WorldWideScience

Sample records for dopamine neurons prevents

  1. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  2. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  3. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  4. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  5. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2018-01-01

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  6. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  7. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    Science.gov (United States)

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  8. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Biophysically realistic minimal model of dopamine neuron

    Science.gov (United States)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  10. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific

  11. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    Science.gov (United States)

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  12. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    Science.gov (United States)

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  13. The Impact of Exercise on the Vulnerability of Dopamine Neurons to Cell Death in Animal Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Zigmond, Michael J; Smith, Amanda; Liou, Anthony

    2006-01-01

    Parkinson's disease results in part from the loss of dopamine neurons. We hypothesize that exercise reduces the vulnerability of dopamine neurons to neurotoxin exposure, whereas stress increases vulnerability...

  14. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors

    Science.gov (United States)

    Dietrich, Marcelo O; Bober, Jeremy; Ferreira, Jozélia G; Tellez, Luis A; Mineur, Yann S; Souza, Diogo O; Gao, Xiao-Bing; Picciotto, Marina R; Araújo, Ivan; Liu, Zhong-Wu; Horvath, Tamas L

    2012-01-01

    It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit–impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing–dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors. PMID:22729177

  15. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  16. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  17. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  18. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  19. PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.

    Science.gov (United States)

    Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2015-06-30

    Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.

  20. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    2011-02-01

    Full Text Available Dopamine neurons in the ventral tegmental area (VTA have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.

  1. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  2. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol.

    Directory of Open Access Journals (Sweden)

    Bertha J Vandegrift

    Full Text Available Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2, the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2 or estrus (low E2 for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780 reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.

  3. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  4. The Impact of Exercise on the Vulnerability of Dopamine Neurons to Cell Death in Animal Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Zpgmond, Michael J; Smith, Amanda; Liou, Anthony

    2007-01-01

    Parkinson's disease results in part from the loss of dopamine neurons. We hypothesize that exercise reduces the vulnerability of dopamine neurons to neurotoxin exposure, which is modulated by stress...

  5. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  6. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats.

    Directory of Open Access Journals (Sweden)

    Guiqin Xie

    Full Text Available Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1 receptors (D(1Rs. In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.

  7. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  8. Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy.

    Science.gov (United States)

    Aguila, Julio C; Hedlund, Eva; Sanchez-Pernaute, Rosario

    2012-01-01

    Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  9. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    Science.gov (United States)

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  10. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  11. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

    Science.gov (United States)

    Menegas, William; Bergan, Joseph F; Ogawa, Sachie K; Isogai, Yoh; Umadevi Venkataraju, Kannan; Osten, Pavel; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2015-01-01

    Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.001 PMID:26322384

  12. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years

    DEFF Research Database (Denmark)

    Mendez, Ivar; Viñuela, Angel; Astradsson, Arnar

    2008-01-01

    Postmortem analysis of five subjects with Parkinson's disease 9-14 years after transplantation of fetal midbrain cell suspensions revealed surviving grafts that included dopamine and serotonin neurons without pathology. These findings are important for the understanding of the etiopathogenesis...

  13. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    Science.gov (United States)

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-12-15

    Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine

  14. 6-hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Porceddu, M.L.; Giorgi, O.; De Montis, G.; Mele, S.; Cocco, L.; Ongini, E.; Biggio, G.

    1987-01-01

    Dopamine-sensitive adenylate cyclase and 3 H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3 H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3 H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3 H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: a) within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and and/or dendrites of dopaminergic neurons; b) striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers. 24 references, 1 figure, 1 table

  15. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    Science.gov (United States)

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  16. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  17. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  18. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  19. DIRECT VISUALIZATION OF THE DOPAMINE TRANSPORTER IN CULTURED NEWBORN RAT MIDBRAIN NEURONS USING THE FLUORESCENT COCAINE ANALOGUE JHC 1-64

    DEFF Research Database (Denmark)

    Rasmussen, Søren; Vægter, Christian Bjerggaard; Cha, J

    In this study we have established methods for visualization and tracking of the dopamine transporter (DAT) in cultured dopaminergic neurons in real time using a fluorescent cocaine analogue JHC 1-64 and confocal fluorescence microscopy. The initial binding experiments in HEK 293 cells stably...... 1-64 was prevented by excess concentrations of dopamine, cocaine, mazindol, or RTI-55, whereas the norepinephrine and/or serotonin transporter specific inhibitors desmethylimipramine and citalopram did not affect fluorescent labeling of the neurons. This strongly supports that JHC 1-64 specifically...

  20. The Impact of Exercise on the Vulnerability of Dopamine Neurons to Cell Death in Animal Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Zigmond, Michael J; Smith, Amanda

    2005-01-01

    Parkinson's disease (PD) results in part from the loss of dopamine (DA) neurons. We hypothesize that exercise reduces the vulnerability of DA neurons to neurotoxin exposure, whereas stress increases vulnerability...

  1. A subset of dopamine neurons signals reward for odour memory in Drosophila.

    Science.gov (United States)

    Liu, Chang; Plaçais, Pierre-Yves; Yamagata, Nobuhiro; Pfeiffer, Barret D; Aso, Yoshinori; Friedrich, Anja B; Siwanowicz, Igor; Rubin, Gerald M; Preat, Thomas; Tanimoto, Hiromu

    2012-08-23

    Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

  2. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  3. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  4. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  5. Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance

    Directory of Open Access Journals (Sweden)

    Andrii eDomanskyi

    2014-09-01

    Full Text Available The proteins Foxa1 and Foxa2 belong to the forkhead family of transcription factors and are involved in the development of several tissues, including liver, pancreas, lung, prostate, and the neural system. Both Foxa1 and Foxa2 are also crucial for the specification and differentiation of dopamine (DA neurons during embryonic development, while about 30% of mice with an embryonic deletion of a single allele of the Foxa2 gene exhibit an age-related asymmetric loss of DA neurons and develop locomotor symptoms resembling Parkinson’s disease (PD. Notably, both Foxa1 and Foxa2 factors continue to be expressed in the adult dopamine system. To directly assess their functions selectively in adult DA neurons, we induced genetic deletions of Foxa1/2 transcription factors in mice using a tamoxifen inducible tissue-specific CreERT2 recombinase expressed under control of the dopamine transporter (DAT promoter (DATCreERT2. The conditional DA neurons-specific ablation of both genes, but not of Foxa2 alone, in early adulthood, caused a decline of striatal dopamine and its metabolites, along with locomotor deficits. At early pre-symptomatic stages, we observed a decline in aldehyde dehydrogenase family 1, subfamily A1 (Aldh1a1 protein expression in DA neurons. Further analyses revealed a decline of aromatic amino acid decarboxylase (AADC and a complete loss of DAT expression in these neurons. These molecular changes ultimately led to a reduction of DA neuron numbers in the substantia nigra pars compacta (SNpc of aged cFoxa1/2-/- mice, resembling the progressive course of PD in humans. Altogether, in this study, we address the molecular, cellular and functional role of both Foxa1 and Foxa2 factors in the maintenance of the adult dopamine system which may help to find better approaches for PD treatment.

  6. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease.

    Science.gov (United States)

    Pissadaki, Eleftheria K; Bolam, J Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD.

  7. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    OpenAIRE

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  8. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  9. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J.M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C.M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A.H.

    Background:Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  10. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J. M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C. M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A. H.

    2017-01-01

    BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  11. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  12. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice

    Directory of Open Access Journals (Sweden)

    Giuseppe Tatulli

    2018-01-01

    Full Text Available Intermittent fasting (IF was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson’s disease (PD. IF (24 h alternate-day fasting was applied alone or in concomitance with Rot treatment (Rot/IF. IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn accumulation with respect to Rot group in the substantia nigra (SN. Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

  13. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    Science.gov (United States)

    Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M; Audano, Matteo; Caruso, Donatella; D'Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia

    2018-01-01

    Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

  14. Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear.

    Science.gov (United States)

    Mileykovskiy, Boris; Morales, Marisela

    2011-05-18

    It is widely accepted that midbrain dopamine (DA) neurons encode actual and expected reward values by phasic alterations in firing rate. However, how DA neurons encode negative events in the environment is still unclear because some DA neurons appear to be depressed and others excited by aversive stimuli. Here, we show that exposing fear-conditioned rats to stimuli predicting electrical shock elicited three types of biphasic responses, each of which contained an inhibitory pause, in neurochemically identified ventral tegmental area (VTA) DA neurons. The duration of the inhibitory pause in these responses of VTA DA neurons was in direct proportion to the increase in respiratory rate reflecting the level of conditioned fear. Our results suggest that the duration of inhibition of VTA DA neurons encodes negative emotional values of signals predicting aversive events in the environment.

  15. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    2010-12-01

    Full Text Available Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system.We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine.We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  16. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  17. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    -synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α...

  18. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  19. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila.

    Science.gov (United States)

    Azanchi, Reza; Kaun, Karla R; Heberlein, Ulrike

    2013-12-24

    The neural circuits that mediate behavioral choice evaluate and integrate information from the environment with internal demands and then initiate a behavioral response. Even circuits that support simple decisions remain poorly understood. In Drosophila melanogaster, oviposition on a substrate containing ethanol enhances fitness; however, little is known about the neural mechanisms mediating this important choice behavior. Here, we characterize the neural modulation of this simple choice and show that distinct subsets of dopaminergic neurons compete to either enhance or inhibit egg-laying preference for ethanol-containing food. Moreover, activity in α'β' neurons of the mushroom body and a subset of ellipsoid body ring neurons (R2) is required for this choice. We propose a model where competing dopaminergic systems modulate oviposition preference to adjust to changes in natural oviposition substrates.

  20. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats

    NARCIS (Netherlands)

    Boekhoudt, Linde; Omrani, Azar; Luijendijk, Mieneke C M; Wolterink-Donselaar, Inge G; Wijbrans, Ellen C; van der Plasse, Geoffrey; Adan, Roger A H

    2016-01-01

    Hyperactivity is a core symptom in various psychiatric disorders, including attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorders, and anorexia nervosa. Although hyperactivity has been linked to dopaminergic  signalling, the causal relationship between midbrain dopamine neuronal

  1. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eric C Kong

    2010-04-01

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  2. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 25-Hydroxyvitamin D depletion does not exacerbate MPTP-induced dopamine neuron damage in mice.

    Directory of Open Access Journals (Sweden)

    E Danielle Dean

    Full Text Available Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OHD] levels <30 ng/mL and Parkinson's disease. To investigate the effect of 25(OHD depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OHD deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. We found there was no significant difference between control and 25(OHD-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OHD serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism.

  4. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.

    Science.gov (United States)

    Takahashi, Yuji K; Roesch, Matthew R; Wilson, Robert C; Toreson, Kathy; O'Donnell, Patricio; Niv, Yael; Schoenbaum, Geoffrey

    2011-10-30

    The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.

  5. Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons.

    Science.gov (United States)

    Arib, Ouafa; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; Faure, Philippe; de Beaurepaire, Renaud

    2010-03-10

    It has been suggested that the beta-carbolines harmane and norharmane may be involved in the pathophysiology of Parkinson's disease, psychosis and addiction, but the mechanisms of these possible effects remain to be elucidated. In the present study, the effects of the two compounds were examined by using in vivo extracellular recordings of ventral tegmental dopamine neurons. The effects of harmane (2mg/kg) and norharmane (2mg/kg), were compared to those of nicotine (11microg/kg), of cotinine (0.5mg/kg), of the monoamine-oxidase-A inhibitor befloxatone (0.12mg/kg), and of the monoamine-oxidase-B inhibitor selegiline (0.5mg/kg). The effects of harmane were also tested after pre-treatment with the nicotine receptor antagonist mecamylamine. The results show that all substances, except befloxatone, activate the firing and/or burst activity of dopamine neurons. The increase in firing rate produced by harmane was approximately 18 times greater than that produced by nicotine. Such powerful excitation of dopamine neurons by harmane may in part explain its involvement in neurotoxicity, psychosis and addiction. The absence of effect of befloxatone supports the hypothesis that the effect of harmane is not related to its monoamine-oxidase-A inhibitory properties. Mecamylamine inhibited by approximately 80% the activity of harmane, indicating that the activating effect of harmane on dopamine neurons involves several mechanisms, among which activation of nicotinic receptors likely has a prominent importance. The results of the present study support the hypothesis that harmane could be a tobacco (or smoke) component other than nicotine involved in tobacco dependence. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Differential Expression of Dopamine D5 Receptors across Neuronal Subtypes in Macaque Frontal Eye Field

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    2018-02-01

    Full Text Available Dopamine signaling in the prefrontal cortex (PFC is important for cognitive functions, yet very little is known about the expression of the D5 class of dopamine receptors (D5Rs in this region. To address this, we co-stained for D5Rs, pyramidal neurons (neurogranin+, putative long-range projection pyramidal neurons (SMI-32+, and several classes of inhibitory interneuron (parvalbumin+, calbindin+, calretinin+, somatostatin+ within the frontal eye field (FEF: an area within the PFC involved in the control of visual spatial attention. We then quantified the co-expression of D5Rs with markers of different cell types across different layers of the FEF. We show that: (1 D5Rs are more prevalent on pyramidal neurons than on inhibitory interneurons. (2 D5Rs are disproportionately expressed on putative long-range projecting pyramidal neurons. The disproportionately high expression of D5Rs on long-range projecting pyramidals, compared to interneurons, was particularly pronounced in layers II–III. Together these results indicate that the engagement of D5R-dependent mechanisms in the FEF varies depending on cell type and cortical layer, and suggests that non-locally projecting neurons contribute disproportionately to functions involving the D5R subtype.

  7. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    Science.gov (United States)

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    Science.gov (United States)

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  9. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    Science.gov (United States)

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I

  10. Unilateral Lesion of Dopamine Neurons Induces Grooming Asymmetry in the Mouse.

    Science.gov (United States)

    Pelosi, Assunta; Girault, Jean-Antoine; Hervé, Denis

    2015-01-01

    Grooming behaviour is the most common innate behaviour in animals. In rodents, it consists of sequences of movements organized in four phases, executed symmetrically on both sides of the animal and creating a syntactic chain of behavioural events. The grooming syntax can be altered by stress and novelty, as well as by several mutations and brain lesions. Grooming behaviour is known to be affected by alterations of the dopamine system, including dopamine receptor modulation, dopamine alteration in genetically modified animals, and after brain lesion. While a lot is known about the initiation and syntactic modifications of this refined sequence of movements, effects of unilateral lesion of dopamine neurons are unclear particularly regarding the symmetry of syntactic chains. In the present work we studied grooming in mice unilaterally lesioned in the medial forebrain bundle by 6-hydroxydopamine. We found a reduction in completion of grooming bouts, associated with reduction in number of transitions between grooming phases. The data also revealed the development of asymmetry in grooming behaviour, with reduced tendency to groom the contralateral side to the lesion. Symmetry was recovered following treatment with L-DOPA. Thus, the present work shows that unilateral lesion of dopamine neurons reduces self-grooming behaviour by affecting duration and numbers of events. It produces premature discontinuation of grooming chains but the sequence syntax remains correct. This deficient grooming could be considered as an intrinsic symptom of Parkinson's disease in animal models and could present some similarities with abnormalities of motor movement sequencing seen in patients. Our study also suggests grooming analysis as an additional method to screen parkinsonism in animal models.

  11. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    Science.gov (United States)

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    International Nuclear Information System (INIS)

    Kramer, Brian C.; Woodbury, Dale; Black, Ira B.

    2006-01-01

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFRα1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease

  13. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    Science.gov (United States)

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  14. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans.

    Directory of Open Access Journals (Sweden)

    Tim D Aumann

    Full Text Available Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA synthesis in extant neurons ('DA neurotransmitter switching'. If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis and DA transporter (DAT immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5 versus winter (short-day photoperiod, n = 5. TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+ neurons was significantly (~6-fold higher whereas the density of TH immunonegative (TH- neurons was significantly (~2.5-fold lower in summer compared with winter. The density of total neurons (TH+ and TH- combined was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells, and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association.

  16. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  17. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    Science.gov (United States)

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  18. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor

    Directory of Open Access Journals (Sweden)

    Jessica Coppens

    2017-03-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder, characterized by a loss of dopamine (DA neurons in the substantia nigra pars compacta (SNc. Caloric restriction (CR has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT and knockout (KO mice were maintained on an ad libitum (AL diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.

  19. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation.

    Science.gov (United States)

    Boekhoudt, Linde; Wijbrans, Ellen C; Man, Jodie H K; Luijendijk, Mieneke C M; de Jong, Johannes W; van der Plasse, Geoffrey; Vanderschuren, Louk J M J; Adan, Roger A H

    2018-01-01

    Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  20. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  2. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  3. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors

    DEFF Research Database (Denmark)

    Jeon, Jongrye; Dencker, Ditte; Wörtwein, Gitta

    2010-01-01

    AChRs are coexpressed with D(1) dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M(4) mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M(4) mAChRs only in D(1) dopamine....... Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance....

  4. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  5. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  6. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  7. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  8. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  9. Optimizing NTS-polyplex as a tool for gene transfer to cultured dopamine neurons.

    Directory of Open Access Journals (Sweden)

    Daniel Hernandez-Baltazar

    Full Text Available The study of signal transduction in dopamine (DA-containing neurons as well as the development of new therapeutic approaches for Parkinson's disease requires the selective expression of transgenes in such neurons. Here we describe optimization of the use of the NTS-polyplex, a gene carrier system taking advantage of neurotensin receptor internalization, to transfect mouse DA neurons in primary culture. The plasmids DsRed2 (4.7 kbp and VGLUT2-Venus (11 kbp were used to compare the ability of this carrier system to transfect plasmids of different sizes. We examined the impact of age of the neurons (1, 3, 5 and 8 days after seeding, of culture media used during the transfection (Neurobasal with B27 vs. conditioned medium and of three molar ratios of plasmid DNA to carrier. While the NTS-polyplex successfully transfected both plasmids in a control N1E-115 cell line, only the pDsRed2 plasmid could be transfected in primary cultured DA neurons. We achieved 20% transfection efficiency of pDsRed2 in DA neurons, with 80% cell viability. The transfection was demonstrated pharmacologically to be dependent on activation of neurotensin receptors and to be selective for DA neurons. The presence of conditioned medium for transfection was found to be required to insure cell viability. Highest transfection efficiency was achieved in the most mature neurons. In contrast, transfection with the VGLUT2-Venus plasmid produced cell damage, most likely due to the high molar ratios required, as evidenced by a 15% cell viability of DA neurons at the three molar ratios tested (1:36, 1:39 and 1:42. We conclude that, when used at molar ratios lower than 1:33, the NTS-polyplex can selectively transfect mature cultured DA neurons with only low levels of toxicity. Our results provide evidence that the NTS-polyplex has good potential for targeted gene delivery in cultured DA neurons, an in vitro system of great use for the screening of new therapeutic approaches for Parkinson

  10. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD. - Graphical abstract: Ultrafine particles and rotenone synergistically induce the assembly of active form NADPH oxidase complex in microglia inducing oxidative damage to dopamine neurons. - Highlights: • Ultrafine carbon black promotes dopaminergic neuronal loss induced by rotenone. • The role and underlying mechanism of ultrafine particles in the pathogenesis of PD • NADPH oxidase is a potential therapeutic target of Parkinson's disease.

  11. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    oxidative damage to DA neurons. Our findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD. - Graphical abstract: Ultrafine particles and rotenone synergistically induce the assembly of active form NADPH oxidase complex in microglia inducing oxidative damage to dopamine neurons. - Highlights: • Ultrafine carbon black promotes dopaminergic neuronal loss induced by rotenone. • The role and underlying mechanism of ultrafine particles in the pathogenesis of PD • NADPH oxidase is a potential therapeutic target of Parkinson's disease.

  12. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  13. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology.

    Science.gov (United States)

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A; Corsini, Giovanni U; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague-Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution.

  14. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  15. The Energy Cost of Action Potential Propagation in Dopamine Neurons: Clues to Susceptibility in Parkinson’s Disease

    OpenAIRE

    Eleftheria Kyriaki Pissadaki; J. Paul eBolam

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson’s disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated, axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production l...

  16. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine.

    Science.gov (United States)

    Rincón-Cortés, Millie; Grace, Anthony A

    2017-10-01

    Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress. The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested. Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats. These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  17. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    NARCIS (Netherlands)

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  18. NK3 Receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig

    NARCIS (Netherlands)

    Werkman, T.R.; McCreary, A.C.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists,

  19. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  20. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  1. Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Nian Xiong

    Full Text Available 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone, an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2 expression. Collectively, edaravone may provide novel clinical therapeutics for PD.

  2. Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease

    Science.gov (United States)

    Chen, Chunnuan; Huang, Jinsha; Zhao, Ying; Zhang, Zhentao; Qiao, Xian; Feng, Yuan; Reesaul, Harrish; Zhang, Yongxue; Sun, Shenggang; Lin, Zhicheng; Wang, Tao

    2011-01-01

    3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD. PMID:21677777

  3. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Schmauss Claudia

    2007-01-01

    Full Text Available Abstract Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of

  4. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    Science.gov (United States)

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron

  5. Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.

    Science.gov (United States)

    Zhao, Jerry; Baudry, Michel; Jones, Susan

    2018-05-04

    Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca 2+ -dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca 2+ -dependent regulatory protein has not been identified. The role of the Ca 2+ -dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca 2+ -dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca 2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca 2+ -independent. In conclusion, Ca 2+ -dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca 2+ - and calpain-2-dependent NMDAR current rundown is developmentally regulated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats.

    Science.gov (United States)

    Wang, Min; Li, Min; Geng, Xiwen; Song, Zhimin; Albers, H Elliott; Yang, Maoquan; Zhang, Xiao; Xie, Jinlu; Qu, Qingyang; He, Tingting

    2015-01-15

    The involvement of dopamine (DA) neuron loss in the etiology of Parkinson's disease has been well documented. The neural mechanisms underlying the effects of DA loss and the resultant motor dysfunction remain unknown. To gain insights into how loss of DA disrupts the electrical processes in the cortico-subcortical network, the present study explores the effects of DA neuron depletion on electrical activity in the primary motor cortex (M1), on the external and the internal segment of the globus pallidus (GPe and GPi respectively), and on their temporal relationships. Comparison of local field potentials (LFPs) in these brain regions from unilateral hemispheric DA neuron depleted rats and neurologically intact rats revealed that the spectrum power of LFPs in 12-70Hz (for M1, and GPe) and in 25-40Hz (for GPi) was significantly greater in the DA depleted rats than that in the control group. These changes were associated with a shortening of latency in LFP activities between M1 and GPe, from several hundred milliseconds in the intact animals to close to zero in the DA depleted animals. LFP oscillations in M1 were significantly more synchronized with those in GPe in the DA depleted rats compared with those in the control rats. By contrast, the synchronization of oscillation in LFP activities between M1 and GPi did not differ between the DA depleted and intact rats. Not surprisingly, rats that had DA neuron depletion spent more time along the ladder compared with the control rats. These data suggest that enhanced oscillatory activity and increased synchronization of LFPs may contribute to movement impairment in the rat model of Parkinson's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death.

    Science.gov (United States)

    Choi, Kyou-Chan; Kim, Shin-Hee; Ha, Ji-Young; Kim, Sang-Tae; Son, Jin H

    2010-01-01

    Our previous microarray analysis identified a neuroprotective protein Oxi-alpha, that was down-regulated during oxidative stress (OS)-induced cell death in dopamine neurons [Neurochem. Res. (2004) vol. 29, pp. 1223]. Here we find that the phylogenetically conserved Oxi-alpha protects against OS by a novel mechanism: activation of the mammalian target of rapamycin (mTOR) kinase and subsequent repression of autophagic vacuole accumulation and cell death. To the best of our knowledge, Oxi-alpha is the first molecule discovered in dopamine neurons, which activates mTOR kinase. Indeed, the down-regulation of Oxi-alpha by OS suppresses the activation of mTOR kinase. The pathogenic effect of down-regulated Oxi-alpha was confirmed by gene-specific knockdown experiment, which resulted in not only the repression of mTOR kinase and the subsequent phosphorylation of p70 S6 kinase and 4E-BP1, but also enhanced susceptibility to OS. In accordance with these observations, treatment with rapamycin, an mTOR inhibitor and autophagy inducer, potentiated OS-induced cell death, while similar treatment with an autophagy inhibitor, 3-methyladenine protected the dopamine cells. Our findings present evidence for the presence of a novel class of molecule involved in autophagic cell death triggered by OS in dopamine neurons.

  8. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.

    Science.gov (United States)

    Engel, Dominique; Seutin, Vincent

    2015-11-15

    The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration

  9. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.

    Science.gov (United States)

    Terao, Kanta; Mizunami, Makoto

    2017-10-31

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. The prediction error theory has been proposed to account for the finding of a blocking phenomenon, in which pairing of a stimulus X with an unconditioned stimulus (US) could block subsequent association of a second stimulus Y to the US when the two stimuli were paired in compound with the same US. Evidence for this theory, however, has been imperfect since blocking can also be accounted for by competitive theories. We recently reported blocking in classical conditioning of an odor with water reward in crickets. We also reported an "auto-blocking" phenomenon in appetitive learning, which supported the prediction error theory and rejected alternative theories. The presence of auto-blocking also suggested that octopamine neurons mediate reward prediction error signals. Here we show that blocking and auto-blocking occur in aversive learning to associate an odor with salt water (US) in crickets, and our results suggest that dopamine neurons mediate aversive prediction error signals. We conclude that the prediction error theory is applicable to both appetitive learning and aversive learning in insects.

  10. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas

    2006-01-01

    's disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1......Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson......, Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  11. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  12. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  13. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons

    OpenAIRE

    Vong, Linh; Ye, Chianping; Yang, Zongfang; Choi, Brian; Chua, Streamson; Lowell, Bradford B.

    2011-01-01

    Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part due to incomplete knowledge regarding first order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first order neurons. While functionally relevant neurons have been identified, the observed effects have been small suggesting that most first order neurons remain unidentified. Here we take an alternative appro...

  14. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-12-20

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  15. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-12-01

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  16. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978

  17. Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist.

    Science.gov (United States)

    Fuller, R W; Hemrick-Luecke, S K; Ornstein, P L

    1992-10-01

    LY274614, 3SR,4aRS,6SR,8aRS-6-[phosphonomethyl]decahydr oisoquinoline-3- carboxylic acid, has been described as a potent antagonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Here its ability to antagonize the prolonged depletion of dopamine in the striatum by amphetamine in iprindole-treated rats is reported. A single 18.4 mg/kg (i.p.) dose of (+/-)-amphetamine hemisulfate, given to rats pretreated with iprindole, resulted in persistent depletion of dopamine in the striatum 1 week later. This prolonged depletion of dopamine in the striatum was antagonized by dizocilpine (MK-801, a non-competitive antagonist of NMDA receptors) or by LY274614 (a competitive antagonist of NMDA receptors). The protective effect of LY274614 was dose-dependent, being maximum at 10-40 mgkg (i.p.). A 10 mg/kg dose of LY274614 was effective in antagonizing the depletion of dopamine in the striatum, when given as long as 8 hr prior to amphetamine but not when given 24 hr prior to amphetamine. Depletion of dopamine in the striatum was also antagonized when LY274614 was given after the injection of amphetamine; LY274614 protected when given up to 4 hr after but not when given 8 or 24 hr after amphetamine. The prolonged depletion of dopamine in the striatum in mice, given multiple injections of methamphetamine, was also antagonized dose-dependently and completely by LY274614. The data strengthen the evidence that the neurotoxic effect of amphetamine and related compounds toward nigrostriatal dopamine neurons involves NMDA receptors and that LY274614 is an NMDA receptor antagonist with long-lasting in vivo effects in rats.

  18. iPSC-Derived Dopamine Neurons Reveal Differences between Monozygotic Twins Discordant for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Chris M. Woodard

    2014-11-01

    Full Text Available Parkinson’s disease (PD has been attributed to a combination of genetic and nongenetic factors. We studied a set of monozygotic twins harboring the heterozygous glucocerebrosidase mutation (GBA N370S but clinically discordant for PD. We applied induced pluripotent stem cell (iPSC technology for PD disease modeling using the twins’ fibroblasts to evaluate and dissect the genetic and nongenetic contributions. Utilizing fluorescence-activated cell sorting, we obtained a homogenous population of “footprint-free” iPSC-derived midbrain dopaminergic (mDA neurons. The mDA neurons from both twins had ∼50% GBA enzymatic activity, ∼3-fold elevated α-synuclein protein levels, and a reduced capacity to synthesize and release dopamine. Interestingly, the affected twin’s neurons showed an even lower dopamine level, increased monoamine oxidase B (MAO-B expression, and impaired intrinsic network activity. Overexpression of wild-type GBA and treatment with MAO-B inhibitors normalized α-synuclein and dopamine levels, suggesting a combination therapy for the affected twin.

  19. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine.

    Directory of Open Access Journals (Sweden)

    Ginetta eCollo

    2014-11-01

    Full Text Available Mesencephalic dopaminergic neurons were suggested to be a critical physiopathology substrate for addiction disorders. Among neuroadaptive processes to addictive drugs, structural plasticity has attracted attention. While structural plasticity occurs at both pre- and post-synaptic levels in the mesolimbic dopaminergic system, the present review focuses only on dopaminergic neurons. Exposures to addictive drugs determine two opposite structural responses, hypothrophic plasticity produced by opioids and cannabinoids (in particular during the early withdrawal phase and hypertrophic plasticity, mostly driven by psychostimulants and nicotine. In vitro and in vivo studies indentified BDNF and extracellular dopamine as two critical factors in determining structural plasticity, the two molecules sharing similar intracellular pathways involved in cell soma and dendrite growth, the MEK-ERK1/2 and the PI3K-Akt-mTOR, via preferential activation of TrkB and dopamine D3 receptors, respectively. At present information regarding specific structural changes associated to the various stages of the addiction cycle is incomplete. Encouraging neuroimaging data in humans indirectly support the preclinical evidence of hypotrophic and hypertrophic effects, suggesting a possible differential engagement of dopamine neurons in parallel and partially converging circuits controlling motivation, stress and emotions.

  20. Signaling Pathways that Mediate Neurotoxin-Induced Death of Dopamine Neurons

    Science.gov (United States)

    2008-11-01

    2001), and prion encephalopathies (Boel- laard et al., 1991; Liberski et al., 2002). Nutrient deprivation, including withdrawal of serum (Mitchener...2001), prion encephalopathies (Boellaard et al., 1991; Jeffrey et al., 1992), and diffuse Lewy body disease (Zhu et al., 2003). Extensive cytoplasmic...tor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. J

  1. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons.

    Science.gov (United States)

    Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J; Mandyam, Chitra D

    2016-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also

  2. Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine.

    Science.gov (United States)

    Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana

    2016-10-11

    The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R + -MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.

  3. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  4. Preventing or attenuating amphotericin B nephrotoxicity with dopamine receptor agonists: a literature review

    Directory of Open Access Journals (Sweden)

    Iman Karimzadeh

    2016-09-01

    Full Text Available Nephrotoxicity is generally considered as the most clinically significant and dose-limiting adverse reaction of amphotericin B. Currently, only the clinical effectiveness of salt loading and administering lipid formulations of amphotericin B have been clearly demonstrated to prevent its nephrotoxicity. In this review, we collected the published data related to dopamine receptor agonists in preventing amphotericin B nephrotoxicity. A literature search was conducted by the relevant keywords like ‘‘amphotericin B”, “nephrotoxicity’’, and ‘‘dopamine’’in databases such as Scopus, Medline, Embase and ISI Web of Knowledge. Four relevant articles were considered. Results of all the 3 experimental studies demonstrated that co-administration of dopamine (0.5-10 μg/kg/min as continuous intravenous infusion, SK&F R-105058, a prodrug of fenoldopam (10 mg/kg twice daily, orally or fenoldopam, a relatively selective dopamine receptor type 1 agonist, (0.5 or 1 μg/kg/min as continuous intravenous infusion can at least significantly mitigate the decrease in creatinine clearance caused by amphotericin B. Furthermore, fenoldopam and SK&F R-105058 can also protect against or delay amphotericin B-induced tubular damage. In contrast, the only clinical trial published until now found that simultaneous continuous intravenous infusion of low dose dopamine (3 μg/kg/min had no beneficial effect on the incidence, severity and time onset of developing amphotericin B-induced nephrotoxicity in autologous bone marrow transplant and leukemia patients. Considering the lack of beneficial effects in different settings such as acute kidney injury of any cause, negative results of the only clinical trial, and risk of significant adverse reactions, continuous intravenous infusion of low dose dopamine (1-3 μg/kg/min or selective dopamine receptor type 1 agonists (e.g., fenoldopam currently appears to have no promising clinical role in preventing or attenuating

  5. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    Science.gov (United States)

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Anatomical and electrophysiological characterization of presumed dopamine-containing neurons within the supramammillary region of the rat.

    Science.gov (United States)

    Shepard, P D; Mihailoff, G A; German, D C

    1988-03-01

    A combination of immunocytochemical, electrophysiological and pharmacological techniques were employed to study the properties of neurons within the supramammillary (SUM) complex of the rat. The SUM region contains a small, but dense, population of tyrosine hydroxylase immunoreactive neurons. Following injection of the orthograde neuroanatomical tracer, Phaseolus Vulgaris leucoagglutinin, into the SUM region, heavy terminal labeling was observed in the lateral septal nucleus, diagonal band of Broca and bed nucleus of the stria terminalis. The electrophysiological and pharmacological properties of antidromically-activated SUM neurons revealed evidence of two neuronal populations. Both groups of neurons exhibited long duration action potentials (greater than 2 msec) and slow conduction velocities (less than 0.5 m/sec). However, cells in one group were characterized by slow and erratic firing rates and insensitivity to dopamine (DA) autoreceptor agonists. Cells in the other group typically exhibited no spontaneous activity but could be induced to discharge by iontophoretic application of glutamate. These latter cells were sensitive to DA autoreceptor stimulation. Of the two populations of mammilloseptal SUM neurons, the silent population exhibited several properties similar to those of midbrain DA neurons.

  7. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Science.gov (United States)

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  8. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy

    Science.gov (United States)

    Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil

    2017-10-01

    Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.

  9. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease

    DEFF Research Database (Denmark)

    Hallett, Penelope J; Deleidi, Michela; Astradsson, Arnar

    2015-01-01

    that unilateral engraftment of CM-iPSCs could provide a gradual onset of functional motor improvement contralateral to the side of dopamine neuron transplantation, and increased motor activity, without a need for immunosuppression. Postmortem analyses demonstrated robust survival of midbrain-like dopaminergic......Autologous transplantation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons is a potential clinical approach for treatment of neurological disease. Preclinical demonstration of long-term efficacy, feasibility, and safety of iPSC-derived dopamine neurons in non-human primate...... models will be an important step in clinical development of cell therapy. Here, we analyzed cynomolgus monkey (CM) iPSC-derived midbrain dopamine neurons for up to 2 years following autologous transplantation in a Parkinson's disease (PD) model. In one animal, with the most successful protocol, we found...

  10. IGF-1 Protects Dopamine Neurons Against Oxidative Stress: Association with Changes in Phosphokinases

    Science.gov (United States)

    El Ayadi, Amina; Zigmond, Michael J.; Smith, Amanda D.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson’s disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 μg) 6 hrs prior to infusion of 4 μg 6-OHDA into the same site and were sacrificed 1 or 4 wks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 wks but not at 1 wk, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 μg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain if their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 (pERK1/2) were maximal 6 hrs after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 hrs, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6–24 hrs post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades PMID:26894890

  11. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons.

    Science.gov (United States)

    Avelar, Alicia J; Cao, Jianjing; Newman, Amy Hauck; Beckstead, Michael J

    2017-09-01

    Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed "atypical DAT inhibitors" has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation

    Directory of Open Access Journals (Sweden)

    Sun Young Chung

    2016-10-01

    Full Text Available Parkinson's disease (PD is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC-derived midbrain dopamine (mDA neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets.

  13. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.

    Science.gov (United States)

    Chung, Sun Young; Kishinevsky, Sarah; Mazzulli, Joseph R; Graziotto, John; Mrejeru, Ana; Mosharov, Eugene V; Puspita, Lesly; Valiulahi, Parvin; Sulzer, David; Milner, Teresa A; Taldone, Tony; Krainc, Dimitri; Studer, Lorenz; Shim, Jae-Won

    2016-10-11

    Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Development and function of the midbrain dopamine system: what we know and what we need to

    OpenAIRE

    Bissonette, G. B.; Roesch, M. R.

    2015-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson’s disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, in...

  15. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    OpenAIRE

    Garcia, Bonnie G.; Neely, M. Diana; Deutch, Ariel Y.

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if dec...

  16. Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes In Vivo

    Directory of Open Access Journals (Sweden)

    Dustin R. Wakeman

    2017-07-01

    Full Text Available A major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD.

  17. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Xue-Feng Wang

    2015-08-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 and its analogs act as appetite suppressants and have been proven to be clinically efficacious in reducing body weight in obese individuals. Central GLP-1 is expressed in a small population of brainstem cells located in the nucleus tractus solitarius (NTS, which project to a wide range of brain areas. However, it remains unclear how endogenous GLP-1 released in the brain contributes to appetite regulation. Using chemogenetic tools, we discovered that central GLP-1 acts on the midbrain ventral tegmental area (VTA and suppresses high-fat food intake. We used integrated pathway tracing and synaptic physiology to further demonstrate that activation of GLP-1 receptors specifically reduces the excitatory synaptic strength of dopamine (DA neurons within the VTA that project to the nucleus accumbens (NAc medial shell. These data suggest that GLP-1 released from NTS neurons can reduce highly palatable food intake by suppressing mesolimbic DA signaling.

  18. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.

    Science.gov (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi

    2009-12-01

    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  19. Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1.

    Directory of Open Access Journals (Sweden)

    Lu-Yun Lian

    Full Text Available NCS-1 is a member of the neuronal calcium sensor (NCS family of EF-hand Ca(2+ binding proteins which has been implicated in several physiological functions including regulation of neurotransmitter release, membrane traffic, voltage gated Ca(2+ channels, neuronal development, synaptic plasticity, and learning. NCS-1 binds to the dopamine D2 receptor, potentially affecting its internalisation and controlling dopamine D2 receptor surface expression. The D2 receptor binds NCS-1 via a short 16-residue cytoplasmic C-terminal tail. We have used NMR and fluorescence spectroscopy to characterise the interactions between the NCS-1/Ca(2+ and D2 peptide. The data show that NCS-1 binds D2 peptide with a K(d of ∼14.3 µM and stoichiometry of peptide binding to NCS-1 of 2:1. NMR chemical shift mapping confirms that D2 peptide binds to the large, solvent-exposed hydrophobic groove, on one face of the NCS-1 molecule, with residues affected by the presence of the peptide spanning both the N and C-terminal portions of the protein. The NMR and mutagenesis data further show that movement of the C-terminal helix 11 of NCS-1 to fully expose the hydrophobic groove is important for D2 peptide binding. Molecular docking using restraints derived from the NMR chemical shift data, together with the experimentally-derived stoichiometry, produced a model of the complex between NCS-1 and the dopamine receptor, in which two molecules of the receptor are able to simultaneously bind to the NCS-1 monomer.

  20. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: Relevance for schizophrenia.

    Science.gov (United States)

    Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran

    2018-06-05

    Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.

  1. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys.

    Science.gov (United States)

    Varazzani, Chiara; San-Galli, Aurore; Gilardeau, Sophie; Bouret, Sebastien

    2015-05-20

    Motivation determines multiple aspects of behavior, including action selection and energization of behavior. Several components of the underlying neural systems have been examined closely, but the specific role of the different neuromodulatory systems in motivation remains unclear. Here, we compare directly the activity of dopaminergic neurons from the substantia nigra pars compacta and noradrenergic neurons from the locus coeruleus in monkeys performing a task manipulating the reward/effort trade-off. Consistent with previous reports, dopaminergic neurons encoded the expected reward, but we found that they also anticipated the upcoming effort cost in connection with its negative influence on action selection. Conversely, the firing of noradrenergic neurons increased with both pupil dilation and effort production in relation to the energization of behavior. Therefore, this work underlines the contribution of dopamine to effort-based decision making and uncovers a specific role of noradrenaline in energizing behavior to face challenges. Copyright © 2015 the authors 0270-6474/15/357866-12$15.00/0.

  2. Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Bjørn-Yoshimoto, Walden Emil; Jørgensen, Trine Nygaard

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of released dopamine and is the target for psychostimulants, such as cocaine and amphetamine. DAT undergoes marked constitutive endocytosis, but little is known about the fate and sorting of the endocytosed transporter. To study DAT sorting in cells...... lines, we fused the one-transmembrane segment protein Tac to DAT, thereby generating a transporter (TacDAT) with an extracellular antibody epitope suited for trafficking studies. TacDAT was functional and endocytosed constitutively in HEK293 cells. According to an ELISA-based assay, TacDAT intracellular...

  3. Active and passive sexual roles that arise in Drosophila male-male courtship are modulated by dopamine levels in PPL2ab neurons

    OpenAIRE

    Shiu-Ling Chen; Yu-Hui Chen; Chuan-Chan Wang; Yhu-Wei Yu; Yu-Chen Tsai; Hsiao-Wen Hsu; Chia-Lin Wu; Pei-Yu Wang; Lien-Cheng Chen; Tsuo-Hung Lan; Tsai-Feng Fu

    2017-01-01

    The neurology of male sexuality has been poorly studied owing to difficulties in studying brain circuitry in humans. Dopamine (DA) is essential for both physiological and behavioural responses, including the regulation of sexuality. Previous studies have revealed that alterations in DA synthesis in dopaminergic neurons can induce male-male courtship behaviour, while increasing DA levels in the protocerebral posteriolateral dopaminergic cluster neuron 2ab (PPL2ab) may enhance the intensity of ...

  4. Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes.

    Science.gov (United States)

    Vauzour, David; Buonfiglio, Maria; Corona, Giulia; Chirafisi, Joselita; Vafeiadou, Katerina; Angeloni, Cristina; Hrelia, Silvana; Hrelia, Patrizia; Spencer, Jeremy P E

    2010-04-01

    The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.

  5. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajib Paul

    Full Text Available Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  6. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  7. Eating-induced dopamine release from mesolimbic neurons is mediated by NMDA receptors in the ventral tegmental area : A dual-probe microdialysis study

    NARCIS (Netherlands)

    Westerink, BHC; deVries, JB

    This study was aimed at identifying the neuronal pathways that mediate the eating-induced increase in the release of dopamine in the nucleus accumbens of the rat brain. For that purpose, a microdialysis probe was implanted in the ventral tegmental area and a second probe was placed in the

  8. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  9. Effect of nerve activity on transport of nerve growth factor and dopamine β-hydroxylase antibodies in sympathetic neurones

    International Nuclear Information System (INIS)

    Lees, G.; Chubb, I.; Freeman, C.; Geffen, L.; Rush, R.

    1981-01-01

    The effect of nerve activity on the uptake and retrograde transport of nerve growth factor (NGF) and dopamine β-hydroxylase (DBH) antibodies was studied by injecting 125 I-labelled NGF and anti-DBH into the anterior eye chamber of guinea-pigs. Decentralization of the ipsilateral superior cervical ganglion (SCG) had no significant effect on the retrograde transport of either NGF or anti-DBH. Phenoxybenzamine produced a 50% increase in anti-DBH but not NGF accumulation and this effect was prevented by prior decentralization. This demonstrates that NGF is taken up independently of the retrieval of synaptic vesicle components. (Auth.)

  10. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  11. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    DEFF Research Database (Denmark)

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte

    2012-01-01

    Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological......]-amine (CyPPA), a subtype-selective positive modulator of SK channels (SK3¿>¿SK2¿>¿>¿>¿SK1, IK), decreased spontaneous firing rate, increased the duration of the apamin-sensitive afterhyperpolarization, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both...

  12. Prevention of hypoglycemia-induced neuronal death by minocycline

    Science.gov (United States)

    2012-01-01

    Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689

  13. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  14. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.

    Science.gov (United States)

    González, Hugo; Contreras, Francisco; Prado, Carolina; Elgueta, Daniela; Franz, Dafne; Bernales, Sebastián; Pacheco, Rodrigo

    2013-05-15

    Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.

  15. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    Deterre, Philippe

    1983-01-01

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein [fr

  16. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo.

    Science.gov (United States)

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R; Bamberger, Maximilian; Li, Kong M; Vissel, Bryce

    2017-01-01

    Parkinson's disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson's disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson's disease.

  17. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    Science.gov (United States)

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Presence of proNGF-Sortilin Signaling Complex in Nigral Dopamine Neurons and Its Variation in Relation to Aging, Lactacystin and 6-OHDA Insults

    Directory of Open Access Journals (Sweden)

    Ken Kam-Lin Yung

    2013-07-01

    Full Text Available Growing evidence has shown that proNGF-p75NTR-sortilin signaling might be a crucial factor in neurodegeneration, but it remains unclear if it may function in nigral neurons under aging and disease. The purpose of this study is to examine and quantify proNGF and sortilin expression in the substantia nigra and dynamic changes of aging in lactacystin and 6-hydroxydopamine (6-OHDA rat models of Parkinson’s disease using immunofluorescence, electronic microscopy, western blot and FLIVO staining methods. The expression of proNGF and sortilin was abundantly and selectively identified in tyrosine hydroxylase (TH-containing dopamine neurons in the substantia nigra. These proNGF/TH, sortilin/TH-positive neurons were densely distributed in the ventral tier, while they were less distributed in the dorsal tier, where calbindin-D28K-containing neurons were numerously located. A correlated decrease of proNGF, sortilin and TH was also detected during animal aging process. While increase of proNGF, sortilin and cleaved (active caspase-3 expression was found in the lactacystin model, dynamic proNGF and sortilin changes along with dopamine neuronal loss were demonstrated in the substantia nigra of both the lactacystin and 6-OHDA models. This study has thus revealed the presence of the proNGF-sortilin signaling complex in nigral dopamine neurons and its response to aging, lactacystin and 6-OHDA insults, suggesting that it might contribute to neuronal apoptosis or neurodegeneration during pathogenesis and disease progression of Parkinson’s disease; the underlying mechanism and key signaling pathways involved warrant further investigation.

  19. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis.

    Science.gov (United States)

    Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Pivoraitė, Ugnė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-07-01

    Stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) have unique neurogenic properties that could be potentially exploited for therapeutic use. The importance of paracrine SHED signaling for neuro-regeneration has been recognized, but the exact mechanisms behind these effects are presently unknown. In the present study, we investigated the neuro-protective potential of exosomes and micro-vesicles derived from SHEDs on human dopaminergic neurons during oxidative stress-induced by 6-hydroxy-dopamine (6-OHDA). ReNcell VM human neural stem cells were differentiated into dopaminergic neurons and treated with 100 μmol/L of 6-OHDA alone or in combination with exosomes or micro-vesicles purified by ultracentrifugation from SHEDs cultivated in serum-free medium under two conditions: in standard two-dimensional culture flasks or on laminin-coated micro-carriers in a bioreactor. Real-time monitoring of apoptosis was performed with the use of time-lapse confocal microscopy and the CellEvent Caspase-3/7 green detection reagent. Exosomes but not micro-vesicles derived from SHEDs grown on the laminin-coated three-dimensional alginate micro-carriers suppressed 6-OHDA-induced apoptosis in dopaminergic neurons by approximately 80% throughout the culture period. Strikingly, no such effects were observed for the exosomes derived from SHEDs grown under standard culture conditions. Our results suggest that exosomes derived from SHEDs are considered as new potential therapeutic tool in the treatment of Parkinson's disease. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    Science.gov (United States)

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  1. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    Science.gov (United States)

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  3. Disease-toxicant interactions in manganese exposed Huntington disease mice: early changes in striatal neuron morphology and dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Jennifer L Madison

    Full Text Available YAC128 Huntington's disease (HD transgenic mice accumulate less manganese (Mn in the striatum relative to wild-type (WT littermates. We hypothesized that Mn and mutant Huntingtin (HTT would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl(2-4H(2O (50 mg/kg on days 0, 3 and 6. Striatal medium spiny neuron (MSN morphology, as well as levels of dopamine (DA and its metabolites (which are known to be sensitive to Mn-exposure, were analyzed at 13 weeks (7 days from initial exposure and 16 weeks (28 days from initial exposure. No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology.

  4. CNB-001 a Novel Curcumin Derivative, Guards Dopamine Neurons in MPTP Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Richard L. Jayaraj

    2014-01-01

    Full Text Available Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson’s disease (PD pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH, dopamine transporter, and vesicular monoamine transporter 2 (VMAT2 expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.

  5. Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates.

    Science.gov (United States)

    Singh, Arun; Jenkins, Meagan A; Burke, Kenneth J; Beck, Goichi; Jenkins, Andrew; Scimemi, Annalisa; Traynelis, Stephen F; Papa, Stella M

    2018-01-23

    Dopamine (DA) loss in Parkinson's disease (PD) alters the function of striatal projection neurons (SPNs) and causes motor deficits, but DA replacement can induce further abnormalities. A key pathological change in animal models and patients is SPN hyperactivity; however, the role of glutamate in altered DA responses remains elusive. We tested the effect of locally applied AMPAR or NMDAR antagonists on glutamatergic signaling in SPNs of parkinsonian primates. Following a reduction in basal hyperactivity by antagonists at either receptor, DA inputs induced SPN firing changes that were stable during the entire motor response, in clear contrast with the typically unstable effects. The SPN activity reduction over an extended putamenal area controlled the release of involuntary movements in the "on" state and therefore improved motor responses to DA replacement. These results demonstrate the pathophysiological role of upregulated SPN activity and support strategies to reduce striatal glutamate signaling for PD therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    Science.gov (United States)

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  7. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-04-01

    Full Text Available The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating “Go” responses upon exposure to reward-related stimuli and “NoGo” responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R and adenosine A2A receptors (A2AR, and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5. The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that

  8. Development and function of the midbrain dopamine system: what we know and what we need to.

    Science.gov (United States)

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. The bioenergetic status relates to dopamine neuron loss in familial PD with PINK1 mutations.

    Directory of Open Access Journals (Sweden)

    Rüediger Hilker

    Full Text Available Mutations in the PINK1 gene cause autosomal recessive familial Parkinson's disease (PD. The gene encodes a mitochondrial protein kinase that plays an important role in maintaining mitochondrial function and integrity. However, the pathophysiological link between mutation-related bioenergetic deficits and the degenerative process in dopaminergic neurons remains to be elucidated. We performed phosphorous ((31P and proton ((1H 3-T magnetic resonance spectroscopic imaging (MRSI in 11 members of a German family with hereditary PD due to PINK1 mutations (PARK6 compared to 23 age-matched controls. All family members had prior 18-Fluorodopa (FDOPA positron emission tomography (PET. The striatal FDOPA uptake was correlated with quantified metabolic brain mapping in MRSI. At group level, the heterozygous PINK1 mutation carriers did not show any MRSI abnormalities relative to controls. In contrast, homozygous individuals with manifest PD had putaminal GPC, PCr, HEP and β-ATP levels well above the 2SD range of controls. Across all subjects, the FDOPA K(i values correlated positively with MI (r = 0.879, p<0.001 and inversely with β-ATP (r = -0.784, p = 0.008 and GPC concentrations (r = -0.651, p = 0.030 in the putamen. Our combined imaging data suggest that the dopaminergic deficit in this family with PD due to PINK1 mutations relates to osmolyte dysregulation, while the delivery of high energy phosphates was preserved. Our results corroborate the hypothesis that PINK1 mutations result in reduced neuronal survival, most likely due to impaired cellular stress resistance.

  10. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  12. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.

    Science.gov (United States)

    Takikawa, Yoriko; Kawagoe, Reiko; Hikosaka, Okihide

    2004-10-01

    Dopamine (DA) neurons respond to sensory stimuli that predict reward. To understand how DA neurons acquire such ability, we trained monkeys on a one-direction-rewarded version of memory-guided saccade task (1DR) only when we recorded from single DA neurons. In 1DR, position-reward mapping was changed across blocks of trials. In the early stage of training of 1DR, DA neurons responded to reward delivery; in the later stages, they responded predominantly to the visual cue that predicted reward or no reward (reward predictor) differentially. We found that such a shift of activity from reward to reward predictor also occurred within a block of trials after position-reward mapping was altered. A main effect of long-term training was to accelerate the within-block reward-to-predictor shift of DA neuronal responses. The within-block shift appeared first in the intermediate stage, but was slow, and DA neurons often responded to the cue that indicated reward in the preceding block. In the advanced stage, the reward-to-predictor shift occurred quickly such that the DA neurons' responses to visual cues faithfully matched the current position-reward mapping. Changes in the DA neuronal responses co-varied with the reward-predictive differentiation of saccade latency both in short-term (within-block) and long-term adaptation. DA neurons' response to the fixation point also underwent long-term changes until it occurred predominantly in the first trial within a block. This might trigger a switch between the learned sets. These results suggest that midbrain DA neurons play an essential role in adapting oculomotor behavior to frequent switches in position-reward mapping.

  13. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  14. Mesencephalic neuron death induced by congeners of nitrogen monoxide is prevented by the lazaroid U-83836E.

    Science.gov (United States)

    Grasbon-Frodl, E M; Brundin, P

    1997-01-01

    We explored the effects of congeners of nitrogen monoxide (NO) on cultured mesencephalic neurons. Sodium nitroprusside (SNP) was used as a donor of NO, the congeners of which have been found to exert either neurotoxic or neuroprotective effects depending on the surrounding redox milieu. In contrast to a previous report that suggests that the nitrosonium ion (NO+) is neuroprotective to cultured cortical neurons, we found that the nitrosonium ion reduces the survival of cultured dopamine neurons to 32% of control. There was a trend for further impairment of dopamine neuron survival, to only 7% of untreated control, when the cultures were treated with SNP plus ascorbate, i.e. when the nitric oxide radical (NO.) had presumably been formed. We also evaluated the effects of an inhibitor of lipid peroxidation, the lazaroid U-83836E, against SNP toxicity. U-83836E exerted marked neuroprotective effects in both insult models. More than twice as many dopamine neurons (75% of control) survived when the lazaroid was added to SNP-treated cultures and the survival was increased eight-fold (to 55% of control) when U-83836E was added to cultures treated with SNP plus ascorbate. We conclude that the congeners of NO released by SNP are toxic to mesencephalic neurons in vitro and that the lazaroid U-83836E significantly increases the survival of dopamine neurons in situations where congeners of NO are generated.

  15. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine.

    Directory of Open Access Journals (Sweden)

    Henrike Planert

    Full Text Available D1 and D2 receptor expressing striatal medium spiny neurons (MSNs are ascribed to striatonigral ("direct" and striatopallidal ("indirect" pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA, however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.

  16. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  17. Evidence that central dopamine receptors modulate sympathetic neuronal activity to the adrenal medulla to alter glucoregulatory mechanisms.

    Science.gov (United States)

    Arnerić, S P; Chow, S A; Bhatnagar, R K; Webb, R L; Fischer, L J; Long, J P

    1984-02-01

    Previous reports suggest that analogs of dopamine (DA) can produce hyperglycemia in rats by interacting with DA receptors. Experiments reported here indicate the site of action and describe the metabolic sequalae associated with the hyperglycemic effect of apomorphine (APO), produced in conscious unrestrained rats. Apomorphine was more potent when administered by intracerebroventricular (i.c.v.) injection than when given subcutaneously (s.c.). Very small doses of the DA receptor antagonist pimozide, given intraventricularly, blocked the hyperglycemic effect of apomorphine administered subcutaneously. Sectioning of the spinal cord at thoracic vertebra T1-2 or sectioning the greater splanchnic nerve blocked apomorphine-induced hyperglycemia; whereas section of the superior colliculus or section at T5-6 had no effect. A dose of apomorphine or epinephrine (EPI) producing a similar degree of hyperglycemia elevated the concentration of EPI in serum to a similar degree, and the increase in EPI in serum preceded the increase in glucose in serum. Fasting animals for 2 or 18 hr had no significant effect on EPI- or apomorphine-induced hyperglycemia despite a reduction (91-93%) of the glycogen content of liver and skeletal muscle during the 18 hr fast. 5-Methoxyindole-2-carboxylic acid (MICA), an inhibitor of gluconeogenesis, blocked EPI- and apomorphine-induced hyperglycemia in rats fasted for 18 hr. However, 5-methoxyindole-2-carboxylic acid was ineffective in blocking hyperglycemia in animals fasted for 2 hr. Changes in insulin or glucagon in serum alone cannot account for the hyperglycemic action of apomorphine. These data demonstrate that apomorphine interacts with central DA receptors located in the hindbrain to activate sympathetic neuronal activity to the adrenal gland which subsequently releases epinephrine to alter homeostasis of glucose. Epinephrine may then, depending on the nutritional status, facilitate glycogenolytic or gluconeogenic processes to produce

  18. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    Science.gov (United States)

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  19. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Science.gov (United States)

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  20. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice

    Directory of Open Access Journals (Sweden)

    Tom Macpherson

    2018-06-01

    Full Text Available Following repeated pairings, the reinforcing and motivational properties (incentive salience of a reward can be transferred onto an environmental stimulus which can then elicit conditioned responses, including Pavlovian approach behavior to the stimulus (a sign-tracking response. In rodents, acquisition of sign-tracking in autoshaping paradigms is sensitive to lesions and dopamine D1 receptor antagonism of the nucleus accumbens (NAc of the ventral striatum. However, currently, the possible roles of dorsal striatal subregions, as well as of the two major striatal neuron types, dopamine D1-/D2-expressing medium spiny neurons (MSNs, in controlling the development of conditioned responses is still unclear and warrants further study. Here, for the first time, we used a transgenic mouse line combined with striatal subregion-specific AAV virus injections to separately express tetanus toxin in D1-/D2- MSNs in the NAc, dorsomedial striatum, and dorsolateral striatum, to permanently block neurotransmission in these neurons during acquisition of an autoshaping task. Neurotransmission blocking of NAc D1-MSNs inhibited the acquisition of sign-tracking responses when the initial conditioned response for each conditioned stimulus presentation was examined, confirming our initial hypothesis. These findings suggest that activity in NAc D1-MSNs contributes to the attribution of incentive salience to conditioned stimuli.

  2. Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration.

    Directory of Open Access Journals (Sweden)

    Chelsea L Gibson

    2018-03-01

    Full Text Available Across phylogeny, glutamate (Glu signaling plays a critical role in regulating neural excitability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and neurodegenerative disorders including Parkinson's disease, where theories suggest that excitotoxic insults may accelerate a naturally occurring process of dopamine (DA neuron degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA signaling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce premature and progressive DA neuron degeneration, with light and electron microscopy studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consistent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of Glu signaling supporting DA neuron degeneration. Degeneration can be significantly suppressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA neurons in early larval stages, without the protective actions of SWIP-10, contributes to insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an efficient platform for the identification of molecular mechanisms that enhance risk for Parkinson's disease and/or the identification of agents that can limit neurodegenerative disease progression.

  3. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    Science.gov (United States)

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  4. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  5. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  6. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity

    Directory of Open Access Journals (Sweden)

    Anna M. Klawonn

    2018-04-01

    Full Text Available The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs in dopamine D1 receptor (D1R expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT, during various reward-enforced behaviors and in a “waiting”-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs in the 5-choice-serial-reaction-time-task (5CSRTT than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG expression (cFos and FosB induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  7. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    Science.gov (United States)

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  8. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    Science.gov (United States)

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Science.gov (United States)

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  10. In vivo measurement of neuronal dopamine transporter in tobacco and cannabis dependents subjects with positron tomography and [{sup 11}C]P E 2 I

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, C; Ribeiro, M J; Trichard, C; Martinot, J L [Institut National de la Sante et de la Recherche Medicale (INSERM), U797, Research Unit, Neuroimaging and Psychiatry, IFR49, 91 - Orsay (France); CEA, Neuroimaging and Psychiatry, Unit, Hospital Dept. Frederic Joliot, I2BM, 91 - Orsay (France); Ribeiro, M J; Comtat, C; Dolle, F [Hospital Dept. Frederic Joliot, Research Medical Dept., I2BM, 91 - Orsay (France); Karila, L; Lukasiewicz, M; Reynaud, M [Paul Brousse Hospital, APHP, Psychiatry and Addictology Dept., 94 - Villejuif (France)

    2008-02-15

    Modifications of dopamine neurotransmission are classically involved in addictive behaviors and drug reinforcement. However, to date no data are available concerning the effects of cannabis addiction on dopaminergic neurotransmission in Human. The neuronal dopamine transporter (D.A.T.) is essential for the maintenance of normal dopamine homeostasis in the brain by ensuring the re-uptake of extracellular dopamine. Therefore, observation of D.A.T. availability abnormalities in cannabis-dependents subjects could provide further evidence for the implication of dopaminergic dysfunction in this addiction. Thus, as the cannabis dependent subjects are also most of time tobacco-dependents, this work aims studying the D.A.T. availability in age-paired control, tobacco-dependent and cannabis-dependent male subjects using Positron Emission Tomography (PET). Subjects are scanned on High Resolution Research Tomograph (H.R.R.T.) for one hour after injection of a selective D.A.T. radioligand ([{sup 11}C]P.E. 2 I.) [1]. The binding potential (B.P.) is calculated in order to obtained the specific binding of [{sup 11}C]P.E. 2 I. to the D.A.T. using the simplified reference tissue model of Lammertsma (S.R.T.M.) [2] and B.P. maps were generated according to Gunn model [3]. Comparison of mean B.P. obtained in Region Of Interest and voxel to voxel comparison of B.P. maps using S.P.M.5 were performed with M.A.N.C.O.V.A. controlled for age between control, tobacco-dependent and cannabis-dependent groups. Preliminary results are concordant between both approaches and shown significant decreases of the D.A.T. availability in the both groups of addicted subjects in comparison to controls at the level of dorsal and ventral striatum and the dorsal midbrain including substantia nigra and ventral tegmental area. However, no difference in D.A.T. binding between tobacco and cannabis dependents subjects was observed. These widespread modifications of D.A.T. availability in the dependents subjects

  11. INCREASE IN DOPAMINE RELEASE FROM THE NUCLEUS-ACCUMBENS IN RESPONSE TO FEEDING - A MODEL TO STUDY INTERACTIONS BETWEEN DRUGS AND NATURALLY ACTIVATED DOPAMINERGIC-NEURONS IN THE RAT-BRAIN

    NARCIS (Netherlands)

    WESTERINK, BHC; TEISMAN, A; DEVRIES, JB

    The aim of the present study was to investigate the interactions between the in vivo release of dopamine and certain drugs, during conditions of increased dopaminergic activity. Dopaminergic neurons in the nucleus accumbens were activated by feeding hungry rats. 48-96 h after implantation of a

  12. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  13. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Hugo J.R. Fernandes

    2016-03-01

    Full Text Available Heterozygous mutations in the glucocerebrosidase gene (GBA represent the strongest common genetic risk factor for Parkinson's disease (PD, the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.

  14. Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available Traditional behavioral genetic studies (e.g., twin, adoption studies have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP. 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001. Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional

  15. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    Science.gov (United States)

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  16. [A study on toxic effects of sodium salicylate on rat cochlear spiral ganglion neurons: dopamine receptors mediate expressions of NMDA and GABAA receptors].

    Science.gov (United States)

    Wei, Ting-Jia; Chen, Hui-Ying; Huang, Xi; Weng, Jing-Jin; Qin, Jiang-Yuan; Su, Ji-Ping

    2017-06-25

    The aim of the present study was to observe whether dopamine receptor (DR) was involved in the effects of sodium salicylate (SS) on the expressions of N-methyl-D-aspartic acid (NMDA) and γ-aminobutyric acid (GABA) receptors in rat cochlear spiral ganglion neurons (SGNs). Forty-eight hours after primary culture of rat SGNs, immunofluorescence technique was applied to detect expressions of DR1 and DR2, the two subtypes of dopamine receptors. Western blot was performed to assess NMDA receptor NR1 subunit and GABA A receptor subunit α2 (GABRα2) protein expressions in the SGNs after the treatments of SS alone or in combination with DR antagonists. The results demonstrated that: (1) The DR1 and DR2 were expressed in the bodies and axons of the SGN; (2) After the treatment with SS, the surface protein expressions of GABRα2 and NR1 were decreased by 44.69% and 21.57%, respectively, while the total protein expressions showed no significant changes; (3) Neither SS + SCH23390 (DR1 antagonist) group nor SS + Eticlopride (DR2 antagonist) group showed significant differences in GABRα2 and NR1 surface protein expressions compared with the control group. These results suggest that SS regulates the surface GABA A and NMDA receptors trafficking on SGN, and the mechanism may involve DR mediation.

  17. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  18. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  19. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Alicia Gonzalo-Gomez

    Full Text Available HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  20. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  1. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  2. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  3. Effect of dopamine-related drugs on duodenal ulcer induced by cysteamine or propionitrile: prevention and aggravation may not be mediated by gastrointestinal secretory changes in the rat

    International Nuclear Information System (INIS)

    Gallagher, G.; Brown, A.; Szabo, S.

    1987-01-01

    Dose- and time-response studies have been performed with dopamine agonists and antagonists using the cysteamine and propionitrile duodenal ulcer models in the rat. The experiments demonstrate that the chemically induced duodenal ulcer is prevented by bromocriptine, lergotrile and reduced by apomorphine or L-dopa. Aggravation of cysteamine-induced duodenal ulcer was seen especially after (-)-butaclamol, (-)-sulpiride, haloperidol and, less effectively, after other dopaminergic antagonists. The duodenal antiulcerogenic action of dopamine agonists was more prominent after chronic administration than after a single dose, whereas the opposite was found concerning the proulcerogenic effect of dopamine antagonists. In the chronic gastric fistula rat, both the antiulcerogens bromocriptine or lergotrile and the proulcerogens haloperidol, pimozide or (-)-N-(2-chlorethyl)-norapomorphine decreased the cysteamine- or propionitrile-induced gastric secretion. No correlation was apparent between the influence of these drugs on duodenal ulcer development and gastric and duodenal (pancreatic/biliary) secretions. In the chronic duodenal fistula rat, decreased acid content was measured in the proximal duodenum after haloperidol, and diminished duodenal pepsin exposure was recorded after bromocriptine. Furthermore, the aggravation by dopamine antagonists of experimental duodenal ulcer probably involves a peripheral component. The site of dopamine receptors and physiologic effects which modulate experimental duodenal ulcer remain to be identified, but their elucidation may prove to be an important element in the pathogenesis and treatment of duodenal ulcer

  4. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  5. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  6. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Efecto neuroprotector de factores de crecimiento, inhibidores de caspasas y calaínas ante la acción tóxica de la ceramica en un modelo neuronal mesencefálico dopaminérgico

    Directory of Open Access Journals (Sweden)

    Humberto Arboleda

    2005-03-01

    Full Text Available La cemida es un producto del metabolismo de los esfingolípidos, que induce diversas respuestas celulares incluyendo la apoptosis.  Debido a que diversas señales de estrés celular consideradas mediadores de la muerte neuronal dopaminérgica (citoquinas, citotóxicos y estrés ambiental, incrementan el nivel de ceramidas.

  8. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard

    and amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  9. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  10. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  11. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  13. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    Science.gov (United States)

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Selegiline prevents long-term changes in dopamine efflux and stress immobility during the second and third weeks of abstinence following opiate withdrawal.

    Science.gov (United States)

    Grasing, K; Ghosh, S

    1998-08-01

    Selegiline is an irreversible inhibitor of monoamine oxidase B with trophic and neuroprotective effects. Because of evidence for decreased dopaminergic function during the withdrawal syndromes associated with opiates and other medications with potential for abuse, we investigated effects of treatment with selegiline on in vitro measures of dopamine efflux following opiate withdrawal. Treatment with 2.0 mg/kg/day of selegiline did not modify the severity of opiate withdrawal, as assessed by weight loss over the first 3 days of abstinence. Opiate withdrawal increased immobility in response to a forced warm water swim test performed during the second and third weeks of abstinence following the onset of withdrawal. Brain slices obtained from the nucleus accumbens of opiate-withdrawn animals immediately following swim stress testing displayed diminished efflux of tritiated dopamine after two in vitro exposures to cocaine or amphetamine. Cocaine increases neurotransmitter efflux through blockade of dopamine reuptake, while amphetamine augments efflux by stimulating release of dopamine from intracellular storage vesicles. Although slices from opiate withdrawal subjects showed decreases in efflux after in vitro treatment with these agents, no differences were observed after exposure to 4-aminopyridine, which increases neurotransmitter release by prolonging action potential duration. These findings indicate mechanisms of action that are specific for catecholamine neurotransmitter systems are important for demonstrating long-term changes in dopaminergic function following opiate withdrawal. Selegiline prevented decreases in the efflux of tritiated dopamine in slices obtained from opiate-withdrawn subjects. In addition, selegiline decreased withdrawal-induced immobility during warm water swim testing. In conclusion, treatment with selegiline can prevent long-term changes in stress-induced immobility and deficits in presynaptic dopaminergic function that occur following the

  15. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  16. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo.

    Science.gov (United States)

    Cooper, B R; Hester, T J; Maxwell, R A

    1980-10-01

    Bupropion (BW 323U; Wellbutrin), a novel compound with antidepressant effects in man, was found to reduce immobility in an "experimental helplessness" forced swimming antidepressant test in rats as did imipramine and amitriptyline. Higher doses produced elevated locomotor activity in an automated open field and produced stereotyped sniffing which was contrasted with apomorphine. When bupropion or desmethylimipramine was given before intracisternal injections of 6-hydroxydopamine, bupropion produced a dose-related selective antagonism of the destruction of dopamine neurons, while under the same conditions, desmethylimipramine produced a dose-related selective antagonism of the destruction of noradrenergic neurons. Studies in which the dose of bupropion and the dose of 6-hydroxydopamine were varied revealed that a dose-related selective antagonism of dopamine depletion by 6-hydroxydopamine occurred when doses up to and including 50 mg/kg i.p. to bupropion were administered. Some antagonism of norepinephrine depletion also occurred at 100 mg/kg of bupropion i.p. Bupropion also selectively reversed the dopamine depletion produced by alpha-methyl-m-tyrosine, a finding which is consistent with the view that bupropion is a dopamine uptake inhibitor in vivo. The importance of dopamine systems for the behavioral effects of bupropion were also studied. When the locomotor stimulant effects of bupropion were tested in rats with chronic destruction of dopamine neurons produced by 6-hydroxydopamine, bupropion failed to elevate locomotor activity. Rats treated with procedures using 6-hydroxydopamine to produce relatively selective norepinephrine depletions responded to bupropion with locomotor activity stimulation like controls. Rats with similar depletions of either dopamine or norepinephrine were also tested for the ability of low doses of bupropion to reduce immobility in the "experimental helplessness" forced swim antidepressant test. Prior destruction of dopamine neurons

  18. R-citalopram prevents the neuronal adaptive changes induced by escitalopram.

    Science.gov (United States)

    Mnie-Filali, Ouissame; Faure, Céline; Mansari, Mostafa El; Lambás-Señas, Laura; Bérod, Anne; Zimmer, Luc; Sánchez, Connie; Haddjeri, Nasser

    2007-10-08

    This study examined the long-term effects of the antidepressant escitalopram on rat serotonin (5-HT) neuronal activity and hippocampal neuroplasticity. In the dorsal raphe nucleus, a 2-week treatment with escitalopram (10 mg/kg/day, subcutaneous) did not modify the firing activity of 5-HT neurons, whereas a cotreatment with R-citalopram (20 mg/kg/day, subcutaneous) decreased it. In the dentate gyrus of dorsal hippocampus, escitalopram increased significantly (57%) the number of de novo cells and this was prevented by a cotreatment with R-citalopram. The present results support the role of the allosteric modulation of the 5-HT transporter in the regulation of the recovery of 5-HT neuronal activity and long-lasting hippocampal cellular plasticity induced by escitalopram, two adaptive changes presumably associated with the antidepressant response.

  19. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  20. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  1. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  2. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats.

    Science.gov (United States)

    Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung

    2018-04-30

    Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.

  3. Mitosis in neurons: Roughex and APC/C maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons.

    Directory of Open Access Journals (Sweden)

    Robert Ruggiero

    Full Text Available The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis.

  4. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter

    Science.gov (United States)

    Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880

  5. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    Science.gov (United States)

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  6. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress.

    Science.gov (United States)

    Grace, Anthony A

    2010-11-01

    The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.

  7. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  8. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  9. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    Science.gov (United States)

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

  10. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  11. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  12. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Science.gov (United States)

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An Investigation of the Stoichiometry of Na+ Cotransport with Dopamine in Rat and Human Dopamine Transporters Expressed in Human Embryonic Kidney Cells

    National Research Council Canada - National Science Library

    Schumacher, Paul

    2001-01-01

    The neuronal membrane transporter for dopamine (DAT) is a member of the Na+ and Cl dependent family of transporters and concentrates dopamine intracellularly up to 106 fold over extracellular levels...

  14. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    OpenAIRE

    Brittany M. Winner; Brittany M. Winner; Harue Zhang; McKenzie M. Farthing; Lalitha M. Karchalla; Keith J. Lookingland; Keith J. Lookingland; Keith J. Lookingland; John L. Goudreau; John L. Goudreau; John L. Goudreau; John L. Goudreau

    2017-01-01

    Parkinson disease (PD) is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA) neurons. Interestingly, not all dopamine (DA) neurons are affected equally by PD and aging, particularly mesolimbic (ML) DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA) neurons and astrocyte DA metabolism. There were no differences in ...

  15. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    Science.gov (United States)

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-11-15

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Science.gov (United States)

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  17. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  18. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaccaro

    2017-01-01

    Full Text Available Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0 and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1 clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  19. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    Science.gov (United States)

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  20. Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Hypothesis: Intratympanic steroid treatment prevents hearing loss and cochlear damage in a rat model of pneumococcal meningitis. Background: Sensorineural hearing loss is a long-term complication of meningitis affecting up to a third of survivors. Streptococcus pneumoniae is the bacterial species...... for 3 days. Hearing loss and cochlear damage were assessed by distortion product otoacoustic emissions, auditory brainstem response at 16 kHz, and spiral ganglion neuron density. Results: Fifty-six days after infection, auditory brainstem response showed no significant differences between groups...... in the spiral ganglion compared with both intratympanic and systemic saline (p = 0.0082 and p = 0.0089; Mann-Whitney test). Histology revealed fibrosis of the tympanic membrane and cavity in steroid-treated animals, which plausibly caused the low-frequency hearing loss. Conclusion: Intratympanic betamethasone...

  1. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.

  2. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.

    Science.gov (United States)

    Khanday, Mudasir Ahmad; Somarajan, Bindu I; Mehta, Rachna; Mallick, Birendra Nath

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo . Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo . These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients.

  3. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons.

    Science.gov (United States)

    Guillot, Thomas S; Miller, Gary W

    2009-04-01

    Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.

  4. Neuronally mediated contraction responses of guinea-pig stomach smooth muscle preparations: modification by benzamide derivatives does not reflect a dopamine antagonist action.

    Science.gov (United States)

    Costall, B; Naylor, R J; Tan, C C

    1984-06-15

    The actions of the substituted benzamide derivatives metoclopramide, clebopride, YM-09151-2, tiapride, (+)- and (-)-sulpiride and (+)- and (-)-sultopride, and the dopamine antagonists haloperidol and domperidone, were studied on the responses to field stimulation (0.125-10 Hz) of smooth muscle strips taken from cardia, fundus, body and antral regions of the longitudinal and circular muscle of guinea-pig stomach. Field stimulation of the longitudinal strips caused contraction responses which were antagonised by atropine (but not by prazosin, yohimbine, propranolol or methysergide) to indicate a muscarinic cholinergic involvement. Antagonism of the contractions revealed or enhanced relaxation responses mediated via unidentified mechanisms (resistant to cholinergic and adrenergic antagonists). Metoclopramide enhanced the field stimulation-induced contractions of the stomach smooth muscle preparations via atropine sensitive mechanisms but failed to attenuate the field stimulation-induced relaxation responses. Clebopride's action closely followed that of metoclopramide but YM-09151-2 only enhanced the contraction responses of the longitudinal muscle preparations. Other dopamine antagonists, (+)- and (-)-sulpiride, (+)- and (-)-sultopride, tiapride, haloperidol and domperidone failed to facilitate contraction to field stimulation of any stomach tissue. Thus, the actions of metoclopramide, clebopride and YM-09151-2 to facilitate contraction to field stimulation of stomach smooth muscle are mediated via a muscarinic cholinergic mechanism and are not the consequence of an antagonism at any recognisable dopamine receptor.

  5. Lychee Seed Saponins Improve Cognitive Function and Prevent Neuronal Injury via Inhibiting Neuronal Apoptosis in a Rat Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Xiuling Wang

    2017-02-01

    Full Text Available Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.

  6. Further studies on the nature of postsynaptic dopamine uptake and metabolism in rat striatum: sodium dependency and investigation of a possible role for carrier-mediated uptake into serotonin neurons

    Energy Technology Data Exchange (ETDEWEB)

    Schoepp, D.D.; Azzaro, A.J.

    1985-06-01

    The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of (/sup 3/H)DA (10(-7) M) into slices of rat striatum was found to be greatly dependent on the presence of sodium ion in the incubation medium. However, the formation of the (/sup 3/H)dihydroxyphenylacetic acid (DOPAC) and (/sup 3/H)homovanillic acid (HVA) was only partially reduced in the absence of sodium. Inhibition of carrier-mediated DA neuronal uptake with nomifensine significantly decreased DA accumulation (18% of control) and (/sup 3/H)DOPAC formation (62% of control), but enhanced (/sup 3/H)HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on (/sup 3/H)DOPAC or (/sup 3/H)HVA formed from (/sup 3/H)DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.

  7. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  8. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    Science.gov (United States)

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  9. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons.

    Science.gov (United States)

    Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Castro-Obregón, Susana; Massieu, Lourdes

    2017-06-29

    Autophagy is triggered during nutrient and energy deprivation in a variety of cells as a homeostatic response to metabolic stress. In the CNS, deficient autophagy has been implicated in neurodegenerative diseases and ischemic brain injury. However, its role in hypoglycemic damage is poorly understood and the dynamics of autophagy during the hypoglycemic and the glucose reperfusion periods, has not been fully described. In the present study, we analyzed the changes in the content of the autophagy proteins BECN1, LC3-II and p62/SQSTM1 by western blot, and autophagosome formation was followed through time-lapse experiments, during glucose deprivation (GD) and glucose reintroduction (GR) in cortical cultures. According to the results, autophagosome formation rapidly increased during GD, and was followed by an active autophagic flux early after glucose replenishment. However, cells progressively died during GR and autophagy inhibition reduced neuronal death. Neurons undergoing apoptosis during GR did not form autophagosomes, while those surviving up to late GR showed autophagosomes. Calpain activity strongly increased during GR and remained elevated during progressive neuronal death. Its activation led to the cleavage of LAMP2 resulting in lysosome membrane permeabilization (LMP) and release of cathepsin B to the cytosol. Calpain inhibition prevented LMP and increased the number of neurons containing lysosomes and autophagosomes increasing cell viability. Taken together, the present results suggest that calpain-mediated lysosome dysfunction during GR turns an adaptive autophagy response to energy stress into a defective autophagy pathway, which contributes to neuronal death. In these conditions, autophagy inhibition results in the improvement of cell survival.

  10. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    Science.gov (United States)

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  11. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    International Nuclear Information System (INIS)

    Fujimura, Masatake; Usuki, Fusako; Kawamura, Miwako; Izumo, Shuji

    2011-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associated with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.

  12. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  13. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2002-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  14. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2005-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  15. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  16. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  18. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  19. The dopamine transporter: role in neurotoxicity and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Bannon, Michael J [Department of Psychiatry and Behavioral Neuroscience, Pharmacology, and Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  20. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    DEFF Research Database (Denmark)

    Fernandes, H. J. R.; Hartfield, E. M.; Christian Kjeldsen, Hans

    2016-01-01

    -derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. © 2016 The Authors....

  1. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  2. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  3. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  4. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  5. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy.

    Science.gov (United States)

    Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B

    2016-01-01

    Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in

  6. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Huang, Zhangjian [Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009 (China); Li, Ping [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia [National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203 (China); Zhang, Luyong [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Saavedra, Juan M. [Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States); Liao, Hong, E-mail: liaohong56@hotmail.com [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Pang, Tao, E-mail: tpang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  7. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    International Nuclear Information System (INIS)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  8. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  9. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat

    DEFF Research Database (Denmark)

    Dreyer, Jakob K.; Vander Weele, Caitlin M.; Lovic, Vedran

    2016-01-01

    Dynamic signaling of mesolimbic dopamine (DA) neurons has been implicated in reward learning, drug abuse, and motivation. However, this system is complex because firing patterns of these neurons are heterogeneous; subpopulations receive distinct synaptic inputs, and project to anatomically...

  10. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease.

    Science.gov (United States)

    Simpkins, J W; Green, P S; Gridley, K E; Singh, M; de Fiebre, N C; Rajakumar, G

    1997-09-22

    Recent evidence supports a role for estrogens in both normal neural development and neuronal maintenance throughout life. Women spend 25-33% of their life in an estrogen-deprived state and retrospective studies have shown an inverse correlation between dose and duration of estrogen replacement therapy (ERT) and incidence of Alzheimer's disease (AD), suggesting a role for estrogen in the prevention and/or treatment of neurodegenerative diseases. To explore these observations further, an animal model was developed using ovariectomy (OVX) and ovariectomy with estradiol replacement (E2) in female Sprague-Dawley rats to mimic postmenopausal changes. Using an active-avoidance paradigm and a spatial memory task, the effects of estrogen deprivation were tested on memory-related behaviors. OVX caused a decline in avoidance behavior, and estrogen replacement normalized the response. In the Morris water task of spatial memory, OVX animals showed normal spatial learning but were deficient in spatial memory, an effect that was prevented by estrogen treatment. Together these data indicate that OVX in rats results in an estrogen-reversible impairment of learning/memory behavior. Because a plethora of information has been generated that links decline in memory-related behavior to dysfunction of cholinergic neurons, the effects of estrogens on cholinergic neurons were tested. We demonstrated that OVX causes a decrease in high affinity choline uptake and choline acetyltransferase activity in the hippocampus and frontal cortex; ERT reverses this effect. Further, we showed that estrogens promote the expression of mRNA for brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), 2 neurotrophic substances that have been shown to ameliorate the effects of age and injury on cholinergic neurons. Tissue culture models were used to evaluate whether estrogen treatment increases the survival of neurons when exposed to a variety of insults. 17-beta-Estradiol (beta-E2) protects

  11. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    International Nuclear Information System (INIS)

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-01-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  12. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    OpenAIRE

    Winner, Brittany M.; Zhang, Harue; Farthing, McKenzie M.; Karchalla, Lalitha M.; Lookingland, Keith J.; Goudreau, John L.

    2017-01-01

    Parkinson disease (PD) is prevalent in elderly individuals and is characterized by selective degeneration of n igro s triatal d op a mine (NSDA) neurons. Interestingly, not all dopamine (DA) neurons are affected equally by PD and aging, particularly m eso l imbic (ML) DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA) neurons and astrocyte DA metabolism. There were no differ...

  13. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    Science.gov (United States)

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  15. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease.

    Science.gov (United States)

    Zucca, Fabio A; Segura-Aguilar, Juan; Ferrari, Emanuele; Muñoz, Patricia; Paris, Irmgard; Sulzer, David; Sarna, Tadeusz; Casella, Luigi; Zecca, Luigi

    2017-08-01

    There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  17. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    OpenAIRE

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  18. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats.

    Science.gov (United States)

    Vidal, Blanca; Vázquez-Roque, Rubén A; Gnecco, Dino; Enríquez, Raúl G; Floran, Benjamin; Díaz, Alfonso; Flores, Gonzalo

    2017-03-01

    Curcuma is a natural compound that has shown neuroprotective properties, and has been reported to prevent aging and improve memory. While the mechanism(s) underlying these effects are unclear, they may be related to increases in neural plasticity. Morphological changes have been reported in neuronal dendrites in the limbic system in animals and elderly humans with cognitive impairment. In this regard, there is a need to use alternative therapies that delay the onset of morphologies and behavioral characteristics of aging. Therefore, the objective of this study was to evaluate the effect of curcuma on cognitive processes and dendritic morphology of neurons in the prefrontal cortex (PFC), the CA1 and CA3 regions of the dorsal hippocampus, the dentate gyrus, and the basolateral amygdala (BLA) of aged rats. 18-month-old rats were administered curcuma (100 mg/kg) daily for 60 days. After treatment, recognition memory was assessed using the novel object recognition test. Curcuma-treated rats showed a significant increase in the exploration quotient. Dendritic morphology was assessed by Golgi-Cox staining and followed by Sholl analysis. Curcuma-treated rats showed a significant increase in dendritic spine density and dendritic length in pyramidal neurons of the PFC, the CA1 and CA3, and the BLA. The preservation of dendritic morphology was positively correlated with cognitive improvements. Our results suggest that curcuma induces modification of dendritic morphology in the aforementioned regions. These changes may explain how curcuma slows the aging process that has already begun in these animals, preventing deterioration in neuronal morphology of the limbic system and recognition memory. © 2016 Wiley Periodicals, Inc.

  19. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  20. Scanning Ultrasound (SUS Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice.

    Directory of Open Access Journals (Sweden)

    Robert John Hatch

    Full Text Available Scanning ultrasound (SUS is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.

  1. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  2. Small Interfering RNA Specific for N-Methyl-D-Aspartate Receptor 2B Offers Neuroprotection to Dopamine Neurons through Activation of MAP Kinase

    Directory of Open Access Journals (Sweden)

    Olivia T.W. Ng

    2012-02-01

    Full Text Available In the present study, N-methyl-D-aspartate receptor 2B (NR2B-specific siRNA was applied in parkinsonian models. Our previous results showed that reduction in expression of N-methyl-D-aspartate receptor 1 (NR1, the key subunit of N-methyl-D-aspartate receptors, by antisense oligos amelio-rated the motor symptoms in the 6-hydroxydopamine (6-OHDA-lesioned rat, an animal model of Parkinson's disease (PD [Lai et al.: Neurochem Int 2004;45:11-22]. To further the investigation on the efficacy of gene silencing, small interference RNA (siRNA specific for the NR2B subunit was designed and administered in the striatum of 6-OHDA-lesioned rats. The present results show that administration of NR2B-specific siRNA decreased the number of apomorphine-induced rotations in the lesioned rats and that there was a significant reduction in NR2B proteins levels after NR2B-specific siRNA administration. Furthermore, attenuation of the loss of dopaminergic neurons was found in both the striatal and substantia nigra regions of the 6-OHDA-lesioned rats that had been continuously infused with siRNA for 7 days. In addition, a significant upregulation of p-p44/42 MAPK (ERK1/2; Thr202/Tyr204 and p-CREB (Ser133 in striatal neurons was found. These results suggest that application of the gene silencing targeting NR2B could be a potential treatment of PD, and they also revealed the possibility of NR2B-specific siRNA being involved in the prosurvival pathway.

  3. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin.

    Science.gov (United States)

    Aleyasin, Hossein; Karuppagounder, Saravanan S; Kumar, Amit; Sleiman, Sama; Basso, Manuela; Ma, Thong; Siddiq, Ambreena; Chinta, Shankar J; Brochier, Camille; Langley, Brett; Haskew-Layton, Renee; Bane, Susan L; Riggins, Gregory J; Gazaryan, Irina; Starkov, Anatoly A; Andersen, Julie K; Ratan, Rajiv R

    2015-01-10

    Pharmacological activation of the adaptive response to hypoxia is a therapeutic strategy of growing interest for neurological conditions, including stroke, Huntington's disease, and Parkinson's disease. We screened a drug library with known safety in humans using a hippocampal neuroblast line expressing a reporter of hypoxia-inducible factor (HIF)-dependent transcription. Our screen identified more than 40 compounds with the ability to induce hypoxia response element-driven luciferase activity as well or better than deferoxamine, a canonical activator of hypoxic adaptation. Among the chemical entities identified, the antihelminthic benzimidazoles represented one pharmacophore that appeared multiple times in our screen. Secondary assays confirmed that antihelminthics stabilized the transcriptional activator HIF-1α and induced expression of a known HIF target gene, p21(cip1/waf1), in post-mitotic cortical neurons. The on-target effect of these agents in stimulating hypoxic signaling was binding to free tubulin. Moreover, antihelminthic benzimidazoles also abrogated oxidative stress-induced death in vitro, and this on-target effect also involves binding to free tubulin. These studies demonstrate that tubulin-binding drugs can activate a component of the hypoxic adaptive response, specifically the stabilization of HIF-1α and its downstream targets. Tubulin-binding drugs, including antihelminthic benzimidazoles, also abrogate oxidative neuronal death in primary neurons. Given their safety in humans and known ability to penetrate into the central nervous system, antihelminthic benzimidazoles may be considered viable candidates for treating diseases associated with oxidative neuronal death, including stroke.

  4. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  5. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.

    Science.gov (United States)

    Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M

    2016-09-21

    Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior

  6. Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration

    OpenAIRE

    Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won

    2012-01-01

    Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD+...

  7. Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration.

    Science.gov (United States)

    Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won

    2012-06-01

    Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD(+)), resulting in energy failure. In this study, we investigate whether lactate administration in the absence of cytosolic NAD(+) affords neuroprotection against hypoglycemia-induced neuronal death. Intraperitoneal injection of sodium L-lactate corrected arterial blood pH and blood lactate concentration after hypoglycemia. Lactate administered without glucose was not sufficient to promote electroencephalogram recovery from an isoelectric state during hypoglycemia. However, supplementation of glucose with lactate reduced neuronal death by ∼80% in the hippocampus. Hypoglycemia-induced superoxide production and microglia activation was also substantially reduced by administration of lactate. Taken together, these results suggest an intriguing possibility: that increasing brain lactate following hypoglycemia offsets the decrease in NAD(+) due to overactivation of PARP-1 by acting as an alternative energy substrate that can effectively bypass glycolysis and be fed directly to the citric acid cycle to maintain cellular ATP levels.

  8. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  9. Antibodies to dopamine: radioimmunological study of specificity in relation to immunocytochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Geffard, M.; Kah, O.; Onteniente, B.; Seguela, P.; Le Moal, M.; Delaage, M.

    1984-06-01

    Two classes of anti-3,4- dihydroxyphenylethylamine (dopamine) antibodies were raised in rabbits using dopamine conjugated to albumin either via formaldehyde or via glutaraldehyde. Each was usable for immunohistochemical detection of dopamine neurons provided that the tissue was fixed by the homologous cross-linking agent. However, anti-dopamine-glutaraldehyde antibodies turned out to be of more general use because of the better fixative properties of glutaraldehyde which fixed dopamine in rat and in teleost, whereas formaldehyde only worked in lower vertebrates (such as goldfish) and not in rat brain. The specificity of anti-dopamine-glutaraldehyde antibodies was firmly established by competition experiments in equilibrium dialysis, using an immunoreactive tritiated derivative synthesized by coupling dopamine to N-alpha-acetyl-L-lysine N-methylamide via glutaraldehyde. Specificity studies in vitro and immunohistological results demonstrating the specific staining of dopaminergic neurons were found to correlate well.

  10. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  11. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor.

    Science.gov (United States)

    Botsakis, Konstantinos; Mourtzi, Theodora; Panagiotakopoulou, Vasiliki; Vreka, Malamati; Stathopoulos, Georgios T; Pediaditakis, Iosif; Charalampopoulos, Ioannis; Gravanis, Achilleas; Delis, Foteini; Antoniou, Katerina; Zisimopoulos, Dimitrios; Georgiou, Christos D; Panagopoulos, Nikolaos T; Matsokis, Nikolaos; Angelatou, Fevronia

    2017-07-15

    Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD. Copyright © 2017. Published by Elsevier Ltd.

  12. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    Science.gov (United States)

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  13. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    Science.gov (United States)

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD.

  14. Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra.

    Science.gov (United States)

    De Pablos, Rocío M; Herrera, Antonio J; Villarán, Ruth F; Cano, Josefina; Machado, Alberto

    2005-03-01

    Intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells. Loss of the astroglial population, a marker of damage in our model, was also prevented. This protective effect resulted from inhibition of TH and the consequent decrease in DA concentration, because treatment with L-DOPA/benserazide, which bypasses TH inhibition induced by alpha-MPT, reversed the protective effect produced by this drug. These results point out the important contribution of DA to the vulnerability and degeneration of dopaminergic neurons of the substantia nigra. Knowledge about the involvement of DA in this process may lead to the possibility of new protection strategies against this important degenerative process.

  15. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral analysis.

    Directory of Open Access Journals (Sweden)

    Taro eUeno

    2014-09-01

    Full Text Available Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling.

  16. Knockdown of GAD67 protein levels normalizes neuronal activity in a rat model of Parkinson's disease

    DEFF Research Database (Denmark)

    Horvath, Lazlo; van Marion, Ingrid; Taï, Khalid

    2011-01-01

    Dopamine depletion of the striatum is one of the hallmarks of Parkinson's disease. The loss of dopamine upregulates GAD67 expression in the striatal projection neurons and causes other changes in the activity of the basal ganglia circuit.......Dopamine depletion of the striatum is one of the hallmarks of Parkinson's disease. The loss of dopamine upregulates GAD67 expression in the striatal projection neurons and causes other changes in the activity of the basal ganglia circuit....

  17. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  18. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  19. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  20. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  1. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease.

    Science.gov (United States)

    Bayersdorfer, Florian; Voigt, Aaron; Schneuwly, Stephan; Botella, José A

    2010-10-01

    Parkinson's disease has been found to be caused by both, genetic and environmental factors. Despite the diversity of causes involved, a convergent pathogenic mechanism might underlie the special vulnerability of dopaminergic neurons in different forms of Parkinsonism. In recent years, a number of reports have proposed dopamine as a common player responsible in the loss of dopaminergic neurons independent of its etiology. Using RNAi lines we were able to generate flies with drastically reduced dopamine levels in the dopaminergic neurons. Combining these flies with a chemically induced Parkinson model (rotenone) and a familial form of Parkinson (mutant alpha-synuclein) we were able to show a strong reduction of neurotoxicity and a protection of the dopaminergic neurons when cellular dopamine levels were reduced. These results show that dopamine homeostasis plays a central role for the susceptibility of dopaminergic neurons to environmental and genetic factors in in vivo models of Parkinson disease. (c) 2010 Elsevier Inc. All rights reserved.

  2. Illicit dopamine transients: reconciling actions of abused drugs.

    Science.gov (United States)

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  4. Ventral tegmental area GABA neurons and opiate motivation

    Science.gov (United States)

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  5. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  6. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  7. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice

    DEFF Research Database (Denmark)

    Parish, Clare L; Castelo-Branco, Gonçalo; Rawal, Nina

    2008-01-01

    have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs......Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation......) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain...

  8. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    Science.gov (United States)

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  9. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  10. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  11. Dopamine Signaling in reward-related behaviors

    OpenAIRE

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specifi...

  12. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  13. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  14. VMAT2 and Parkinson’s disease: harnessing the dopamine vesicle

    OpenAIRE

    Lohr, Kelly M; Miller, Gary W

    2014-01-01

    Despite a movement away from dopamine-focused Parkinson’s disease (PD) research, a recent surge of evidence now suggests that altered vesicular storage of dopamine may contribute to the demise of the nigral neurons in this disease. Human studies demonstrate that the vesicular monoamine transporter 2 (VMAT2; SLC18A2) is dysfunctional in PD brain. Moreover, studies with transgenic mice suggest that there is an untapped reserve capacity of the dopamine vesicle that could be unbridled by increasi...

  15. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    OpenAIRE

    Gantz, Stephanie C.; Levitt, Erica S.; Llamosas Muñozguren, Nerea; Neve, Kim A.; Williams, John T.

    2015-01-01

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigr...

  16. Carbon nanopillars for enhanced stem cell differentiation and dopamine detection

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Amato, Letizia; Valsesia, Andrea

    of human neural stem cells (hNSCs) into dopaminergic neurons and that they can also be employed for detecting dopamine release from mature neurons attached to them [1]. Here, we report 3D carbon nanopillars, fabricated through colloidal lithography, with even more pronounced effect on the electrochemical......Parkinson’s disease is characterized by a deficit of dopamine in the brain, a neurotransmitter involved in the motor function. One of the future ideas for treatment is cell replacement therapy. Our group has previously shown that pyrolysed 3D carbon micropillars induce spontaneous differentiation...

  17. Indirubin-3-Oxime Prevents H2O2-Induced Neuronal Apoptosis via Concurrently Inhibiting GSK3β and the ERK Pathway.

    Science.gov (United States)

    Yu, Jie; Zheng, Jiacheng; Lin, Jiajia; Jin, Linlu; Yu, Rui; Mak, Shinghung; Hu, Shengquan; Sun, Hongya; Wu, Xiang; Zhang, Zaijun; Lee, Mingyuen; Tsim, Wahkeung; Su, Wei; Zhou, Wenhua; Cui, Wei; Han, Yifan; Wang, Qinwen

    2017-05-01

    Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H 2 O 2 )-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H 2 O 2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H 2 O 2 . In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H 2 O 2 -induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H 2 O 2 -induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H 2 O 2 -induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.

  18. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  19. Sub-second changes in accumbal dopamine during sexual behavior in male rats.

    Science.gov (United States)

    Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M

    2001-08-08

    Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.

  20. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2001-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  1. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2000-01-01

    .... Similarly, the psycho stimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  2. Current treatments in Parkinson's including the proposal of an innovative dopamine microimplant

    Directory of Open Access Journals (Sweden)

    M. Velázquez-Paniagua

    2016-04-01

    Full Text Available Parkinson's disease is a chronic, debilitating, progressive neurological disorder of multifactorial origin. It affects between 0.3% and 2% of the over-65 population worldwide, with a predilection for men, and is characterised by bradykinesia, muscular rigidity, resting tremor and postural instability. Parkinson's is caused by decreased dopamine levels due to the loss of dopaminergic neurons in the substantia nigra. Because dopamine is a highly oxidisable molecule, precursors such as levodopa, together with catechol-O-methyltransferase and monoamine oxidase inhibitors to prevent degradation, are used in the treatment of this disease. These therapies, however, are not without their adverse effects. Surgical treatments for Parkinson's include pallidotomy, therapy deep brain stimulation, and stem cells. A more recent development involves a titanium dioxide micro-implant containing nanopores that stabilise the dopamine for continuous release. When inserted into the caudate nucleus, this micro-implant was found to counteract 85% of symptoms in hemiparkinsonian rats, and is a promising therapy for patients with Parkinson's disease.

  3. Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp simulator.

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    Full Text Available Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated 'teaching' signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson's disease, or induced through drugs blocking dopamine reuptake.

  4. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  5. Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons

    Directory of Open Access Journals (Sweden)

    Marilyn Scandaglia

    2017-10-01

    Full Text Available During development, chromatin-modifying enzymes regulate both the timely establishment of cell-type-specific gene programs and the coordinated repression of alternative cell fates. To dissect the role of one such enzyme, the intellectual-disability-linked lysine demethylase 5C (Kdm5c, in the developing and adult brain, we conducted parallel behavioral, transcriptomic, and epigenomic studies in Kdm5c-null and forebrain-restricted inducible knockout mice. Together, genomic analyses and functional assays demonstrate that Kdm5c plays a critical role as a repressor responsible for the developmental silencing of germline genes during cellular differentiation and in fine-tuning activity-regulated enhancers during neuronal maturation. Although the importance of these functions declines after birth, Kdm5c retains an important genome surveillance role preventing the incorrect activation of non-neuronal and cryptic promoters in adult neurons.

  6. The value of dopamine transporter 99Tcm-TRODAT-1 imaging for evaluating the therapeutic effects of Junfukang capsule on prevention and cure of drug addiction recurrence

    International Nuclear Information System (INIS)

    Jia Shaowei; Gao Yu; Ouyang Gang; Shi Yu; Jiang Jingzhao; Chen Hongyan; Yang Pinghua; Weng Yongmei; Hu Jinsen; Wu Ziming; Luo Huien; Ying Shugui

    2004-01-01

    Objective: To evaluate the value of SPECT dopamine transporter (DAT) imaging in molecular level study of Junfukang capsule in treating and rehabilitating the damaged corpus striatum and disorganized dopamine (DA) system. Methods: Eighteen normal volunteers were included into the control group. Twelve patients with prolonged heroin withdrawal syndrome were in the patient group. Before and after taking Junfukang capsule SPECT DAT imaging was performed. 99 Tc m -2β-[N, N'-bis (2-mercaptoethyl) ethylenediamino] methyl, 3β- (4-chlorophenyl) tropane (TRODAT-1) was used as imaging agent with the dose of 740 MBq. Using 3 mathematical models to work out the corpus striatum V (cm 3 ), m(g) and radio-ratio (Ra), respectively. Results: Before the treatment of the patients with prolonged heroin withdrawal syndrome, the images showed that the corpus striatum of both side were with different levels of abnormalities, compared to the control group the difference of corpus striatum V, m and Ra were significant (t>3.25, P<0.01-0.05). After the treatment with Junfukang capsule, along with the disappearance of protracted heroin abstinence syndrome, DAT imaging showed that the shape of the corpus striatum of both side returned to 'panda eyes', the same as that in the normal volunteers. Corpus striatum V, m and Ra recovered quite well. The retention time sustained for more than 15 months (10/12 patients, 83.3%) without psychological dependence. Conclusions: The extent and the spot number of DAT in the patients with prolonged heroin withdrawal syndrome are greatly decreased and with the lower functioning. After the treatment of Junfukang capsule, the DAT function of bilateral corpus striatum have apparently been restored

  7. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    Science.gov (United States)

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  8. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  9. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling

    International Nuclear Information System (INIS)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-01-01

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-β-peptide (Aβ), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPARγ is present in rat hippocampal neurons in culture. (2) Activation of PPARγ by troglitazone and rosiglitazone protects rat hippocampal neurons against Aβ-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPARγ agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic Aβ-induced rise in bulk-free Ca 2+ . (4) PPARγ activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3β (GSK-3β) and an increase of the cytoplasmic and nuclear β-catenin levels. We conclude that the activation of PPARγ prevents Aβ-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPARγ and the Wnt signaling pathway. More important, the fact that the activation of PPARγ attenuated Aβ-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective

  10. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  11. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  12. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Science.gov (United States)

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  13. Dopamine Cell Transplantation for Parkinson’s Disease: The Importance of Controlled Clinical Trials

    OpenAIRE

    Freed, Curt R.; Zhou, Wenbo; Breeze, Robert E.

    2011-01-01

    Transplantation of human fetal dopamine neurons into the brain of Parkinson’s disease patients started in the late 1980s, less than 10 years after experiments in rats showed that embryonic dopamine neurons from a narrow window of development are suitable for transplantation. For human transplantation, the critical stage of development is 6 to 8 weeks after conception. Because putamen is the basal ganglia structure most depleted of dopamine in Parkinson’s disease and because it is the structur...

  14. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila

    Directory of Open Access Journals (Sweden)

    Tingting Xie

    2018-04-01

    Full Text Available Summary: The neuromodulator dopamine (DA plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay. : The rapid analysis of how dopaminergic circuits regulate behavior is limited by the genetic tools available to target and manipulate small numbers of these neurons. Xie et al. present genetic tools in Drosophila that allow rational targeting of sparse dopaminergic neuronal subsets and selective knockdown of dopamine signaling. Keywords: dopamine, genetics, behavior, neural circuits, neuromodulation, Drosophila

  15. Dopamine regulation of [3H]acetylcholine release from guinea-pig stomach

    International Nuclear Information System (INIS)

    Kusunoki, M.; Taniyama, K.; Tanaka, C.

    1985-01-01

    The involvement of dopamine receptors in cholinergic transmission of guinea-pig stomach was investigated by analyzing the effects of dopamine receptor agonists and antagonists on acetylcholine (ACh) release from this organ. Electrical stimulation (1-20 Hz) of strips of guinea-pig stomach preloaded with [ 3 H] choline induced a [ 3 H]ACh release that was calcium dependent and tetrodotoxin sensitive. Dopamine inhibited this transmural stimulation-induced [ 3 H]ACh release in a concentration-dependent manner (10(-8)-10(-4) M). This effect of dopamine was not altered by 10(-5) M hexamethonium, thereby suggesting that the major dopamine receptors are located on the postganglionic cholinergic neurons. Concentration-response curves for dopamine on [ 3 H]ACh release were inhibited by haloperidol, sulpiride and domperidone but not by prazosin, yohimbine, propranolol and ketanserin. LY 171555, an agonist for the D2 dopamine receptor, but not SKF 38-393, an agonist for the D1 dopamine receptor, to some extent decreased the release of [ 3 H]ACh induced by transmural stimulation. In view of the results, the release of ACh from postganglionic cholinergic neurons is probably required through dopamine receptors antagonized by D2 antagonists but not by adrenergic or serotonin receptor antagonists

  16. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  18. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  19. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  20. An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.

    Science.gov (United States)

    Dreher, Jean-Claude; Burnod, Yves

    2002-01-01

    This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.

  1. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    Science.gov (United States)

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  2. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  3. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  4. Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synaptosomes

    International Nuclear Information System (INIS)

    Minnema, D.J.; Greenland, R.D.; Michaelson, I.A.

    1986-01-01

    The effect of inorganic lead in vitro in several aspects of [ 3 H]dopamine release from superfused rat striatal synaptosomes was examined. Under conditions of spontaneous release, lead (1-30 microM) induced dopamine release in a concentration-dependent manner. The onset of the lead-induced release was delayed by approximately 15-30 sec. The magnitude of dopamine release induced by lead was increased when calcium was removed from the superfusing buffer. Lead-induced release was unaffected in the presence of putative calcium, sodium, and/or potassium channel blockers (nickel, tetrodotoxin, tetraethylammonium, respectively). Depolarization-evoked dopamine release, produced by a 1-sec exposure to 61 mM potassium, was diminished at calcium concentrations below 0.254 mM. The onset of depolarization-evoked release was essentially immediate following exposure of the synaptosomes to high potassium. The combination of lead (3 or 10 microM) with high potassium reduced the magnitude of depolarization-evoked dopamine release. This depression of depolarization-evoked release by lead was greater in the presence of 0.25 mM than 2.54 mM calcium in the superfusing buffer. These findings demonstrate multiple actions of lead on synaptosomal dopamine release. Lead can induce dopamine release by yet unidentified neuronal mechanisms independent of external calcium. Lead can also reduce depolarization-evoked dopamine release by apparent competition with calcium influx at the neuronal membrane calcium channel

  5. Dopamine hypothesis of mania

    OpenAIRE

    Cookson, John

    2014-01-01

    s­of­the­Speakers­/­Konuşmacı­leriThe discovery of dopamine and its pathwaysDopamine (DA) was first synthesized in 1910 from 3,4-dihydroxy phenyl alanine (DOPA) by Barger and Ewens at Wellcome Laboratories in London. It is a cathecholamine and in the 1940s Blaschko in Cambridge proposed that DA was a precursor in synthesis of the cat-echolamine neurotransmitters noradrenaline (norepinephrine) and adrenaline (epinephrine). In 1957 it was shown to be present in the brain with other catecholamin...

  6. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  8. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  9. 1,2-Dilinoleoyl-sn-glycero-3-phosphoethanolamine ameliorates age-related spatial memory deterioration by preventing neuronal cell death

    Directory of Open Access Journals (Sweden)

    Yaguchi Takahiro

    2010-09-01

    Full Text Available Abstract Background Accumulating evidence has pointed that a variety of lipids could exert their beneficial actions against dementia including Alzheimer disease and age-related cognitive decline via diverse signaling pathways. Endoplasmic reticulum (ER stress-induced neuronal apoptosis, on the other hand, is a critical factor for pathogenesis of neurodegenerative diseases such as Alzheimer disease and Parkinson disease, senile dementia, and ischemic neuronal damage. The present study examined the effects of 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPhtEtn, a phospholipid, on ER stress-induced neuronal death and age-related cognitive disorders. Methods PC-12 cell viability was assayed before and after treatment with amyloid-β1-40 peptide or thapsigargin in the presence and absence of DLPhtEtn. A series of behavioral tests were performed for senescence-accelerated mouse-prone 8 (SAMP8 mice after 7-month oral administration with polyethylene glycol (PEG or DLPhtEtn and then, the number of hippocampal neurons was counted. Results Amyloid-β1-40 peptide or thapsigargin is capable of causing ER stress-induced apoptosis. DLPhtEtn (30 μM significantly inhibited PC-12 cell death induced by amyloid-β1-40 peptide or thapsigargin. In the water maze test, oral administration with DLPhtEtn (1 mg/kg for 7 months (three times a week significantly shortened the prolonged retention latency for SAMP8 mice. In contrast, DLPhtEtn had no effect on the acquisition and retention latencies in both the open field test and the passive avoidance test for SAMP8 mice. Oral administration with DLPhtEtn (1 mg/kg for 7 months prevented a decrease in the number of hippocampal neurons for SAMP8 mice. Conclusion The results of the present study show that DLPhtEtn ameliorates age-related spatial memory decline without affecting motor activities or fear memory, possibly by protecting hippocampal neuronal death. DLPhtEtn, thus, might exert its beneficial action against

  10. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  11. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  12. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  13. Apo-ghrelin receptor (apo-GHSR1a Regulates Dopamine Signaling in the Brain

    Directory of Open Access Journals (Sweden)

    Andras eKern

    2014-08-01

    Full Text Available The orexigenic peptide hormone ghrelin is synthesized in the stomach and its receptor growth hormone secretagogue receptor (GHSR1a is expressed mainly in the central nervous system (CNS. In this review we confine our discussion to the physiological role of GHSR1a in the brain. Paradoxically, despite broad expression of GHSR1a in the CNS, other than trace amounts in the hypothalamus, ghrelin is undetectable in the brain. In our efforts to elucidate the function of the ligand-free ghrelin receptor (apo-GHSR1a we identified subsets of neurons that co-express GHSR1a and dopamine receptors. In this review we focus on interactions between apo-GHSR1a and dopamine-2 receptor (DRD2 and formation of GHSR1a:DRD2 heteromers in hypothalamic neurons that regulate appetite, and discuss implications for the treatment of Prader-Willi syndrome. GHSR1a antagonists of distinct chemical structures, a quinazolinone and a triazole, respectively enhance and inhibit dopamine signaling through GHSR1a:DRD2 heteromers by an allosteric mechanism. This finding illustrates a potential strategy for designing the next generation of drugs for treating eating disorders as well as psychiatric disorders caused by abnormal dopamine signaling. Treatment with a GHSR1a antagonist that enhances dopamine/DRD2 activity in GHSR1a:DRD2 expressing hypothalamic neurons has the potential to inhibit the uncontrollable hyperphagia associated with Prader-Willi syndrome. DRD2 antagonists are prescribed for treating schizophrenia, but these block dopamine signaling in all DRD2 expressing neurons and are associated with adverse side effects, including enhanced appetite and excessive weight gain. A GHSR1a antagonist of structural class that allosterically blocks dopamine/DRD2 action in GHSR1a:DRD2 expressing neurons would have no effect on neurons expressing DRD2 alone; therefore, the side effects of DRD2 antagonists would potentially be reduced thereby enhancing patient compliance.

  14. Dopamins renale virkninger

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1990-01-01

    is frequently employed in cases of acute oliguric renal failure but the results available concerning the therapeutic effect are frequently retrospective and uncontrolled. The results suggest that early treatment with 1-3 micrograms/kg/min dopamine combined with furosemide can postpone or possibly render...

  15. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    Science.gov (United States)

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  16. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    Science.gov (United States)

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  17. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  18. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  19. Dopamine reward prediction errors reflect hidden state inference across time

    Science.gov (United States)

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  20. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    Directory of Open Access Journals (Sweden)

    Brittany M. Winner

    2017-12-01

    Full Text Available Parkinson disease (PD is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA neurons. Interestingly, not all dopamine (DA neurons are affected equally by PD and aging, particularly mesolimbic (ML DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA neurons and astrocyte DA metabolism. There were no differences in phenotypic markers of DA synthesis, reuptake or metabolism in NSDA or MLDA neurons in aged mice, but MLDA neurons displayed lower DA stores. Astrocyte metabolism of DA to 3-methoxytyramine (3-MT in the striatum was decreased in aged mice, but was maintained in the nucleus accumbens. Despite diminished DA vesicular storage capacity in MLDA neurons, susceptibility to acute neurotoxicant exposure was similar in young and aged mice. These results reveal an age- and neurotoxicant-induced impairment of DA metabolic activity in astrocytes surrounding susceptible NSDA neurons as opposed to maintenance of DA metabolism in astrocytes surrounding resistant MLDA neurons, and suggest a possible therapeutic target for PD.

  1. Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson's disease?

    Science.gov (United States)

    Laloux, C; Gouel, F; Lachaud, C; Timmerman, K; Do Van, B; Jonneaux, A; Petrault, M; Garcon, G; Rouaix, N; Moreau, C; Bordet, R; Duce, J A; Devedjian, J C; Devos, D

    2017-07-01

    In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2015-12-01

    Full Text Available Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a the resolution of uncertainty about the timing of action; (b the direct influence of dopamine over mechanisms associated with making choices; and (c a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

  3. Pyrethroid pesticide-induced alterations in dopamine transporter function

    International Nuclear Information System (INIS)

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2006-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD

  4. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  5. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  6. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  7. Long-Term Health of Dopaminergic Neuron Transplants in Parkinson's Disease Patients

    Directory of Open Access Journals (Sweden)

    Penelope J. Hallett

    2014-06-01

    Full Text Available To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD patients, the expression of dopamine transporters (DATs and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15–18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.

  8. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jackalina M Van Kampen

    Full Text Available Parkinson's disease (PD is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD.

  9. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  10. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  11. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  12. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C......-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7...

  13. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction

    Directory of Open Access Journals (Sweden)

    Pan Jing

    2012-08-01

    Full Text Available Abstract Curcumin,a natural polyphenol obtained from turmeric,has been implicated to be neuroprotective in a variety of neurodegenerative disorders although the mechanism remains poorly understood. The results of our recent experiments indicated that curcumin could protect dopaminergic neurons from apoptosis in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson’s disease (PD. The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by curcumin in MPTP mouse model. Further studies showed that curcumin inhibited JNKs hyperphosphorylation induced by MPTP treatment. JNKs phosphorylation can cause translocation of Bax to mitochondria and the release of cytochrome c which both ultimately contribute to mitochondria-mediated apoptosis. These pro-apoptosis effect can be diminished by curcumin. Our experiments demonstrated that curcumin can prevent nigrostriatal degeneration by inhibiting the dysfunction of mitochondrial through suppressing hyperphosphorylation of JNKs induced by MPTP. Our results suggested that JNKs/mitochondria pathway may be a novel target in the treatment of PD patients.

  14. Plant Polyphenols and Exendin-4 Prevent Hyperactivity and TNF-α Release in LPS-Treated In vitro Neuron/Astrocyte/Microglial Networks

    Directory of Open Access Journals (Sweden)

    Francesca Gullo

    2017-09-01

    Full Text Available Increasing evidence supports a decisive role for neuroinflammation in the neurodegenerative process of several central nervous system (CNS disorders. Microglia are essential mediators of neuroinflammation and can regulate a broad spectrum of cellular responses by releasing reactive oxygen intermediates, nitric oxide, proteases, excitatory amino acids, and cytokines. We have recently shown that also in ex-vivo cortical networks of neurons, astrocytes and microglia, an increased level of tumor necrosis factor-alpha (TNF-α was detected a few hours after exposure to the bacterial endotoxin lipopolysaccharide (LPS. Simultaneously, an atypical “seizure-like” neuronal network activity was recorded by multi-electrode array (MEA electrophysiology. These effects were prevented by minocycline, an established anti-inflammatory antibiotic. We show here that the same inhibitory effect against LPS-induced neuroinflammation is exerted also by natural plant compounds, polyphenols, such as curcumin (CU, curcuma longa, crocin (CR, saffron, and resveratrol (RE, grape, as well as by the glucagon like peptide-1 receptor (GLP-1R agonist exendin-4 (EX-4. The drugs tested also caused per-se early transient (variable changes of network activity. Since it has been reported that LPS-induced neuroinflammation causes rearrangements of glutamate transporters in astrocytes and microglia, we suggest that neural activity could be putatively increased by an imbalance of glial glutamate transporter activity, leading to prolonged synaptic glutamatergic dysregulation.

  15. miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer's Disease by Silencing Kremen1.

    Science.gov (United States)

    Ross, Sean P; Baker, Kelly E; Fisher, Amanda; Hoff, Lee; Pak, Elena S; Murashov, Alexander K

    2018-01-01

    Synapse loss is well regarded as the underlying cause for the progressive decline of memory function over the course of Alzheimer's disease (AD) development. Recent observations suggest that the accumulation of the Wnt antagonist Dickkopf-1 (Dkk1) in the AD brain plays a critical role in triggering synaptic degeneration. Mechanistically, Dkk1 cooperates with Kremen1 (Krm1), its transmembrane receptor, to block the Wnt/β-catenin signaling pathway. Here, we show that silencing Krm1 with miR-431 prevents amyloid-β-mediated synapse loss in cortico-hippocampal cultures isolated from triple transgenic 3xTg-AD mice. Exposure to AβDDL (an amyloid-β derived diffusive ligand) or Dkk1 reduced the number of pre- and post-synaptic puncta in primary neuronal cultures, while treatment with miR-431 prevented synapse loss. In addition, treatment with miR-431 also prevented neurite degeneration. Our findings demonstrate that miR-431 protects synapses and neurites from Aβ-toxicity in an AD cell culture model and may be a promising therapeutic target.

  16. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    Directory of Open Access Journals (Sweden)

    Pluchino Stefano

    2011-07-01

    Full Text Available Abstract Background Dopamine-synthesizing (dopaminergic, DA neurons in the ventral midbrain (VM constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+ neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd

  17. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    Science.gov (United States)

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  18. 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity.

    Science.gov (United States)

    Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga

    2005-07-27

    Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.

  19. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    Science.gov (United States)

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  20. Reward-based hypertension control by a synthetic brain-dopamine interface.

    Science.gov (United States)

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  1. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  2. Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1.

    Directory of Open Access Journals (Sweden)

    Melvin Baidya

    Full Text Available The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.

  3. In vivo neurochemical characterization of clothianidin induced striatal dopamine release.

    Science.gov (United States)

    Faro, L R F; Oliveira, I M; Durán, R; Alfonso, M

    2012-12-16

    Clothianidin (CLO) is a neonicotinoid insecticide with selective action on nicotinic acetylcholine receptors. The aim of this study was to determine the neurochemical basis for CLO-induced striatal dopamine release using the microdialysis technique in freely moving and conscious rats. Intrastriatal administration of CLO (3.5mM), produced an increase in both spontaneous (2462 ± 627% with respect to basal values) and KCl-evoked (4672 ± 706% with respect to basal values) dopamine release. This effect was attenuated in Ca(2+)-free medium, and was prevented in reserpine pre-treated animals or in presence of tetrodotoxin (TTX). To investigate the involvement of dopamine transporter (DAT), the effect of CLO was observed in presence of nomifensine. The coadministration of CLO and nomifensine produced an additive effect on striatal dopamine release. The results suggest that the effect of CLO on striatal dopamine release is predominantly mediated by an exocytotic mechanism, Ca(2+), vesicular and TTX-dependent and not by a mechanism mediated by dopamine transporter. Published by Elsevier Ireland Ltd.

  4. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  5. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    . Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation....... The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p...

  6. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    Science.gov (United States)

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  7. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  8. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  9. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  10. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    Science.gov (United States)

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  11. Dopamine reward prediction error responses reflect marginal utility.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Schultz, Wolfram

    2014-11-03

    Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates.

    Science.gov (United States)

    Lange, Sigrun; Rocha-Ferreira, Eridan; Thei, Laura; Mawjee, Priyanka; Bennett, Kate; Thompson, Paul R; Subramanian, Venkataraman; Nicholas, Anthony P; Peebles, Donald; Hristova, Mariya; Raivich, Gennadij

    2014-08-01

    Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca(+2) -regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage. © 2014 The Authors. Journal of Neurochemistry

  13. Intrinsic and integrative properties of substantia nigra pars reticulata neurons

    Science.gov (United States)

    Zhou, Fu-Ming; Lee, Christian R.

    2011-01-01

    The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active TRPC3 channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches −60 mV, a voltage-gated persistent sodium current (INaP) starts to activate, further depolarizing the membrane potential. At or slightly below −50 mV, the large transient voltage-activated sodium current (INaT) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of (INaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. INaT also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators

  14. Dopamine signaling in reward-related behaviors.

    Science.gov (United States)

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  15. Dopamine Signaling in reward-related behaviors

    Directory of Open Access Journals (Sweden)

    Ja-Hyun eBaik

    2013-10-01

    Full Text Available Dopamine (DA regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DAmesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural rewards such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  16. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  17. Interactions between dopamine and oxytocin in the control of sexual behaviour.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2008-01-01

    Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.

  18. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas

    2011-08-01

    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  19. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  20. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    Directory of Open Access Journals (Sweden)

    Stephanie C. Gantz

    2015-08-01

    Full Text Available Imbalance between the dopamine and serotonin (5-HT neurotransmitter systems has been implicated in the comorbidity of Parkinson’s disease (PD and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.

  1. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    DEFF Research Database (Denmark)

    Dodson, Paul D.; Dreyer, Jakob K.; Jennings, Katie Ann

    2016-01-01

    receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types......Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates...... of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine...

  2. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    Science.gov (United States)

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  3. Galantamine Prevents Long-Lasting Suppression of Excitatory Synaptic Transmission in CA1 Pyramidal Neurons of Soman-Challenged Guinea Pigs

    Science.gov (United States)

    Alexandrova, E. A.; Alkondon, M.; Aracava, Y.; Pereira, E. F. R.; Albuquerque, E. X.

    2014-01-01

    Galantamine, a drug currently approved for treatment of Alzheimer's disease, has recently emerged as an effective pretreatment against the acute toxicity and delayed cognitive deficits induced by organophosphorus (OP) nerve agents, including soman. Since cognitive deficits can result from impaired glutamatergic transmission in the hippocampus, the present study was designed to test the hypothesis that hippocampal glutamatergic transmission declines following an acute exposure to soman and that this effect can be prevented by galantamine. To test this hypothesis, spontaneous excitatory postsynaptic currents (EPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1 h, 24 h, or 6-9 days after guinea pigs were injected with: (i) 1xLD50 soman (26.3 μg/kg, s.c.); (ii) galantamine (8 mg/kg, i.m.) followed 30 min later by 1xLD50 soman, (iii) galantamine (8 mg/kg, i.m.), or (iv) saline (0.5 ml/kg, i.m.). In soman-injected guinea pigs that were not pretreated with galantamine, the frequency of EPSCs was significantly lower than that recorded from saline-injected animals. There was no correlation between the severity of soman-induced acute toxicity and the magnitude of soman-induced reduction of EPSC frequency. Pretreatment with galantamine prevented the reduction of EPSC frequency observed at 6-9 days after the soman challenge. Prevention of soman-induced long-lasting reduction of hippocampal glutamatergic synaptic transmission may be an important determinant of the ability of galantamine to counter cognitive deficits that develop long after an acute exposure to the nerve agent. PMID:25064080

  4. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    Science.gov (United States)

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  5. Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity

    OpenAIRE

    Qi, Zhen; Miller, Gary W.; Voit, Eberhard O.

    2013-01-01

    Pesticides, such as rotenone and paraquat, are suspected in the pathogenesis of Parkinson’s disease (PD), whose hallmark is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Thus, compounds expected to play a role in the pathogenesis of PD will likely impact the function of dopaminergic neurons. To explore the relationship between pesticide exposure and dopaminergic toxicity, we developed a custom-tailored mathematical model of dopamine metabolism and utilize...

  6. Neurotensin enhances glutamatergic EPSCs in VTA neurons by acting on different neurotensin receptors.

    Science.gov (United States)

    Bose, Poulomee; Rompré, Pierre-Paul; Warren, Richard A

    2015-11-01

    Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  8. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  9. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    Science.gov (United States)

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  11. Regulation of the mesolimbic dopamine circuit by feeding peptides.

    Science.gov (United States)

    Liu, S; Borgland, S L

    2015-03-19

    Polypeptides produced in the gastrointestinal tract, stomach, adipocytes, pancreas and brain that influence food intake are referred to as 'feeding-related' peptides. Most peptides that influence feeding exert an inhibitory effect (anorexigenic peptides). In contrast, only a few exert a stimulating effect (orexigenic peptides), such as ghrelin. Homeostatic feeding refers to when food consumed matches energy deficits. However, in western society where access to palatable energy-dense food is nearly unlimited, food is mostly consumed for non-homeostatic reasons. Emerging evidence implicates the mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), as a key substrate for non-homeostatic feeding. VTA dopamine neurons encode cues that predict rewards and phasic release of dopamine in the ventral striatum motivates animals to forage for food. To elucidate how feeding-related peptides regulate reward pathways is of importance to reveal the mechanisms underlying non-homeostatic or hedonic feeding. Here, we review the current knowledge of how anorexigenic peptides and orexigenic peptides act within the VTA. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders.

    Directory of Open Access Journals (Sweden)

    Ekaterina eDobryakova

    2015-03-01

    Full Text Available Fatigue is one of the most pervasive symptoms of multiple sclerosis (MS, and has engendered hundreds of investigations on the topic. While there is a growing literature using various methods to study fatigue, a unified theory of fatigue in MS is yet to emerge. In the current review, we synthesize findings from neuroimaging, pharmacological, neuropsychological and immunological studies of fatigue in MS, which point to a specific hypothesis of fatigue in MS: the dopamine imbalance hypothesis. The communication between the striatum and prefrontal cortex is reliant on dopamine, a modulatory neurotransmitter. Neuroimaging findings suggest that fatigue results from the disruption of communication between these regions. Supporting the dopamine imbalance hypothesis, structural and functional neuroimaging studies show abnormalities in the frontal and striatal regions that are heavily innervated by dopamine neurons. Further, dopaminergic psychostimulant medication has been shown to alleviate fatigue in individuals with traumatic brain injury, chronic fatigue syndrome and in cancer patients, also indicating that dopamine might play an important role in fatigue perception. This paper reviews the structural and functional neuroimaging evidence as well as pharmacological studies that suggest that dopamine plays a critical role in the phenomenon of fatigue. We conclude with how specific aspects of the dopamine imbalance hypothesis can be tested in future research.

  13. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  14. Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.

    Science.gov (United States)

    Scholz-Kornehl, Sabrina; Schwärzel, Martin

    2016-07-27

    Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases

  15. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  16. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors.

    Science.gov (United States)

    De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella

    2016-11-01

    d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    Science.gov (United States)

    Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL. PMID:27667674

  18. Value learning through reinforcement : The basics of dopamine and reinforcement learning

    NARCIS (Netherlands)

    Daw, N.D.; Tobler, P.N.; Glimcher, P.W.; Fehr, E.

    2013-01-01

    This chapter provides an overview of reinforcement learning and temporal difference learning and relates these topics to the firing properties of midbrain dopamine neurons. First, we review the RescorlaWagner learning rule and basic learning phenomena, such as blocking, which the rule explains. Then

  19. Neuropharmacology of novel dopamine modulators

    NARCIS (Netherlands)

    Beek, Erik Tomas te

    2014-01-01

    De neurotransmitter dopamine speelt een essentiële rol in diverse neurofysiologische functies en is betrokken bij de pathofysiologie van diverse neuropsychiatrische aandoeningen, waaronder de ziekte van Parkinson, schizofrenie, drugsverslaving en hyperprolactinemie. De huidige

  20. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  1. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ying [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Ziwei [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Tan, Min [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Department of Traditional Chinese Medicine Chemistry, College of Chinese Materia Madica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Liu, Anmin [Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Meihui [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Liu, Jun [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Pi, Rongbiao, E-mail: pirb@mail.sysu.edu.cn [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Fang, Jianpei, E-mail: jpf2005@163.com [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-11-29

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2} 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.

  2. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  3. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    Science.gov (United States)

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  4. Methamphetamine-enhanced female sexual motivation is dependent on dopamine and progesterone signaling in the medial amygdala.

    Science.gov (United States)

    Holder, Mary K; Veichweg, Shaun S; Mong, Jessica A

    2015-01-01

    Methamphetamine (METH) is a psychomotor stimulant strongly associated with increases in sexual drive and impulsive sexual behaviors that often lead to unsafe sexual practices. In women METH users, such practices have been associated with increases in unplanned pregnancies and sexually transmitted diseases. Despite this significant heath concern, the neural mechanisms underlying this drug-sex association are not known. We previously established a rodent model of METH-facilitated female sexual behavior in which estradiol and progesterone interact with METH to increase motivational components of female behavior and neuronal activation in the posterodorsal medial amygdala (MePD) (Holder et al., 2010; Holder and Mong, 2010). The current study more directly examines the mechanisms underlying the drug-sex interaction. Here, we hypothesize that METH-induced increases in MePD dopamine signaling bridge the METH-hormone interaction. In support of this hypothesis, we found that excitotoxic lesions targeted to the MePD attenuated the METH-induced increases in proceptive behavior. Furthermore, infusion of a D1 agonist into the MePD increased proceptive behavior, while infusion of a D1 antagonist blocked the ability of METH to increase proceptive behaviors. Additionally, we found that METH-treatment increased progesterone receptor (PR) immunoreactivity in the MePD, suggesting an interaction between dopamine and progesterone signaling. Indeed, infusions of the PR antagonist, RU486, prevented METH-induced increases in sexual behavior. Thus, taken together, the current findings suggest that dopamine in the MePD modulates enhanced sexual motivation via an amplification of progesterone signaling and contributes to a better understanding of the neurobiology of drug-enhanced sexual behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  6. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA......). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...

  8. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  9. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  10. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang L.; Ernst, T.; Fowler, J.S.

    2009-01-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [ 11 C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  11. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens.

    Science.gov (United States)

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-08-01

    Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.

  12. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  14. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  15. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    Science.gov (United States)

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  16. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  17. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  18. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Science.gov (United States)

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness