WorldWideScience

Sample records for dopaminergic cell line

  1. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    Science.gov (United States)

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-04-18

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  3. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    Science.gov (United States)

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  4. Neuroprotective Effects of Erucin against 6-Hydroxydopamine-Induced Oxidative Damage in a Dopaminergic-like Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Giorgio Cantelli-Forti

    2012-08-01

    Full Text Available Oxidative stress (OS contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD. A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2 enzymes. In this study, we demonstrated that treatment of the dopaminergic-like neuroblastoma SH-SY5Y cell line with isothiocyanate erucin (ER, a compound of cruciferous vegetables, resulted in significant increases of both total glutathione (GSH levels and total antioxidant capacity at the cytosolic level. The increase of GSH levels was associated with an increase in the resistance of SH-SY5Y cells to neuronal death, in terms of apoptosis, induced by 6-hydroxydopamine (6-OHDA. The pretreatment of SH-SY5Y cells with ER was also shown to prevent the redox status impairment, in terms of intracellular ROS and O2•− formation, and loss of mitochondrial membrane potential, early events that are initiators of the apoptotic process, induced by 6-OHDA. Last, the antiapoptotic and antioxidant effects of ER were abolished by buthionine sulfoximine, supporting the main role of GSH in the neuroprotective effects recorded by ER. These results suggest that ER may prevent the oxidative damage induced by 6-OHDA.

  5. Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Bjørn-Yoshimoto, Walden Emil; Jørgensen, Trine Nygaard

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of released dopamine and is the target for psychostimulants, such as cocaine and amphetamine. DAT undergoes marked constitutive endocytosis, but little is known about the fate and sorting of the endocytosed transporter. To study DAT sorting in cells...... lines, we fused the one-transmembrane segment protein Tac to DAT, thereby generating a transporter (TacDAT) with an extracellular antibody epitope suited for trafficking studies. TacDAT was functional and endocytosed constitutively in HEK293 cells. According to an ELISA-based assay, TacDAT intracellular...

  6. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    International Nuclear Information System (INIS)

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-01-01

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKCδ) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKCδ negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKCδ-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 μM) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKCδ specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 μM Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKCδ kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKCδ inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKCδ and PP2A activity.

  7. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard

    and amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  8. Characterization of a Dopaminergic Stimulatory Factor Derived from Monoclonal Cell Lines of Striatal Origin

    Science.gov (United States)

    2006-12-01

    dissolved in dimethylsulfoxide ( DMSO ). Dopamine level of MSO vehicle control = 69 ng/mg protein.he presence of a carboxylic acid group and the...phosphoethanolamine. The second, in contrast, could be extracted by organic solvents from a concentrate of the X61 lysate and was found after purification to...neurotransmitter stores by alpha-methy-p-tyrosine (AMT), an inhibitor of tyrosine hydroxylase. MN9D and N18TG2 cells were treated for 48 hrs with DMSO

  9. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis.

    Science.gov (United States)

    Esmaeilzadeh, Emran; Gardaneh, Mossa; Gharib, Ehsan; Sabouni, Farzaneh

    2013-08-01

    We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

  10. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    Science.gov (United States)

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  12. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhenqiang Zhao

    2016-12-01

    Full Text Available Mouse embryonic fibroblasts (MEFs and human foreskin fibroblasts (HFFs are used for the culture of human embryonic stem cells (hESCs. MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs =1:1 and HFFs feeder respectively, and then were differentiated into DA neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR (qRT-PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of TH positive cells and expressed higher levels of FOXA2, PITX3, NURR1 and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.

  13. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    DEFF Research Database (Denmark)

    Bauer, M; Suppmann, S; Meyer, M

    2002-01-01

    in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting...... by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase...... that the mode of action for that up-regulation is not directly connected to the regulation of GTPCH I transcription. We conclude that GDNF, in addition to its action in structural differentiation, also promotes differentiation regarding expression and enzymatic activity of a crucial component...

  14. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  15. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Science.gov (United States)

    Zhong, Xiaojing; Luo, Jie; Rastogi, Priyam; Kanthasamy, Anumantha G.; Jiles, David C.; Fellow, IEEE

    2018-05-01

    Transcranial magnetic stimulation (TMS) is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA) in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27). The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR) was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neuronal cells (N27) after TMS treatment.

  16. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhong

    2018-05-01

    Full Text Available Transcranial magnetic stimulation (TMS is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27. The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF in dopaminergic neuronal cells (N27 after TMS treatment.

  17. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    DEFF Research Database (Denmark)

    Dodson, Paul D.; Dreyer, Jakob K.; Jennings, Katie Ann

    2016-01-01

    receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types......Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates...... of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine...

  18. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tianhong Pan

    Full Text Available The relatively high co-occurrence of Parkinson's disease (PD and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM, the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR and inhibit tyrosine hydroxylase (TH, both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA, led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in

  19. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  20. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  1. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  2. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  3. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem...... cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in Parkinson's disease....

  4. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  5. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  6. Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos.

    Directory of Open Access Journals (Sweden)

    Noela Rodriguez-Losada

    Full Text Available Regenerative medicine requires, in many cases, physical supports to facilitate appropriate cellular architecture, cell polarization and the improvement of the correct differentiation processes of embryonic stem cells, induced pluripotent cells or adult cells. Because the interest in carbon nanomaterials has grown within the last decade in light of a wide variety of applications, the aim of this study was to test and evaluate the suitability and cytocompatibility of a particular nanometer-thin nanocrystalline glass-like carbon film (NGLC composed of curved graphene flakes joined by an amorphous carbon matrix. This material is a disordered structure with high transparency and electrical conductivity. For this purpose, we used a cell line (SN4741 from substantia nigra dopaminergic cells derived from transgenic mouse embryos. Cells were cultured either in a powder of increasing concentrations of NGLC microflakes (82±37μm in the medium or on top of nanometer-thin films bathed in the same culture medium. The metabolism activity of SN4741 cells in presence of NGLC was assessed using methylthiazolyldiphenyl-tetrazolium (MTT and apoptosis/necrosis flow cytometry assay respectively. Growth and proliferation as well as senescence were demonstrated by western blot (WB of proliferating cell nuclear antigen (PCNA, monoclonal phosphorylate Histone 3 (serine 10 (PH3 and SMP30 marker. Specific dopaminergic differentiation was confirmed by the WB analysis of tyrosine hydroxylase (TH. Cell maturation and neural capability were characterized using specific markers (SYP: synaptophysin and GIRK2: G-protein-regulated inward-rectifier potassium channel 2 protein via immunofluorescence and coexistence measurements. The results demonstrated cell positive biocompatibility with different concentrations of NGLC. The cells underwent a process of adaptation of SN4741 cells to NGLC where their metabolism decreases. This process is related to a decrease of PH3 expression and

  7. Wnt/beta-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells

    Czech Academy of Sciences Publication Activity Database

    Čajánek, L.; Ribeiro, D.; Liste, I.; Parish, C.L.; Bryja, Vítězslav; Arenas, E.

    2009-01-01

    Roč. 27, č. 12 (2009), s. 2917-2927 ISSN 1066-5099 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : embryonic stem cells * Wnt pathway * dopaminergic neurons Subject RIV: BO - Biophysics Impact factor: 7.747, year: 2009

  8. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (∼ 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 μg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: ► Mn nanoparticles activate mitochondrial cell death signaling

  9. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  10. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content...... of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells...

  11. Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension

    DEFF Research Database (Denmark)

    Krabbe, Christina; Courtois, Elise; Jensen, Pia

    2009-01-01

    Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic different......Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic...... days at 20% oxygen, hVMbcl-x(L) cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 +/- 0.8% to 17.2 +/- 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q...

  12. Mesenchymal Stem Cells as a Source of Dopaminergic Neurons: A Potential Cell Based Therapy for Parkinson's Disease.

    Science.gov (United States)

    Venkatesh, Katari; Sen, Dwaipayan

    2017-01-01

    Cell repair/replacing strategies for neurodegenerative diseases such as Parkinson's disease depend on well-characterized dopaminergic neuronal candidates that are healthy and show promising effect on the rejuvenation of degenerated area of the brain. Therefore, it is imperative to develop innovative therapeutic strategies that replace damaged neurons with new/functional dopaminergic neurons. Although several research groups have reported the generation of neural precursors/neurons from human/ mouse embryonic stem cells and mesenchymal stem cells, the latter is considered to be an attractive therapeutic candidate because of its high capacity for self-renewable, no adverse effect to allogeneic versus autologous transplants, high ethical acceptance and no teratoma formation. Therefore, mesenchymal stem cells can be considered as an ideal source for replacing lost cells in degenerative diseases like Parkinson's. Hence, the use of these cells in the differentiation of dopaminergic neurons becomes significant and thrives as a therapeutic approach to treat Parkinson's disease. Here we highlight the basic biology of mesenchymal stem cells, their differentiation potential into dopaminergic neurons and potential use in the clinics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    Science.gov (United States)

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  14. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats?

    Science.gov (United States)

    Luquin, Natasha; Mitrofanis, John

    2008-01-01

    We have explored the survival of dopaminergic cells of the substantia nigra pars compacta (SNc) in 6 hydroxydopamine (6OHDA)-lesioned rats with prior cortical removal. There were approximately 35% more dopaminergic cells in the ventral sector of SNc (vSNc) of 6OHDA-lesioned rats that had prior cortical removal compared to those that did not. By contrast, there were no differences in dopaminergic cell number between these experimental groups in the ventral tegmental area (VTA) and the dorsal sector of SNc (dSNc). Hence, prior cortical removal in 6OHDA-lesioned rats neuroprotected vSNc--but not VTA or dSNc--dopaminergic cells from death.

  15. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    Science.gov (United States)

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  16. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  17. Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Grow, Douglas A; Simmons, DeNard V; Gomez, Jorge A; Wanat, Matthew J; McCarrey, John R; Paladini, Carlos A; Navara, Christopher S

    2016-09-01

    : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon

  18. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniela Lehnen

    2017-10-01

    Full Text Available Human pluripotent stem cell (hPSC-derived mesencephalic dopaminergic (mesDA neurons can relieve motor deficits in animal models of Parkinson's disease (PD. Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP+ mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA neurons in vitro. Intrastriatal transplantation of IAP+ cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP+ mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies.

  19. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian

    2017-10-10

    Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.

  20. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease.

    Science.gov (United States)

    McCoy, Melissa K; Martinez, Terina N; Ruhn, Kelly A; Wrage, Philip C; Keefer, Edward W; Botterman, Barry R; Tansey, Keith E; Tansey, Malú G

    2008-03-01

    Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinson's disease treatment.

  1. 24-Epibrassinolide, a Phytosterol from the Brassinosteroid Family, Protects Dopaminergic Cells against MPP+-Induced Oxidative Stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    Julie Carange

    2011-01-01

    Full Text Available Oxidative stress and apoptosis are frequently cited to explain neuronal cell damage in various neurodegenerative disorders, such as Parkinson' s disease. Brassinosteroids (BRs are phytosterols recognized to promote stress tolerance of vegetables via modulation of the antioxidative enzyme cascade. However, their antioxidative effects on mammalian neuronal cells have never been examined so far. We analyzed the ability of 24-epibrassinolide (24-Epi, a natural BR, to protect neuronal PC12 cells from 1-methyl-4-phenylpyridinium- (MPP+- induced oxidative stress and consequent apoptosis in dopaminergic neurons. Our results demonstrate that 24-Epi reduces the levels of intracellular reactive oxygen species and modulates superoxide dismutase, catalase, and glutathione peroxidase activities. Finally, we determined that the antioxidative properties of 24-Epi lead to the inhibition of MPP+-induced apoptosis by reducing DNA fragmentation as well as the Bax/Bcl-2 protein ratio and cleaved caspase-3. This is the first time that the potent antioxidant and neuroprotective role of 24-Epi has been shown in a mammalian neuronal cell line.

  2. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  3. A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat

    Directory of Open Access Journals (Sweden)

    Fany eMessanvi

    2013-12-01

    Full Text Available Several findings have indicated an involvement of dopamine in panic and defensive behaviors. The dorsolateral column of the periaqueductal gray (dlPAG is crucially involved in the expression of panic attacks in humans and defensive behaviors, also referred to as panic-like behaviors, in animals. Although the dlPAG is known to receive a specific innervation of dopaminergic fibers and abundantly expresses dopamine receptors, the origin of this dopaminergic input is largely unknown. This study aimed at mapping the dopaminergic projections to the dlPAG in order to provide further insight into the panic-like related behavior circuitry of the dlPAG. For this purpose, the retrograde tracer cholera toxin subunit b (CTb was injected into the dlPAG of male Wistar rats and double immunofluorescence for CTb and tyrosine hydroxylase (TH, the rate-limiting enzyme in the synthesis of dopamine, was performed. Neurons labeled for both CTb and TH were counted in different dopaminergic cell groups. The findings indicate that the dopaminergic nerve terminals present in the dlPAG originate from multiple dopamine-containing cell groups in the hypothalamus and mesencephalon. Interestingly, the A13 cell group is the main source of dopaminergic afferents to the dlPAG and contains at least 45% of the total number of CTb/TH-positive neurons. Anterograde tracing with biotinylated dextran amine (BDA combined with double immunofluorescence for BDA and TH confirmed the projections from the A13 cell group to the dlPAG. The remainder of the dopamine-positive terminals present in the dlPAG was found to originate from the extended A10 cell group and the A11 group. The A13 cell group is known to send dopaminergic efferents to several other brain regions implicated in defensive behavior, including the central amygdala and ventromedial hypothalamus. Therefore, although direct behavioral evidence is lacking, our finding that the A13 cell group is also the main source of dopaminergic

  4. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  5. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  6. Does melatonin help save dopaminergic cells in MPTP-treated mice?

    Science.gov (United States)

    Ma, Jeannine; Shaw, Victoria E; Mitrofanis, John

    2009-05-01

    This study explores whether melatonin neuroprotects dopaminergic cells of the substantia nigra pars compacta (SNc) from degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice (well-known animal model of Parkinson disease). BALB/c albino mice were divided into four experimental groups. In each, mice received three series (over a 24-h period) of two intraperitoneal injections (1h apart) in different combinations. The different groups and their combinations of injections were: (1) Saline (saline, saline); (2) Mel (melatonin, saline); (3) MPTP (saline, MPTP); (4) Mel-MPTP (melatonin, MPTP). Six days after the last injection, all mice were perfused transcardially with aldehyde fixative. Brains were processed for routine tyrosine hydroxylase (TH; rate limiting enzyme for dopamine production) immunochemistry and Nissl staining. Our results - using unbiased stereology - showed that there were more TH(+) (50%) and Nissl-stained (30%) cells in the SNc of the Mel-MPTP group compared to the MPTP group, indicating a clear saving or neuroprotection of these cells. In fact, we found no significant difference between the number of TH(+) and Nissl-stained SNc cells in the Mel-MPTP group compared to the controls, namely Saline and Mel groups. This indicated that melatonin pre-treatment potentially neuroprotected all the SNc cells from MPTP toxicity and death.

  7. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.

    Science.gov (United States)

    González, Hugo; Contreras, Francisco; Prado, Carolina; Elgueta, Daniela; Franz, Dafne; Bernales, Sebastián; Pacheco, Rodrigo

    2013-05-15

    Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.

  8. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  9. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    Science.gov (United States)

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  10. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  11. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    OpenAIRE

    Song Ju-Xian; Choi Mandy; Wong Kavin; Chung Winkie; Sze Stephen; Ng Tzi-Bun; Zhang Kalin

    2012-01-01

    Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-bindi...

  12. Expansion and characterization of ventral mesencephalic precursor cells: effect of mitogens and investigation of FA1 as a potential dopaminergic marker

    DEFF Research Database (Denmark)

    Jensen, Pia; Bauer, Matthias; Jensen, Charlotte H

    2007-01-01

    factor 8 (FGF8) for expansion of such dopaminergic precursor cells, and fetal antigen-1 (FA1), a secreted neuronal protein of unknown function, as a non-invasive dopaminergic marker. Tissue from embryonic day (ED) 12 rat ventral mesencephalon was dissociated mechanically and cultured for 4 days...... to controls. After differentiation, biochemical analyses showed significantly more dopamine and FA1 in conditioned medium from both FGF2 and FGF8 expanded cultures than in controls. Correspondingly, numbers of tyrosine hydroxylase (TH)- and FA1-immunoreactive cells had increased 16-fold (P ... for these cells. Furthermore, FA1 was identified as a potential supplementary non-invasive marker of cultured dopaminergic neurons....

  13. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats.

    Science.gov (United States)

    Li, Yaochen; Li, Chunshi; Chen, Zhongshan; He, Jianrong; Tao, Zui; Yin, Zheng Qin

    2012-03-01

    The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine

  14. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  15. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  16. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  17. Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation

    Directory of Open Access Journals (Sweden)

    Daisuke Doi

    2014-03-01

    Full Text Available Human induced pluripotent stem cells (iPSCs can provide a promising source of midbrain dopaminergic (DA neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application.

  18. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain); Meyer, Morten [Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21,st, DK-500, Odense C (Denmark); Juliusson, Bengt; Kusk, Philip [NsGene A/S, Ballerup (Denmark); Martinez-Serrano, Alberto, E-mail: amserrano@cbm.uam.es [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain)

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  19. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available In Drosophila, dopaminergic (DA neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f mutations of genes of the apical complex proteins in the asymmetric cell division (ACD machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.

  20. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    Science.gov (United States)

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  1. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  2. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  3. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis.

    Science.gov (United States)

    Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Pivoraitė, Ugnė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-07-01

    Stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) have unique neurogenic properties that could be potentially exploited for therapeutic use. The importance of paracrine SHED signaling for neuro-regeneration has been recognized, but the exact mechanisms behind these effects are presently unknown. In the present study, we investigated the neuro-protective potential of exosomes and micro-vesicles derived from SHEDs on human dopaminergic neurons during oxidative stress-induced by 6-hydroxy-dopamine (6-OHDA). ReNcell VM human neural stem cells were differentiated into dopaminergic neurons and treated with 100 μmol/L of 6-OHDA alone or in combination with exosomes or micro-vesicles purified by ultracentrifugation from SHEDs cultivated in serum-free medium under two conditions: in standard two-dimensional culture flasks or on laminin-coated micro-carriers in a bioreactor. Real-time monitoring of apoptosis was performed with the use of time-lapse confocal microscopy and the CellEvent Caspase-3/7 green detection reagent. Exosomes but not micro-vesicles derived from SHEDs grown on the laminin-coated three-dimensional alginate micro-carriers suppressed 6-OHDA-induced apoptosis in dopaminergic neurons by approximately 80% throughout the culture period. Strikingly, no such effects were observed for the exosomes derived from SHEDs grown under standard culture conditions. Our results suggest that exosomes derived from SHEDs are considered as new potential therapeutic tool in the treatment of Parkinson's disease. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  5. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  6. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging

    Science.gov (United States)

    Rodriguez-Perez, Ana I.; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L.

    2016-01-01

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals. PMID:27167199

  7. Presence of dopamine D-2 receptors in human tumoral cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. (Centre Paul Broca, Paris (France))

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  8. The anorexic agents, sibutramine and fenfluramine, depress GABAB-induced inhibitory postsynaptic potentials in rat mesencephalic dopaminergic cells

    Science.gov (United States)

    Ledonne, Ada; Sebastianelli, Luca; Federici, Mauro; Bernardi, Giorgio; Mercuri, Nicola Biagio

    2009-01-01

    Background and purpose Nutrition is the result of a complex interaction among environmental, homeostatic and reward-related processes. Accumulating evidence supports key roles for the dopaminergic neurons of the ventral midbrain in regulating feeding behaviour. For this reason, in the present study, we have investigated the electrophysiological effects of two centrally acting anorexic agents, fenfluramine and sibutramine, on these cells. Experimental approach Rat midbrain slices were used to make intracellular recordings from dopaminergic neurons of the substantia nigra and the ventral tegmental area. Gamma-aminobutyric acid (GABA)-mediated synaptic transmission was assessed from the inhibitory postsynaptic potentials (IPSPs) mediated by GABAA and GABAB receptors. Key results Fenfluramine and sibutramine reduced, concentration-dependently, the GABAB IPSPs, without affecting the GABAA-mediated potentials. This effect is presynaptic, as postsynaptic membrane responses induced by application of a GABAB receptor agonist, baclofen, were not affected by the two drugs. Furthermore, the selective 5-hydroxytriptamine 1B (5-HT1B) receptor antagonist, SB216641, blocked the reduction of GABAB IPSPs caused by fenfluramine and sibutramine, indicating that the receptor mediating this effect is 5-HT1B. Conclusions and implications Two anorexic agents, fenfluramine and sibutramine, induced the activation of 5-HT1B receptors located on presynaptic GABAergic terminals, thus reducing the release of GABA. This action can alter the strength of synaptic afferents that modify the activity of dopaminergic neurons, inducing neuronal excitation. Our results reveal an additional mechanism of action for fenfluramine and sibutramine that might contribute to reducing food intake, by influencing the pleasurable and motor aspects of feeding behaviour. PMID:19298257

  9. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson's disease

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-01-01

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 μM) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 μM) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKCδ) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 μM). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKCδ D327A and kinase dead PKCδ K376R or siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKCδ promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKCδ expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKCδ cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKCδ D327A protein protected against 6-OHDA-induced PKCδ activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKCδ is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.

  10. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    Science.gov (United States)

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  11. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    Science.gov (United States)

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  12. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease.

    Science.gov (United States)

    Chao, Yin Xia; He, Bei Ping; Tay, Samuel Sam Wah

    2009-11-30

    Immunomodulatory effects of transplanted mesenchymal stem cells (MSCs) in the treatment of Parkinson's disease were studied in the MPTP-induced mouse model. MPTP treatment induced a significant loss of dopaminergic neurons, decreased expressions of claudin 1, claudin 5 and occludin in the substantia nigra compacta (SNc), and functional damage of the blood brain barrier (BBB). Our study further discovered that infiltration of MBLs into the brain to bind with microglia was detected in the SNc of MPTP-treated mice, suggesting that the BBB compromise and MBL infiltration might be involved in the pathogenesis of MPTP-induced PD. In addition, MPTP treatment also increased the expression of mannose-binding lectins (MBLs) in the liver tissue. Intravenous transplantation of MSCs into MPTP-treated mice led to recovery of BBB integrity, suppression of MBL infiltration at SNc and MBL expression in the liver, suppression of microglial activation and prevention of dopaminergic neuron death. No transplanted MSCs were observed to differentiate into dopaminergic neurons, while the MSCs migrated into the SNc and released TGF-beta1 there. Therefore, intravenous transplantation of MSCs which protect dopaminergic neurons from MPTP toxicity may be engaged in anyone or a combination of these mechanisms: repair of the BBB, reduction of MBL in the brain, inhibition of microglial cytotoxicity, and direct protection of dopaminergic neurons.

  13. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model.

    Directory of Open Access Journals (Sweden)

    Javier Ganz

    Full Text Available Achieving safe and readily accessible sources for cell replacement therapy in Parkinson's disease (PD is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.

  14. Protection of MES23.5 dopaminergic cells by obestatin is mediated by proliferative rather than anti-apoptotic action.

    Science.gov (United States)

    Shen, Xiao-Li; Jia, Feng-Ju; Song, Ning; Xie, Jun-Xia; Jiang, Hong

    2014-02-01

    Obestatin is an endogenous peptide sharing a precursor with ghrelin. This study aims to investigate whether and how obestatin protects MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity. MES23.5 cells were pretreated with obestatin (10(-13)-10(-6) mol/L) for 20 min prior to incubation with 200 μmol/L MPP(+) for 12 or 24 h, or treated with obestatin alone (10(-13) to 10(-6) mol/L) for 0, 6, 12, and 24 h. The methyl thiazolyl tetrazolium (MTT) assay was used to measure cell viability. Flow cytometry was used to measure the caspase-3 activity and the mitochondrial transmembrane potential. Proliferating cell nuclear antigen (PCNA) protein levels were determined by Western blotting. Obestatin (10(-13) to 10(-7) mol/L) pretreatment blocked or even reversed the MPP(+)-induced reduction of viability in MES23.5 cells, but had no effect on MPP(+)-induced mitochondrial transmembrane potential collapse and caspase-3 activation. When applied alone, obestatin increased viability. Elevated PCNA levels occurred with 10(-7), 10(-9), 10(-11) and 10(-13) mol/L obestatin treatment for 12 h. The results suggest that the protective effects of obestatin against MPP(+) in MES23.5 cells are due to its proliferation-promoting rather than anti-apoptotic effects.

  15. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism.

    Science.gov (United States)

    Song, Ju-Xian; Choi, Mandy Yuen-Man; Wong, Kavin Chun-Kit; Chung, Winkie Wing-Yan; Sze, Stephen Cho-Wing; Ng, Tzi-Bun; Zhang, Kalin Yan-Bo

    2012-01-21

    Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  16. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    Directory of Open Access Journals (Sweden)

    Song Ju-Xian

    2012-01-01

    Full Text Available Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS and loss of mitochondrial membrane potential (ΔΨm were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  17. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2017-12-01

    T helper (Th)17 cells, a subset of CD4 + T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP + )-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP + -treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  18. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  19. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  20. Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons.

    Science.gov (United States)

    Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao

    2014-08-01

    Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.

  1. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.

    Science.gov (United States)

    Suzuki, Sadafumi; Akamatsu, Wado; Kisa, Fumihiko; Sone, Takefumi; Ishikawa, Kei-Ichi; Kuzumaki, Naoko; Katayama, Hiroyuki; Miyawaki, Atsushi; Hattori, Nobutaka; Okano, Hideyuki

    2017-01-29

    Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184 high /CD44 - fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease. Copyright © 2016. Published by Elsevier Inc.

  2. The neuroprotective effects of α-iso-cubebene on dopaminergic cell death: involvement of CREB/Nrf2 signaling.

    Science.gov (United States)

    Park, Sun Young; Son, Beung Gu; Park, Young Hoon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.

  3. The SH-SY5Y cell line in Parkinson's disease research: a systematic review.

    Science.gov (United States)

    Xicoy, Helena; Wieringa, Bé; Martens, Gerard J M

    2017-01-24

    Parkinson's disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user's guide.

  4. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease.

    Science.gov (United States)

    Le Douaron, Gael; Schmidt, Fanny; Amar, Majid; Kadar, Hanane; Debortoli, Lucila; Latini, Alexandra; Séon-Méniel, Blandine; Ferrié, Laurent; Michel, Patrick Pierre; Touboul, David; Brunelle, Alain; Raisman-Vozari, Rita; Figadère, Bruno

    2015-01-07

    Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    Science.gov (United States)

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  6. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xuan Yan

    2017-02-01

    Full Text Available Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD. After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN, and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS, cyclooxygenase-2 (COX-2, IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  7. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi, E-mail: arthik@iastate.edu

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  8. Generation and properties of a new human ventral mesencephalic neural stem cell line

    DEFF Research Database (Denmark)

    Villa, Ana; Liste, Isabel; Courtois, Elise T

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  9. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of ?-synuclein aggregation and programmed cell death

    OpenAIRE

    Wang, Yi-Ting; Lin, Hui-Ching; Zhao, Wei-Zhong; Huang, Hui-Ju; Lo, Yu-Li; Wang, Hsiang-Tsui; Maan-Yuh Lin, Anya

    2017-01-01

    Clinical studies report significant increases in acrolein (an ?,?-unsaturated aldehyde) in the substantia nigra (SN) of patients with Parkinson?s disease (PD). In the present study, acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system was investigated by local infusion of acrolein (15, 50, 150?nmoles/0.5??l) in the SN of Sprague-Dawley rats. Acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was delineated by reductions in tyrosine hydroxylase (TH) leve...

  11. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

    Science.gov (United States)

    Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S

    2018-03-01

    Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  12. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  13. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells

    Science.gov (United States)

    Lin, Mengshien; Shivalingappa, Prashanth Chandramani; Jin, Huajun; Ghosh, Anamitra; Anantharam, Vellareddy; Ali, Syed; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2012-01-01

    A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and UPS dysfunction are not well understood. The present study investigates the contributions of PKC delta (PKCδ) mediated signaling events in MA-induced autophagy, UPS dysfunction and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased of PKCδ activation, caspase-3 activation, accumulation of ubiquitin positive aggregates and microtubule associated light chain-3 (LC3-II) levels. Interestingly, siRNA mediated knockdown of PKCδ or overexpression of cleavage resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3 mediated apoptotic cell death in the nigrostriatal dopaminergic

  14. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line.

    Science.gov (United States)

    Toulouse, André; Collins, Grace C; Sullivan, Aideen M

    2012-04-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on neurones. In an attempt to establish an useful model to study the direct neuronal influence of GDF5, we have characterised the effects of GDF5 on a human neuronal cell line, SH-SY5Y. Our results show that GDF5 has the capability to promote neuronal but not dopaminergic differentiation. We also show that it promotes neuronal survival in vitro following a 6-hydroxydopamine insult. Our results show that application of GDF5 to SH-SY5Y cultures induces the SMAD pathway which could potentially be implicated in the intracellular transmission of GDF5's neurotrophic effects. Overall, our study shows that the SH-SY5Y neuroblastoma cell line provides an excellent neuronal model to study the neurotrophic effects of GDF5.

  15. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.

    Science.gov (United States)

    Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-06-01

    Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.

  16. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP⁺, but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells.

    Science.gov (United States)

    Song, Ju-Xian; Shaw, Pang-Chui; Wong, Ngok-Shun; Sze, Cho-Wing; Yao, Xin-Sheng; Tang, Chi-Wai; Tong, Yao; Zhang, Yan-Bo

    2012-07-11

    Chrysotoxine is a naturally occurring bibenzyl compound found in medicinal Dendrobium species. We previously reported that chrysotoxine structure-specifically suppressed 6-hydroxydopamine (6-OHDA)-induced dopaminergic cell death. Whether chrysotoxine and other structurally similar bibenzyl compounds could also inhibit the neurotoxicity of 1-methyl-4-phenyl pyridinium (MPP(+)) and rotenone has not been investigated. We showed herein that chrysotoxine inhibited MPP(+), but not rotenone, induced dopaminergic cell death in SH-SY5Y cells. The overproduction of reactive oxygen species (ROS), mitochondrial dysfunction as indexed by the decrease in membrane potential, increase in calcium concentration and NF-κB activation triggered by MPP(+) were blocked by chrysotoxine pretreatment. The imbalance between the pro-apoptotic signals (Bax, caspase-3, ERK and p38 MAPK) and the pro-survival signals (Akt/PI3K/GSK-3β) induced by MPP(+) was partially or totally rectified by chrysotoxine. The results indicated that ROS inhibition, mitochondria protection, NF-κB modulation and regulation of multiple signals determining cell survival and cell death were involved in the protective effects of chrysotoxine against MPP(+) toxicity in SH-SY5Y cells. Given the different toxic profiles of 6-OHDA and MPP(+) as compared to rotenone, our results also indicated that DAT inhibition may partially account for the neuroprotective effects of chrysotoxine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties.

    Science.gov (United States)

    Pouresmaeili-Babaki, Elham; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Ravan, Hadi

    2018-04-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder characterized by the loss of brain dopaminergic neurons. Beside pharmacologic and symptomatic treatment of PD the neuroprotective therapy has recently attracted more attention. Apelin, a novel neuropeptide, and its receptors have numerous reported roles in regulating brain functions. In addition, this peptide has potent neuroprotective effects in some neurodegenerative situations. In this study, the effects of apelin-13 were investigated in a cell model of PD. Human neuroblastoma SH-SY5Y cell damage was induced by 150 μM 6-hydroxydopamine (6-OHDA) and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by fluorescence spectrophotometry method. Immunoblotting analysis was also employed to evaluate cytochrome c release and caspase-3 activity. Data showed that 6-OHDA could decrease cell viability and mitochondrial membrane potential and increase intracellular ROS, cytochrome c, and cleaved caspase-3 levels. Pretreatment of SH-SY5Y cells with apelin-13 (5 and 10 nM) significantly prevented the mentioned biochemical and molecular markers of 6-OHDA-induced neurotoxicity. Furthermore, the results showed that apelin receptor and PI3K signaling contributed to the observed protective effects of apelin. The results suggest that apelin-13 has protective effects against dopaminergic neural toxicity and its antioxidant and antiapoptotic properties are involved, at least in part, in such protection.

  18. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  19. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  20. Activation of NF-κB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant

    International Nuclear Information System (INIS)

    Park, Seong H.; Choi, Won-Seok; Yoon, So-Young; Ahn, Young Soo; Oh, Young J.

    2004-01-01

    The nuclear factor-kappaB (NF-κB) family plays an important role in the control of the apoptotic response. Its activation has been demonstrated in both neurons and glial cells in many neurological disorders. In the present study, we specifically examined whether and to what extent NF-κB activation is involved in culture models of Parkinson's disease following exposure of MN9D dopaminergic neuronal cells to 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP + ). Both analysis by immunocytochemistry and of immunoblots revealed that NF-κB-p65 was translocated into the nuclei following 6-OHDA but not MPP + -treatment. A time-dependent activation of NF-κB induced by 6-OHDA but not MPP + was also demonstrated by an electrophoretic mobility shift assay. A competition assay indicated that not only NF-κB-p65 but also -p50 is involved in 6-OHDA-induced NF-κB activity. Co-treatment with an antioxidant, N-acetyl-L-cysteine, blocked 6-OHDA-induced activation of NF-κB signaling. In the presence of an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), 6-OHDA-induced cell death was accelerated while PDTC did not affect MPP + -induced cell death. Our data may point to a drug-specific activation of NF-κB as a survival determinant for dopaminergic neurons

  1. Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells.

    Science.gov (United States)

    Selvakumar, Govindhasamy Pushpavathi; Iyer, Shankar S; Kempuraj, Duraisamy; Raju, Murugesan; Thangavel, Ramasamy; Saeed, Daniyal; Ahmed, Mohammad Ejaz; Zahoor, Harris; Raikwar, Sudhanshu P; Zaheer, Smita; Zaheer, Asgar

    2018-01-30

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.

  2. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  3. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  4. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson's disease.

    Science.gov (United States)

    Hsieh, Wen-Ting; Chiang, Been-Huang

    2014-07-09

    Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.

  5. Dopaminergic agonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy....

  6. Synergistic Effects of Aerobic Exercise after Bone Marrow Stem Cell Transplantation on Recovery of Dopaminergic Neurons and Angiogenesis Markers of Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Seyed Abdollah Hashemvarzi

    2016-03-01

    Full Text Available Abstract: Parkinson is a progressive neurodegenerative disease in central nervous system. Non-pharmacologic treatment methods such as stem cell transplantation and exercise have been considered as a treatment. The purpose of this study was to evaluate the synergistic effects of aerobic exercise after bone marrow stem cells transplantation on recovery of dopaminergic neurons and promotion of angiogenesis markers in the striatum of parkinsonian rats. 42 rats were divided into six groups: Normal (N, Sham (S, Parkinson’s (P, Stem cells transplanted Parkinson’s (SP, Exercised Parkinson’s (EP and Stem cells transplanted+Exercised Parkinson’s (SEP. To create a model of Parkinson's, the striatum was destroyed by injection of 6-hydroxy-dopamine into the striatum through stereotaxic apparatus. Stem cells were derived from the bone marrow of femur and tibia of male rats aged 6-8 weeks. After cultivation, approximately 5×105 cells were injected into the striatum of rats through the channel. Aerobic exercise was included 8 weeks of running on treadmill with a speed of 15 meters per minute. At the end of the study, all subjects were decapitated and striatum tissues were separately isolated for measurement of vascular endothelial growth factor (VEGF, dopamine (DA and tyrosine hydroxylase (TH levels. VEGF, DA and TH levels in the striatum of parkinsonian rats significantly increased in treatment groups (SP, EP and SEP, especially in SEP group compared to P group after treatment (P<0.05. The BMSCs transplantation in combination with exercise would have synergistic effects leading to functional recovery, dopaminergic neurons recovery and promotion of angiogenesis marker in the striatum of parkinsonian rats. Keywords: Stem cells, Aerobic exercise, Neurotrophic factors, Parkinson

  7. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  8. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  9. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  10. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  11. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  12. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  13. Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines

    Directory of Open Access Journals (Sweden)

    Atossa Shaltouki

    2015-05-01

    Full Text Available In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH+ neurons was decreased in Parkinson’s disease (PD patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction. The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.

  14. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    Science.gov (United States)

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a

  15. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    Science.gov (United States)

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  16. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  17. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  18. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  19. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  20. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD).

    Science.gov (United States)

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Xing, Zhenkai; Guo, Zhaopei; Tian, Huayu; Zhu, Xiaojuan; Chen, Xuesi

    2017-05-01

    Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by motor deficits which result from the progressive loss of dopaminergic neurons. Gene therapy using growth factors such as VEGF seems to be a viable approach for potential therapeutic treatment of PD. In this study, we utilized a novel non-viral gene carrier designated as PEI-PLL synthesized by our laboratory to deliver VEGF gene to study its effect by using both cell culture as well as animal models of PD. For cell culture experiments, we utilized 6-hydroxydopamine (6-OHDA) mediated cell death model of MN9D cells following transfection with either a control plasmid or VEGF expressing plasmid. As compared to control transfected cells, PEI-PLL mediated VEGF gene delivery to MN9D cells resulted in increased cell viability, increase in the number of Tyrosine hydroxylase (TH) positive cells and decreased apoptosis following 6-OHDA insult. Next, we studied the therapeutic potential of PEI-PLL mediated VEGF gene delivery in SNPc by using unilateral 6-OHDA Medial forebrain bundle (MFB) lesion model of PD in rats. VEGF administration prevented the loss of motor functions induced by 6-OHDA as determined by behavior analysis. Similarly, VEGF inhibited the 6-OHDA mediated loss of DA neurons in Substantia Nigra Pars Compacta (SNPc) as well as DA nerve fibers in striatum as determined by TH immunostaining. In addition, PEI-PLL mediated VEGF gene delivery also prevented apoptosis and microglial activation in PD rat models. Together, these results clearly demonstrated the beneficial effects of PEI-PLL mediated VEGF gene delivery on dopaminergic system in both cell culture and animal models of PD. In this report, we exploited the potential of PEI-PLL to deliver VEGF gene for the potential therapeutic treatment of PD by using both cell culture and animal models of PD. To the best of our knowledge, this is the first report describing the use of novel polymeric gene carriers for the delivery of VEGF gene

  1. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  2. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  3. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  4. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening.

    Science.gov (United States)

    Tong, Zhi-Bin; Hogberg, Helena; Kuo, David; Sakamuru, Srilatha; Xia, Menghang; Smirnova, Lena; Hartung, Thomas; Gerhold, David

    2017-02-01

    More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Overexpression of DJ-1/PARK7, the Parkinson's disease-related protein, improves mitochondrial function via Akt phosphorylation on threonine 308 in dopaminergic neuron-like cells.

    Science.gov (United States)

    Zhang, Yi; Gong, Xiao-Gang; Wang, Zhen-Zhen; Sun, Hong-Mei; Guo, Zhen-Yu; Hu, Jing-Hong; Ma, Ling; Li, Ping; Chen, Nai-Hong

    2016-05-01

    DJ-1/PARK7, the Parkinson's disease-related protein, plays an important role in mitochondrial function. However, the mechanisms by which DJ-1 affects mitochondrial function are not fully understood. Akt is a promoter of neuron survival and is partly involved in the neurodegenerative process. This research aimed at investigating a possible relationship between DJ-1 and Akt signalling in regulating mitochondrial function in the dopaminergic neuron-like cells SH-SY5Y and PC-12. Overexpression of DJ-1 was firstly validated at both the transcriptional and translational levels after transit transfection with plasmid pcDNA3-Flag-DJ-1. Confocal fluorescence microscopy demonstrated that overexpression of DJ-1 increased the mitochondrial mass, but did not disrupt the mitochondrial morphology. In addition, mitochondrial complex I activity was raised in DJ-1-overexpressing cells, and this rise occurred with an increase in cellular adenosine 5'-triphosphate content. Moreover, immunoblotting demonstrated that the levels of phosphoinositide 3-kinase and the total Akt were not altered in DJ-1-overexpressing cells, and nor was the Akt phosphorylation on serine 473 changed. By contrast, Akt phosphorylation on threonine 308 was significantly augmented by overexpression of DJ-1, and the expression of glycogen synthase kinase-3beta, a downstream effector of Akt, was suppressed. In summary, these results suggest that overexpression of DJ-1 improves the mitochondrial function, at least in part, through a mechanism involving Akt phosphorylation on threonine 308. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  7. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  8. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Zhuo, Yi; Wang, Lei; Ge, Lite; Li, Xuan; Duan, Da; Teng, Xiaohua; Jiang, Miao; Liu, Kai; Yuan, Ting; Wu, Pei; Wang, Hao; Deng, Yujia; Xie, Huali; Chen, Ping; Xia, Ying; Lu, Ming

    2017-08-01

    Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O 2 ) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O 2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.

  9. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  10. Dopaminergic Polymorphisms, Academic Achievement, and Violent Delinquency.

    Science.gov (United States)

    Yun, Ilhong; Lee, Julak; Kim, Seung-Gon

    2015-12-01

    Recent research in the field of educational psychology points to the salience of self-control in accounting for the variance in students' report card grades. At the same time, a novel empirical study from molecular genetics drawing on the National Longitudinal Study of Adolescent Health (Add Health) data has revealed that polymorphisms in three dopaminergic genes (dopamine transporter [DAT1], dopamine D2 receptor [DRD2], and dopamine D4 receptor [DRD4]) are also linked to adolescents' grade point averages (GPAs). Juxtaposing these two lines of research, the current study reanalyzed the Add Health genetic subsample to assess the relative effects of these dopaminergic genes and self-control on GPAs. The results showed that the effects of the latter were far stronger than those of the former. The interaction effects between the dopaminergic genes and a set of environmental factors on academic performance were also examined, producing findings that are aligned with the "social push hypothesis" in behavioral genetics. Finally, based on the criminological literature on the link between academic performance and delinquency, we tested whether dopaminergic effects on violent delinquency were mediated by GPAs. The results demonstrated that academic performance fully mediated the linkage between these genes and violent delinquency. © The Author(s) 2014.

  11. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  12. Chronic levodopa administration followed by a washout period increased number and induced phenotypic changes in striatal dopaminergic cells in MPTP-monkeys.

    Directory of Open Access Journals (Sweden)

    Carla DiCaudo

    Full Text Available In addition to the medium spiny neurons the mammalian striatum contains a small population of GABAergic interneurons that are immunoreactive for tyrosine hydroxylase (TH, which dramatically increases after lesions to the nigrostriatal pathway and striatal delivery of neurotrophic factors. The regulatory effect of levodopa (L-Dopa on the number and phenotype of these cells is less well understood. Eleven macaques (Macaca fascicularis were included. Group I (n = 4 received 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP and L-Dopa; Group II (n = 4 was treated with MPTP plus vehicle and Group III (n = 3 consist of intact animals (control group. L-Dopa and vehicle were given for 1 year and animals sacrificed 6 months later. Immunohistochemistry against TH was used to identify striatal and nigral dopaminergic cells. Double and triple labeling immunofluorescence was performed to detect the neurochemical characteristics of the striatal TH-ir cells using antibodies against: TH, anti-glutamate decarboxylase (GAD(67 anti-calretinin (CR anti-dopa decarboxylase (DDC and anti-dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32. The greatest density of TH-ir striatal cells was detected in the striatum of the L-Dopa treated monkeys and particularly in its associative territory. None of the striatal TH-ir cell expressed DARPP-32 indicating they are interneurons. The percentages of TH-ir cells that expressed GAD67 and DDC was approximately 50%. Interestingly, we found that in the L-Dopa group the number of TH/CR expressing cells was significantly reduced. We conclude that chronic L-Dopa administration produced a long-lasting increase in the number of TH-ir cells, even after a washout period of 6 months. L-Dopa also modified the phenotype of these cells with a significant reduction of the TH/CR phenotype in favor of an increased number of TH/GAD cells that do not express CR. We suggest that the increased number of striatal TH-ir cells might be involved

  13. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations

    Directory of Open Access Journals (Sweden)

    Bohr Iwo

    2008-12-01

    Full Text Available Abstract There is increasing evidence for a role of dopamine in the development of obesity. More specifically, dopaminergic hypofunction might lead to (overcompensatory food intake. Overeating and resulting weight gain may be induced by genetic predisposition for lower dopaminergic activity, but might also be a behavioral mechanism of compensating for decreased dopamine signaling after dopaminergic overstimulation, for example after smoking cessation or overconsumption of high palatable food. This hypothesis is in line with our incidental finding of increased weight gain after discontinuation of pharmaceutical dopaminergic overstimulation in rats. These findings support the crucial role of dopaminergic signaling for eating behaviors and offer an explanation for weight-gain after cessation of activities associated with high dopaminergic signaling. They further support the possibility that dopaminergic medication could be used to moderate food intake.

  14. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  15. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor.

    Science.gov (United States)

    Kang, Kai-Hsiang; Liou, Horng-Hui; Hour, Mann-Jen; Liou, Houng-Chi; Fu, Wen-Mei

    2013-10-01

    Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    Directory of Open Access Journals (Sweden)

    Jan Tønnesen

    Full Text Available Intrastriatal grafts of stem cell-derived dopamine (DA neurons induce behavioral recovery in animal models of Parkinson's disease (PD, but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2 and halorhodopsin (NpHR, respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  17. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  18. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  19. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  20. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study

    International Nuclear Information System (INIS)

    Duchamp, A.; Moyse, E.; Delaleu, J.-C.; Coronas, V.; Duchamp-Viret, P.

    1997-01-01

    Dopamine content in the amphibian olfactory bulb is supplied by interneurons scattered among mitral cells in the external plexiform/mitral cell layer. In mammals, dopamine has been found to be involved in various aspects of bulbar information processing by influencing mitral cell odour responsiveness. Dopamine action in the bulb depends directly on the localization of its receptor targets, found to be mainly of the D 2 type in mammals. The present study assessed, in the frog, both the anatomical localization of D 2 -like, radioligand-labelled receptors of dopamine and the in vivo action of dopamine on unitary mitral cell activity in response to odours delivered over a wide range of concentrations. The [ 125 I]iodosulpride-labelled D 2 binding sites were visualized on frozen sagittal sections of frog brains by film radioautography. The sites were found to be restricted to the external plexiform/mitral cell layer; other layers of the olfactory bulb were devoid of specific labelling. Electrophysiological recordings of mitral unit activity revealed that dopamine or its agonist apomorphine induced a drastic reduction of spontaneous firing rate of mitral cells in most cases without altering odour intensity coding properties of these cells. Moreover, pre-treatment with the D 2 antagonist eticlopride blocked the dopamine-induced reduction of mitral cell spontaneous activity.In the frog olfactory bulb, both anatomical localization of D 2 -like receptors and functional data on dopamine involvement in information processing differ from those reported in mammals. This suggests a phylogenetic evolution of dopamine action in the olfactory bulb. In the frog, anatomical data perfectly corroborate electrophysiological results, together strongly suggesting a direct action of dopamine on mitral cells. In a physiologically operating system, such an action would result in a global improvement of signal-to-noise ratio. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights

  1. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  2. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model

    DEFF Research Database (Denmark)

    Tønnesen, Jan; Parish, Clare L; Sørensen, Andreas T

    2011-01-01

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral...... of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation...... using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying...

  3. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  4. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  5. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  6. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  7. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  8. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection.

    Science.gov (United States)

    Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole

    2005-07-01

    Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.

  9. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  10. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo

    Czech Academy of Sciences Publication Activity Database

    Andersson, E.R.; Prakash, N.; Čajánek, L.; Minina, E.; Bryja, Vítězslav; Bryjová, Lenka; Yamaguchi, T.P.; Hall, A.C.; Wurst, W.; Arenas, E.

    2008-01-01

    Roč. 3, č. 10 (2008), s. 1-14 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Wnt 5a deficient mouse * ventral midbrain * planar cell polarity Subject RIV: BO - Biophysics

  11. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  12. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  13. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  14. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  15. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  17. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  18. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  19. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  20. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  1. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  2. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  3. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  4. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  5. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  6. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  7. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  8. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  9. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  10. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  11. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  12. Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Carnicella, Sebastien; Ahmadiantehrani, Somayeh; He, Dao-Yao; Nielsen, Carsten K; Bartlett, Selena E; Janak, Patricia H; Ron, Dorit

    2009-07-15

    Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPgammaS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders.

  13. Application of DNA fingerprints for cell-line individualization.

    OpenAIRE

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-01-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they d...

  14. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  15. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  16. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations

    DEFF Research Database (Denmark)

    Momcilovic, Olga; Sivapatham, Renuka; Oron, Tal Ronnen

    2016-01-01

    We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight...... not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis........ We further examined gene expression in a stress model (MPTP-induced dopaminergic neuronal death) using two clones from the SNCA triplication line, and detected changes in genes associated with mitophagy. Our data suggested that even a well-characterized line of a monogenic disease may...

  17. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  18. Effects of combined BDNF and GDNF treatment on cultured dopaminergic midbrain neurons

    DEFF Research Database (Denmark)

    Sautter, J; Meyer, Morten; Spenger, C

    1998-01-01

    Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain-derived neuro......Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain......-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), or a combination of both. Dopamine content of the culture medium, the number of tyrosine hydroxylase-immunoreactive neurons, and culture volumes were moderately increased in the BDNF- and GDNF-treated cultures but significantly...... increased by 6.8-, 3.2- and 2.4-fold, respectively after treatment with the combination of both factors. We conclude that pretreatment of dopaminergic tissue in culture with a combination of BDNF and GDNF may be an effective means to improve the quality of tissue prior to grafting....

  19. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Science.gov (United States)

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  1. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  2. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  3. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  4. Proteomic analysis of cell lines to identify the irinotecan resistance ...

    Indian Academy of Sciences (India)

    MADHU

    was selected from the wild-type LoVo cell line by chronic exposure to irinotecan ... dose–effect curves of anticancer drugs were drawn on semilogarithm .... alcohol metabolites daunorubicinol (Forrest and Gonzalez. 2000; Mordente et al. ..... Chen L, Huang C and Wei Y 2007 Proteomic analysis of liver cancer cells treated ...

  5. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  6. Generation of Xeroderma Pigmentosum-A Patient-Derived Induced Pluripotent Stem Cell Line for Use As Future Disease Model.

    Science.gov (United States)

    Ohnishi, Hiroe; Kawasaki, Takashi; Deguchi, Tomonori; Yuba, Shunsuke

    2015-08-01

    Xeroderma pigmentosum group A (XP-A) is a genetic disorder in which there is an abnormality in nucleotide excision repair that causes hypersensitivity to sunlight and multiple skin cancers. The development of central and peripheral neurological disorders not correlated to ultraviolet light exposure is associated with XP-A. The genes responsible for XP-A have been identified and a XPA knockout mouse has been generated. These knockout mice exhibit cutaneous symptoms, but they do not show neurological disorders. The mechanism of pathogenesis of neurological disorders is still unclear and therapeutic methods have not been established. Therefore, we generated XP-A patient-derived human induced pluripotent stem cells (XPA-iPSCs) to produce in vitro models of neurological disorders. We obtained iPSC lines from fibroblasts of two patients carrying different mutations. Drugs screened using XPA-iPSC lines can be helpful for treating XP-A patients in Japan. Additionally, we revealed that these iPSCs have the potential to differentiate into neural lineage cells, including dopaminergic neurons, which decrease in XP-A patients. Our results indicate that expression of the normal XPA gene without mutations is not required for generation of iPSCs and differentiation of iPSCs into neural lineage cells. XPA-iPSCs may become useful models that clarify our understanding of neurological pathogenesis and help to establish therapeutic methods.

  7. The dopaminergic system in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Rodrigo ePacheco

    2014-03-01

    Full Text Available Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuro-immune communications mediated by dopamine. Studies of dendritic cells (DCs revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs. Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis. The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or rheumatoid arthritis. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.

  8. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  9. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  10. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  11. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  12. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  13. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  14. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  15. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  16. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  17. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  18. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line

    OpenAIRE

    Toulouse, André; Collins, Grace C.; Sullivan, Aideen M.

    2012-01-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on ne...

  19. The SH-SY5Y cell line in Parkinson's disease research: a systematic review

    OpenAIRE

    Xicoy, H; Wieringa, B; Martens, G.J.

    2017-01-01

    Parkinson?s disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, ar...

  20. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  1. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    OpenAIRE

    Zhang Ping; Zhang Zhiyuan; Zhou Xiaojian; Qiu Weiliu; Chen Fangan; Chen Wantao

    2006-01-01

    Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differe...

  2. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  3. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  4. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  5. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  6. Managing Parkinson's disease with continuous dopaminergic stimulation

    NARCIS (Netherlands)

    Wolters, Erik; Lees, Andrew J.; Volkmann, Jens; van Laar, Teus; Hovestadt, Ad

    The pathophysiology of Parkinson's disease is marked by the loss of dopaminergic neurons, which leads to striatal dopaminergic deficiency. This causes resting tremor, hypokinesia, rigidity, bradykinesia, and loss of postural reflexes. Most current treatments for Parkinson's disease aim to restore

  7. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  8. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  9. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP.

    Science.gov (United States)

    Aguirre, Jose A; Kehr, Jan; Yoshitake, Takashi; Liu, Fang-Ling; Rivera, Alicia; Fernandez-Espinola, Sergio; Andbjer, Beth; Leo, Giuseppina; Medhurst, Andrew D; Agnati, Luigi F; Fuxe, Kjell

    2005-02-08

    The mGluR5 antagonist MPEP was used to study the role of mGluR5 in MPTP-induced injury of the nigrostriatal DA neurons. The findings indicate that acute blockade of mGluR5 may result in neuroprotective actions against MPTP neurotoxicity on nigral DA cell bodies and striatal DA terminals using stereological analysis of TH immunoreactivity and microdensitometry. Biochemical analysis showed no restoration of DA levels and metabolism indicating a maintained reduction of DA transmission.

  10. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  11. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  12. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  13. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  14. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  15. The antiproliferative effect of coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y

    2001-01-01

    Twenty-one coumarins were examined for their antiproliferative activity towards several cancer cell lines, namely lung carcinoma (A549), melanin pigment producing mouse melanoma (B16 melanoma 4A5), human T-cell leukemia (CCRF-HSB-2), and human gastric cancer, lymph node metastasized (TGBC11TKB). The structure-activity relationship established from the results revealed that the 6,7-dihydroxy moiety had an important role for their antiproliferative activity. Analysis of cell cycle distribution indicated that esculetin-treated cells accumulated in the G1 (at 400 microM) or in S phase (at 100 microM).

  16. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  17. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  18. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  19. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  20. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  1. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  2. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  3. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Keywords: Induced pluripotent stem cells, Genotyping, Cell line identification, Short tandem repeats, Quality control

  4. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  5. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  6. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  7. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... individual or species. With the advent of standardized, simple, and rapid methods for human cell line... project will undergo STR profiling, a DNA profiling method that examines/screens for STRs (DNA elements 2... distinct DNA profile and when the STR DNA fragment sizes are converted to numeric values, the DNA profiles...

  8. Antibacterial and anti-breast cancer cell line activities of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activity of extracts of Sanghuangporus sp.1 fungus against pathogenic bacteria and a breast cancer cell line. Methods: The wild fruiting body and mycelium of Sanghuangporus sp.1 were extracted with water and ethanol by ultrasonication extraction. The activity of the extracts against pathogenic ...

  9. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  10. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  11. Characterization of the camel skin cell line Dubca.

    Science.gov (United States)

    Klopries, M; Wernery, U; Kaaden, O R

    1995-01-01

    A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells.

  12. 9-β-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    International Nuclear Information System (INIS)

    Heaton, D.

    1992-06-01

    The effect of 9-β-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D 0 values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D 0 values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 μM) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 μM were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo

  13. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  14. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  16. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  17. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  18. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  20. CD40 expression in Wehi-164 cell line.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  1. Effects of irradiation on cytokine production in glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The effects of irradiation on cytokine production in glioma cell lines, NP1, NP2 and NP3, were studied. Culture supernatants were collected after 6, 24, 48 or 72 hours and the concentrations of interleukin (IL)-6 and IL-8 measured by enzyme-linked immunosorbent assay. Spontaneous and IL-1[beta]-stimulated productions were analyzed. Some cells were given a single dose of Lineac irradiation (10 or 20 Gy). Production of IL-6 (with or without IL-1[beta] stimulation) increased gradually to a maximum after 72 hours, more in the 20 Gy-irradiated cells than 10 Gy cells (p<0.01). Production of IL-8 increased gradually to a maximum after 48 or 72 hours. Spontaneous production of IL-8 increased more in 20 Gy-irradiated cells than 10 Gy cells after 6 and 24 hours (p<0.01), but increased more in 10 Gy cells than 20 Gy cells after 48 and 72 hours (p<0.01). The production of IL-8 stimulated by IL-1[beta] increased more in 10 Gy cells than 20 Gy cells 24 hours later (p<0.01). IL-6 and IL-8 production differed in the response to irradiation. Our data suggest that bidirectional communication between the immune system and glioma cells changes after radiotherapy. (author).

  2. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  3. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    Directory of Open Access Journals (Sweden)

    Roberto De Gregorio

    2018-04-01

    Full Text Available Summary: The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. : In this article, Bellenchi and colleagues show that the microRNA miR-34b/c is expressed in FACS-purified Pitx3-GFP+ neurons and promotes dopaminergic differentiation by negative modulating Wnt1 and the downstream WNT signaling pathway. Induced dopaminergic cells, expressing miR-34b/c, synthesize dopamine and show the electrophysiological properties featured by brain dopaminergic neurons. Keywords: microRNA, dopamine, mESC, miR34b/c, epiSC, transdifferentiation, Wnt1, Wnt pathway, reprogramming

  4. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  5. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  6. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  7. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  8. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  9. Renin angiotensin system and gender differences in dopaminergic degeneration

    Directory of Open Access Journals (Sweden)

    Rodriguez-Perez Ana I

    2011-08-01

    Full Text Available Abstract Background There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD. It has been shown that the local renin angiotensin system (RAS plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1 receptors. Results In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen. However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. Conclusions The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

  10. Study of radiosensitization of chloroquine on esophageal cancer cell line

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Li Tao; Huang Jianming; Zha Xiao; Deng Bifang; Lang Jinyi

    2014-01-01

    Objective: To investigate the possibility of chloroquine radiosensitization of esophageal cancer cell line TE-1 and its further mechanism. Methods: Effect of chloroquine on cell viability of TE-1 cells was determined by MTT method. Expression of LC3, Beclin-1 and formation of acidic vesicular organelles (AVOs) were determined by Western blot, and fluorescence staining with Lyso-Tracker Red DND-99, respectively. Clonogenic survival of TE-1 cells was examined by clonogenic forming assay. Results: Chloroquine showed dose-dependent inhibition of TE-1 cell growth, and its values of IC_5_0 and IC_1_0 were (72.33±5.28) and (15.42±3.33) μmol/L, respectively. The expression of Beclin-1 and LC3-II/I markedly increased in irradiated TE-1 cells. The addition of chloroquine with IC_1_0 concentration significantly reduced the fluorescence and intensity of AVOs accumulation in the cytoplasm of TE-1 cells. Clonogenic survival fraction decreased obviously in TE-1 cells with addition of chloroquine after radiation and the value of SERD0 was 1.439. Conclusions: Chloroquine could radiosensitize esophageal cancer cells by blocking autophagy-lysosomal pathway and be used as a potential radiosensitizing strategy. (authors)

  11. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  12. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  13. Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Sundberg, Maria; Bogetofte, Helle; Lawson, Tristan

    2013-01-01

    of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results, NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations......The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and h......ESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation...

  14. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  15. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  16. CD40 expression in Wehi-164 cell line

    OpenAIRE

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein ex...

  17. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  18. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  19. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  20. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  1. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  2. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  3. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  4. A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism.

    Science.gov (United States)

    Aflaki, Elma; Borger, Daniel K; Moaven, Nima; Stubblefield, Barbara K; Rogers, Steven A; Patnaik, Samarjit; Schoenen, Frank J; Westbroek, Wendy; Zheng, Wei; Sullivan, Patricia; Fujiwara, Hideji; Sidhu, Rohini; Khaliq, Zayd M; Lopez, Grisel J; Goldstein, David S; Ory, Daniel S; Marugan, Juan; Sidransky, Ellen

    2016-07-13

    Parkinson disease, dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism. These cells exhibit deficient enzymatic activity, reduced lysosomal glucocerebrosidase levels, and storage of glucosylceramide and glucosylsphingosine. Lines generated from the patients with parkinsonism demonstrated elevated levels of α-synuclein. To reverse the observed phenotype, the neurons were treated with a novel noninhibitory glucocerebrosidase chaperone, which successfully restored glucocerebrosidase activity and protein levels and reduced glycolipid storage. In addition, the small-molecule chaperone reduced α-synuclein levels in dopaminergic neurons, indicating that chaperoning glucocerebrosidase to the lysosome may provide a novel therapeutic strategy for both Parkinson disease and neuronopathic forms of Gaucher disease. Copyright © 2016 the authors 0270-6474/16/367442-12$15.00/0.

  5. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  6. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  7. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  8. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  9. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  10. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  11. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  12. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  13. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  14. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  15. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...... antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin...... disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV light treatment....

  16. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  17. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  18. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  19. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  20. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  1. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  2. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues

    OpenAIRE

    Barallon, Rita; Bauer, Steven R.; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G.; Elmore, Eugene; Furtado, Manohar; Kline, Margaret C.; Kohara, Arihiro; Los, Georgyi V.; MacLeod, Roderick A. F.; Masters, John R. W.; Nardone, Mark; Nardone, Roland M.; Nims, Raymond W.

    2010-01-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer...

  3. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  4. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  5. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  6. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ... differentiate among cell lines, as described in Designation: ASN-0002 Authentication of Human Cell Lines... NIST (contact information above). III. Data OMB Control Number: None. Form Number: None. Type of Review...

  7. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  8. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  9. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  10. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  11. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  12. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  13. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  14. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  16. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  17. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  18. A vertically integrated dynamic RAM-cell: Buried bit line memory cell with floating transfer layer

    NARCIS (Netherlands)

    Mouthaan, A.J.; Vertregt, Maarten

    1986-01-01

    A charge injection device has been realized in which charge can be injected on to an MOS-capacitor from a buried layer via an isolated transfer layer. The cell is positioned vertically between word and bit line. LOCOS (local oxidation) is used to isolate the cells and (deep) ion implantation to

  19. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  20. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  1. Global Proteome Analysis of the NCI-60 Cell Line Panel

    Directory of Open Access Journals (Sweden)

    Amin Moghaddas Gholami

    2013-08-01

    Full Text Available The NCI-60 cell line collection is a very widely used panel for the study of cellular mechanisms of cancer in general and in vitro drug action in particular. It is a model system for the tissue types and genetic diversity of human cancers and has been extensively molecularly characterized. Here, we present a quantitative proteome and kinome profile of the NCI-60 panel covering, in total, 10,350 proteins (including 375 protein kinases and including a core cancer proteome of 5,578 proteins that were consistently quantified across all tissue types. Bioinformatic analysis revealed strong cell line clusters according to tissue type and disclosed hundreds of differentially regulated proteins representing potential biomarkers for numerous tumor properties. Integration with public transcriptome data showed considerable similarity between mRNA and protein expression. Modeling of proteome and drug-response profiles for 108 FDA-approved drugs identified known and potential protein markers for drug sensitivity and resistance. To enable community access to this unique resource, we incorporated it into a public database for comparative and integrative analysis (http://wzw.tum.de/proteomics/nci60.

  2. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  3. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  4. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  5. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  6. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice.

    Science.gov (United States)

    Dong, Qiaoyun; Wang, Yanyong; Gu, Ping; Shao, Rusheng; Zhao, Li; Liu, Xiqi; Wang, Zhanqiang; Wang, Mingwei

    2015-01-01

    Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease.

  7. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw

    2005-01-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  8. [Autologous regulatory T cells can suppress the proliferation of lymphoma cell line in vitro].

    Science.gov (United States)

    Ying, Zhi-Tao; Guo, Jun; Ren, Jun; Kong, Yan; Yuan, Zhi-Hong; Liu, Xi-Juan; Zhang, Chen; Zheng, Wen; Song, Yu-Qin; Zhang, Yun-Tao; Zhu, Jun

    2009-06-01

    This study was aimed to investigate the suppressive effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cell line and to explore its mechanism. C57BL/6 Mouse Treg cells were isolated by MACS (magnetic cell sorting). The purity and the expression of Foxp3 were detected by flow cytometry. The suppressive effect of sorted Treg cells on EL4 cells was detected by MTT assay. The secretion of TGF-beta1 and IL-10 was examined by enzyme-linked immunosorbent assay (ELISA). The results showed that CD4(+)CD25(+) T cells could be successfully isolated by MACS with the purity reaching 91.6% and the expression level of Foxp3 was 78.9%. The ratio of viable cells was more than 95%. Regulatory T cells could suppress the proliferation of EL4 cells effectively in the presence of antigen presenting cells (APCs). And the suppressive effect was most significant at 1:1 ratio. In addition, the suppression still existed without APCs. TGF-beta1 and IL-10 could not be detected by ELISA. It is concluded that the Treg cells can suppress T lymphoma cell in vitro. The suppressive effect of Treg cells works in dose-dependent manner, but not in cytokine-dependent manner. The mechanism of this suppression may take effect through cell-cell contact.

  9. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    Chromik, Ansgar M; Weyhe, Dirk; Mittelkötter, Ulrich; Uhl, Waldemar; Hahn, Stephan A; Daigeler, Adrien; Flier, Annegret; Bulut, Daniel; May, Christina; Harati, Kamran; Roschinsky, Jan; Sülberg, Dominique

    2010-01-01

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  10. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  11. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  12. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Imai, Misa; Muraki, Miho; Takamatsu, Kiyoshi; Saito, Hidekazu; Seiki, Motoharu; Takahashi, Yuji

    2008-01-01

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  13. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  14. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines

    International Nuclear Information System (INIS)

    Leibhard, S.; Smida, J.

    1996-01-01

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique -the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.) [de

  15. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  16. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  17. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  18. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells

    International Nuclear Information System (INIS)

    Othon, Christina M; Ringeisen, Bradley R; Wu Xingjia; Anders, Juanita J

    2008-01-01

    Biological laser printing (BioLP(TM)) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes (∼μLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 μm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth

  19. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues.

    Science.gov (United States)

    Barallon, Rita; Bauer, Steven R; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G; Elmore, Eugene; Furtado, Manohar; Kline, Margaret C; Kohara, Arihiro; Los, Georgyi V; MacLeod, Roderick A F; Masters, John R W; Nardone, Mark; Nardone, Roland M; Nims, Raymond W; Price, Paul J; Reid, Yvonne A; Shewale, Jaiprakash; Sykes, Gregory; Steuer, Anton F; Storts, Douglas R; Thomson, Jim; Taraporewala, Zenobia; Alston-Roberts, Christine; Kerrigan, Liz

    2010-10-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.

  20. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues

    Science.gov (United States)

    Barallon, Rita; Bauer, Steven R.; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G.; Furtado, Manohar; Kline, Margaret C.; Kohara, Arihiro; Los, Georgyi V.; MacLeod, Roderick A. F.; Masters, John R. W.; Nardone, Mark; Nardone, Roland M.; Nims, Raymond W.; Price, Paul J.; Reid, Yvonne A.; Shewale, Jaiprakash; Sykes, Gregory; Steuer, Anton F.; Storts, Douglas R.; Thomson, Jim; Taraporewala, Zenobia; Alston-Roberts, Christine; Kerrigan, Liz

    2010-01-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues. PMID:20614197

  1. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2004-03-01

    Full Text Available Abstract Background Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. Results Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. Conclusions Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development.

  2. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  3. Interleukin-2 production by human leukemia cell lines of pre-B cell origin

    International Nuclear Information System (INIS)

    Holan, V.; Minowada, J.

    1993-01-01

    Cells of 7 tested human leukemia cell lines of pre-B cell origin (as characterized by immunophenotyping and by the expression of cytoplasmic micro chains, but not by surface immunoglobulins) produced after stimulation with bacterial lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) a lymphokine activity which supported the growth of the interleukin-2 (IL-2)-dependent CTLL-2 cell line. Three pieces of evidence indicate that the secreted lymphokine was functionally and antigenically very similar, if not identical, to human IL-2: (1) The lymphokine supported the growth of murine IL-2-dependent CTLL-2 cells, which did not respond to human lymphokines other than IL-2, but it did not stimulate the growth of murine IL-3-dependent FDC-P2 cells, (2) the biological activity of the lymphokine was was inhibited by monoclonal antibody (mAb) anti-human-IL-2, and (3) the proliferation of IL-2-dependent cells in the presence of the active materials was completely inhibited by the inclusion of the anti-mouse-IL-2 receptor (IL-2R) mAb. Since leukemia cells of immature B-cell origin also synthesize IL-2R, the human pre-B cell leukemias could represent another type of hematological malignancy where the autocrine processes of IL-2 production and utilization are involved in the expansion of the disease. (author)

  4. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  5. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  6. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  7. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  8. Biologic characteristics of the side population of human small cell lung cancer cell line H446.

    Science.gov (United States)

    Wang, Bo; Yang, Huan; Huang, Yu-Zheng; Yan, Ru-Hong; Liu, Fen-Ju; Zhang, Jun-Ning

    2010-03-01

    Recently, the theory of cancer stem cells (CSCs) has presented new targets and orientations for tumor therapy. The major difficulties in researching CSCs include their isolation and purification. The aim of this study is to identify and characterize the side population (SP) cells in small cell lung cancer (SCLC) cell line H446, which lays the foundation for the isolation and purification of CSCs. Fluorescence-activated cell sorting (FACS) was used to sort SP and non-SP (NSP) cells from H446. Both subgroups were cultivated to survey the capacity to form into suspended tumor cell spheres. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR were used to evaluate the expression levels of the mRNA of CD133, ABCG2, and nucleostemin in both subgroups. The capacity of proliferation and the differences in drug resistance of both subgroups and unsorted cells were tested by the MTT method. The differentiation ability of both subgroups was determined by FACS. Proliferation was determined by subcutaneous tumor formation in nude mice. The percent of Hoechst 33342 negative cells was about (5.1 +/- 0.2)% in H446 by fluorescence microscopy. The percent of SP cells was (6.3 +/- 0.1)% by flow cytometry. SP cells had a stronger capability of forming into tumor spheres than NSP cells. The mRNA expression levels of ABCG2, CD133, and nucleostemin in SP cells were 21.60 +/- 0.26, 7.10 +/- 0.14, and 1.02 +/- 0.08 folds higher than that in NSP cells (P 0.05, respectively). In vivo, SP cells showed better proliferative ability and tougher viability when treated with drugs. SP cells can differentiate into NSP cells, but NSP cells cannot differentiate into SP cells. SP cells had a greater ability to form tumors. The H446 cell line contained some SP cells with stem cell properties. CD133 and ABCG2 may be cancer stem cell markers of SCLC.

  9. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-01-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  10. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    Science.gov (United States)

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  11. Regulatory Mechanisms Involved in the Expression of Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor

    Science.gov (United States)

    1996-03-01

    neurotoxic dopamine analog that is taken up by nigral dopaminergic cells where it is metabolized to highly reactive oxygen free radicals that cause ...brain regions is elevated after other types of brain insults, including ischemia and hypoglycemia (see Lindvall et al. 1994 for review). Lindvall et a1...with kainic acid were also reported. These investigators also reported significant increases in BDNF mRNA levels in cultures of neonatal astrocytes

  12. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  13. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  14. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  15. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Hong Xin

    Full Text Available Hepatocellular carcinoma (HCC is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903 by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3 was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.

  16. Cytotoxicity screening of essential oils in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pollyanna Francielli de Oliveira

    Full Text Available Abstract This study evaluated the cytotoxicity activity of the essential oils of Tagetes erecta L., Asteraceae (TE-OE, Tetradenia riparia (Hochst. Codd, Lamiaceae (TR-OE, Bidens sulphurea (Cav. Sch. Bip., Asteraceae (BS-OE, and Foeniculum vulgare Mill., Apiaceae (FV-OE, traditionally used in folk medicine, against the tumor cell lines murine melanoma (B16F10, human colon carcinoma (HT29, human breast adenocarcinoma (MCF-7, human cervical adenocarcinoma (HeLa, human hepatocellular liver carcinoma (HepG2, and human glioblastoma (MO59J, U343, and U251. Normal hamster lung fibroblasts (V79 cells were included as control. The cells were treated with essential oil concentrations ranging from 3.12 to 400 µg/ml for 24 h. The cytotoxic activity was evaluated using the XTT assay; results were expressed as IC50, and the selectivity index was calculated. The results were compared with those achieved for classic chemotherapeutic agents. TE-OE was the most promising among the evaluated oils: it afforded the lowest IC50 values for B16F10 cells (7.47 ± 1.08 µg/ml and HT29 cells (6.93 ± 0.77 µg/ml, as well as selectivity indices of 2.61 and 2.81, respectively. The major BS-EO, FV-EO and TE-EO chemical constituents were identified by gas chromatography mass spectrometry as being (E-caryophyllene (10.5%, germacrene D (35.0% and 2,6-di-tert-butyl-4-methylphenol (43.0% (BS-EO; limonene (21.3% and (E-anethole (70.2% (FV-EO; limonene (10.4%, dihydrotagetone (11.8%, α-terpinolene (18.1% and (E-ocimenone (13.0% (TE-EO; and fenchone (6.1%, dronabinol (11.0%, aromadendrene oxide (14.7% and (E,E–farnesol (15.0% (TR-EO. 2,6-di-tert-butyl-4-methylphenol (43.0%, (E-anethole (70.2% and α-terpinolene (18.1%, respectively. These results suggest that TE-OE may be used to treat cancer without affecting normal cells.

  17. Induced dopaminergic neurons: A new promise for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Zhimin Xu

    2017-04-01

    Full Text Available Motor symptoms that define Parkinson’s disease (PD are caused by the selective loss of nigral dopaminergic (DA neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC or human induced pluripotent stem cells (iPSC. Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy.

  18. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  19. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  20. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    International Nuclear Information System (INIS)

    Nakajima, Hideaki; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-01-01

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix

  1. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  2. In vitro evaluation of a new nitrosourea, TCNU, against human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, L L; Spang-Thomsen, M

    1987-01-01

    The cytotoxic activity of a new nitrosourea, TCNU, was compared with that of BCNU in five human small cell lung cancer cell lines in vitro. TCNU was found to be equivalent or inferior to BCNU when compared on a microgram to microgram basis. If the potential of in vitro phase II trials for selection...... of new drugs can be validated, it can be concluded that TCNU is not superior to other nitrosoureas for the treatment of SCCL....

  3. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Chandna, S.

    2003-01-01

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  4. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  5. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  6. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  7. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  8. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 1

    International Nuclear Information System (INIS)

    Radford, I.R.

    1994-01-01

    The sensitivity of 10 mouse lymphoid or myeloid cell lines to γ-ray- and DNA-associated 125 I-decay-induced clonogenic cell killing have been compared with their rate of loss of viability (membrane integrity) and with their putative cell type of origin. The increased sensitivity of haematopoietic cell lines to killing by DNA dsb may be related to their mode of death (apoptosis versus necrosis). Mode of cell death may thus be an important factor in determining the 'inherent radiosensitivity' of normal cells/tissues. Haematopoietic cell lines that undergo rapid interphase apoptotic death showed extreme sensitivity to DNA dsb. (author)

  9. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  10. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  11. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  12. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  13. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell

  14. Derivation and characterization of the NIH registry human stem cell line NYSCF100 line under defined feeder-free conditions

    Directory of Open Access Journals (Sweden)

    Ana Sevilla

    2018-05-01

    Full Text Available The human embryonic stem cell line NYSCFe001-A was derived from a day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe001-A line, registered as NYSCF100 on the NIH registry, presents normal karyotype, is mycoplasma free, expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro.

  15. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  16. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  17. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Kühnel Dana

    2002-06-01

    Full Text Available Abstract Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.

  18. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  19. Cryptotanshinone has diverse effects on cell cycle events in melanoma cell lines with different metastatic capacity

    OpenAIRE

    Punchard, Neville

    2011-01-01

    Background and Purpose: Cryptotanshinone (CTs) is a major active component of Salvia miltiorrhiza, which is often used as Chinese herbal medicine in cancer therapy. Here, we systematically assessed the anti-tumor effect of CTs on two melanoma cell lines with low/high metastatic capacity (B16/B16BL6). Experimental Approach: MTT and LDH assays were used to evaluate cell growth and cytotoxicity. We assessed the effect of CTs on cell apoptosis or proliferation by Annexin V, TUNEL or BrdU assay. C...

  20. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of...

  1. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    Science.gov (United States)

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  2. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  3. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    Science.gov (United States)

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  4. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  5. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  6. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC-1.

    Science.gov (United States)

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-05-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC-1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC-1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC-1 cells, metabolome analysis of the invaded PANC-1 compared with the whole cultured PANC-1 was performed using CE-TOFMS, and concentrations of 110 metabolites were measured. In contrast to the whole cultured cells, the invaded PANC-1 was characterized as a population with reduced levels of amino acids and TCA cycle intermediates, and decreased and increased intermediates in glycolysis and nucleic acid metabolism. In particular, the ratio of both adenosine and guanosine energy charge was reduced in the invaded cells, revealing that the consumption of ATP and GTP was high in the invaded cells, and thus suggesting that ATP- or GTP-generating pathways are stimulated. In addition, the GSH/GSSG ratio was low in the invaded cells, but these cells had a higher surviving fraction after exposure to hydrogen peroxide. Thus, the invaded cells were the population resistant to oxidative stress. Furthermore, reduction in intracellular GSH content inhibited PANC-1 invasiveness, indicated that GSH has an important role in PANC-1 invasiveness. Overall, we propose the invaded cells have several unique metabolic profiles. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  8. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  9. Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Kotowski, Ulana; Heiduschka, Gregor; Eckl-Dorna, Julia; Kranebitter, Veronika; Stanisz, Isabella; Brunner, Markus; Lill, Claudia; Thurnher, Dietmar; Seemann, Rudolf; Schmid, Rainer

    2015-01-01

    Cafestol is a diterpene molecule found in coffee beans and has anticarcinogenic properties. The aim of the study was to examine the effects of cafestol in head and neck squamous cell carcinoma (HNSCC) cells. Three HNSCC cell lines (SCC25, CAL27 and FaDu) were treated with increasing doses of cafestol. Then combination experiments with cisplatin and irradiation were carried out. Drug interactions and possible synergy were calculated using the combination index analysis. Clonogenic assays were performed after irradiation with 2, 4, 6 and 8 Gy, respectively, and the rate of apoptosis was measured with flow cytometry. Treatment of HNSCC cells with cafestol leads to a dose-dependent reduction of cell viability and to induction of apoptosis. Combination with irradiation shows a reduction of clonogenic survival compared to each treatment method alone. In two of the cell lines a significant additive effect was observed. Cafestol is a naturally occurring effective compound with growth-inhibiting properties in head and neck cancer cells. Moreover, it leads to a significant inhibition of colony formation. (orig.) [de

  10. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  11. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  12. Generation of hiPSTZ16 (ISMMSi003-A cell line from normal human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Marion Dejosez

    2018-01-01

    Full Text Available Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A. These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

  13. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M; Schoub, B D; Lyons, S F; Chiu, M N [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  14. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  15. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    Science.gov (United States)

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  17. Radiosensitization of C225 on human non-small cell lung cancer cell line H-520

    International Nuclear Information System (INIS)

    Zhang Yingdong; Wang Junjie; Liu Feng; Zhao Yong

    2008-01-01

    Objective: To investigate the efficacy of C225 (cetuximab), a chimeric human-mouse anti-epithelial growth factor receptor monoclonal antibody, combined with 60 Co gamma irradiation against human non-small cell lung cancer cell line H-520. Methods: H-520 cells were treated either with different dose of 60 Co irradiation (1,2,4,6,8 and 10 Gy)alone or together with C225 (100 nmol/L). Colony forming capacity was determined to create the survival curve 10 days after the treatment. Cells in different groups were harvested 72 hours after irradiation for apoptosis analysis or 48 hours after irradiation for cell cycle analysis by flow cytometry assay. Results: The clone number in combinational treatment group was less than that in irradiation only group, which suggested that the cell survival rate in the combinational treatment group was significantly decreased comparing with irradiation only group (F=6.36, P O + G 1 phases for C225 treatment, in G 2 + M phases for 60 Co irradiation, and in both G 0 + G 1 and G 2 + M phases for C225 in combination with 60 Co irradiation. Conclusions: C225 has radiosensitizing effects on H-520 cells, which may through the enhancement of 60 Co irradiation-induced cell death and cell cycle arrest. This study provides a supportive evidence for clinical treatment in non-small cell lung cancer. (authors)

  18. Response of BP cell lines to γ-radiation: evaluation of DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Paris, F.E.; Martin, M.; Le Rhum, Y.; May, E.; Duriez, P; Shah, G.

    1997-01-01

    In the BP cell lines, mutation of p53 gene is associated with an increased radiosensitivity. In order to understand the relation between p53 and radiosensitivity, we looked at DNA repair and cell death. Unexpectedly, after radiation the mutated p53 cell line BPp- Tu and the wild type p53 cell line BPp- Tu cells, both ell lines died by the same non necrotic process: a programmed cell death independent of their p53 status. The cleavage of poly (ADP-ribose) polymerase (PARP) by an ICE-related protease is considered an early and critical event during apoptosis. The fate of PARP was monitored by Western extensively in the apoptotic BPp- Tu cells than in the BPp cells. This faster PARP cleavage might be linked to the increased radiosensitivity of the BPp- Tu cells. (authors)

  19. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Alison Wood-Kaczmar

    2008-06-01

    Full Text Available Parkinson's disease (PD is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.

  20. Effects of Monoclonal Antibody Cetuximab on Proliferation of Non-small Cell Lung Cancer Cell lines

    Directory of Open Access Journals (Sweden)

    Zhen CHEN

    2010-08-01

    Full Text Available Background and objective The epidermal growth factor receptor (EGFR monoclonal antibody cetuximab has been used widely in non-small cell lung cancer patients. The aim of this study is to explore the effect of lung cancer cells (A549, H460, H1299, SPC-A-1 which were treated by cetuximab in vitro. Methods We studied the effects of increasing concentrations of cetuximab (1 nmol/L-625 nmol/L in four human lung cancer cell lines (A549, SPC-A-1, H460, H1229. CCK8 measured the inhibition of cell proliferation in each group. A549, SPC-A-1 were marked by PI and the statuses of apoptosis were observed. Western blot were used to detect the proliferation-related signaling protein and apoptosis-related protein in A549. Results The treatment with cetuximab resulted in the effect on cell proliferation and apoptosis in a time- and dosedependent manner. The expression of activated key enzymes (p-AKT, p-EGFR, p-MAPK in EGFR signaling transduction pathway were down-regulated more obviously. Conclusion Cetuximab is an effective targeted drug in the treatment of lung cancer cell lines, tissues, most likely to contribute to the inhibition of key enzymes in EGFR signaling transduction pathway.

  1. In vitro culture of various species of microsporidia causing keratitis: Evaluation of three immortalized cell lines

    Directory of Open Access Journals (Sweden)

    Joseph J

    2009-01-01

    Full Text Available Being intracellular parasites, microsporidia can only be propagated in cell culture systems. This study evaluated three cell lines to determine the most suitable host-parasite In vitro system. Confluent monolayers of vero, SIRC, and HeLa cell lines, grown in 24-well tissue culture plates, were inoculated with varying concentrations (1 x 10 4 to 1 x 10 8 spores/mL of Vittaforma corneae, Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis spores. Growth was compared quantitatively at weekly intervals. Encephalitozoon species showed the highest amount of growth when cultured in vero cell line, while there was no significant difference in their growth in SIRC and HeLa cell lines. In comparison, V. corneae showed the highest growth in SIRC cells, followed by vero cells. The analytical sensitivity was found to be 1 x 10 4 spores/mL for vero cell line compared to 1 x 10 5 spores/mL for SIRC cell line and 1 x 10 7 spores/mL for HeLa cell line. HeLa cells also showed rapid disruption of cells, and the spores could not be easily distinguished from cell debris. This is the first report of the comparison of vero, SIRC, and HeLa for the propagation of microsporidial spores. Vero cell line was found to be more sensitive than SIRC and HeLa cells, and we believe that the inclusion of vero cell line in the routine culture protocols of ocular parasitology laboratories would result in a significant increase in the diagnostic yield.

  2. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  3. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    Science.gov (United States)

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  4. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    Science.gov (United States)

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  5. Effect of sirolimus on urinary bladder cancer T24 cell line

    Directory of Open Access Journals (Sweden)

    Oliveira Paula A

    2009-01-01

    Full Text Available Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.

  6. Establishment and characterization of a new epithelial cell line, KC-1, from koala (Phascolarctos cinereus) conjunctiva.

    Science.gov (United States)

    Girjes, Adeeb A; Lee, Kristen E; Carrick, Frank N

    2003-01-01

    A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal tool for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.

  7. Induction of chromosome aberrations in two lines of cultured cells using different types of radiation

    International Nuclear Information System (INIS)

    Zoetelief, J.; Dingjan-Hirschi, E.S.; Hasper, J.; Janse, H.C.; Barendsen, G.W.

    The induction of chromosome aberrations has been investigated in two lines of cultured cells for different types of radiation. The obtained results are compared with information on induction of cell reproductive death and malignant transformation. (Auth.)

  8. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  9. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  10. Cell line development for biomanufacturing processes: recent advances and an outlook.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  11. An experimental study on the low-dose radiosensitivity of tumor cell lines

    International Nuclear Information System (INIS)

    Kim, Min Sook; Koh, Kwang Joon

    1994-01-01

    The purpose of this study was to aid in the radiation therapy of head and neck cancer patients. For this study, radiation survival curves were generated for B16, MG-63 and YAC-1 cell lines using semiautomated MTT assay and Dye Exclusion Assay. Irradiation of 2, 4, 6, 8, 10 Gy were delivered at room temperature at a dose rate of 210.2 cGy/min using 60 COγ-ray irradiator ALDORADO 8. The viable cells were determined for each radiation dose and compared to control values. The obtained results were as follows: 1. The was significantly different absorbance at 10 Gy on B16 cell line in MTT assay (P<0.05). 2. There was significantly different absorbance at 4, 6, 8, 10 Gy on MG-63 cell line in MTT assay (P<0.05). 3. YAC-1 cell line was more sensitive than B16 or MG-63 cell line to all doses of radiation (P<0.05). 4. There was significantly different absorbance among all tumor cell lines except between B16 and MG-63 cell line at 2 Gy in MTT assay (P<0.05). 5. Good correlation was obtained between MTT assay and DEA (P<0.05). The efficient of correlation of B16, MG-63 and YAC-1 cell line was 0.845-0.824 and 0.906, respectively.

  12. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  13. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Tribolium castaneum cell line TcA: a new tool kit for cell biology.

    Science.gov (United States)

    Silver, Kristopher; Jiang, Hongbo; Fu, Jinping; Phillips, Thomas W; Beeman, Richard W; Park, Yoonseong

    2014-10-30

    The red flour beetle, Tribolium castaneum, is an agriculturally important insect pest that has been widely used as a model organism. Recently, an adherent cell line (BCIRL-TcA-CLG1 or TcA) was developed from late pupae of the red flour beetle. Next generation transcriptome sequencing of TcA cells demonstrated expression of a wide variety of genes associated with specialized functions in chitin metabolism, immune responses and cellular and systemic RNAi pathways. Accordingly, we evaluated the sensitivity of TcA cells to dsRNA to initiate an RNAi response. TcA cells were highly sensitive to minute amounts of dsRNA, with a minimum effective dose of 100 pg/mL resulting in significant suppression of gene expression. We have also developed a plasmid containing two TcA-specific promoters, the promoter from the 40S ribosomal protein subunit (TC006550) and a bi-directional heat shock promoter (TcHS70) from the intergenic space between heat shock proteins 68a and b. These promoters have been employed to provide high levels of either constitutive (TC006550) or inducible (TcHS70) gene expression of the reporter proteins. Our results show that the TcA cell line, with its sensitivity to RNAi and functional TcA-specific promoters, is an invaluable resource for studying basic molecular and physiological questions.

  15. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-05-01

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  16. Comparison of thermoradiosensitization in two human melanoma cell lines and one fibroblast cell line by concurrent mild hyperthermia and low-dose-rate irradiation

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Bussey, A.; Heller, D.P.; Ng, C.E.

    1994-01-01

    Two human melanoma cell lines, one radioresistant (Sk-MEL-3) and one radiosensitive (HT-144), and a normal human fibroblast line (AG1522) were evaluated for thermoradiosensitization of low-dose-rate irradiation by concurrent mild hyperthermia (39-41 degrees C). None of the cell lines expressed chronic thermotolerance during heating at 39-41 degrees C. The SK-MEL-3 cells were the most heat sensitive, while AG1522 and HT-144 cells had the same sensitivity at 39 and 40 degrees C but HT-144 cells were more sensitive at 41 degrees C. All cell lines expressed thermal enhancement of radiosensitivity with heating during irradiation which increased with heating temperature. The SK-MEL-3 cells, which were the most resistant to radiation and demonstrated the greatest repair of sublethal damage (SLD) during low-dose-rate irradiation, had the greatest thermal enhancement of radiosensitivity, while the HT144 cells, which were the most sensitive and expressed little repair of SLD during low-dose-rate irradiation, had the smallest thermal enhancement of radiosensitivity. These data show that concurrent mild hyperthermia during low-dose-rate irradiation may be most efficacious in radiation-resistant tumor cells which express resistance through an enhanced capacity for repair of SLD. 24 refs., 5 figs., 1 tab

  17. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  18. The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line

    OpenAIRE

    Osada, Naoki; Kohara, Arihiro; Yamaji, Toshiyuki; Hirayama, Noriko; Kasai, Fumio; Sekizuka, Tsuyoshi; Kuroda, Makoto; Hanada, Kentaro

    2014-01-01

    Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes...

  19. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  20. Application of low level laser on skin cell lines

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2010-01-01

    Full Text Available Lasers have emerged as powerful tools for tissue engineering. To examine cellular growth, and cell to cell interactions, in vitro skin models have been developed combining two major cell types of skin, keratinocytes and fibroblasts. The main...

  1. Cell and molecular biology of SAE, a cell line from the spiny dogfish shark, Squalus acanthias.

    Science.gov (United States)

    Parton, Angela; Forest, David; Kobayashi, Hiroshi; Dowell, Lori; Bayne, Christopher; Barnes, David

    2007-02-01

    Cartilaginous fish, primarily sharks, rays and skates (elasmobranchs), appeared 450 million years ago. They are the most primitive vertebrates, exhibiting jaws and teeth, adaptive immunity, a pressurized circulatory system, thymus, spleen, and a liver comparable to that of humans. The most used elasmobranch in biomedical research is the spiny dogfish shark, Squalus acanthias. Comparative genomic analysis of the dogfish shark, the little skate (Leucoraja erincea), and other elasmobranchs have yielded insights into conserved functional domains of genes associated with human liver function, multidrug resistance, cystic fibrosis, and other biomedically relevant processes. While genomic information from these animals is informative in an evolutionary framework, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. We have derived the first multipassage, continuously proliferating cell line of a cartilaginous fish. The line was initiated from embryos of the spiny dogfish shark. The cells were maintained in a medium modified for fish species and supplemented with cell type-specific hormones, other proteins and sera, and plated on a collagen substrate. SAE cells have been cultured continuously for three years. These cells can be transfected by plasmids and have been cryopreserved. Expressed Sequence Tags generated from a normalized SAE cDNA library included a number of markers for cartilage and muscle, as well as proteins influencing tissue differentiation and development, suggesting that SAE cells may be of mesenchymal stem cell origin. Examination of SAE EST sequences also revealed a cartilaginous fish-specific repetitive sequence that may be evidence of an ancient mobile genetic element that most likely was introduced into the cartilaginous fish lineage after divergence from the lineage leading to teleosts.

  2. Cytotoxicity of arctigenin and matairesinol against the T-cell lymphoma cell line CCRF-CEM.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-09-01

    Arctigenin and matairesinol possess a diversity of bioactivities. Here we investigated the cytotoxicity of arctigenin and matairesinol against a T-cell lymphoma cell line CCRF-CEM and the underlying mechanisms that have not been explored before. The cytotoxic activity was investigated using MTT assay. The cell cycle arrest and reactive oxygen species (ROS) accumulation were determined by flow cytometric analysis. The apoptosis induction was assessed using Annexin V/Propidium Iodide assay. The gene quantification analysis was measured through real-time polymerase chain reaction. Arctigenin and matairesinol exhibited significant antiproliferative activity against CCRF-CEM cells after 72 h treatment with IC50 values of 1.21 ± 0.15 μm and 4.27 ± 0.41 μm, respectively. In addition, both lignans arrest CCRF-CEM cells in the S phase. Furthermore, they could induce apoptosis in CCRF-CEM cells in a concentration- and time-dependent manner. Interestingly, the lignans differentially regulated the expression of several key genes involved in apoptosis pathways, including Bax, Bad and caspase-9. Moreover, both lignans could increase ROS levels in CCRF-CEM cells. Our study provides an insight into the potential of arctigenin and matairesinol as good candidates for the development of novel agents against T-cell lymphoma. © 2015 Royal Pharmaceutical Society.

  3. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  4. Dopaminergic Dysregulation, Artistic Expressiveness, and Parkinson's Disease

    Science.gov (United States)

    López-Pousa, S.; Lombardía-Fernández, C.; Olmo, J. Garre; Monserrat-Vila, S.; Vilalta-Franch, J.; Calvó-Perxas, L.

    2012-01-01

    Background The most frequent behavioral manifestations in Parkinson's disease (PD) are attributed to the dopaminergic dysregulation syndrome (DDS), which is considered to be secondary to the iatrogenic effects of the drugs that replace dopamine. Over the past few years some cases of patients improving their creative abilities after starting treatment with dopaminergic pharmaceuticals have been reported. These effects have not been clearly associated to DDS, but a relationship has been pointed out. Methods Case study of a patient with PD. The evolution of her paintings along medication changes and disease advance has been analyzed. Results The patient showed a compulsive increase of pictorial production after the diagnosis of PD was made. She made her best paintings when treated with cabergolide, and while painting, she reported a feeling of well-being, with loss of awareness of the disease and reduction of physical limitations. Conclusions Dopaminergic antagonists (DA) trigger a dopaminergic dysfunction that alters artistic creativity in patients having a predisposition for it. The development of these skills might be due to the dopaminergic overstimulation due to the therapy with DA, which causes a neurophysiological alteration that globally determines DDS. PMID:23185168

  5. Establishment and culture optimization of a new type of pituitary immortalized cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kokubu, Yuko [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Asashima, Makoto [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577 (Japan); Kurisaki, Akira, E-mail: akikuri@hotmail.com [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562 (Japan)

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  6. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  7. Propagation of Asian isolates of canine distemper virus (CDV in hamster cell lines

    Directory of Open Access Journals (Sweden)

    Yamaguchi Ryoji

    2009-10-01

    Full Text Available Abstract Backgrounds The aim of this study was to confirm the propagation of various canine distemper viruses (CDV in hamster cell lines of HmLu and BHK, since only a little is known about the possibility of propagation of CDV in rodent cells irrespective of their epidemiological importance. Methods The growth of CDV in hamster cell lines was monitored by titration using Vero.dogSLAMtag (Vero-DST cells that had been proven to be susceptible to almost all field isolates of CDV, with the preparations of cell-free and cell-associated virus from the cultures infected with recent Asian isolates of CDV (13 strains and by observing the development of cytopathic effect (CPE in infected cultures of hamster cell lines. Results Eleven of 13 strains grew in HmLu cells, and 12 of 13 strains grew in BHK cells with apparent CPE of cell fusion in the late stage of infection. Two strains and a strain of Asia 1 group could not grow in HmLu cells and BHK cells, respectively. Conclusion The present study demonstrates at the first time that hamster cell lines can propagate the majority of Asian field isolates of CDV. The usage of two hamster cell lines suggested to be useful to characterize the field isolates biologically.

  8. Development of Fibroblast Cell Lines From the Cow Used to Sequence the Bovine Genome

    Science.gov (United States)

    Two cell lines, designated MARC.BGCF.2 and MARC.BGCF.1-3, were initiated from skin biopsies obtained from the Hereford cow whose DNA was used in sequencing the bovine genome. These cell lines were submitted to American Type Culture Collection (ATCC, Manassas, VA, USA) and will be made publicly avai...

  9. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines.

    Science.gov (United States)

    Leal, Mariana Ferreira; Martins do Nascimento, José Luiz; da Silva, Carla Elvira Araújo; Vita Lamarão, Maria Fernanda; Calcagno, Danielle Queiroz; Khayat, André Salim; Assumpção, Paulo Pimentel; Cabral, Isabel Rosa; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodríguez

    2009-11-01

    Gastric cancer is the fourth most frequent type of cancer and the second most frequent cause of cancer mortality worldwide. Only a modest number of gastric carcinoma cell lines have been isolated thus far. Here we describe the establishment and cytogenetic characterization of three new gastric cancer cell lines obtained from primary gastric adenocarcinoma (ACP02 and ACP03) and cancerous ascitic fluid (AGP01) of individuals from northern Brazil. ACP02, ACP03, and AGP01 cell lines are presently in the 60th passage. The cell lines grew in a disorganized single layer with some agglomerations and heterogeneous divisions (bipolar and multipolar). All cell lines exhibited a composite karyotype with several clonal chromosome alterations. Trisomy 8 was the most frequent alteration. Chromosome 8 aneusomy was confirmed by fluorescence in situ hybridization. All cell lines also exhibited trisomy 7 and deletion of chromosome arm 17p. These results suggest that, although frequent chromosome alterations are commonly observed due to culture process, the ACP02, ACP03, and AGP01 cell lines and primary gastric cancer from individuals of northern Brazil share genetic alterations, supporting use of these cell lines as a model of gastric carcinogenesis in this population.

  10. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  11. Radiobiological studies with a series of human cell lines of varying glutathione content

    International Nuclear Information System (INIS)

    Astor, M.B.

    1984-01-01

    Radiation responses of a series of four human fibroblast lines obtained from a family affected with 5-oxoprolinuria were determined. Cell suspensions were irradiated under hypoxic conditions and the oxygen enhancement ratio was determined for each cell line. Results are compared with previous studies

  12. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line

  13. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  14. [The characters and specific features of new human embryonic stem cells lines].

    Science.gov (United States)

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  15. Establishment of an agamid cell line and isolation of adenoviruses from central bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Ball, Inna; Hoferer, Marc; Marschang, Rachel E

    2014-03-01

    A cell line was established from whole 6-8-week-old central bearded dragon (Pogona vitticeps) embryos. Cells were mid-sized and showed an elongated and polymorphic form. The cell line grew in a monolayer and has been serially passaged for 17 passages at time of publication. This cell line has been used with samples from adenovirus polymerase chain reaction (PCR)-positive bearded dragons, and 2 virus isolates have been obtained so far. The isolates show a clear cytopathic effect in inoculated cells. Both virus isolates have been serially passaged on this cell line, and have been identified by PCR amplification and sequencing of a portion of the DNA-dependent DNA polymerase gene and show 100% nucleotide identity to the corresponding region of an agamid adenovirus. Electron microscopic examination of supernatant from infected cells demonstrated the presence of nonenveloped particles, with a diameter of approximately 80 nm in both virus isolates.

  16. Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors.

    Science.gov (United States)

    Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru

    2018-02-19

    -DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.

  17. Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models

    Directory of Open Access Journals (Sweden)

    Tao Lu

    2017-01-01

    Full Text Available Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.

  18. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, Lucy [Indiana Univ., Bloomington, IN (United States); Willingham, Aarron [Affymetrix Inc., Santa Clara, CA (United States); Zhang, Dayu [Indiana Univ., Bloomington, IN (United States); Yang, Li [University of Connecticut Health Center, Farmington, Connecticut (United States); Zou, Yi [Indiana Univ., Bloomington, IN (United States); Eads, Brian D. [Indiana Univ., Bloomington, IN (United States); Carlson, Joseph W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Landolin, Jane M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kapranov, Philipp [Affymetrix Inc., Santa Clara, CA (United States); Dumais, Jacqueline [Affymetrix Inc., Santa Clara, CA (United States); Samsonova, Anastasia [Harvard Medical School, Boston, MA (United States); Choi, Jeong-Hyeon [Indiana Univ., Bloomington, IN (United States); Roberts, Johnny [Indiana Univ., Bloomington, IN (United States); Davis, Carrie A. [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Tang, Haixu [Indiana Univ., Bloomington, IN (United States); van Baren, Marijke J. [Washington Univ., St. Louis, MO (United States); Ghosh, Srinka [Affymetrix Inc., Santa Clara, CA (United States); Dobin, Alexander [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Bell, Kim [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Lin, Wei [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Langton, Laura [Washington Univ., St. Louis, MO (United States); Duff, Michael O. [University of Connecticut Health Center, Farmington, Connecticut (United States); Tenney, Aaron E. [Washington Univ., St. Louis, MO (United States); Zaleski, Chris [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Brent, Michael R. [Washington Univ., St. Louis, MO (United States); Hoskins, Roger A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kaufman, Thomas C. [Indiana University, Bloomington, Indiana (United States); Andrews, Justen [Indiana University, Bloomington, Indiana (United States); Graveley, Brenton R. [University of Connecticut Health Center, Farmington, Connecticut (United States); Perrimon, Norbert [Harvard Medical School, Boston, MA (United States); Howard Hughes Medical Institute, Boston, MA (United States); Celniker, Susan E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gingeras, Thomas R. [Affymetrix Inc., Santa Clara, CA (United States); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Cherbas, Peter [Indiana Univ., Bloomington, IN (United States)

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25

  19. Study of inner ear and lateral line hair cell regeneration

    OpenAIRE

    Piqué Borràs, Maria Riera

    2013-01-01

    Death of sensory hair cells in the inner ear results in two global health problems that millions of people around the world suffer: hearing loss and balance disorders. Hair cells convert sound vibrations and head movements into electrical signals that are conveyed to the brain, and as a result of aging, exposure to noise, modern drugs or genetic predisposition, hair cells die. In mammals, the great majority of hair cells are produced during embryogenesis, and hair cells that ar...

  20. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Thompson, Lachlan; Kirik, Deniz

    2005-01-01

    in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries......., the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control...... of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted...

  1. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    Science.gov (United States)

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  2. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    Science.gov (United States)

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated

  3. Effects of arsenite on cell cycle progression in a human bladder cancer cell line

    International Nuclear Information System (INIS)

    Hernandez-Zavala, A.; Cordova, E.; Razo, L.M. del; Cebrian, M.E.; Garrido, E.

    2005-01-01

    Bladder cancer is one of the most important diseases associated with arsenic (As) exposure in view of its high prevalence and mortality rate. Experimental studies have shown that As exposure induces cell proliferation in the bladder of sodium arsenite (iAsIII) subchronically treated mice. However, there is little available information on its effects on the cell cycle of bladder cells. Thus, our purpose was to evaluate the effects of iAsIII on cell cycle progression and the response of p53 and p21 on the human-derived epithelial bladder cell line HT1197. iAsIII treatment (1-10 μM) for 24 h induced a dose-dependent increase in the proportion of cells in S-phase, which reached 65% at the highest dose. A progressive reduction in cell proliferation was also observed. BrdU was incorporated to cellular DNA in an interrupted form, suggesting an incomplete DNA synthesis. The time-course of iAsIII effects (10 μM) showed an increase in p53 protein content and a transient increase in p21 protein levels accompanying the changes in S-phase. These effects were correlated with iAs concentrations inside the cells, which were not able to metabolize inorganic arsenic. Our findings suggest that p21 was not able to block CDK2-cyclin E complex activity and was therefore unable to arrest cells in G1 allowing their progression into the S-phase. Further studies are needed to ascertain the mechanisms underlying the effects of iAsIII on the G1 to S phase transition in bladder cells

  4. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  5. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  6. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  7. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  8. Cell lines derived from the squash bug, Anasa tristis (Coreidae: Hemiptera).

    Science.gov (United States)

    Goodman, Cynthia L; Ringbauer, Joseph A; Li, Yao-Fa; Lincoln, Tamra Reall; Stanley, David

    2017-05-01

    The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura's medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.

  9. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    Science.gov (United States)

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  10. A comparative study of the FcepsilonRI molecule on human mast cell and basophil cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Dissing, S; Skov, P S

    2005-01-01

    Mast cells and basophils express the high-affinity IgE receptor FcepsilonRI. We have analysed the human mast cell line LAD2 and four subclones of the basophil cell line KU812 in order to reveal possible differences concerning the FcepsilonRI surface regulation, anti-IgE-triggered activation......, FcepsilonRIalpha protein stability and the mRNA level of FcepsilonRIalpha-, beta- and the truncated beta-chain (beta(T)), and thereby determine the utility of these cell lines in investigations of the FcepsilonRI biology....

  11. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  12. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Directory of Open Access Journals (Sweden)

    Niurka Trujillo-Paredes

    2016-03-01

    Full Text Available Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs, but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+. These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  13. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  14. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    Science.gov (United States)

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  15. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  16. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  17. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  18. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    International Nuclear Information System (INIS)

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-01-01

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  19. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    Directory of Open Access Journals (Sweden)

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  20. Transformation and Tumorigenicity Testing of Simian Cell Lines and Evaluation of Poliovirus Replication.

    Directory of Open Access Journals (Sweden)

    Silvia Dotti

    Full Text Available The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated. Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field.

  1. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    Science.gov (United States)

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell