and physiology of the nigrostriatal dopaminergic pathways have been well described, the study of Parkinson disease can offer insight into these early compensatory mechanisms. Collateral axonal sprouting of dopaminergic terminals into the denervated striatum is the most studied compensatory mechanism in animal (almost exclusively rodent) models of Parkinson disease and is correlated with behavioral recovery after partial lesions. This sprouting, however, does not respect the normal anatomy of the original nigrostriatal pathways and leads to aberrant neuronal networks. We suggest here that the unique physiologic property of the dopaminergic innervation of the striatum, namely redundancy of information encoding, is crucial to the efficacy of compensatory axonal sprouting in the presence of aberrant anatomical connections. Redundant information encoding results from the similarity of representation of salient and rewarding events by many dopaminergic neurons, from the wide axonal field of a single dopaminergic neuron in the striatum, and from the nonspecific spatial effect of dopamine on striatal neurons (volume conductance). Finally, we discuss the relevance of these findings in animal models to human patients with Parkinson disease.

  20. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor.

    Science.gov (United States)

    Fields, Cheryl A; Borak, Jonathan; Louis, Elan D

    2017-11-01

    The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.

  1. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  2. Sleep Quality, Short-Term and Long-Term CPAP Adherence

    Science.gov (United States)

    Somiah, Manya; Taxin, Zachary; Keating, Joseph; Mooney, Anne M.; Norman, Robert G.; Rapoport, David M.; Ayappa, Indu

    2012-01-01

    Study Objectives: Adherence to CPAP therapy is low in patients with obstructive sleep apnea/hypopnea syndrome (OSAHS). The purpose of the present study was to evaluate the utility of measures of sleep architecture and sleep continuity on the CPAP titration study as predictors of both short- and long-term CPAP adherence. Methods: 93 patients with OSAHS (RDI 42.8 ± 34.3/h) underwent in-laboratory diagnostic polysomnography, CPAP titration, and follow-up polysomnography (NPSG) on CPAP. Adherence to CPAP was objectively monitored. Short-term (ST) CPAP adherence was averaged over 14 days immediately following the titration study. Long-term (LT) CPAP adherence was obtained in 56/93 patients after approximately 2 months of CPAP use. Patients were grouped into CPAP adherence groups for ST ( 4 h) and LT adherence ( 4 h). Sleep architecture, sleep disordered breathing (SDB) indices, and daytime outcome variables from the diagnostic and titration NPSGs were compared between CPAP adherence groups. Results: There was a significant relationship between ST and LT CPAP adherence (r = 0.81, p CPAP adherence groups had significantly lower %N2 and greater %REM on the titration NPSG. A model combining change in sleep efficiency and change in sleep continuity between the diagnostic and titration NPSGs predicted 17% of the variance in LT adherence (p = 0.006). Conclusions: These findings demonstrate that characteristics of sleep architecture, even on the titration NPSG, may predict some of the variance in CPAP adherence. Better sleep quality on the titration night was related to better CPAP adherence, suggesting that interventions to improve sleep on/prior to the CPAP titration study might be used as a therapeutic intervention to improve CPAP adherence. Citation: Somiah M; Taxin Z; Keating J; Mooney AM; Norman RG; Rapoport DM; Ayappa I. Sleep quality, short-term and long-term CPAP adherence. J Clin Sleep Med 2012;8(5):489-500. PMID:23066359

  3. Effects of dopaminergic and subthalamic stimulation on musical performance.

    Science.gov (United States)

    van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D

    2013-05-01

    Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.

  4. On the relationship between short- and long-term memory

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik

    James (1890) divided memory into separate stores; primary and secondary – or short-term and long-term memory. The interaction between the two stores often assumes that information initially is represented in volatile short-term store before entering and consolidating in the more durable long-term......, accepted). Counter to popular beliefs this suggest that long-term memory precedes short-term memory and not vice versa....... memory system (e.g. Atkinson & Shiffrin, 1968). Short-term memory seems to provide a surprising processing bottleneck where only a very limited amount of information can be represented at any given moment (Miller, 1956; Cowan, 2001). A number of studies have investigated the nature of this processing...

  5. Mechanistic insight into neurotoxicity induced by developmental insults

    International Nuclear Information System (INIS)

    Tamm, Christoffer; Ceccatelli, Sandra

    2017-01-01

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells to investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.

  6. Molecular Aspects of Dopaminergic Neurodegeneration: Gene-Environment Interaction in Parkin Dysfunction

    Directory of Open Access Journals (Sweden)

    Syed Z. Imam

    2011-12-01

    Full Text Available Parkinson’s disease (PD is a common neurodegenerative movement disorder that is characterized pathologically by a progressive loss of midbrain dopaminergic neurons and by protein inclusions, designated Lewy bodies and Lewy neurites. PD is one of the most common neurodegenerative diseases, affecting almost 1% of the population over 60 years old. Although the symptoms and neuropathology of PD have been well characterized, the underlying mechanisms and causes of the disease are still not clear. Genetic mutations can provide important clues to disease mechanism, but most PD cases are sporadic rather than familial; environmental factors have long been suspected to contribute to the disease. Although more than 90% of PD cases occur sporadically and are thought to be due, in part, to oxidative stress and mitochondrial dysfunction, the study of genetic mutations has provided great insight into the molecular mechanisms of PD. Furthermore, rotenone, a widely used pesticide, and paraquat and maneb cause a syndrome in rats and mice that mimics, both behaviorally and neurologically, the symptoms of PD. In the current review, we will discuss various aspects of gene-environment interaction that lead to progressive dopaminergic neurodegenration, mainly focusing on our current finding based on stress-mediated parkin dysfunction.

  7. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Han, Weidong

    2018-01-01

    Severe cytokine release syndrome (CRS) and neurotoxicity following chimeric antigen receptor T cell (CAR-T) therapy can be life-threatening in some cases, and management of those toxicities is still a great challenge for physicians. Researchers hope to understand the pathophysiology of CRS and neurotoxicity, and identify predictive biomarkers that can forecast those toxicities in advance. Some risk factors for severe CRS and/or neurotoxicity including patient and treatment characteristics have been identified in multiple clinical trials of CAR-T cell therapy. Moreover, several groups have identified some predictive biomarkers that are able to determine beforehand which patients may suffer severe CRS and/or neurotoxicity during CAR-T cell therapy, facilitating testing of early intervention strategies for those toxicities. However, further studies are needed to better understand the biology and related risk factors for CRS and/or neurotoxicity, and determine if those identified predictors can be extrapolated to other series. Herein, we review the pathophysiology of CRS and neurotoxicity, and summarize the progress of predictive biomarkers to improve CAR-T cell therapy in cancer.

  8. PSA modeling of long-term accident sequences

    International Nuclear Information System (INIS)

    Georgescu, Gabriel; Corenwinder, Francois; Lanore, Jeanne-Marie

    2014-01-01

    In the context of the extension of PSA scope to include external hazards, in France, both operator (EDF) and IRSN work for the improvement of methods to better take into account in the PSA the accident sequences induced by initiators which affect a whole site containing several nuclear units (reactors, fuel pools,...). These methodological improvements represent an essential prerequisite for the development of external hazards PSA. However, it has to be noted that in French PSA, even before Fukushima, long term accident sequences were taken into account: many insight were therefore used, as complementary information, to enhance the safety level of the plants. IRSN proposed an external events PSA development program. One of the first steps of the program is the development of methods to model in the PSA the long term accident sequences, based on the experience gained. At short term IRSN intends to enhance the modeling of the 'long term' accident sequences induced by the loss of the heat sink or/and the loss of external power supply. The experience gained by IRSN and EDF from the development of several probabilistic studies treating long term accident sequences shows that the simple extension of the mission time of the mitigation systems from 24 hours to longer times is not sufficient to realistically quantify the risk and to obtain a correct ranking of the risk contributions and that treatment of recoveries is also necessary. IRSN intends to develop a generic study which can be used as a general methodology for the assessment of the long term accident sequences, mainly generated by external hazards and their combinations. This first attempt to develop this generic study allowed identifying some aspects, which may be hazard (or combinations of hazards) or related to initial boundary conditions, which should be taken into account for further developments. (authors)

  9. Long-term care financing: lessons from France.

    Science.gov (United States)

    Doty, Pamela; Nadash, Pamela; Racco, Nathalie

    2015-06-01

    POLICY POINTS: France's model of third-party coverage for long-term services and supports (LTSS) combines a steeply income-adjusted universal public program for people 60 or older with voluntary supplemental private insurance. French and US policies differ: the former pay cash; premiums are lower; and take-up rates are higher, in part because employer sponsorship, with and without subsidization, is more common-but also because coverage targets higher levels of need and pays a smaller proportion of costs. Such inexpensive, bare-bones private coverage, especially if marketed as a supplement to a limited public benefit, would be more affordable to those Americans currently most at risk of "spending down" to Medicaid. An aging population leads to a growing demand for long-term services and supports (LTSS). In 2002, France introduced universal, income-adjusted, public long-term care coverage for adults 60 and older, whereas the United States funds means-tested benefits only. Both countries have private long-term care insurance (LTCI) markets: American policies create alternatives to out-of-pocket spending and protect purchasers from relying on Medicaid. Sales, however, have stagnated, and the market's viability is uncertain. In France, private LTCI supplements public coverage, and sales are growing, although its potential to alleviate the long-term care financing problem is unclear. We explore whether France's very different approach to structuring public and private financing for long-term care could inform the United States' long-term care financing reform efforts. We consulted insurance experts and conducted a detailed review of public reports, academic studies, and other documents to understand the public and private LTCI systems in France, their advantages and disadvantages, and the factors affecting their development. France provides universal public coverage for paid assistance with functional dependency for people 60 and older. Benefits are steeply income

  10. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.

  11. What Legislators Need to Know about Long-Term Care Insurance.

    Science.gov (United States)

    Landes, David

    This booklet discusses the potential importance to states of long-term care insurance, describes general policy characteristics, and summarizes state actions to both regulate and promote long-term care insurance. It is intended as a resource for legislators and others involved in long-term care financing and public policy formulation. Long-term…

  12. Private long-term care insurance and state tax incentives.

    Science.gov (United States)

    Stevenson, David G; Frank, Richard G; Tau, Jocelyn

    2009-01-01

    To increase the role of private insurance in financing long-term care, tax incentives for long-term care insurance have been implemented at both the federal and state levels. To date, there has been surprisingly little study of these initiatives. Using a panel of national data, we find that market take-up for long-term care insurance increased over the last decade, but state tax incentives were responsible for only a small portion of this growth. Ultimately, the modest ability of state tax incentives to lower premiums implies that they should be viewed as a small piece of the long-term care financing puzzle.

  13. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  14. The Long-Term Conditions Questionnaire: conceptual framework and item development.

    Science.gov (United States)

    Peters, Michele; Potter, Caroline M; Kelly, Laura; Hunter, Cheryl; Gibbons, Elizabeth; Jenkinson, Crispin; Coulter, Angela; Forder, Julien; Towers, Ann-Marie; A'Court, Christine; Fitzpatrick, Ray

    2016-01-01

    To identify the main issues of importance when living with long-term conditions to refine a conceptual framework for informing the item development of a patient-reported outcome measure for long-term conditions. Semi-structured qualitative interviews (n=48) were conducted with people living with at least one long-term condition. Participants were recruited through primary care. The interviews were transcribed verbatim and analyzed by thematic analysis. The analysis served to refine the conceptual framework, based on reviews of the literature and stakeholder consultations, for developing candidate items for a new measure for long-term conditions. Three main organizing concepts were identified: impact of long-term conditions, experience of services and support, and self-care. The findings helped to refine a conceptual framework, leading to the development of 23 items that represent issues of importance in long-term conditions. The 23 candidate items formed the first draft of the measure, currently named the Long-Term Conditions Questionnaire. The aim of this study was to refine the conceptual framework and develop items for a patient-reported outcome measure for long-term conditions, including single and multiple morbidities and physical and mental health conditions. Qualitative interviews identified the key themes for assessing outcomes in long-term conditions, and these underpinned the development of the initial draft of the measure. These initial items will undergo cognitive testing to refine the items prior to further validation in a survey.

  15. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    NARCIS (Netherlands)

    Colaianna, M.; Ilmjärv, S.; Peterson, H.; Ilse Kern, I.; Julien, S.; Baquié, M.; allocca, G.; Bosgra, S.; Sachinidis, A.; Hengstler, J.G.; Leist, M.; Krause, K.H.

    2017-01-01

    Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell

  16. Characteristics of asthma attack with long-term management for bronchial asthma.

    Science.gov (United States)

    Kawahara, Noriko; Hasegawa, Shunji; Hashimoto, Kunio; Matsubara, Tomoyo; Ichiyama, Takashi; Furukawa, Susumu

    2009-10-01

    There have been no reports on the evaluation of the usefulness of long-term asthma management based on the Japanese Pediatric Guideline for the Treatment and Management of Bronchial Asthma 2005 (JPGL 2005). The purpose of the present study was to retrospectively investigate the records of 350 patients admitted to Yamaguchi University Hospital who had asthma attacks from January 2006 to June 2008. There were 149 patients who were treated for more than 3 months in accordance with the guideline (long-term management group) and 201 who were not (non-long-term management group). The patients were divided into three age groups: 100 infants, 159 toddlers, and 91 schoolchildren. The onset age of asthma in the long-term management group was earlier than that in the non-long-term management group in toddlers and schoolchildren. The white blood cell counts and C-reactive protein levels were higher in the non-long-term management group in schoolchildren, suggesting the complication of some infections. The severity of asthma in the long-term management group was greater than that in the non-long-term management group among all three age groups. There were no significant differences, however, in the severity of asthma attack at admission between the long-term and non-long-term management groups in the three age groups. Patients who had severe asthma tended to be treated with long-term management, which suggests that long-term asthma management according to JPGL 2005 may reduce the severity of asthma attack at that admission, because the severity of asthma in patients undergoing long-term management correlates with the severity of asthma attack.

  17. Influence of dopaminergically mediated reward on somatosensory decision-making.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    2009-07-01

    Full Text Available Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline, a dopamine agonist (levodopa, or an antagonist (haloperidol.higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making.

  18. Quantification of long term emission potential from landfills

    NARCIS (Netherlands)

    Heimovaara, T.J.

    2011-01-01

    Novel approaches for the after-care of Municipal Solid Waste (MSW) landfills are based on technological measures to reduce the long term emission potential in a short time period. Biological degradation in landfills is a means to significantly reduce the long term emission potential. Leachate

  19. Long-term care financing through Federal tax incentives.

    Science.gov (United States)

    Moran, D W; Weingart, J M

    1988-12-01

    Congress and the Administration are currently exploring various methods of promoting access to long-term care. In this article, an inventory of recent legislative proposals for using the Federal tax code to expand access to long-term care services is provided. Proposals are arrayed along a functional typology that includes tax mechanisms to encourage accumulation of funds, promote purchase of long-term care insurance, or induce the diversion of funds accumulated for another purpose (such as individual retirement accounts). The proposals are evaluated against the public policy objective of encouraging risk pooling to minimize social cost.

  20. Evaluation of long term leaching of borosilicate glasses

    International Nuclear Information System (INIS)

    Lanza, F.; Parnisari, E.

    1978-01-01

    For the evaluation of long term hazard of glass, data on long term glass leaching are needed. Moreover for long term leaching a model of homogeneous dissolution seems reasonable and ask for confirmation. Tests were performed at 30 0 , 80 0 , 100 0 , using an apparatus of the Soxhlet type, to 3.600 hours. Results were obtained as a weight loss and analysed following a relation with time composed by a parabolic and a linear part. Analysis of the surface layer using energy dispersion X ray spectrometry were performed. A critical analysis of the results and of the apparatus is presented

  1. Long-Term Stewardship Program Science and Technology Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  2. Long-term psychosocial consequences of surgical congenital malformations.

    Science.gov (United States)

    Diseth, Trond H; Emblem, Ragnhild

    2017-10-01

    Surgical congenital malformations often represent years of treatment, large number of hospital stays, treatment procedures, and long-term functional sequels affecting patients' psychosocial functioning. Both functional defects and psychosocial difficulties that occur commonly in childhood may pass through adolescence on to adulthood. This overview presents reports published over the past 3 decades to elucidate the long-term psychosocial consequences of surgical congenital malformations. Literature searches conducted on PubMed database revealed that less than 1% of all the records of surgical congenital malformations described long-term psychosocial consequences, but with diverse findings. This inconsistency may be due to methodological differences or deficiencies; especially in study design, patient sampling, and methods. Most of the studies revealed that the functional deficits may have great impact on patients' mental health, psychosocial functioning, and QoL; both short- and long-term negative consequences. Factors other than functional problems, e.g., repeated anesthesia, multiple hospitalization, traumatic treatment procedures, and parental dysfunctioning, may also predict long-term mental health and psychosocial functioning. Through multidisciplinary approach, pediatric surgeons should also be aware of deficits in emotional and psychosocial functioning. To achieve overall optimal psychosocial functioning, the challenge is to find a compromise between physically optimal treatment procedures and procedures that are not psychologically detrimental. Copyright © 2017. Published by Elsevier Inc.

  3. Promethazine as a Novel Prophylaxis and Treatment for Nerve Agent Poisoning

    Science.gov (United States)

    2008-12-01

    induction of mitochondrial permeability transition (mPT) (Stavrovskaya et al., 2004). In animal studies, promethazine protected dopaminergic neurons...used because this dose was shown to protect against MPTP-induced neurodegeneration of nigrostriatal dopaminergic neurons (Cleren et al., 2005...and Beal, M.F., 2005: Promethazine protects against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine neurotoxicity , Neurobiol Dis., 20(3), 701-708

  4. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    This paper presents a study on different methods of analysis that are currently used by design codes to predict the short-term and long-term deflection of reinforced concrete slab systems and compares the predicted deflections with measured deflections. The experimental work to measure deflections involved the testing of ...

  5. Do Short-Term Managerial Objectives Lead to Under- or Over-Investment in Long-Term Projects

    OpenAIRE

    Lucian Arye Bebchuk; Lars A. Stole

    1994-01-01

    This paper studies managerial decisions about investment in long-run projects in the presence of imperfect information (the market knows less about such investments than the firm's managers) and short-term managerial objectives (the managers are concerned about the short-term stock price as well as the long-term stock price). Prior work has suggested that imperfect information and short-term managerial objectives induce managers to underinvest in long-run projects. We show that either underin...

  6. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the 'learning' processes.

  7. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.

    2014-06-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the \\'learning\\' processes.

  8. Modeling Wettability Variation during Long-Term Water Flooding

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2015-01-01

    Full Text Available Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.

  9. Group long-term care insurance: decision-making factors and implications for financing long-term care.

    Science.gov (United States)

    Stum, Marlene S

    2008-01-01

    This study proposes and tests a systemic family decision-making framework to understand group long-term care insurance (LTCI) enrollment decisions. A random sample of public employees who were offered group LTCI as a workplace benefit were examined. Findings reveal very good predictive efficacy for the overall conceptual framework with a pseudo R2 value of .687, and reinforced the contributions of factors within the family system. Enrollees were more likely to have discussed the decision with others, used information sources, and had prior experience when compared to non-enrollees. Perceived health status, financial knowledge, attitudes regarding the role of private insurance, risk taking, and coverage features were additional factors related to enrollment decisions. The findings help to inform policymakers about the potential of LTCI as one strategy for financing long-term care.

  10. Neurochemical and structural markers in the brain predicting best choice-of-treatment in patients with schizophrenia - The Pan European Collaboration on Antipsychotic Naïve Schizophrenia II (PECANS II) study

    DEFF Research Database (Denmark)

    Jessen, Kasper; Bojesen, Kirsten Borup; Sigvard, Anne Mette

    Background: Insufficient treatment response to dopaminergic antipsychotics constitutes a major challenge in the treatment of patients with schizophrenia and seems to be related to persistently high levels of the neurotransmitter glutamate. Excess glutamate is neurotoxic and may cause the progress......Background: Insufficient treatment response to dopaminergic antipsychotics constitutes a major challenge in the treatment of patients with schizophrenia and seems to be related to persistently high levels of the neurotransmitter glutamate. Excess glutamate is neurotoxic and may cause...... subgroup with good treatment response. Materials and methods: PECANS II is a prospective follow-up study of 60 initial antipsychotic naïve patients with schizophrenia and 60 matched healthy controls. Brain levels of glutamate are measured with proton magnetic resonance imaging (1H-MRS), dopaminergic...... rating scales. All examinations are performed before and after 6 weeks’ treatment with a partial dopamine agonist (aripiprazole), and further after 6 months and 2 years. Patients are also examined with neuropsychological and psychophysiological test batteries as part of co-operating projects. Results...

  11. Adverse event reporting in Czech long-term care facilities.

    Science.gov (United States)

    Hěib, Zdenřk; Vychytil, Pavel; Marx, David

    2013-04-01

    To describe adverse event reporting processes in long-term care facilities in the Czech Republic. Prospective cohort study involving a written questionnaire followed by in-person structured interviews with selected respondents. Long-term care facilities located in the Czech Republic. Staff of 111 long-term care facilities (87% of long-term care facilities in the Czech Republic). None. Sixty-three percent of long-term health-care facilities in the Czech Republic have adverse event-reporting processes already established, but these were frequently very immature programs sometimes consisting only of paper recording of incidents. Compared to questionnaire responses, in-person interview responses only partially tended to confirm the results of the written survey. Twenty-one facilities (33%) had at most 1 unconfirmed response, 31 facilities (49%) had 2 or 3 unconfirmed responses and the remaining 11 facilities (17%) had 4 or more unconfirmed responses. In-person interviews suggest that use of a written questionnaire to assess the adverse event-reporting process may have limited validity. Staff of the facilities we studied expressed an understanding of the importance of adverse event reporting and prevention, but interviews also suggested a lack of knowledge necessary for establishing a good institutional reporting system in long-term care.

  12. Impact of short-term severe accident management actions in a long-term perspective. Final Report

    International Nuclear Information System (INIS)

    2000-03-01

    The present systems for severe accident management are focused on mitigating the consequences of special severe accident phenomena and to reach a safe plant state. However, in the development of strategies and procedures for severe accident management, it is also important to consider the long-term perspective of accident management and especially to secure the safe state of the plant. The main reason for this is that certain short-term actions have an impact on the long-term scenario. Both positive and negative effects from short-term actions on the accident management in the long-term perspective have been included in this paper. Short-term actions are accident management measures taken within about 24 hours after the initiating event. The purpose of short-term actions is to reach a stable status of the plant. The main goal in the long-term perspective is to maintain the reactor in a stable state and prevent uncontrolled releases of activity. The purpose of this short Technical Note, deliberately limited in scope, is to draw attention to potential long-term problems, important to utilities and regulatory authorities, arising from the way a severe accident would be managed during the first hours. Its objective is to encourage discussions on the safest - and maybe also most economical - way to manage a severe accident in the long term by not making the situation worse through inappropriate short-term actions, and on the identification of short-term actions likely to make long-term management easier and safer. The Note is intended as a contribution to the knowledge base put at the disposal of Member countries through international collaboration. The scope of the work has been limited to a literature search. Useful further activities have been identified. However, there is no proposal, at this stage, for more detailed work to be undertaken under the auspices of the CSNI. Plant-specific applications would need to be developed by utilities

  13. Long-term EEG in children.

    Science.gov (United States)

    Montavont, A; Kaminska, A; Soufflet, C; Taussig, D

    2015-03-01

    Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.

  14. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila.

    Science.gov (United States)

    Zhang, Shixing; Yin, Yan; Lu, Huimin; Guo, Aike

    2008-05-23

    Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.

  15. Long term complications of diabetes

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000327.htm Long-term complications of diabetes To use the sharing features on this page, ... other tests. All these may help you keep complications of diabetes away. You will need to check your blood ...

  16. Assessing the market for long-term care services.

    Science.gov (United States)

    Rice, J A; Taylor, S

    1984-02-01

    Traditionally, long-term care services have been used by a diverse marketplace. The chronically ill, developmentally disabled, mentally ill and aging population has looked to long-term care support services as a means of physical and emotional support. Much of the time these services were housed together for the sake of efficiency. The enormous burden these services are creating on the economy, and the growing aging population, have forced the recognition that long-term care service delivery systems must change. Alternate programming for long-term care services that reach out into the community and into individual homes is becoming an attractive approach to meeting the growing demands of the marketplace. Home health, specialized housing and creative funding mechanisms such as HMOs, are examples of initiatives undertaken by healthcare organizations that view diversification as a vehicle for survival. Market research techniques that have been used in other industries are being adapted to the healthcare industry to ensure the proper mix of services that are demanded by older, more knowledgeable consumers. The programs of the future will be market driven, with the ability of the individual to pay for such services playing a significant role. The healthcare provider of today is in a position to serve the community in new ways. By becoming an integral link in the long-term care system and by developing new programs, the organization can serve as a catalyst for change. It is up to the governing bodies and managers of these facilities to become visionaries and to accept responsibility for assessing the market for long-term care services and to guide their organization into the future.

  17. Short-term versus long-term market opportunities and financial constraints

    International Nuclear Information System (INIS)

    Ferrari, Angelo

    1999-01-01

    This presentation discusses gas developments in Europe, the European Gas Directive, short term vs. long term, and Snam's new challenges. The European gas market is characterized by (1) The role of gas in meeting the demand for energy, which varies greatly from one country to another, (2) A growing market, (3) Decreasing role of domestic production, and (4) Increasing imports. Within the European Union, the Gas Directive aims to transform single national markets into one integrated European market by introducing third party access to the network for eligible clients as a means of increasing the competition between operators. The Gas Directive would appear to modify the form of the market rather than its size, and in particular the sharing of responsibility and risk among operators. The market in the future will offer operators the possibility to exploit opportunities deriving mainly from demands for increased flexibility. Opportunities linked to entrepreneurial initiatives require long-term investments characteristic of the gas business. Risks and opportunities must be balanced evenly between different operators. If everyone takes on their own risks and responsibilities, this means a wider distribution of the risks of long-term vs. short-term, currently borne by the gas companies that are integrated, into a market that tends to favour the short-term. A gradual liberalization process should allow incumbent operators to gradually diversify their activities in new gas market areas or enter new business activities. They could move beyond their local and European boundaries in pursuit of an international dimension. The market will have to make the transition from the national to the European dimension: as an example, Snam covers 90% of the Italian market, but its share of an integrated European market will be about 15%

  18. A basic strategy for financing long term care.

    Science.gov (United States)

    Greenberg, J A; Leutz, W N

    1984-02-01

    As pressure mounts to contain Medicaid long term care spending, short-range "quick fixes" must be avoided. Three such false solutions in particular have shortcomings that may actually exacerbate long term care's financial dilemma because they are based on inadequate definitions of the problem. Two of these proposals--legislation to broaden family responsibility toward institutionalized elders on Medicaid and expanded state power to put liens on such elders' real property--err by trying to mandate "caring" and are predicated on a misunderstanding of the "spend-down" problem. The other proposal--to provide tax incentives to family members who care for elders--requires a large administrative apparatus, assumes an elasticity of supply that may not exist, and could disrupt the "gift relationship" on which family exchanges are often based. What is needed is a strategy with short term, intermediate, and long term objectives that move toward an insurance approach. The short term plan should lay the groundwork for intermediate strategy and control costs by changing rate-setting methods and putting limits on facility construction. The intermediate plan should change the problem's definition from one of merely controlling Medicaid long term care expenditures to one of efficiently managing state resources for the elderly through the development of state financing and local delivery systems that target older persons in greatest need. An effective means of doing this is through the creation of social/HMOs, which have five key features: integration of service responsibility and authority; flexibility in organizational design; balanced clientele; pooled prepaid funding; and financial risk for the provider organization. Finally, the long term strategy should transfer much of the long term care financial burden from individuals and state Medicaid agencies to insurance mechanisms. Many individuals would thus avoid impoverishment caused by health care spending and Medicaid would

  19. Effects of dopaminergic treatment on functional cortico-cortical connectivity in Parkinson's disease

    DEFF Research Database (Denmark)

    Zittel, S; Heinbokel, C; van der Vegt, J P M

    2015-01-01

    under chronic dopaminergic stimulation, but not in de novo PD patients at low stimulus intensities at an ISI of 4 ms. First-time exposure to levodopa exerts different effects on cortico-cortical pathways than chronic dopaminergic stimulation in PD, suggesting a change in the responsiveness of cortico...

  20. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    Science.gov (United States)

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  1. Strategies to meet the need for long-term data.

    Science.gov (United States)

    Chalmers, John; Woodward, Mark; Borghi, Claudio; Manolis, Athanasios; Mancia, Giuseppe

    2016-08-01

    Chronic diseases afflict patients for many years, often to the end of life, and there is increasing need for estimating lifelong risk and for evaluating the effects of treatment in the long term. Yet recommendations for lifelong treatment are most frequently based on findings from randomized clinical trials lasting only a few years. There is therefore a clear need for much longer term data, and here we present the advantages and disadvantages of many strategies, including the use of long-term posttrial follow-up, of long-term prospective cohort studies, registry databases, and of administrative databases. We also emphasize the need for long-term cost-effectiveness studies. One of the most promising strategies comes from linkage of data gathered through the ever-expanding pool of administrative databases worldwide with data from other sources, including randomized trials and the many forms of observational study.

  2. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Doaa A. Ghareeb

    2015-01-01

    Full Text Available Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL. The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE and amyloid beta precursor protein (AβPP. These changes were significantly correlated with decreased insulin degrading enzyme (IDE and beta-amyloid40 (Aβ40 and increased beta-amyloid42 (Aβ42 in the hippocampal region. Daily administration of berberine (50 mg/kg for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity.

  3. Intermediate-term and long-term mortality among acute medical patients hospitalized with community-acquired sepsis

    DEFF Research Database (Denmark)

    Henriksen, Daniel P; Pottegård, Anton; Laursen, Christian B

    2017-01-01

    OBJECTIVE: Admission with severe sepsis is associated with an increased short-term mortality, but it is unestablished whether sepsis severity has an impact on intermediate-term and long-term mortality following admission to an acute medical admission unit. PATIENTS AND METHODS: This was a populat......OBJECTIVE: Admission with severe sepsis is associated with an increased short-term mortality, but it is unestablished whether sepsis severity has an impact on intermediate-term and long-term mortality following admission to an acute medical admission unit. PATIENTS AND METHODS......: This was a population-based study of all adults admitted to an acute medical admission unit, Odense University Hospital, Denmark, from September 2010 to August 2011, identified by symptoms and clinical findings. We categorized the mortality periods into intermediate-term (31-180 days) and long-term (181-365, 366...

  4. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice

    DEFF Research Database (Denmark)

    Thomsen, Annika Højrup Runegaard; Jensen, Kathrine L; Fitzpatrick, Ciarán M

    2017-01-01

    assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice...

  5. Long-term visual associations affect attentional guidance.

    Science.gov (United States)

    Olivers, Christian N L

    2011-06-01

    When observers perform a visual search task, they are assumed to adopt an attentional set for what they are looking for. The present experiment investigates the influence of long-term visual memory associations on this attentional set. On each trial, observers were asked to search a display for a grayscale version of a known traffic sign. On each trial, a distractor sign was drawn in full color. This color could either be related or unrelated to the target sign. Distractors interfered more with search when their color was related (e.g. red when the target was a stop sign), implying that long-term color associations resulted in inadvertent attentional guidance, even though color was irrelevant to the task. The results add to the growing body of evidence that long-term memory representations automatically affect attentional orienting. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat

    OpenAIRE

    Scollon, Edward J.; Starr, James M.; Crofton, Kevin M.; Wolansky, Marcelo J.; DeVito, Michael J.; Hughes, Michael F.

    2011-01-01

    The potential for human exposure to pyrethroid pesticides has prompted pharmacodynamic and pharmacokinetic research to better characterize risk. This work tested the hypothesis that blood and brain concentrations of the pyrethroid bifenthrin are predictive of neurotoxic effects. Adult male Long Evans rats received a single oral dose of bifenthrin dissolved in corn oil. Using figure-eight mazes, motor activity was measured for 1 h at 4- and 7-h following exposure to bifenthrin (0–16 mg/kg or 0...

  7. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    Science.gov (United States)

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Frontotemporal Lobe Degeneration as Origin of Scans Without Evidence of Dopaminergic Deficit

    Directory of Open Access Journals (Sweden)

    Manuel Menéndez-González

    2018-05-01

    Full Text Available The term scans without evidence of dopaminergic deficit (SWEDD can be associated with any patient diagnosed at first with Parkinson’s disease but with a negative dopamine transporter-single photon emission computed tomography (DaTSPECT, which does not confirm the presynaptic dopaminergic deficiency. Therefore, an alternative diagnosis should be sought to support parkinsonism as a clinical diagnosis. Parkinsonism is a well-known manifestation of frontotemporal lobar degeneration (FTLD, particularly frequent in those with positive DaTSPECT. Here, we reinforce previous observations that parkinsonism can be present in FTLD patients with negative DaTSPECT and therefore, FTLD may account for a percentage of patients with SWEDD. We gather the clinical observations supporting this hypothesis and describe a case report illustrating this idea. Studies suggest the result of DaTSPECT in FTLD may depend on the neuropathology and clinical subtype. However, most studies do not provide a clinical description of the clinical subtype or pathological features making the association between subtypes of FTLD and DaTSPECT results impossible at the moment. Further studies correlating clinical, neuropsychological, neuroimaging, genetic, and pathology findings are needed to better understand parkinsonism in FTLD.

  9. Strategic Planning and the Long-term R&D Plan

    International Nuclear Information System (INIS)

    Cooley, J.

    2015-01-01

    The Department of Safeguards of the International Atomic Energy Agency implements a structured strategic planning process to ensure that safeguards will continue to be both effective and efficient in the future. This process provides the Department with a comprehensive and coherent planning framework for the short (2 years), medium (6 years) and long (12 years) term. The Department's suite of planning documents includes a long-term strategic plan and an associated long-term research and development plan as well as a biennial development and implementation support programme. The Department's Long-Term Strategic Plan 2012-2023 addresses the conceptual framework for safeguards implementation, legal authority, technical capabilities (expertise, equipment and infrastructure) and the human and financial resources necessary for Agency verification activities. As research and development (R&D) are essential to meet the safeguards needs of the future, the Department-s Long-Term R&D Plan 2012-2023 is designed to support the Long-Term Strategic Plan 2012-2023 by setting out the capabilities that the Department needs to achieve its strategic objectives, and key milestones towards achieving those capabilities for which Member State R&D support is needed. The Long-Term R&D Plan 2012-2023 addresses the Department's R&D requirements in areas such as safeguards concepts and approaches; detection of undeclared nuclear material and activities; safeguards equipment and communication; information technology, collection, analysis and security; analytical services; new mandates; and training. Long-term capabilities discussed in the presentation include deployed systems (e.g., equipment at facilities); analytical (e.g., sample analysis), operational (e.g., staff expertise and skills) and readiness (e.g., safeguarding new types of facilities) capabilities. To address near-term development objectives and support the implementation of its verification activities as well as to

  10. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    International Nuclear Information System (INIS)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik

    2015-01-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  11. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik, E-mail: henrik.viberg@ebc.uu.se

    2015-11-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  12. The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.

    Science.gov (United States)

    Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang

    2016-01-01

    HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.

  13. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats.

    Science.gov (United States)

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.

  14. Long-term memory and volatility clustering in high-frequency price changes

    Science.gov (United States)

    oh, Gabjin; Kim, Seunghwan; Eom, Cheoljun

    2008-02-01

    We studied the long-term memory in diverse stock market indices and foreign exchange rates using Detrended Fluctuation Analysis (DFA). For all high-frequency market data studied, no significant long-term memory property was detected in the return series, while a strong long-term memory property was found in the volatility time series. The possible causes of the long-term memory property were investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, the GARCH(1,1) model, reflecting the volatility clustering property, and the FIGARCH model, reflecting the long-term memory property of the volatility time series. The memory effect in the AR(1) filtered return and volatility time series remained unchanged, while the long-term memory property diminished significantly in the volatility series of the GARCH(1,1) filtered data. Notably, there is no long-term memory property, when we eliminate the long-term memory property of volatility by the FIGARCH model. For all data used, although the Hurst exponents of the volatility time series changed considerably over time, those of the time series with the volatility clustering effect removed diminish significantly. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.

  15. Natural gas market assessment: Long-term Canadian natural gas contracts

    International Nuclear Information System (INIS)

    1992-08-01

    A descriptive analysis is presented of the changes which have occurred and the developing trends in the long-term Canadian contracts governing the sale of western Canadian gas into the domestic and export markets from 1985 to 1991. The report is limited to domestic and export contracts for Canadian gas and does not include imported gas under contract. Contract structures prior to deregulation, the changing role of long-term contracts, size and duration of long-term contracts, and terms and conditions of long-term contracts are discussed. Important changes since the mid-1980s include: increased flexibility in long-term contracts enabling the parties to respond more readily to changing supply and demand conditions; greater balance between the buyer's obligation to purchase and the seller's obligation to deliver; flexible and increasingly simple pricing terms that track competitive market conditions; shorter contract terms; reduced contract volumes as smaller end-users and producer/marketers enter the market; and unbundling of gas sales and transportation service providing a wider range of contracting choices and options. 36 figs., 2 tabs

  16. Long-term complications in Hodgkin's lymphoma survivors.

    Science.gov (United States)

    Kilickap, Saadettin; Barista, Ibrahim; Ulger, Sukran; Celik, Ismail; Selek, Ugur; Güllü, Ibrahim; Yildiz, Ferah; Kars, Ayse; Ozisik, Yavuz; Tekuzman, Gülten

    2012-01-01

    Background. Although patients with Hodgkin's lymphoma (HL) achieve prolonged survival, long-term complications are a major cause of morbidity and mortality among long-term survivors of HL. Methods. We retrospectively evaluated long-term complications in 336 HL survivors treated between January 1990 and January 2006 at the Department of Medical Oncology of the Hacettepe University Institute of Oncology who were >16 years old at presentation. All patients were regularly followed up every 3 months for the first 2 years after complete response, biannually for 3 years, and annually after 5 years. Results. Median follow-up was 8.5 years. The mean age (±SD) of the patients at the time of diagnosis was 35.7 ± 13.1 years. The male to female ratio was 61%/39%. During follow-up, 29 second malignancies (8.6%) were diagnosed in 28 patients with HL; 22 were solid tumors and 7 were hematological malignancies. Forty-seven (14.0%) of all patients with HL were found to have thyroid abnormalities. During follow-up, 54 (16.1%) patients developed cardiovascular complications. Overall, 29 (8.6%) patients developed late pulmonary toxicities. The cumulative number of chronic viral infections was 13 (3.9%). Conclusions. Long-term survivors of HL need to be properly followed up not only for disease control but also for evaluation of possible late morbidities to minimize the consequences.

  17. Long-term use of short- and long-acting nitrates in stable angina pectoris.

    Science.gov (United States)

    Kosmicki, Marek Antoni

    2009-05-01

    Long-acting nitrates are effective antianginal drugs during initial treatment. However, their therapeutic value is compromised by the rapid development of tolerance during sustained therapy, which means that their clinical efficacy is decreased during long-term use. Sublingual nitroglycerin (NTG), a short-acting nitrate, is suitable for the immediate relief of angina. In patients with stable angina treated with oral long-acting nitrates, NTG maintains its full anti-ischemic effect both after initial oral ingestion and after intermittent long-term oral administration. However, NTG attenuates this effect during continuous treatment, when tolerance to oral nitrates occurs, and this is called cross-tolerance. In stable angina long-acting nitrates are considered third-line therapy because a nitrate-free interval is required to avoid the development of tolerance. Nitrates vary in their potential to induce the development of tolerance. During long-lasting nitrate therapy, except pentaerythritol tetranitrate (PETN), one can observe the development of reactive oxygen species (ROS) inside the muscular cell of a vessel wall, and these bind with nitric oxide (NO). This leads to decreased NO activity, thus, nitrate tolerance. PETN has no tendency to form ROS, and therefore during long-term PETN therapy, there is probably no tolerance or cross-tolerance, as during treatment with other nitrates.

  18. Induced dopaminergic neurons: A new promise for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Zhimin Xu

    2017-04-01

    Full Text Available Motor symptoms that define Parkinson’s disease (PD are caused by the selective loss of nigral dopaminergic (DA neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC or human induced pluripotent stem cells (iPSC. Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy.

  19. What are the differences between long-term, short-term, and working memory?

    Science.gov (United States)

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.

  20. Long-term outcomes of children undergoing video-assisted gastrostomy

    OpenAIRE

    Sal?, Martin; Santimano, Ana; Helmroth, Sofia; Stenstr?m, Pernilla; Arnbjornsson, Einar ?lafur

    2016-01-01

    Purpose The aims of this study were to assess the short- and long-term complication rates after video-assisted gastrostomy (VAG), the effects of age and gender on long-term complications and the effect of duration of gastrostomy tube retention on the need for gastroraphy when the gastrostomy device was removed. Methods This was a retrospective study of children undergoing VAG at a single institution. Children who died or moved from the area were excluded. The rates of short- and long-term com...

  1. An imperfect dopaminergic error signal can drive temporal-difference learning.

    Directory of Open Access Journals (Sweden)

    Wiebke Potjans

    2011-05-01

    Full Text Available An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards.

  2. Manganese accumulation in hair and teeth as a biomarker of manganese exposure and neurotoxicity in rats.

    Science.gov (United States)

    Liang, Guiqiang; Zhang, Li'e; Ma, Shuyan; Lv, Yingnan; Qin, Huiyan; Huang, Xiaowei; Qing, Li; Li, Qin; Chen, Kangcheng; Xiong, Feng; Ma, Yifei; Nong, Jie; Yang, Xiaobo; Zou, Yunfeng

    2016-06-01

    Manganese (Mn) is an essential trace element to humans. However, excessive Mn causes cognitive impairment resulting from injury to the central nervous system within the hippocampus. No ideal biomarker is currently available for evaluating Mn exposure and associated neurotoxicity in the body. Hence, this study used Mn levels in the serum (MnS), teeth (MnT), and hair (MnH) as biomarkers for evaluating the association between Mn exposure and cognitive impairment in Mn-treated rats. A total of 32 male Sprague-Dawley rats were randomly divided into four groups, received 0, 5, 10, and 20 mg/(kg day) of MnCl2·4H2O for 5 days a week for 18 weeks, respectively. Lifetime Mn cumulative dose (LMCD) was used to evaluate external Mn exposure. Hippocampus, serum, teeth, and hair specimens were collected from the rats for Mn determination by graphite furnace atomic absorption spectrometry. Learning and memory functions were assessed using the Morris water maze test. Results showed that chronic Mn exposure increased the hippocampus (MnHip), MnS, MnT, and MnH levels, as well as impaired learning and memory function in rats. MnHip, MnT, and MnH levels were positively correlated with LMCD (r = 0.759, r = 0.925, and r = 0.908, respectively; p  0.05). Thus, MnT and MnH detected long-term low-dose Mn exposure. These parameters can be reliable biomarkers for Mn exposure and associated neurotoxicity in Mn-treated rats.

  3. Optimal Long-Term Financial Contracting

    OpenAIRE

    Peter M. DeMarzo; Michael J. Fishman

    2007-01-01

    We develop an agency model of financial contracting. We derive long-term debt, a line of credit, and equity as optimal securities, capturing the debt coupon and maturity; the interest rate and limits on the credit line; inside versus outside equity; dividend policy; and capital structure dynamics. The optimal debt-equity ratio is history dependent, but debt and credit line terms are independent of the amount financed and, in some cases, the severity of the agency problem. In our model, the ag...

  4. Long-term creep test with finite elements

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1975-01-01

    Following a presentation of concrete creep, a brief summary of the direct and incremental calculation methods for long-term creep behaviour is given. In addition, a survey on the methods of the inner state variables is given which, on the one hand, gives a uniform framework for the various formulations of concrete creep, and on the other hand leads to a computable calculation method. Two examples on long-term creep behaviour illustrate the application field of the calculation method. (orig./LH) [de

  5. Long-term governance for sustainability

    International Nuclear Information System (INIS)

    Martell, M.

    2007-01-01

    Meritxell Martell spoke of the long-term aspects of radioactive waste management. She pointed out that decision-making processes need to be framed within the context of sustainability, which means that a balance should be sought between scientific considerations, economic aspects and structural conditions. Focusing on structural aspects, Working Group 3 of COWAM-Spain came to the conclusion that the activity of the regulator is a key factor of long-term management. Another finding is that from a sustainability perspective multi-level governance is more effective for coping with the challenges of radioactive waste management than one tier of government-making decisions. The working group also felt that the current Local Information Committees need to evolve towards more institutionalized and legitimized mechanisms for long-term involvement. Ms. Martell introduced a study comparing the efficiency of economic instruments to advance sustainable development in nuclear communities vs. municipalities in mining areas. The study found that funds transferred to nuclear zones had become a means to facilitate local acceptance of nuclear facilities rather than a means to promote socio-economic development. Another finding is that economic instruments are not sufficient guarantees of sustainable development by themselves; additional preconditions include leadership, vision and entrepreneur-ship on the part of community leaders, private or public investments, among others. Finally, Ms. Martell summarised the challenges faced by the Spanish radioactive waste management programme, which include the need for strategic thinking, designing the future in a participatory fashion, and working with local and regional governments and citizens to devise mechanisms for social learning, economic development and environmental protection. (author)

  6. Dopaminergic stimulation increases selfish behavior in the absence of punishment threat.

    Science.gov (United States)

    Pedroni, Andreas; Eisenegger, Christoph; Hartmann, Matthias N; Fischbacher, Urs; Knoch, Daria

    2014-01-01

    People often face decisions that pit self-interested behavior aimed at maximizing personal reward against normative behavior such as acting cooperatively, which benefits others. The threat of social sanctions for defying the fairness norm prevents people from behaving overly selfish. Thus, normative behavior is influenced by both seeking rewards and avoiding punishment. However, the neurochemical processes mediating the impact of these influences remain unknown. Several lines of evidence link the dopaminergic system to reward and punishment processing, respectively, but this evidence stems from studies in non-social contexts. The present study investigates dopaminergic drug effects on individuals' reward seeking and punishment avoidance in social interaction. Two-hundred one healthy male participants were randomly assigned to receive 300 mg of L-3,4-dihydroxyphenylalanine (L-DOPA) or a placebo before playing an economic bargaining game. This game involved two conditions, one in which unfair behavior could be punished and one in which unfair behavior could not be punished. In the absence of punishment threats, L-DOPA administration led to more selfish behavior, likely mediated through an increase in reward seeking. In contrast, L-DOPA administration had no significant effect on behavior when faced with punishment threats. The results of this study broaden the role of the dopaminergic system in reward seeking to human social interactions. We could show that even a single dose of a dopaminergic drug may bring selfish behavior to the fore, which in turn may shed new light on potential causal relationships between the dopaminergic system and norm abiding behaviors in certain clinical subpopulations.

  7. Long-range terms in atomic collisions

    International Nuclear Information System (INIS)

    McGuire, J.H.; Weaver, O.L.

    1986-01-01

    Various separations, or ''gauge choices,'' are possible for the decomposition of the total Hamiltonian into electronic and internuclear terms. We show that, for one particular choice, all long-range Coulomb terms are associated with the internuclear motion. The potential then associated with electronic transitions is non-Coulombic. Some practical consequences of this gauge choice are discussed

  8. Reconciling long-term cultural diversity and short-term collective social behavior.

    Science.gov (United States)

    Valori, Luca; Picciolo, Francesco; Allansdottir, Agnes; Garlaschelli, Diego

    2012-01-24

    An outstanding open problem is whether collective social phenomena occurring over short timescales can systematically reduce cultural heterogeneity in the long run, and whether offline and online human interactions contribute differently to the process. Theoretical models suggest that short-term collective behavior and long-term cultural diversity are mutually excluding, since they require very different levels of social influence. The latter jointly depends on two factors: the topology of the underlying social network and the overlap between individuals in multidimensional cultural space. However, while the empirical properties of social networks are intensively studied, little is known about the large-scale organization of real societies in cultural space, so that random input specifications are necessarily used in models. Here we use a large dataset to perform a high-dimensional analysis of the scientific beliefs of thousands of Europeans. We find that interopinion correlations determine a nontrivial ultrametric hierarchy of individuals in cultural space. When empirical data are used as inputs in models, ultrametricity has strong and counterintuitive effects. On short timescales, it facilitates a symmetry-breaking phase transition triggering coordinated social behavior. On long timescales, it suppresses cultural convergence by restricting it within disjoint groups. Moreover, ultrametricity implies that these results are surprisingly robust to modifications of the dynamical rules considered. Thus the empirical distribution of individuals in cultural space appears to systematically optimize the coexistence of short-term collective behavior and long-term cultural diversity, which can be realized simultaneously for the same moderate level of mutual influence in a diverse range of online and offline settings.

  9. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells.

    Directory of Open Access Journals (Sweden)

    Chi Young Chang

    Full Text Available Myeloperoxidase (MPO functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo (-/- mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP(+, another Parkinson's disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury.

  10. Long-term effects of interference on short-term memory performance in the rat.

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored

  11. Long-term effects of interference on short-term memory performance in the rat.

    Directory of Open Access Journals (Sweden)

    Mégane Missaire

    Full Text Available A distinction has always been made between long-term and short-term memory (also now called working memory, WM. The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI (HIWM task, or a task using a different pair in each trial expected to induce a low level of PI (LIWM task. Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be

  12. PET measurements od dopaminergic pathways in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, J.S. [Washington Univ., St. Louis, MO (United States). School of Medicine. Dept. of Neurology and Neurological Surgery, Anatomy and Neurobiology; Moerlein, S.M. [Washington Univ., St. Louis, MO (United States). School of Medicine. Dept. of Biochemistry and Molecular Biophysics, Mallinckrodt Institute of Radiology

    1999-06-01

    Position emission tomography (PET) measurements of dopaminergic pathways have revealed several new insights into the role of dopamine in the pathophysiology and pharmacology of brain diseases such as Parkinson's disease (PD), dystonia and schizophrenia. PET studies of regional blood flow of metabolism identifies sites of regional pathology. Drug-induced changes in flow or metabolism indicate the function of dopamine-mediated pathways. Measurements of radioligand binding 'in vivo' with PET reveals abnormalities associated with specific diseases and the actions of various drugs that effect the dopaminergic system. Finally, PET measurements of the uptake of analogues of levodopa provide clues to the function of dopamine pathways potentially important for diagnosis and treatment of disease like PD.

  13. Non-linear dose-response of aluminium hydroxide adjuvant particles: Selective low dose neurotoxicity

    International Nuclear Information System (INIS)

    Crépeaux, Guillemette; Eidi, Housam; David, Marie-Odile; Baba-Amer, Yasmine; Tzavara, Eleni; Giros, Bruno; Authier, François-Jérôme; Exley, Christopher; Shaw, Christopher A.; Cadusseau, Josette

    2017-01-01

    Aluminium (Al) oxyhydroxide (Alhydrogel ® ), the main adjuvant licensed for human and animal vaccines, consists of primary nanoparticles that spontaneously agglomerate. Concerns about its safety emerged following recognition of its unexpectedly long-lasting biopersistence within immune cells in some individuals, and reports of chronic fatigue syndrome, cognitive dysfunction, myalgia, dysautonomia and autoimmune/inflammatory features temporally linked to multiple Al-containing vaccine administrations. Mouse experiments have documented its capture and slow transportation by monocyte-lineage cells from the injected muscle to lymphoid organs and eventually the brain. The present study aimed at evaluating mouse brain function and Al concentration 180 days after injection of various doses of Alhydrogel ® (200, 400 and 800 μg Al/kg of body weight) in the tibialis anterior muscle in adult female CD1 mice. Cognitive and motor performances were assessed by 8 validated tests, microglial activation by Iba-1 immunohistochemistry, and Al level by graphite furnace atomic absorption spectroscopy. An unusual neuro-toxicological pattern limited to a low dose of Alhydrogel ® was observed. Neurobehavioural changes, including decreased activity levels and altered anxiety-like behaviour, were observed compared to controls in animals exposed to 200 μg Al/kg but not at 400 and 800 μg Al/kg. Consistently, microglial number appeared increased in the ventral forebrain of the 200 μg Al/kg group. Cerebral Al levels were selectively increased in animals exposed to the lowest dose, while muscle granulomas had almost Completely disappeared at 6 months in these animals. We conclude that Alhydrogel ® injected at low dose in mouse muscle may selectively induce long-term Al cerebral accumulation and neurotoxic effects. To explain this unexpected result, an avenue that could be explored in the future relates to the adjuvant size since the injected suspensions corresponding to the lowest dose

  14. Risk assessment for long-term post-accident sequences

    International Nuclear Information System (INIS)

    Ellia-Hervy, A.; Ducamp, F.

    1987-11-01

    Probabilistic risk analysis, currently conducted by the CEA (French Atomic Energy Commission) for the French replicate series of 900 MWe power plants, has identified accident sequences requiring long-term operation of some systems after the initiating event. They have been named long-term sequences. Quantification of probabilities of such sequences cannot rely exclusively on equipment failure-on-demand data: it must also take into account operating failures, the probability of which increase with time. Specific studies have therefore been conducted for a number of plant systems actuated during these long-term sequences. This has required: - Definition of the most realistic equipment utilization strategies based on existing emergency procedures for 900 MWe French plants. - Evaluation of the potential to repair failed equipment, given accessibility, repair time, and specific radiation conditions for the given sequence. - Definition of the event bringing the long-term sequence to an end. - Establishment of an appropriate quantification method, capable of taking into account the evolution of assumptions concerning equipment utilization strategies or repair conditions over time. The accident sequence quantification method based on realistic scenarios has been used in the risk assessment of the initiating event loss of reactor coolant accident occurring at power and at shutdown. Compared with the results obtained from conventional methods, this method redistributes the relative weight of accident sequences and also demonstrates that the long term can be a significant contribution to the probability of core melt

  15. 长时程增强与长时程抑制的研究%Advances in long - term potentiation and long - term depression

    Institute of Scientific and Technical Information of China (English)

    张敬军; 夏作理

    2000-01-01

    The impairment of learning and memory function in the central nervous system(CNS)is one of the main features of aging and Alzheimer' s disease (AD). Many experimental results have showed that long- term memory(LTM) is related to long- term potentiation(LTP) and long- term depression (LTD). They intluenee each other. The relationship between LTP and LTD is complex. Therefore, it is important to study the learning and memory mechanism from LTP、LTD and gene expression in the CNS.

  16. Long-term nitrogen regulation of forest carbon sequestration

    Science.gov (United States)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  17. Long- and short-term complications of episiotomy

    Directory of Open Access Journals (Sweden)

    İsmet Gün

    2016-09-01

    Full Text Available Although extensively applied in obstetrics practice to facilitate delivery by increasing the vaginal birth conduit, most episiotomy studies are in the context of short- or medium-term outcomes, and the number of studies investigating the long-term effects is insufficient. Episiotomy is often considered associated with urinary and/or anal incontinence and dyspareunia; however, there is no concrete evidence for this issue. Current meta-analyses and reviews that assessed the studies available in the literature revealed that episiotomy does not decrease the rates of urinary incontinence, perineal pain, and sexual dysfunction and that routine episiotomy does not prevent pelvic floor damage; thus, the recommended use of mediolateral episiotomy is restricted, rather than routine. According to the limited number of studies on sexual function, there seems to be a linear relationship between the degree of perineal laceration and postpartum dyspareunia. It is still not clear whether episiotomy has any impact on pelvic floor relaxation, pelvic organ prolapse, and sexual dysfunction in the long term. PRECIS: The long-term influences of episiotomy on urinary and/or fecal incontinence, pelvic floor dysfunction, sexual function, and dyspareunea are still not clear and studies on these issues are necessary.

  18. The long term agroecosystem research network - shared research strategy

    Science.gov (United States)

    Jean L. Steiner; Timothy Strickland; Peter J.A. Kleinman; Kris Havstad; Thomas B. Moorman; M.Susan Moran; Phil Hellman; Ray B. Bryant; David Huggins; Greg McCarty

    2016-01-01

    While current weather patterns and rapidly accelerated changes in technology often focus attention on short-term trends in agriculture, the fundamental demands on modern agriculture to meet society food, feed, fuel and fiber production while providing the foundation for a healthy environment requires long-term perspective. The Long- Term Agroecoystem Research Network...

  19. Institutionalization and Organizational Long-term Success

    Directory of Open Access Journals (Sweden)

    Denise L. Fleck

    2007-05-01

    Full Text Available Institutionalization processes have an ambivalent effect on organizational long-term success. Even though they foster organizational stability and permanence, they also bring about rigidity and resistance to change. As a result, successful organizations are likely to lose their competitive advantage over time. The paper addresses this issue through the investigation of the institutionalization processes of two long-lived companies: General Electric, a firm that has been a long-term success and its rival, Westinghouse, which was broken up after eleven decades of existence. The longitudinal, multilevel analysis of firms and industry has identified two different modes of organizational institutionalization. The reactive mode gives rise to rigidity and change resistance, much like institutional theory predicts; the proactive mode, on the other hand, neutralizes those negative effects of institutionalization processes. In the reactive mode, structure predominates. In the proactive mode, agency plays a major role in organizational institutionalization, and in managing the organization’s relations with the environment, clearly contributing to environmental institutionalization.

  20. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd 2+ . Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals