WorldWideScience

Sample records for dopamine functional mri

  1. A receptor-based model for dopamine-induced fMRI signal

    Science.gov (United States)

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  2. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

    DEFF Research Database (Denmark)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian

    2013-01-01

    This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3...... dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels...... caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular...

  3. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    Science.gov (United States)

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  4. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    DEFF Research Database (Denmark)

    Hansen, Freja H; Skjørringe, Tina; Yasmeen, Saiqa

    2014-01-01

    experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine......Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we......-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake...

  5. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  6. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  7. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  8. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  9. Adversity in childhood linked to elevated striatal dopamine function in adulthood.

    Science.gov (United States)

    Egerton, Alice; Valmaggia, Lucia R; Howes, Oliver D; Day, Fern; Chaddock, Christopher A; Allen, Paul; Winton-Brown, Toby T; Bloomfield, Michael A P; Bhattacharyya, Sagnik; Chilcott, Jack; Lappin, Julia M; Murray, Robin M; McGuire, Philip

    2016-10-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and healthy volunteers. Sixty-seven young adults, comprising 47 individuals at UHR for psychosis and 20 healthy volunteers were recruited from the same geographic area and were matched for age, gender and substance use. Presynaptic dopamine function in the associative striatum was assessed using 18F-DOPA positron emission tomography. Childhood adversity was assessed using the Childhood Experience of Care and Abuse questionnaire. Within the sample as a whole, both severe physical or sexual abuse (T63=2.92; P=0.005), and unstable family arrangements (T57=2.80; P=0.007) in childhood were associated with elevated dopamine function in the associative striatum in adulthood. Comparison of the UHR and volunteer subgroups revealed similar incidence of childhood adverse experiences, and there was no significant group difference in dopamine function. This study provides evidence that childhood adversity is linked to elevated striatal dopamine function in adulthood. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. PCBs Alter Dopamine Mediated Function in Aging Workers

    Science.gov (United States)

    2011-01-01

    PCBs Alter Dopamine Mediated Function in Aging Workers 5a. CONTRACT NUMBER 5b. GRANT NUMBER DAMD17-02-1-0173 5c. PROGRAM ELEMENT...hypothesized that occupational exposure to polychlorinated biphenyls (PCBs) reduces dopamine (DA) terminal densities in the basal ganglia. We found...motor function in women compared to similarly aged men with similar bone lead levels. These latter findings are the first to demonstrate a sexual

  11. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral analysis.

    Directory of Open Access Journals (Sweden)

    Taro eUeno

    2014-09-01

    Full Text Available Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling.

  12. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Adversity in childhood linked to elevated striatal dopamine function in adulthood

    OpenAIRE

    Egerton, A.; Valmaggia, L. R.; Howes, O. D.; Day, F.; Chaddock, C. A.; Allen, P.; Winton-Brown, T. T.; Bloomfield, M. A. P.; Bhattacharyya, S.; Chilcott, J.; Lappin, J. M.; Murray, R. M.; McGuire, P.

    2016-01-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and he...

  14. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis

    OpenAIRE

    Egerton, A.; Howes, O. D.; Houle, S.; McKenzie, K.; Valmaggia, L. R.; Bagby, M. R.; Tseng, H-H; Bloomfield, M. A. P.; Kenk, M.; Bhattacharyya, S.; Suridjan, I.; Chaddock, C. A.; Winton-Brown, T. T.; Allen, P.; Rusjan, P.

    2017-01-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case–control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capaci...

  15. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  16. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  17. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    Science.gov (United States)

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  18. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  19. Dopamine in the medial amygdala network mediates human bonding.

    Science.gov (United States)

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  20. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  1. Functional MRI of the kidneys

    OpenAIRE

    Zhang, Jeff L.; Rusinek, Henry; Chandarana, Hersh; Lee, Vivian S.

    2013-01-01

    Renal function is characterized by different physiologic aspects, including perfusion, glomerular filtration, interstitial diffusion and tissue oxygenation. MRI shows great promise in assessing these renal tissue characteristics noninvasively. The last decade has witnessed a dramatic progress in MRI techniques for renal function assessment. This article briefly describes relevant renal anatomy and physiology, reviews the applications of functional MRI techniques for the diagnosis of renal dis...

  2. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  3. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  4. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    Science.gov (United States)

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  6. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  7. fMRI in Parkinson’s Disease

    DEFF Research Database (Denmark)

    Siebner, Hartwig R.; Herz, Damian

    2013-01-01

    and reward-related behavior have shown that dopamine replacement can have detrimental effects on non-motor brain functions by altering physiological patterns of dopaminergic signaling. Neuroimaging can also be used to assess preclinical compensation of striatal dopaminergic denervation by studying......In this chapter we review recent advances in functional magnetic resonance imaging (fMRI) in Parkinson’s disease (PD). Covariance patterns of regional resting-state activity in functional brain networks can be used to distinguish Parkinson patients from healthy controls and might play an important...... role as a biomarker in the future. Analyses of motor activity and connectivity have revealed compensatory mechanisms for impaired function of cortico-subcortical feedback loops and have shown how attentional mechanisms modulate the activity in motor loops. Other fMRI studies probing cognitive functions...

  8. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  9. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  10. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Di Giorgio, Annabella; Blasi, Giuseppe; Romano, Raffaella; Taurisano, Paolo; Caforio, Grazia; Sinibaldi, Lorenzo; Ursini, Gianluca; Popolizio, Teresa; Tirotta, Emanuele; Papp, Audrey; Dallapiccola, Bruno; Borrelli, Emiliana; Sadee, Wolfgang

    2009-01-28

    Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.

  12. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.

    Science.gov (United States)

    Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain

    2014-09-01

    Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Clinical application of functional MRI

    International Nuclear Information System (INIS)

    Taniwaki, Takayuki

    2010-01-01

    Described is the present state of clinical application of fMRI in the preoperative assessment of brain tumors, and plasticity in and pathophysiology of central diseases. For the tumor resection, fMRI is useful for risk assessment of postoperative nerve dysfunction, for selection of the patient rather suitable for brain mapping at the invasive surgery than at the pre-operation and for guidance of the operation itself. Preoperative fMRI alone can neither distinguish the regions of the primary and secondary functions nor exhibit the relation between the tumor and white matter fibers but there are compensatory means for these drawbacks. Benefit of preoperative fMRI has not yet been based on the evidence on double blind trials. Combination of fMRI imaging and electroencephalography (EEG) finding has shown that, in generalized epilepsy, extensive and stimulated activation occurs in both frontal/occipital regions and in thalamus area, respectively, and that the concomitant lowered activities are conceivably the reflection of burst discharge in normal brain functions. Plasticity in the human brain has been demonstrated by fMRI in cerebral vascular diseases, multiple sclerosis and amyotrophic lateral sclerosis. Pathogenesis of Parkinson disease and depression has been better understood by fMRI investigations revealing regions with elevated and reduced activities. Studies of attention deficit hyperactivity disorder have shown similar change of activities with functional reductions of the right dorsolateral frontal anterior area and of dorsal frontal cingulate gyrus, together with stimulated wider regions to given tasks. As above, fMRI has greatly contributed to our understanding of diseases of central nervous system and is to be expected to expand wider in this field. (T.T.)

  14. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks.

    Science.gov (United States)

    Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno

    2008-08-01

    Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

  15. Research progress of functional MRI in depression

    International Nuclear Information System (INIS)

    Xie Shenghui; Niu Guangming; Han Xiaodong; Qiao Pengfei

    2013-01-01

    The mood disorders of depression are associated with abnormalities of brain structure and function, and exploring their pathological mechanism has important significance for the choice of treatment and the curative effect evaluation. In recent years, the research of MRI on brain structure and function of depression has made great progress, especially in functional magnetic resonance imaging (fMRI). fMRI can detect the functional change in real time, and also can display the activity of brain and changes in the nerve pathways in patients with depression. This article summarizes the present research situation and progress of MRI in the diagnosis of depression. (authors)

  16. Role of prefrontal cortex and the midbrain dopamine system in working memory updating

    Science.gov (United States)

    D’Ardenne, Kimberlee; Eshel, Neir; Luka, Joseph; Lenartowicz, Agatha; Nystrom, Leigh E.; Cohen, Jonathan D.

    2012-01-01

    Humans are adept at switching between goal-directed behaviors quickly and effectively. The prefrontal cortex (PFC) is thought to play a critical role by encoding, updating, and maintaining internal representations of task context in working memory. It has also been hypothesized that the encoding of context representations in PFC is regulated by phasic dopamine gating signals. Here we use multimodal methods to test these hypotheses. First we used functional MRI (fMRI) to identify regions of PFC associated with the representation of context in a working memory task. Next we used single-pulse transcranial magnetic stimulation (TMS), guided spatially by our fMRI findings and temporally by previous event-related EEG recordings, to disrupt context encoding while participants performed the same working memory task. We found that TMS pulses to the right dorsolateral PFC (DLPFC) immediately after context presentation, and well in advance of the response, adversely impacted context-dependent relative to context-independent responses. This finding causally implicates right DLPFC function in context encoding. Finally, using the same paradigm, we conducted high-resolution fMRI measurements in brainstem dopaminergic nuclei (ventral tegmental area and substantia nigra) and found phasic responses after presentation of context stimuli relative to other stimuli, consistent with the timing of a gating signal that regulates the encoding of representations in PFC. Furthermore, these responses were positively correlated with behavior, as well as with responses in the same region of right DLPFC targeted in the TMS experiment, lending support to the hypothesis that dopamine phasic signals regulate encoding, and thereby the updating, of context representations in PFC. PMID:23086162

  17. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    Science.gov (United States)

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Quality assurance in functional MRI

    DEFF Research Database (Denmark)

    Liu, Thomas T; Glover, Gary H; Mueller, Bryon A

    2015-01-01

    Over the past 20 years, functional magnetic resonance imaging (fMRI) has ben- efited greatly from improvements in MRI hardware and software. At the same time, fMRI researchers have pushed the technical limits of MRI systems and greatly in- fluenced the development of state-of-the-art systems...... consistent data throughout the course of a study, and consistent stability across time and sites is needed to allow data from different time periods or acquisition sites to be optimally integrated....

  19. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  20. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    International Nuclear Information System (INIS)

    Stippich, Christoph

    2015-01-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  1. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, Christoph (ed.) [Univ. Hospitals Basel (Switzerland). Division of Diagnostic and Inventional Neuroradiology

    2015-06-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  2. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  3. Diffusion, confusion and functional MRI

    International Nuclear Information System (INIS)

    Le Bihan, Denis

    2012-01-01

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  4. Interactive Effects of Dopamine Baseline Levels and Cycle Phase on Executive Functions: The Role of Progesterone

    Directory of Open Access Journals (Sweden)

    Esmeralda Hidalgo-Lopez

    2017-07-01

    Full Text Available Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an “inverted U-shaped” manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i to the luteal cycle phase and (ii to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses–low sex hormones; pre-ovulatory–high estradiol; luteal–high progesterone and estradiol. During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important

  5. IClinfMRI Software for Integrating Functional MRI Techniques in Presurgical Mapping and Clinical Studies.

    Science.gov (United States)

    Hsu, Ai-Ling; Hou, Ping; Johnson, Jason M; Wu, Changwei W; Noll, Kyle R; Prabhu, Sujit S; Ferguson, Sherise D; Kumar, Vinodh A; Schomer, Donald F; Hazle, John D; Chen, Jyh-Horng; Liu, Ho-Ling

    2018-01-01

    Task-evoked and resting-state (rs) functional magnetic resonance imaging (fMRI) techniques have been applied to the clinical management of neurological diseases, exemplified by presurgical localization of eloquent cortex, to assist neurosurgeons in maximizing resection while preserving brain functions. In addition, recent studies have recommended incorporating cerebrovascular reactivity (CVR) imaging into clinical fMRI to evaluate the risk of lesion-induced neurovascular uncoupling (NVU). Although each of these imaging techniques possesses its own advantage for presurgical mapping, a specialized clinical software that integrates the three complementary techniques and promptly outputs the analyzed results to radiology and surgical navigation systems in a clinical format is still lacking. We developed the Integrated fMRI for Clinical Research (IClinfMRI) software to facilitate these needs. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR mapping, IClinfMRI encompasses three unique functions: (1) supporting the interactive rs-fMRI mapping while visualizing task-fMRI results (or results from published meta-analysis) as a guidance map, (2) indicating/visualizing the NVU potential on analyzed fMRI maps, and (3) exporting these advanced mapping results in a Digital Imaging and Communications in Medicine (DICOM) format that are ready to export to a picture archiving and communication system (PACS) and a surgical navigation system. In summary, IClinfMRI has the merits of efficiently translating and integrating state-of-the-art imaging techniques for presurgical functional mapping and clinical fMRI studies.

  6. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1998-01-01

    The renal functional changes following infusion of dopamine are well documented. The most pronounced effect is the increase in renal blood flow and a marked natriuretic response. Due to its specific renal effects, dopamine has become one of the most frequently used drugs in the treatment...... of critically ill patients with low cardiac output states and/or acute oliguric renal failure. Pharmacological effects of dopamine are dose dependent. Low doses of dopamine predominantly stimulate dopaminergic receptors, but with increasing doses actions secondary to stimulation of adrenergic beta(1) and alpha...... indirectly may dilate the vessels by inhibition of norepinephrine release. Consistent with previous results in animals, the present haemodynamic studies revealed that dopamine in normal subjects elicits a dose dependent biphasic effect on the mean arterial blood pressure. With 1 and 2 micrograms...

  7. Structural and Functional Effect of an Oscillating Electric Field on the Dopamine-D3 Receptor: A Molecular Dynamics Simulation Study.

    Directory of Open Access Journals (Sweden)

    Zohreh Fallah

    Full Text Available Dopamine as a neurotransmitter plays a critical role in the functioning of the central nervous system. The structure of D3 receptor as a member of class A G-protein coupled receptors (GPCRs has been reported. We used MD simulation to investigate the effect of an oscillating electric field, with frequencies in the range 0.6-800 GHz applied along the z-direction, on the dopamine-D3R complex. The simulations showed that at some frequencies, the application of an external oscillating electric field along the z-direction has a considerable effect on the dopamine-D3R. However, there is no enough evidence for prediction of changes in specific frequency, implying that there is no order in changes. Computing the correlation coefficient parameter showed that increasing the field frequency can weaken the interaction between dopamine and D3R and may decrease the Arg128{3.50}-Glu324{6.30} distance. Because of high stability of α helices along the z-direction, applying an oscillating electric field in this direction with an amplitude 10-time higher did not have a considerable effect. However, applying the oscillating field at the frequency of 0.6 GHz along other directions, such as X-Y and Y-Z planes, could change the energy between the dopamine and the D3R, and the number of internal hydrogen bonds of the protein. This can be due to the effect of the direction of the electric field vis-à-vis the ligands orientation and the interaction of the oscillating electric field with the dipole moment of the protein.

  8. Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.

    Science.gov (United States)

    Jackson, Chad R; Capozzi, Megan; Dai, Heng; McMahon, Douglas G

    2014-03-26

    Visual system development depends on neural activity, driven by intrinsic and light-sensitive mechanisms. Here, we examined the effects on retinal function due to exposure to summer- and winter-like circadian light cycles during development and adulthood. Retinal light responses, visual behaviors, dopamine content, retinal morphology, and gene expression were assessed in mice reared in seasonal photoperiods consisting of light/dark cycles of 8:16, 16:8, and 12:12 h, respectively. Mice exposed to short, winter-like, light cycles showed enduring deficits in photopic retinal light responses and visual contrast sensitivity, but only transient changes were observed for scotopic measures. Dopamine levels were significantly lower in short photoperiod mice, and dopaminergic agonist treatment rescued the photopic light response deficits. Tyrosine hydroxylase and Early Growth Response factor-1 mRNA expression were reduced in short photoperiod retinas. Therefore, seasonal light cycles experienced during retinal development and maturation have lasting influence on retinal and visual function, likely through developmental programming of retinal dopamine.

  9. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  11. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Schmitz, Nicole; Figee, Martijn; Abeling, Nico; Hasler, Gregor; van der Meer, Johan; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-01-01

    Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity

  12. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; Hong, L Elliot; Stine, O Colin; Mitchell, Braxton D; Elliott, Amie; Roberts, Rosalinda C; Conley, Robert R; McMahon, Robert P; Thaker, Gunvant K

    2009-03-05

    Smooth pursuit eye movement (SPEM) deficit is an established schizophrenia endophenotype with a similar neurocognitive construct to working memory. Frontal eye field (FEF) neurons controlling SPEM maintain firing when visual sensory information is removed, and their firing rates directly correlate with SPEM velocity. We previously demonstrated a paradoxical association between a functional polymorphism of dopamine signaling (COMT gene) and SPEM. Recent evidence implicates the dopamine transporter gene (DAT1) in modulating cortical dopamine and associated neurocognitive functions. We hypothesized that DAT1 10/10 genotype, which reduces dopamine transporter expression and increases extracellular dopamine, would affect SPEM. We examined the effects of DAT1 genotype on: Clinical diagnosis in the study sample (n = 418; 190 with schizophrenia), SPEM measures in a subgroup with completed oculomotor measures (n = 200; 87 schizophrenia), and DAT1 gene expression in FEF tissue obtained from postmortem brain samples (n = 32; 16 schizophrenia). DAT1 genotype was not associated with schizophrenia. DAT1 10/10 genotype was associated with better SPEM in healthy controls, intermediate SPEM in unaffected first-degree relatives of schizophrenia subjects, and worse SPEM in schizophrenia subjects. In the gene expression study, DAT1 10/10 genotype was associated with significantly reduced DAT1 mRNA transcript in FEF tissue from healthy control donors (P < 0.05), but higher expression in schizophrenia donors. Findings suggest regulatory effects of another gene(s) or etiological factor in schizophrenia, which modulate DAT1 gene function. 2008 Wiley-Liss, Inc.

  13. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    Science.gov (United States)

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  14. MRI in Optic Neuritis: Structure, Function, Interactions

    DEFF Research Database (Denmark)

    Fuglø, Dan

    2011-01-01

    resonance imaging (MRI), and the visual evoked potential (VEP) continues to show a delayed P100 indicating persistent demyelination. The explanation for this apparent discrepancy between structure and function could be due to either a redundancy in the visual pathways so that some degree of signal loss...... will have very few or no clinical symptoms, or it could be due to compensatory mechanisms in the visual pathway or the visual cortex. In order to understand the pathophysiology and recovery processes in ON it is essential to have sensitive methods to asses both structure and function. These methods...... are low. Functional MRI (fMRI) is a non-invasive technique that can measure brain activity with a high spatial resolution. Recently, technical and methodological advancements have made it feasible to record VEPs and fMRI simultaneously and the relationship between averaged VEPs and averaged fMRI signals...

  15. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    Science.gov (United States)

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  16. The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Figee, Martijn; van Amelsvoort, Thérèse; Veltman, Dick; de Haan, Lieuwe

    2008-01-01

    The revised dopamine (DA) hypothesis states that clinical symptoms of schizophrenia are caused by an imbalance of the DA system. In this article, we aim to review evidence for this hypothesis by evaluating functional magnetic resonance imaging studies in schizophrenia. Because atypical drugs are

  17. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  18. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  19. Adaptive Analysis of Functional MRI Data

    International Nuclear Information System (INIS)

    Friman, Ola

    2003-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuro-imaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. This dissertation introduces new approaches for the analysis of fMRI data. The detection of active brain areas is a challenging problem due to high noise levels and artifacts present in the data. A fundamental tool in the developed methods is Canonical Correlation Analysis (CCA). CCA is used in two novel ways. First as a method with the ability to fully exploit the spatio-temporal nature of fMRI data for detecting active brain areas. Established analysis approaches mainly focus on the temporal dimension of the data and they are for this reason commonly referred to as being mass-univariate. The new CCA detection method encompasses and generalizes the traditional mass-univariate methods and can in this terminology be viewed as a mass-multivariate approach. The concept of spatial basis functions is introduced as a spatial counterpart of the temporal basis functions already in use in fMRI analysis. The spatial basis functions implicitly perform an adaptive spatial filtering of the fMRI images, which significantly improves detection performance. It is also shown how prior information can be incorporated into the analysis by imposing constraints on the temporal and spatial models and a constrained version of CCA is devised to this end. A general Principal Component Analysis technique for generating and constraining temporal and spatial subspace models is proposed to be used in combination with the constrained CCA

  20. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  1. Nature or Nurture? Determining the Heritability of Human Striatal Dopamine Function: an [18F]-DOPA PET Study

    Science.gov (United States)

    Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D

    2013-01-01

    Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions. PMID:23093224

  2. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  3. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    Science.gov (United States)

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  4. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Lee, Joo Ryung; Ahn, Byeong Cheol; Kewm, Do Hun

    2005-01-01

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  5. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  6. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  7. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    Science.gov (United States)

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  8. Pyrethroid pesticide-induced alterations in dopamine transporter function

    International Nuclear Information System (INIS)

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2006-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD

  9. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    Science.gov (United States)

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Science.gov (United States)

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.

  11. Test-retest measurements of dopamine D_1-type receptors using simultaneous PET/MRI imaging

    International Nuclear Information System (INIS)

    Kaller, Simon; Patt, Marianne; Becker, Georg-Alexander; Luthardt, Julia; Meyer, Philipp M.; Werner, Peter; Barthel, Henryk; Bresch, Anke; Sabri, Osama; Rullmann, Michael; Girbardt, Johanna; Fritz, Thomas H.; Hesse, Swen

    2017-01-01

    The role of dopamine D_1-type receptor (D_1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D_1-mediated neuronal network regulation using simultaneous PET/MRI and D_1R-selective ["1"1C]SCH23390, this study investigated the stability of central D_1R measurements between two independent PET/MRI sessions under baseline conditions. Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq ["1"1C]SCH23390, on two separate days within 2-4 weeks using a PET/MRI system. Parametric images of D_1R distribution volume ratio (DVR) and binding potential (BP_N_D) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D_1R density. The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D_1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D_1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BP_N_D values. Accordingly, the absolute variability of BP_N_D ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D_1R content, such as the occipital cortex, with higher mean variability. The test-retest reliability of D_1R measurements in this study was very high. This was the case not only for D_1R-rich brain areas, but also for regions with low D_1R density. These results will provide a solid base

  12. Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2013-08-01

    Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.

  13. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  14. MRI to assess renal structure and function.

    Science.gov (United States)

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  15. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  16. Extraction of temporal information in functional MRI

    Science.gov (United States)

    Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia

    2002-10-01

    The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.

  17. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Frontal-subcortical circuits in obsessive-compulsive disorder: role of the dopamine D1 receptor

    International Nuclear Information System (INIS)

    Olver, J.S.; Reutens, D.C.; Maruff, P.; Burrows, G.D.; Norman, T.R.; Ellen, S.R.; Pantelis, C.; Tochon-Danguy, H.; Ackermann, U.; Stekelenberg, N.

    2000-01-01

    Full text: Obsessive-Compulsive Disorder (OCD) is an anxiety disorder which is increasingly being recognised as a neurobiological disorder. While serotonergic mechanisms have been proposed, the major competing theory in the pathophysiology of OCD involves the neurotransmitter dopamine. The Dopamine D1 receptor is implicated in OCD following the finding of specific spatial working memory abnormalities in a series of neuropsychological studies. Spatial working memory is known to depend on the integrity of D1 receptor function in the Dorso-lateral Prefrontal Cortex (DLPFC) of primates. This study aims to examine the role of dopamine in patients with OCD and in particular to test the hypothesis that there is an upregulation of dopamine D1 receptors in the DLPFC which correlates with spatial working memory deficits in OCD. Three OCD patients and three normal controls underwent Positron Emission Tomography (PET) following intravenous injection of the D1 antagonist PET ligand SCH23390. Reconstructed PET images were co registered with subject Magnetic Resonance Images (MRI) and regions of interest drawn manually. We will present the analysis of the Binding Potentials of SCH23390 in the regions of interest of the first three OCD patients and compare them with three normal control patients. In conclusion Dopamine-Serotonergic interactions are involved in the pathophysiology of OCD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Altered neurocircuitry in the dopamine transporter knockout mouse brain.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    2010-07-01

    Full Text Available The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI. Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn(2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn(2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn(2+ transport into more posterior midbrain nuclei and contralateral

  20. Neuro-pharmacological functional MRI of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji [Okayama Univ. (Japan). School of Medicine; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-03-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  1. Neuro-pharmacological functional MRI of epilepsy

    International Nuclear Information System (INIS)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-01-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  2. Maternal separation affects dopamine transporter function in the Spontaneously Hypertensive Rat: An in vivo electrochemical study

    Directory of Open Access Journals (Sweden)

    Womersley Jacqueline S

    2011-12-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT in ways that distinguish SHR from control rat strains. Methods SHR and control Wistar-Kyoto (WKY rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Results Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1 in SHR striatum. Consistent with this observation, the dopamine clearance time (T100 was increased in SHR. These results suggest that the chronic mild stress of

  3. Functional MRI in children: clinical and research applications

    International Nuclear Information System (INIS)

    Leach, James L.; Holland, Scott K.

    2010-01-01

    Functional MRI has become a critical research tool for evaluating brain function and developmental trajectories in children. Its clinical use in children is becoming more common. This presentation will review the basic underlying physiologic and technical aspects of fMRI, review research applications that have direct clinical relevance, and outline the current clinical uses of this technology. (orig.)

  4. Test-retest measurements of dopamine D{sub 1}-type receptors using simultaneous PET/MRI imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kaller, Simon; Patt, Marianne; Becker, Georg-Alexander; Luthardt, Julia; Meyer, Philipp M.; Werner, Peter; Barthel, Henryk; Bresch, Anke; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Rullmann, Michael [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Girbardt, Johanna [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Fritz, Thomas H. [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); University of Gent, Institute for Psychoacoustics and Electronic Music (IPEM), Ghent (Belgium); Hesse, Swen [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Integrated Research and Treatment Centre (IFB) Adiposity Diseases, Leipzig (Germany)

    2017-06-15

    The role of dopamine D{sub 1}-type receptor (D{sub 1}R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D{sub 1}-mediated neuronal network regulation using simultaneous PET/MRI and D{sub 1}R-selective [{sup 11}C]SCH23390, this study investigated the stability of central D{sub 1}R measurements between two independent PET/MRI sessions under baseline conditions. Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq [{sup 11}C]SCH23390, on two separate days within 2-4 weeks using a PET/MRI system. Parametric images of D{sub 1}R distribution volume ratio (DVR) and binding potential (BP{sub ND}) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D{sub 1}R density. The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D{sub 1}R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D{sub 1}R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BP{sub ND} values. Accordingly, the absolute variability of BP{sub ND} ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D{sub 1}R content, such as the occipital cortex, with higher mean variability. The test-retest reliability of D{sub 1}R measurements in this study was very high. This was the case not only for D{sub 1}R-rich brain areas, but

  5. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  6. Hypothermia-induced loss of endothelial barrier function is restored after dopamine pretreatment : Role of p42/p44 activation

    NARCIS (Netherlands)

    Brinkkoetter, Paul-Thomas; Beck, Grietje C.; Gottmann, Uwe; Loesel, Ralf; Schnetzke, Ulf; Rudic, Boris; Hanusch, Christine; Rafat, Neysan; Liu, Zhenzi; Weiss, Christel; Leuvinik, Henri G. D.; Ploeg, Rutger; Braun, Claude; Schnuelle, Peter; van der Woude, Fokko J.; Yard, Benito A.

    2006-01-01

    Background. Donor dopamine usage is associated with improved immediate graft function after renal transplantation. Although prolonged cold preservation results in an increased vascular permeability, the present study was conducted to examine in vitro and in vivo if dopamine Pretreatment influences

  7. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging.

    Science.gov (United States)

    Urban, Nina B L; Slifstein, Mark; Meda, Shashwath; Xu, Xiaoyan; Ayoub, Rawad; Medina, Olga; Pearlson, Godfrey D; Krystal, John H; Abi-Dargham, Anissa

    2012-05-01

    Functional neuroimaging (fMRI) studies show activation in mesolimbic circuitry in tasks involving reward processing, like the Monetary Incentive Delay Task (MIDT). In voltammetry studies in animals, mesolimbic dopamine release is associated with reward salience. This study examined the relationship between fMRI activation and magnitude of dopamine release measured with Positron emission tomography study (PET) in the same subjects using MIDT in both modalities to test if fMRI activation is related to dopamine release. Eighteen healthy subjects were scanned with [¹¹C]raclopride PET at baseline and after MIDT. Binding potential (BP(ND)) was derived by equilibrium analysis in striatal subregions and percent change across conditions (∆BP(ND)) was measured. Blood oxygen level dependence (BOLD) signal changes with MIDT were measured during fMRI using voxelwise analysis and ROI analysis and correlated with ∆BP(ND). ∆BP(ND) was not significant in the ventral striatum (VST) but reached significance in the posterior caudate. The fMRI BOLD activation was highest in VST. No significant associations between ∆BP(ND) and change in fMRI BOLD were observed with VST using ROI analysis. Voxelwise analysis showed positive correlation between BOLD activation in anticipation of the highest reward and ∆BP(ND) in VST and precommissural putamen. Our study indicates that endogenous dopamine release in VST is of small magnitude and is related to BOLD signal change during performance of the MIDT in only a few voxels when rewarding and nonrewarding conditions are interspersed. The lack of correlation at the ROI level may be due to the small magnitude of release or to the particular dependence of BOLD on glutamatergic signaling.

  8. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, Pottumarthi V.; Priatna, Agus

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible

  9. Functional Proton MRI in Emphysematous Rats.

    Science.gov (United States)

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Stiller, Detlef; Rasche, Volker

    2015-12-01

    To demonstrate the feasibility of proton magnetic resonance imaging (MRI) ventilation-related maps in rodents for the evaluation of lung function in the presence of pancreatic porcine elastase (PPE)-induced emphysema. Twelve rats were equally divided into 3 groups: group 1 (no administration of PPE); group 2 (PPE selectively only in the left lung); and group 3 (PPE administered in both lungs). Magnetic resonance imaging (MRI) and computed tomographic (CT) data were acquired at baseline, at 2 weeks and 4 weeks after administration, after which the animals were euthanized. The MRI protocol comprised a golden angle 2-dimensional ultrashort echo time MRI sequence [echo time, 0.343 millisecond (ms); repetition time, 120 ms; 12 slides with thickness, 1 mm; acquisition time, 30 minutes], from which inspiration and expiration images were reconstructed after the extraction of a self-gating signal. Inspiration images were registered to images at expiration, and expansion maps were created by calculating the specific difference in signal intensity. The lungs were segmented, and the mean specific expansion (MSE) calculated as an established surrogate for fractional ventilation. Computed tomographic data provided lung density (peak of the Hounsfield unit histogram, HU_P), whereas histology provided the mean linear intercept for each lung. Two weeks after administration, the control group had a mean MSE in both lungs corresponding to 96% of the baseline. Group 2 had 85% of the baseline, and group 3 had 57%. Considering the PPE-treated lungs alone, a significant reduction in MSE of 27% at 2 weeks and 40% at 4 weeks was found with respect to nontreated lungs. Significant correlations between HU_P and MSE were found at all time points (baseline: r = 0.606, P = 0.0017; 2 weeks: r = 0.837, P ≤ 0.0001; 4 weeks: r = 0.765, P Mean linear intercept values significantly correlated both with MRI MSE (r = -0.770, P The calculated ventilation-related maps showed a reduction of function in

  10. Mandarin functional MRI Language paradigms

    OpenAIRE

    Ci, He; van Graan, Andre; Gonz?lvez, Gloria; Thompson, Pamela; Hill, Andrea; Duncan, John S.

    2016-01-01

    Abstract Objective The objective of this study was to implement convenient, fast, and accurate Mandarin task paradigms for functional MRI, and to locate the Chinese language functional areas in frontal and temporal lobes. Materials and Methods Nineteen healthy Chinese volunteers participated in this study, which utilized a block design with four language tasks: auditory naming (AN), picture naming (PN), verbal fluency?character (VFC), and verbal fluency?letter (VFL). All functional images wer...

  11. Functional MRI experiments : acquisition, analysis and interpretation of data

    NARCIS (Netherlands)

    Ramsey, NF; Hoogduin, H; Jansma, JM

    2002-01-01

    Functional MRI is widely used to address basic and clinical neuroscience questions. In the key domains of fMRI experiments, i.e. acquisition, processing and analysis, and interpretation of data, developments are ongoing. The main issues are sensitivity for changes in fMRI signal that are associated

  12. Structural and functional MRI in children with renal disease. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Bettina; Froekiaer, Joergen [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Karstoft, Kristian; Pedersen, Michael [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Aarhus Univ. Hospital (Denmark). MR Research Centre; Joergensen, Troels Munch [Aarhus Univ. Hospital (Denmark). Dept. of Urology; Rittig, Soeren [Aarhus Univ. Hospital (Denmark). Dept. of Paediatrics

    2010-07-01

    This MRI study demonstrates our first clinical experiences with structural and functional evaluation in children with renal dysfunction, and communicates our experience with quantitative measurements of renal function compared to reference values found employing radionucleotides. We included renal impaired children who were recruited for clinical radioisotopic GFR measurements (n=8). MRI was performed 2 hours after Cr-EDTA measurements and was conducted using a protocol involving both anatomical/structural sequences and a dynamic contrast-enhanced sequence. Data obtained with the dynamic MRI sequence were processed using the graphical Patlak approach to obtain estimates of GFR. We were able to characterize the intrarenal configuration (cortex, medulla, pelvicalyceal arrangement) in all cases. Functional analyses of dynamic contrast-enhanced MRI revealed an overall underestimation of GFR measured by MRI compared to Cr-EDTPA measures (range: -2% to -43%). We advocate the use of MRI as a single-modality approach in the structural and functional evaluation of impaired kidneys in children, and concurrently, we presented a clinically available strategy for estimations of renal cortical volume and single kidney function. However, the use of MRI contrast agents have recently become controversial in renal patients due to the risk of NSF. (orig.)

  13. Development of functional MRI in gastric cancer

    International Nuclear Information System (INIS)

    Zhang Lei; Shao Guoliang

    2013-01-01

    Gastric cancer is one of the most common malignant tumors in digestive tract functional MRI can represent the functional changes of the tumor. DWI not only provides a new way to diagnosis the gastric cancer, but also reflect the pathology changes of the tumor, which has great value to predict the therapeutic effect and prognosis of the tumor. MRS is the only method to test the chemical composition of tissues in live without injury, which has great value in the early diagnosis of gastric tumor and in the research of tumor mechanism. This review is mainly focused on the status and development of functional MRI in gastric cancer. (authors)

  14. Functional MRI in pre-surgical planning: case study and cautionary ...

    African Journals Online (AJOL)

    Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI) has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping ...

  15. Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra

    International Nuclear Information System (INIS)

    Dawson, T.M.; Dawson, V.L.; Gage, F.H.; Fisher, L.J.; Hunt, M.A.; Wamsley, J.K.

    1991-01-01

    Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative [3H]BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of [3H]SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in the number (Bmax) of [3H]sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of [3H]BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat

  16. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  17. Cerebral activity mapped by functional MRI

    International Nuclear Information System (INIS)

    Bruening, R.; Danek, A.; Wu, R.H.; Berchtenbreiter, C.; Reiser, M.

    1997-01-01

    Functional magnetic resonance imaging (fMRI) is a method to noninvasively measure the changes in cerebral activation during sensitive, cognitive or motor activity. fMRI detects activity by subtraction of states of activity and rest. During activity the signal is increased presumably due to a decrease of deoxyhemoglobin in the capillary and venous structures. Using a full field visual stimulation by flashlight goggles, a signal increase of 3% was detected in the primary visual cortex (V1). Different sequences and postprocessing algorythms will be discussed. Data from the primary cortical areas suggest a high reproducability of the experiments. Successfull experiments highly depend on cooperation of subjects. Despite success in experiments fMRI still has to be established for clinical purposes. (orig.) [de

  18. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  19. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Directory of Open Access Journals (Sweden)

    David M L Lilburn

    Full Text Available Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp (129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129Xe. Straightforward hp (129Xe MRI protocols provide residual lung volume (RV data and permit for spatially resolved tracking of small hp (129Xe probe volumes during the inhalation cycle. Hp (129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  20. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, P.V.; Priatna, A.

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Functional imaging of the kidneys with fast MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, P.V.; Priatna, A. [AN-234, MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA (United States)

    1999-02-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible

    International Nuclear Information System (INIS)

    Booij, Jan; Bruin, Kora de; Win, Maartje M.L. de; Lavini, Cristina Mphil; Heeten, Gerard J. den; Habraken, Jan

    2003-01-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand 123 I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [ 123 I]FP-CIT binding ratios of the test/retest studies were 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [ 123 I]FP-CIT binding ratios in rats is highly reproducible

  3. Akinetic Crisis in Parkinson's Disease Is Associated with a Severe Loss of Striatal Dopamine Transporter Function: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Valtteri Kaasinen

    2014-11-01

    Full Text Available Akinetic crisis or acute akinesia is a life-threatening complication of Parkinson's disease (PD with unknown pathophysiological mechanisms. Clinically, it resembles the neuroleptic malignant syndrome, and dopaminergic drugs are transiently ineffective in the acute phase of the condition. There are no published dopaminergic functional imaging studies on PD patients with akinetic crisis. Here we report 2 advanced PD patients with akinetic crisis who were scanned with SPECT using brain dopamine transporter ligand [123I]FP-CIT. The first patient was additionally scanned before the condition developed, and the second patient was scanned after recovery. Striatal dopamine transporter binding was lower during than before the crisis, and both patients showed a nearly complete loss of dopamine transporter binding during the crisis. Serial imaging showed that the uptake remained negligible despite an improvement in motor function after recovery. Akinetic crisis in PD appears to be associated with a particularly severe loss of presynaptic striatal dopamine function that does not improve after recovery. Apart from presynaptic dopaminergic function, other dopaminergic or nondopaminergic mechanisms are involved in the clinical improvement of motor functions after akinetic crisis in PD.

  4. Linking variability in brain chemistry and circuit function through multimodal human neuroimaging

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, A R

    2012-01-01

    and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological......Identifying neurobiological mechanisms mediating the emergence of individual differences in behavior is critical for advancing our understanding of relative risk for psychopathology. Neuroreceptor positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) can be used...

  5. Thinking and doing: the effects of dopamine and oxytocin genes and executive function on mothering behaviours.

    Science.gov (United States)

    Tombeau Cost, K; Unternaehrer, E; Plamondon, A; Steiner, M; Meaney, M; Atkinson, L; Kennedy, J L; Fleming, A S

    2017-02-01

    Animal and human studies suggest that initial expression of maternal behaviour depends on oxytocin and dopamine systems. However, the mechanism by which these systems affect parenting behaviours and the timing of these effects are not well understood. This article explores the role of mothers' executive function in mediating the relation between oxytocin and dopamine gene variants and maternal responsiveness at 48 months post-partum. Participants (n = 157) were mothers recruited in the Maternal Adversity, Vulnerability and Neurodevelopment Study, which assesses longitudinally two cohorts of mothers and children in Canada. We examined single nucleotide polymorphisms (SNPs) related to the dopamine and oxytocin systems (DRD1 rs686, DRD1 rs265976, OXTR rs237885 and OXTR rs2254298), assessed mothers' decision-making at 48 months using the Cambridge Neurological Automated Testing Battery (CANTAB) and evaluated maternal responsiveness from videotaped interactions during the Etch-A-Sketch co-operation task. Mediation analyses showed that OXTR rs2254298 A-carriers had an indirect effect on positive parenting which was mediated by mothers' performance on decision-making task (estimate = 0.115, P Dopamine SNPs were not associated with any measure of executive function or parenting (all P > 0.05). While oxytocin has previously been associated with only the early onset of maternal behaviour, we show that an OXTR polymorphism is involved in maternal behaviour at 48 months post-partum through mothers' executive function. This research highlights the importance of the oxytocin system to maternal parenting beyond infancy. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Risky Decision-Making and Ventral Striatal Dopamine Responses to Amphetamine: A Positron Emission Tomography [11C] Raclopride Study in Healthy Adults

    OpenAIRE

    Oswald, Lynn M.; Wand, Gary S.; Wong, Dean F.; Brown, Clayton H.; Kuwabara, Hiroto; Brašić, James R.

    2015-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have provided compelling evidence that corticolimbic brain regions are integrally involved in human decision-making. Although much less is known about molecular mechanisms, there is growing evidence that the mesolimbic dopamine (DA) neurotransmitter system may be an important neural substrate. Thus far, direct examination of DA signaling in human risk-taking has centered onl gambling disorder. Findings from several positron emission ...

  7. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  8. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  9. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  10. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy?☆

    Science.gov (United States)

    Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu

    2012-01-01

    As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766

  11. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  12. Normal pancreatic exocrine function does not exclude MRI/MRCP chronic pancreatitis findings.

    Science.gov (United States)

    Alkaade, Samer; Cem Balci, Numan; Momtahen, Amir Javad; Burton, Frank

    2008-09-01

    Abnormal pancreatic function tests have been reported to precede the imaging findings of chronic pancreatitis. Magnetic resonance imaging (MRI) with magnetic resonance cholangiopancreatography (MRCP) is increasingly accepted as the primary imaging modality for the detection of structural changes of early mild chronic pancreatitis. The aim of this study was to evaluate MRI/MRCP findings in patients with symptoms consistent with chronic pancreatitis who have normal Secretin Endoscopic Pancreatic Function test. A retrospective study of 32 patients referred for evaluation of chronic abdominal pain consistent with chronic pancreatitis and reported normal standard abdominal imaging (ultrasound, computed tomography, or MRI). All patients underwent Secretin Endoscopic Pancreatic Function testing and pancreatic MRI/MRCP at our institution. We reviewed the MRI/MRCP images in patients who had normal Secretin Endoscopic Pancreatic Function testing. MRI/MRCP images were assessed for pancreatic duct morphology, gland size, parenchymal signal and morphology, and arterial contrast enhancement. Of the 32 patients, 23 had normal Secretin Endoscopic Pancreatic Function testing, and 8 of them had mild to marked spectrum of abnormal MRI/MRCP findings that were predominantly focal. Frequencies of the findings were as follows: pancreatic duct stricture (n=3), pancreatic duct dilatation (n=3), side branch ectasia (n=4), atrophy (n=5), decreased arterial enhancement (n=5), decreased parenchymal signal (n=1), and cavity formation (n=1). The remaining15 patients had normal pancreatic structure on MRI/MRCP. Normal pancreatic function testing cannot exclude abnormal MRI/MRCP especially focal findings of chronic pancreatitis. Further studies needed to verify significance of these findings and establish MRI/MRCP imaging criteria for the diagnosis of chronic pancreatitis.

  13. Application of functional MRI in breast diseases

    International Nuclear Information System (INIS)

    Feng Yun; Liu Shiyuan; Wang Chenguang; Tao Xiaofeng; Wang Jinlin; Wang Jian

    2007-01-01

    Objective: To investigate the value of functional MRI in the diagnosis and differential diagnosis of breast diseases. Methods: Sixty-five patients with 68 lesions were enrolled in this study. Conventional T 1 WI and T 2 WI scan, dynamic contrast enhanced MRI, diffusion weighted imaging and 1 H single voxel MR spectroscopy were performed consequently. All lesions were verified by pathology, including 4 cases of breast adenosis, 22 fibroadenomas, 2 chronic inflammations, 3 cysts, 33 infitrating ductal carcinomas, 1 intraductal carcinoma and 3 cystosarcoma phyllodes tumors. Morphological features, maximum enhancement ratio, time-intensity curve, apparent diffusion coefficient and Choline peak were analyzed. Results: The detection rates of T 1 WI and T 2 WI were 14.7% (n=10) and 51.5% (n=35). The sensitivity, specificity, accuracy of dynamic contrast enhanced MRI for the malignant tumor were 94. 6%, 71.4% and 76.5% respectively. Retrospective study showed that diffusion weighted imaging, with the b value from 800 s/mm 2 to 1000 s/mm 2 , could be used to differentiate various types of breast lesions. 1 H signal voxel spectroscopy had a sensitivity of 51.4%, specificity of 82.6%, and accuracy of 67.6% for the malignent. The sensitivity, specificity and accuracy could reach 97.3%, 90.0% and 92.6% respectively by combining conventional scan, dynamic contrast enhanced MRI and MR spectroscopy. Conclusion: Functional MRI, with high sensitivity, specificity and accuracy, can be used widely in the diagnosis of malignant breast lesions. (authors)

  14. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  15. Functional MRI for planning in neurosurgery

    International Nuclear Information System (INIS)

    Erb, M.; Saur, R.

    2007-01-01

    Beside structural images from CT and MR, functional data about localization of brain activations with different tasks becomes more and more important for presurgical planning. With this method, it's possible to depict mainly primary sensory and motoric areas, but also higher functions like speech and memory. To judge this information adequately, one has to be aware of the variability of activation pattern dependent on chosen threshold. Especially, the absence of such activation at a given location does not necessary mean that this area has no function. The reliability of a measurement strongly depends on efficiency of experimental design and cooperation of the patient. Therefore, short and easy tasks which can be performed in a block design should be preferred. Information about localization of functions determined by fMRI can mainly be used for presurgical planning. Intraoperative usage in the navigation system is problematic due to the brain shift. Therefore, intraoperative imaging together with dynamic adaptation using nonlinear deformation algorithms may improve the value of fMRI in the future. (orig.)

  16. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All

  17. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  18. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [11C]raclopride to measure...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  19. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  20. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  1. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  2. Blink Rate in Boys with Fragile X Syndrome: Preliminary Evidence for Altered Dopamine Function

    Science.gov (United States)

    Roberts, J. E.; Symons, F. J.; Johnson, A.-M.; Hatton, D. D.; Boccia, M. L.

    2005-01-01

    Background: Dopamine, a neurotransmitter involved in motor and cognitive functioning, can be non-invasively measured via observation of spontaneous blink rates. Blink rates have been studied in a number of clinical conditions including schizophrenia, autism, Parkinsons, and attention deficit/hyperactivity disorder with results implicating either…

  3. Dopamine en overmatig alcoholgebruik: genen in interactie met hun omgeving [Dopamine and excessive alcohol consumption: how genes interact with their environment

    OpenAIRE

    Schellekens, A.F.A.; Scholte, R.H.J.; Engels, R.C.M.E.; Verkes, R.J.

    2013-01-01

    background Hereditary factors account for approximately 50% of the risk of developing alcohol dependence. Genes that affect the dopamine function in the brain have been extensively studied as candidate genes. aim To present the results of recent Dutch studies on the interaction between genes and their environment in relation to dopamine function and excessive alcohol use. method Two large scale research projects were recently carried out in order to study the relation between dopamine genes a...

  4. Effects of Field-Map Distortion Correction on Resting State Functional Connectivity MRI

    Directory of Open Access Journals (Sweden)

    Hiroki Togo

    2017-12-01

    Full Text Available Magnetic field inhomogeneities cause geometric distortions of echo planar images used for functional magnetic resonance imaging (fMRI. To reduce this problem, distortion correction (DC with field map is widely used for both task and resting-state fMRI (rs-fMRI. Although DC with field map has been reported to improve the quality of task fMRI, little is known about its effects on rs-fMRI. Here, we tested the influence of field-map DC on rs-fMRI results using two rs-fMRI datasets derived from 40 healthy subjects: one with DC (DC+ and the other without correction (DC−. Independent component analysis followed by the dual regression approach was used for evaluation of resting-state functional connectivity networks (RSN. We also obtained the ratio of low-frequency to high-frequency signal power (0.01–0.1 Hz and above 0.1 Hz, respectively; LFHF ratio to assess the quality of rs-fMRI signals. For comparison of RSN between DC+ and DC− datasets, the default mode network showed more robust functional connectivity in the DC+ dataset than the DC− dataset. Basal ganglia RSN showed some decreases in functional connectivity primarily in white matter, indicating imperfect registration/normalization without DC. Supplementary seed-based and simulation analyses supported the utility of DC. Furthermore, we found a higher LFHF ratio after field map correction in the anterior cingulate cortex, posterior cingulate cortex, ventral striatum, and cerebellum. In conclusion, field map DC improved detection of functional connectivity derived from low-frequency rs-fMRI signals. We encourage researchers to include a DC step in the preprocessing pipeline of rs-fMRI analysis.

  5. Systemic effects of low-dose dopamine during administration of cytarabine.

    Science.gov (United States)

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  6. Effects of age on reactive capacity and nigrostriatal dopamine function

    International Nuclear Information System (INIS)

    Gilliam, P.E.

    1984-01-01

    This investigation examined the effects of aging on reactive capacity (reaction time), and striatal dopamine function in the same animals. Twenty, 3 month old, and twenty, 24 month old, male Sprague-Dawley rats were trained in a reactive capacity test to quickly release a lever, in response to an auditory and visual stimulus, in order to avoid footshocks. The young animals were tested at 3, 6, and 9 months of age, while the Old animals were tested at 18, 21, and 24 months of age. Twenty-four hours after the last testing session the animals were sacrificed and their striata dissected for biochemical assays. A [ 3 H]-spiperone receptor binding assay was performed to determine the density and affinity of striatial D-2 receptors. It was hypothesized that the improvement in reactive capacity performance of the Old animals over days was due to their ability to compensate for their decrease in receptor density by an increase in the production and utilization of dopamine. Significant positive correlations were also found between reactive capacity performance and receptor density as well as between reactive capacity and the ratio of DOPAC + HVA/DA

  7. Dopamine D2 receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse

    OpenAIRE

    Oien, Derek B.; Ortiz, Andrea N.; Rittel, Alexander G.; Dobrowsky, Rick T.; Johnson, Michael A.; Levant, Beth; Fowler, Stephen C.; Moskovitz, Jackob

    2010-01-01

    Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D2-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed...

  8. Dopamine does double duty in motivating cognitive effort

    Science.gov (United States)

    Westbrook, Andrew; Braver, Todd S.

    2015-01-01

    Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: 1) modulating the functional parameters of working memory circuits subserving effortful cognition, and 2) mediating value-learning and decision-making about effortful cognitive action. Here we tie together these two lines of research, proposing how dopamine serves “double duty”, translating incentive information into cognitive motivation. PMID:26889810

  9. Methodological principles for optimising functional MRI experiments

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Giesel, F.L.; Strasburger, H.

    2005-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most common methods for localising neuronal activity in the brain. Even though the sensitivity of fMRI is comparatively low, the optimisation of certain experimental parameters allows obtaining reliable results. In this article, approaches for optimising the experimental design, imaging parameters and analytic strategies will be discussed. Clinical neuroscientists and interested physicians will receive practical rules of thumb for improving the efficiency of brain imaging experiments. (orig.) [de

  10. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  11. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  12. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  13. Research progress of BOLD-functional MRI of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Ni Ling; Zhang Longjiang; Lu Guangming

    2013-01-01

    Hepatic encephalopathy (HE), characterized by a wide spectrum of clinical manifestations, ranging from behavior abnormality, conscious disorder and even coma, is a consequence of liver dysfunction in both acute and chronic hepatic diseases. Minimal hepatic encephalopathy (MHE) refers to a subgroup of cirrhotic patients without clinical overt hepatic encephalopathy symptoms hut with abnormalities in neuro -cognitive functions. HE/MHE can have a far-reaching impact on quality of life and prognosis. The exact neuropathology mechanism was still unclear. Recently, functional MRI (fMRI) has been increasingly applied for investigating the neuro-pathophysiological mechanism of HE. This paper will review the fMRI research applied on uncovering the neuropathology mechanism of HE. (authors)

  14. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linghui [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Guo, Ronghui, E-mail: ronghuiguo214@126.com [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Lan, Jianwu [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Jiang, Shouxiang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Lin, Shaojian [Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg (Germany)

    2016-11-15

    Highlights: • Silver nanoparticles were synthesized on bamboo pulp fabric using dopamine as an adhesive and reducing agent under microwave radiation. • Silver coated bamboo pulp fabric modified with dopamine has good UV protection and hydrophobic property. • Silver nanoparticles can be strongly fixed on dopamine modified bamboo pulp fabric. - Abstract: Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  15. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  16. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  17. Functional MRI (fMRI) on lesions in and around the motor and the eloquent cortices

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamura, Shogo; Tamaki, Norihiko; Kitamura, Junji

    1999-01-01

    From the view point of neurosurgeons, to aim the preoperative localized diagnosis on the motor and the eloquent cortices and postoperative preservation of neurological functions, fMRI was carried for patients with lesions in and around the motor and the eloquent cortices. Even in cases of mechanical oppression or brain edema, the motor and the eloquent cortices are localized on cerebral gyri. In perioperative period, identification and preserving the motor and the eloquent cortices are important for keeping brain function. Twenty six preoperative cases and 3 normal healthy subjects were observed. Exercise enhanced fMRI was performed on 3 normal healthy subjects, fMRI with motor stimulation in 24 cases and fMRI with speech stimulation in 4 cases. The signal intensity increased in all cases responsing to both stimulations. But the signal intensity in 8 cases decreased in some regions by motor stimulation and 1 case by speech stimulation. The decrease of signal intensity in this study seems to be a clinically important finding and it will be required to examine the significance in future. (K.H.)

  18. Preparation and characterization of silver nanoparticles immobilized on multi-walled carbon nanotubes by poly(dopamine) functionalization

    International Nuclear Information System (INIS)

    Jiang Yi; Lu Yonglai; Zhang Liqun; Liu Li; Dai Yajie; Wang Wencai

    2012-01-01

    Multi-walled carbon nanotubes (MWNTs) functionalized with poly(dopamine) (PDA) were found to cause the immobilization of silver nanoparticles on the surface. The PDA functional layer not only improved the dispersion of MWNTs in aqueous solution, but also was used as a platform for subsequent silver nanoparticle immobilization. The surface morphology of the functionalized MWNTs was observed by high-resolution transmission electron microscopy. The results showed that PDA layers with controlled thickness on the nanometer scale were formed on MWNT surfaces by in situ spontaneous oxidative polymerization of dopamine, and that high-density of homogeneously dispersed spherical silver nanoparticles with sizes of 3–4 nm were immobilized on their outer surface. The space between spherical silver nanoparticles is less than 10 nm. Both X-ray photoelectron spectroscopy and X-ray diffraction results showed that the Ag nanoparticles on the surface of hybrids exist in the zero valent state.

  19. Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression.

    Science.gov (United States)

    Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun

    2018-04-20

    Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.

  20. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruiyi; Yang, Tingting [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li, Zaijun, E-mail: zaijunli@jiangnan.edu.cn [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Gu, Zhiguo; Wang, Guangli; Liu, Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-02-15

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10{sup −9} M to 4.0 × 10{sup −5} M with the detection limit of 3.6 × 10{sup −10} M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh

  1. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    International Nuclear Information System (INIS)

    Li, Ruiyi; Yang, Tingting; Li, Zaijun; Gu, Zhiguo; Wang, Guangli; Liu, Junkang

    2017-01-01

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10"−"9 M to 4.0 × 10"−"5 M with the detection limit of 3.6 × 10"−"1"0 M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh electron

  2. Combination of functional MRI with SAS and MRA

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masayuki; Takeshita, Shinichirou; Kutsuna, Munenori; Akimitsu, Tomohide; Arita, Kazunori; Kurisu, Kaoru [Hiroshima Univ. (Japan). School of Medicine

    1999-02-01

    For presurgical diagnosis of brain surface, combination of functional MRI (fMRI) with the MR angiography was examined. This method could visualize brain bay, convolution and vein as index of surface. Five normal adults (male, mean age: 28-year-old) and 7 patients with brain tumor on the main locus to surface (male: 4, female: 3, mean age: 52.3-year-old) were studied. fMRI was performed by SPGR method (TR 70, TE 40, flip angle 60, one slice, thickness 10 mm, FOV 20 cm, matrix 128 x 128). The brain surface was visualized by SAS (surface anatomy scanning). SAS was performed by FSE method (TR 6000, TE 200, echo train 16, thickness 20 mm, slice 3, NEX 2). Cortical veins near superior sagittal sinus were visualized by MRA with 2D-TOF method (TR 50, TE 20, flip angle 60, thickness 2 mm, slice 28, NEX 1). These images were superimposed and functional image of peripheral sensorimotor region was evaluated anatomically. In normal adults, high signal was visualized at another side of near sensorimotor region at 8 of 10 sides. All high signal area of fMRI agreed with cortical vein near sensorimotor region that was visualized by MRA. In patients with brain tumor, signal was visualized at another side of sensorimotor region of tumor without 2 cases with palsy. In another side of tumor, signal of fMRI was visualized in 5 of 7 cases. The tumor was visualized as opposite low signal field in SAS. Locational relation between tumor and brain surface and brain function was visualized distinctly by combination of MRA, SAS and MRA. This method could become useful for presurgical diagnosis. (K.H.)

  3. Functional MRI language mapping in pre-surgical epilepsy patients ...

    African Journals Online (AJOL)

    Background. Functional magnetic resonance imaging (fMRI) is commonly applied to study the neural substrates of language in clinical research and for neurosurgical planning. fMRI language mapping is used to assess language lateralisation, or determine hemispheric dominance, and to localise regions of the brain ...

  4. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  6. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    Science.gov (United States)

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  7. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    Science.gov (United States)

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear

  8. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    Science.gov (United States)

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  10. Graph-based network analysis of resting-state functional MRI.

    Science.gov (United States)

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  11. Clinical application of functional MRI for chronic epilepsy

    International Nuclear Information System (INIS)

    Woermann, F.G.; Labudda, K.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is frequently used in the presurgical diagnostic procedure of epilepsy patients, in particular for lateralization of speech and memory and for localization of the primary motor cortex to delineate the epileptogenic lesion from eloquent brain areas. fMRI is one of the non-invasive procedures in the presurgical diagnostic process, together with medical history, seizure semiology, neurological examination, interictal and ictal EEG, structural MRI, video EEG monitoring and neuropsychology. This diagnostic sequence leads either to the decision for or against elective epilepsy surgery or to the decision to proceed with invasive diagnostic techniques (Wada test, intra-operative or extra-operative cortical stimulation). It is difficult to evaluate the contribution of the fMRI test in isolation to the validity of the entire diagnostic sequence. Complications such as memory loss and aphasia in temporal lobe resections or paresis after frontal lobe resections are rare and rarely of disastrous extent. This further complicates the evaluation of the clinical relevance of fMRI as a predictive tool. In this article studies which investigated the concordance between fMRI and other diagnostic gold standards will be presented as well as the association between presurgical fMRI and postsurgical morbidity. (orig.) [de

  12. Imaging of dopamine transporters with 99Tcm-TRODAT-1, rCBF and MRI in animal model of parkinson disease

    International Nuclear Information System (INIS)

    Deng Haoyu; Wang Wei; Li Xinhui; Yu Xiaoping

    2001-01-01

    Objective: To study the relationship between radioactivity distribution and changes of regional cerebral blood flow (rCBF) and tissue structure in the striatum of Parkinson disease (PD) model monkeys with 99 Tc m - TRODAT-1 and to estimate the value of imaging with 99 Tc m -TRODAT-1 in early diagnosis of PD. Methods: 99 Tc m -TRODAT-1 and rCBF imaging were performed on five monkeys before and after being made into a single side PD model. Two of the 5 PD model monkeys also received MRI. Results: In 99 Tc m -TRODAT-1 imaging the radioactivity ratio of striatum to cerebellum (S/C) in the normal monkeys was 1.48 at 180 min after injection of the imaging agent, the ratio of radioactivity in PD model monkeys in their destroyed striatum to that in cerebellum and in normal side striatum were 0.96 and 1.43, respectively. There was no difference in rCBF perfusion between normal and destroyed striatum of the PD model monkeys and between striatum tissue in two hemispheres of the normal monkeys either. The destruction of the tissue structure was not detected in PD model monkeys with MRI. Conclusions: 90 Tc m -TRODAT-1 can specifically bind dopamine transporters (DAT), sensitively display DAT uptake decrease ahead of the structural damage and cerebral blood flow perfusion decrease in PD model monkeys. It could become a useful imaging modality for the early diagnosis of PD

  13. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  14. Methodological Improvements in Combining TMS and Functional MRI

    OpenAIRE

    Moisa, Marius

    2011-01-01

    Since 1997, when Bohning and colleagues demonstrated for the first time the feasibility of interleaving transcranial magnetic stimulation (TMS) with blood oxygenation level dependency functional magnetic resonance imaging (BOLD fMRI), this combination became a very promising techniques to study brain connectivity. However, the implementation of a reliable setup for interleaved TMS/fMRI is still technically challenging. In this thesis, I intended to further explore and develop methodological i...

  15. Functional alterations of V1 cortex in patients with primary open angle glaucoma using functional MRI retinotopic mapping

    International Nuclear Information System (INIS)

    Shi Linping; Cai Ping; Li Changying; Li Xueqin; Xie Bing; Li Sha; Liu Ting; Chen Xing; Shi Yanshu; Wang Jian

    2011-01-01

    Objective: To evaluate the functional changes of visual cortex (V1) in patients with primary open angle glaucoma (POAG) by fMRI retinotopic mapping technology. Methods: Fifteen POAG patients and 15 healthy volunteers underwent stimulations with fMRI retinotopic mapping stimulus and contrast-reversing checkerboard patterns stimulus on a Siemens Trio 3.0 T MRI whole-body scanner for functional data collection. Comparisons of V1 fMRI responses between the glaucomatous eyes and the healthy eyes of the patients were carried out using paired samples t-test, while independent samples t-test was used to compare V1 fMRI responses and activations between the healthy eyes of patients and the age-, gender- and side- matched eyes of normal people. Differences of V1 cortical functions and visual functions were analyzed by linear correlation analysis when the glaucomatous and the healthy eyes were simulated individually., Results: (1) V1 fMRI responses of the individually stimulated glaucomatous eyes [(1.24±0.72)%] were weaker than those of the healthy eyes [(2.18±0.93)%] (t=4.757, P 0.05). (2) Differences of V1 cortical functions were negatively correlated with those of visual functions in the individually stimulated glaucomatous and healthy eyes (r=-0.887, P< 0.01). (3) The activated area indexes of V1 cortexes in the healthy eyes from patients (0.72±0.12) were lower than those in the matched eyes of normal people (0.85±0.09) (t=-3.801, P<0.01) . Conclusion: Cortical function impairment was in accordance with visual function impairment in glaucoma. Located and quantified measurement with fMRI retinotopic mapping was a useful method for clinical follow-up and evaluation of functional alteration of glaucomatous visual cortex, and a potentially useful means of studying trans-synaptic degeneration of visual pathways of in vivo glaucoma. (authors)

  16. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  17. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  18. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  19. Cortical language activation in aphasia: a functional MRI study

    International Nuclear Information System (INIS)

    Xu Xiaojun; Zhang Minming; Shang Desheng; Wang Qidong; Luo Benyan

    2004-01-01

    Objective: To investigate the differences of the underlying neural basis of language processing between normal subjects and aphasics, and to study the feasibility for functional magnetic resonance imaging (fMRI) in examining the cortical language activation in clinical aphasics. Methods: fMRI was used to map language network in 6 normal subjects and 3 patients with aphasia who were in the stage of recovery from acute stroke. The participants performed word generation task during fMRI scanning, which measured the signal changes associated with regional neural activity induced by the task. These signal changes were processed to statistically generate the activation map that represented the language area. Results: In normal subjects, a distributed language network was activated. Activations were present in the frontal, temporal, parietal and occipital regions in normal group. In the patient group, however, no activation was showed in the left inferior frontal gyrus whether or not the patient had lesion in the left frontal lobe. Two patients showed activations in some right hemisphere regions where no activation appeared in normal subjects. Conclusion: The remote effect of focal lesion and functional redistribution or reorganization was found in aphasic patients. fMRI was useful in evaluating the language function in aphasic patients. (authors)

  20. Dopamine and extinction: A convergence of theory with fear and reward circuitry

    Science.gov (United States)

    Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew

    2014-01-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353

  1. Measurement and imaging of brain function using MRI, MEG, and TMS

    International Nuclear Information System (INIS)

    Iramina, Keiji

    2008-01-01

    This paper reviews functional imaging techniques in neuroscience such as magnetic resonance imaging (MRI) functional MRI (fMRI), magnetoencephalogray (MEG), and transcranial magnetic stimulation (TMS). fMRI and MEG allow the neuronal activity of the brain to be measured non-invasively. MEG detects an electrical activity as neuronal activity, while, fMRI detects a hemodynamic response as neuronal activity. TMS is the application of a brief magnetic pulse or a train of pulses to the skull, which results in the induction of a local electric current in the underlying surface of the brain, thereby producing a localized axonal depolarization. As a non-invasive and effective method to make reversible lesions in the human brain, TMS has a long and successful history. All of these techniques have major potential for applications in the neuroscience and medicine. (author)

  2. Functional MRI: Genesis, State of the art and the Sequel

    International Nuclear Information System (INIS)

    Bharath, Rose Dawn

    2014-01-01

    The last 25 years have seen functional magnetic resonance imaging (fMRI) grow from an interesting experimental imaging technique in the hands of some to a primary investigation of choice in the localization and lateralization of brain function prior to surgery. Developments in the field of computational neurosciences have transformed fMRI analysis from classical subtractive type analysis to dynamic casual modeling, and now to graph theory analysis. This has widened the scope of fMRI, and is therefore finding applications in understanding neural correlates of diseases like autism and Alzheimer's disease, prognostication of diseases like traumatic brain injury, and has the potential to direct therapy. It is unfortunately true that this widened ambit has not received the clinical attention it deserves, probably because fMRI is susceptible to artifacts from skull base and blood products and has reduced sensitivity in patients with vascular malformations, or because a change in medical practice usually lags behind the technological and scientific developments that make it possible. This review focuses on the developmental chronology of fMRI image analysis in the last 25 years with highlights on major milestones like developments in the field of paradigms, analysis methods, resting state fMRI, and functional connectivity. To make the statistical images of brain at work more colorful, the article starts with genesis of fMRI and ends with the hope of a promising bright future. Many inputs for this article are obtained from a series of 103 review articles edited by Bandettini et al., compiling personal experiences of pioneers in this field. Interested readers are encouraged to refer to these for a more complete overview.

  3. Comparison of left ventricular function assessment between echocardiography and MRI in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Buddhe, Sujatha; Lewin, Mark; Olson, Aaron; Soriano, Brian D. [University of Washington School of Medicine and Seattle Children' s Hospital, Division of Cardiology, Department of Pediatrics, Seattle, WA (United States); Ferguson, Mark [University of Washington School of Medicine and Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States)

    2016-09-15

    Cardiomyopathy in Duchenne muscular dystrophy (DMD) is associated with death in approximately 40% of patients. Echocardiography is routinely used to assess left ventricular (LV) function; however, it has limitations in these patients. We compared echocardiographic measures of cardiac function assessment to cardiac MRI. We included children and young adults with DMD who had MRI performed between January 2010 and July 2015. We measured echocardiographic and MRI parameters of function assessment, including strain. Presence of late gadolinium enhancement (LGE) was assessed by MRI. Subjects were divided into two groups based on MRI left ventricular ejection fraction (LVEF): group I, LVEF ≥55% and group II, LVEF <55%. We included 41 studies in 33 subjects, with 25 in group I and 16 in group II. Mean age of subjects was 13.6 ± 2.8 years and mean duration between echocardiogram and MRI was 7.6 ± 4.1 months. Only 8 of 16 (50%) patients in group II had diminished function on echocardiogram. Echocardiographic images were suboptimal in 16 subjects (39%). Overall, echocardiographic parameters had weak correlation with MRI-derived ejection fraction percentage. MRI-derived myocardial strain assessment has better correlation with MRI ejection fraction as compared to echocardiography-derived strain parameters. Echocardiography-based ventricular functional assessment has weak correlation with MRI parameters in children and young adults with Duchenne muscular dystrophy. While this correlation improves in the subset of subjects with adequate echocardiographic image quality, it remains modest and potentially suboptimal for clinical management. Accordingly, we conclude that MRI should be performed routinely and early in children with DMD, not only for LGE imaging but also for functional assessment. (orig.)

  4. Comparison of left ventricular function assessment between echocardiography and MRI in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Buddhe, Sujatha; Lewin, Mark; Olson, Aaron; Soriano, Brian D.; Ferguson, Mark

    2016-01-01

    Cardiomyopathy in Duchenne muscular dystrophy (DMD) is associated with death in approximately 40% of patients. Echocardiography is routinely used to assess left ventricular (LV) function; however, it has limitations in these patients. We compared echocardiographic measures of cardiac function assessment to cardiac MRI. We included children and young adults with DMD who had MRI performed between January 2010 and July 2015. We measured echocardiographic and MRI parameters of function assessment, including strain. Presence of late gadolinium enhancement (LGE) was assessed by MRI. Subjects were divided into two groups based on MRI left ventricular ejection fraction (LVEF): group I, LVEF ≥55% and group II, LVEF <55%. We included 41 studies in 33 subjects, with 25 in group I and 16 in group II. Mean age of subjects was 13.6 ± 2.8 years and mean duration between echocardiogram and MRI was 7.6 ± 4.1 months. Only 8 of 16 (50%) patients in group II had diminished function on echocardiogram. Echocardiographic images were suboptimal in 16 subjects (39%). Overall, echocardiographic parameters had weak correlation with MRI-derived ejection fraction percentage. MRI-derived myocardial strain assessment has better correlation with MRI ejection fraction as compared to echocardiography-derived strain parameters. Echocardiography-based ventricular functional assessment has weak correlation with MRI parameters in children and young adults with Duchenne muscular dystrophy. While this correlation improves in the subset of subjects with adequate echocardiographic image quality, it remains modest and potentially suboptimal for clinical management. Accordingly, we conclude that MRI should be performed routinely and early in children with DMD, not only for LGE imaging but also for functional assessment. (orig.)

  5. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  6. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  7. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    Science.gov (United States)

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  8. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  9. Effects of Smoking Cessation on Presynaptic Dopamine Function of Addicted Male Smokers

    DEFF Research Database (Denmark)

    Rademacher, Lena; Prinz, Susanne; Winz, Oliver

    2016-01-01

    BACKGROUND: There is evidence of abnormal cerebral dopamine transmission in nicotine-dependent smokers, but it is unclear whether dopaminergic abnormalities are due to acute nicotine abuse or whether they persist with abstinence. We addressed this question by conducting longitudinal positron...... then underwent cessation treatment, and successful abstainers were re-examined by FDOPA-PET after 3 months of abstinence (n = 15). Uptake of FDOPA was analyzed using a steady-state model yielding estimates of the dopamine synthesis capacity (K); the turnover of tracer dopamine formed in living brain (kloss......); and the tracer distribution volume (Vd), which is an index of dopamine storage capacity. RESULTS: Compared with nonsmokers, K was 15% to 20% lower in the caudate nuclei of consuming smokers. Intraindividual comparisons of consumption and long-term abstinence revealed significant increases in K in the right...

  10. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  11. Parameterized hemodynamic response function data of healthy individuals obtained from resting-state functional MRI in a 7T MRI scanner

    Directory of Open Access Journals (Sweden)

    D. Rangaprakash

    2018-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI, being an indirect measure of brain activity, is mathematically defined as a convolution of the unmeasured latent neural signal and the hemodynamic response function (HRF. The HRF is known to vary across the brain and across individuals, and it is modulated by neural as well as non-neural factors. Three parameters characterize the shape of the HRF, which is obtained by performing deconvolution on resting-state fMRI data: response height, time-to-peak and full-width at half-max. The data provided here, obtained from 47 healthy adults, contains these three HRF parameters at every voxel in the brain, as well as HRF parameters from the default-mode network (DMN. In addition, we have provided functional connectivity (FC data from the same DMN regions, obtained for two cases: data with deconvolution (HRF variability minimized and data with no deconvolution (HRF variability corrupted. This would enable researchers to compare regional changes in HRF with corresponding FC differences, to assess the impact of HRF variability on FC. Importantly, the data was obtained in a 7T MRI scanner. While most fMRI studies are conducted at lower field strengths, like 3T, ours is the first study to report HRF data obtained at 7T. FMRI data at ultra-high fields contains larger contributions from small vessels, consequently HRF variability is lower for small vessels at higher field strengths. This implies that findings made from this data would be more conservative than from data acquired at lower fields, such as 3T. Results obtained with this data and further interpretations are available in our recent research study (Rangaprakash et al., in press [1]. This is a valuable dataset for studying HRF variability in conjunction with FC, and for developing the HRF profile in healthy individuals, which would have direct implications for fMRI data analysis, especially resting-state connectivity modeling. This is the first public HRF

  12. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  13. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  14. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    Science.gov (United States)

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  15. Evaluation of pulmonary arterial morphology and function in cyanotic congenital heart disease by MRI and cine MRI

    International Nuclear Information System (INIS)

    Hashimoto, Ikuo; Tsubata, Shinichi; Miyazaki, Ayumi; Ichida, Fukiko; Okada, Toshio; Murakami, Arata; Futatsuya, Ryuusuke; Nakajima, Kenshuu; Nakajima, Akio

    1993-01-01

    Pulmonary arterial anatomy was evaluated by magnetic resonance imaging (MRI), angiography and two-dimensional echocardiography in 20 patients with cyanotic heart disease associated with decreased pulmonary blood flow. Excellent correlation between MRI and angiographic estimates of pulmonary artery diameter was obtained (main pulmonary artery, r=0.87; right pulmonary artery, r=0.96; left pulmonary artery, r=0.95). However, echocardiography could not describe peripheral pulmonary arteries obviously, especially left pulmonary artery. In the assessment of peripheral pulmonary stenosis or obstruction, cine MRI was superior to echocardiography. We conclude that MRI and cine MRI will play an important role in the serial evaluation of pulmonary arterial morphology and function in patients with cyanotic congenital heart disease before and after surgical repair. (author)

  16. Evaluation of pulmonary arterial morphology and function in cyanotic congenital heart disease by MRI and cine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ikuo; Tsubata, Shinichi; Miyazaki, Ayumi; Ichida, Fukiko; Okada, Toshio; Murakami, Arata; Futatsuya, Ryuusuke; Nakajima, Kenshuu; Nakajima, Akio [Toyama Medical and Pharmaceutical Univ. (Japan)

    1993-01-01

    Pulmonary arterial anatomy was evaluated by magnetic resonance imaging (MRI), angiography and two-dimensional echocardiography in 20 patients with cyanotic heart disease associated with decreased pulmonary blood flow. Excellent correlation between MRI and angiographic estimates of pulmonary artery diameter was obtained (main pulmonary artery, r=0.87; right pulmonary artery, r=0.96; left pulmonary artery, r=0.95). However, echocardiography could not describe peripheral pulmonary arteries obviously, especially left pulmonary artery. In the assessment of peripheral pulmonary stenosis or obstruction, cine MRI was superior to echocardiography. We conclude that MRI and cine MRI will play an important role in the serial evaluation of pulmonary arterial morphology and function in patients with cyanotic congenital heart disease before and after surgical repair. (author).

  17. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses.

    Science.gov (United States)

    Gramer, Gwendolyn; Förl, Birgit; Springer, Christina; Weimer, Petra; Haege, Gisela; Mackensen, Friederike; Müller, Edith; Völcker, Hans Eberhard; Hoffmann, Georg Friedrich; Lindner, Martin; Krastel, Hermann; Burgard, Peter

    2013-01-01

    In phenylketonuria presymptomatic treatment following newborn screening prevents severe mental and physical impairment. The reasons for subtle impairments of cerebral functions despite early treatment remain unclear. We assessed a broad spectrum of visual functions in early-treated patients with phenylketonuria and evaluated two hypotheses-the dopamine and the long-chain polyunsaturated fatty acids (LCPUFAs) depletion hypotheses. Contrast sensitivity, colour vision, electroretinography, frequency doubling technology campimetry (FDT), and their relation with blood phenylalanine and docosahexaenoic acid levels were assessed in 36 patients with phenylketonuria and 18 age-matched healthy controls. Contrast sensitivity was significantly lower and total error scores in colour vision significantly higher in patients than controls. Electroretinography results differed significantly between patients and controls. We found a trend for the effect of phenylalanine-levels on contrast sensitivity and a significant effect on colour vision/FDT results. Docosahexaenoic acid levels in erythrocytes were not associated with visual functions. This is the first evaluation of visual functions in phenylketonuria using a comprehensive ophthalmological test battery. We found no evidence supporting the long-chain polyunsaturated fatty acids depletion hypothesis. However, the effect of phenylalanine-levels on visual functions suggests that imbalance between phenylalanine and tyrosine may affect retinal dopamine levels in phenylketonuria. This is supported by the similar patterns of visual functions in patients with phenylketonuria observed in our study and patients with Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels.

    Science.gov (United States)

    Voon, Valerie; Rizos, Alexandra; Chakravartty, Riddhika; Mulholland, Nicola; Robinson, Stephanie; Howell, Nicholas A; Harrison, Neil; Vivian, Gill; Ray Chaudhuri, K

    2014-02-01

    Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [(11)C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [(123)I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. The [(123)I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications.

  19. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  20. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  1. Methodology for functional MRI of simulated driving.

    Science.gov (United States)

    Kan, Karen; Schweizer, Tom A; Tam, Fred; Graham, Simon J

    2013-01-01

    The developed world faces major socioeconomic and medical challenges associated with motor vehicle accidents caused by risky driving. Functional magnetic resonance imaging (fMRI) of individuals using virtual reality driving simulators may provide an important research tool to assess driving safety, based on brain activity and behavior. A fMRI-compatible driving simulator was developed and evaluated in the context of straight driving, turning, and stopping in 16 young healthy adults. Robust maps of brain activity were obtained, including activation of the primary motor cortex, cerebellum, visual cortex, and parietal lobe, with limited head motion (driving is a feasible undertaking.

  2. Cognitive function and MRI findings in very low birth weight infants

    International Nuclear Information System (INIS)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime; Inagaki, Yuko.

    1996-01-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T 2 -weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  3. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    Science.gov (United States)

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  4. Elaboration de plateformes biomimétiques à base de dopamine pour la fonctionnalisation du titane Elaboration of biomimetic dopamine platforms for the functionalization of titanium surfaces

    Directory of Open Access Journals (Sweden)

    Laure William

    2013-11-01

    Full Text Available L'étude concerne la fonctionnalisation de surfaces à base de titane à partir d'une ancre chimique biomimétique modifiable chimiquement, la dopamine, dans le but de concevoir des biomatériaux utilisables en tant que dispositifs implantables. Deux approches différentes de greffage par la stratégie «graft to» sont proposées. La première consiste en la synthèse et l'immobilisation sur les surfaces de titane de polymères parfaitement définis et stimulables fonctionnalisés par un motif catéchol en extrémité de chaîne. La seconde propose de modifier préalablement la surface par une ancre chimique spécifique intégrant un motif catéchol d'une part et un motif furane ou maléimide d'autre part permettant d'engager sur demande une réaction réversible de cycloaddition de type Diels Alder (DA avec une large gamme de molécules ou polymères fonctionnalisés par l'entité complémentaire. The aim of this study concerns the functionalization of titanium surfaces by using versatile dopamine based on biomimetic anchors. This general concept was exploited to design new biomaterials which might be used as medical implants. In this context, two different grafting strategies based onto the “grafting to” approach were developed. The first one consisted on the synthesis and the immobilization of well-defined catechol end-functionalized polymers onto titanium surfaces. The second strategy was based on the functionalization of titanium surfaces by using dopamine derivates containing, on the one hand, a catechol unit for surface attachment and, on the other hand, a furan or a maleimide moiety able to react, on demand, through reversible Diels Alder (DA reaction.

  5. A novel passive paradigm for functional magnetic resonance imaging (fMRI) to localize brain functions

    International Nuclear Information System (INIS)

    Gasser, T.; Sandalcioglu, I.E.; Skwarek, V.; Gizewski, E.; Stolke, D.; Hans, V.

    2003-01-01

    The design of a shielded stimulation-device for electrical stimulation of peripheral nerves in the MRI-environment as passive fMRI-paradigm is content of this study. Especially the technical aspects and selection criteria of the stimulation-parameters are discussed. The clinical value for neurosurgical patients is outlined by supplying data from clinical studies, evaluating this novel paradigm. Thus neurosurgeons are supplied with superior information about functional anatomy, therefore being able to preserve functionally relevant brain-structures. (orig.) [de

  6. Pharmaco fMRI: Determining the functional anatomy of the effects of medication.

    Science.gov (United States)

    Wandschneider, Britta; Koepp, Matthias J

    2016-01-01

    Functional MRI studies have helped to elucidate underlying mechanisms in complex neurological and neuropsychiatric disorders. Disease processes often involve complex large-scale network interactions, extending beyond the presumed main disease focus. Given both the complexity of the clinical phenotype and the underlying dysfunctional brain circuits, so called pharmaco-fMRI (ph-MRI) studies probe pharmacological effects on functional neuro-anatomy, and can help to determine early treatment response, mechanisms of drug efficacy and side effects, and potentially advance CNS drug development. In this review, we discuss recent ph-MRI research in three major neuropsychiatric and neurological disorders and associated network alterations, namely selective serotonin and noradrenergic reuptake inhibitors in affective disorders and emotional processing circuits; antiepileptic drugs in epilepsy and cognitive networks; and stimulants in attention-deficit/hyperactivity disorder and networks of attention control. We conclude that ph-MRI studies show consistent and reproducible changes on disease relevant networks, and prove sensitive to early pharmacological effects on functional anatomy associated with disease. Further CNS drug research and development would benefit greatly from improved disease phenotyping, or biomarkers, using advanced imaging techniques.

  7. Detection of focal epileptic activity using combined simultaneous electroencephalogram-functional MRI

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Lu Guangming; Tian Lei; Sun Kanjian; Tan Qifu; Zhu Jianguo; Nie Cong; Hao Shaowei; Jiang Li; Liu Yijun

    2007-01-01

    Objective: To observe the brain activation of interictal epiletiform discharges (IEDs) and to localize the epileptogenic foci of epilepsy. Methods: The electroencephalogram (EEG) and functional MRI data of 12 focal epileptic patients were acquired using a combination of EEG and functional MRI simultaneously. The IEDs onset time detected with EEG were set as the time parameters in an event- related paradigm of functional MRI analysis. The spatial and temporal characters of IEDs activation were analyzed in detail. In order to confirm the consistency of this method, all patients were scanned repeatedly and the results were correlated with clinical evaluation. Results: Of the 12 patients, valid data from EEG- fMRI were obtained from 10 patients in a total of 18 sessions. Compared with the structural foci, the epileptic foci localization results of eleven sessions were good, five sessions were fairly good, and two sessions were poor. The results obtained from six patients in two separate sessions were concordant, respectively. Moreover, thalamic activation was detected in ten sessions, cerebellar activation was detected in all sessions, and the deactivation was found in the default mode loci in nine sessions. Conclusion: The method of performing EEG and fMRI simultaneously can potentially be a useful tool in epilepsy research. (authors)

  8. Donor Preconditioning After the Onset of Brain Death With Dopamine Derivate n-Octanoyl Dopamine Improves Early Posttransplant Graft Function in the Rat.

    Science.gov (United States)

    Li, S; Korkmaz-Icöz, S; Radovits, T; Ruppert, M; Spindler, R; Loganathan, S; Hegedűs, P; Brlecic, P; Theisinger, B; Theisinger, S; Höger, S; Brune, M; Lasitschka, F; Karck, M; Yard, B; Szabó, G

    2017-07-01

    Heart transplantation is the therapy of choice for end-stage heart failure. However, hemodynamic instability, which has been demonstrated in brain-dead donors (BDD), could also affect the posttransplant graft function. We tested the hypothesis that treatment of the BDD with the dopamine derivate n-octanoyl-dopamine (NOD) improves donor cardiac and graft function after transplantation. Donor rats were given a continuous intravenous infusion of either NOD (0.882 mg/kg/h, BDD+NOD, n = 6) or a physiological saline vehicle (BDD, n = 9) for 5 h after the induction of brain death by inflation of a subdural balloon catheter. Controls were sham-operated (n = 9). In BDD, decreased left-ventricular contractility (ejection fraction; maximum rate of rise of left-ventricular pressure; preload recruitable stroke work), relaxation (maximum rate of fall of left-ventricular pressure; Tau), and increased end-diastolic stiffness were significantly improved after the NOD treatment. Following the transplantation, the NOD-treatment of BDD improved impaired systolic function and ventricular relaxation. Additionally, after transplantation increased interleukin-6, tumor necrosis factor TNF-α, NF-kappaB-p65, and nuclear factor (NF)-kappaB-p105 gene expression, and increased caspase-3, TNF-α and NF-kappaB protein expression could be significantly downregulated by the NOD treatment compared to BDD. BDD postconditioning with NOD through downregulation of the pro-apoptotic factor caspase-3, pro-inflammatory cytokines, and NF-kappaB may protect the heart against the myocardial injuries associated with brain death and ischemia/reperfusion. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Cognitive function and MRI findings in very low birth weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime [Kobe Univ. (Japan). School of Medicine; Inagaki, Yuko

    1996-07-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T{sub 2}-weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  10. Functional MRI in pre-surgical planning: Case study and cautionary notes

    Directory of Open Access Journals (Sweden)

    Bruce S Spottiswoode

    2012-09-01

    Full Text Available Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping to identify potentially eloquent areas prior to neurosurgery. Objectives. We explore the potential use of this emerging technique by presenting a neurosurgical case study, as performed at the Cape Universities Brain Imaging Centre (CUBIC, Tygerberg, Cape Town. We conclude with a brief summary of the potential pitfalls of this technique, as well as cautionary guidelines based on our experience. Methods and results. A 22-year-old male patient from Tygerberg Hospital underwent the successful resection of an anaplastic astrocytoma after fMRI presurgical planning at our facility. The subject was able to leave the ward unassisted. Conclusion. If consideration is given to the many limitations of this emerging technique, fMRI can be useful in aiding the neurosurgeon in pre-operative planning of his surgical approach.

  11. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  12. Functional MRI studies of the neural mechanisms of human brain attentional networks

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Chen Qi; Wang Yan; Peng Xiaozhe; Zhou Xiaolin

    2005-01-01

    Objective: To identify the neural mechanisms of the anterior attention network (AAN) and posterior attention network (PAN) , investigate the possible interaction between them with event-related functional MRI(ER-fMRI). Methods: Eight right-handed healthy volunteers participated in the experiment designed with inhibition of return in visual orienting and Stroop color-word interference effect. The fMRI data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by AFNI to generate the activation map. Results: The data sets from 6 of 8 subjects were used in the study. The functional localizations of the Stroop and IOR, which manifest the function of the AAN and PAN respectively, were consistent with previous imaging researches. On cued locations, left inferior parietal lobule (IPL), area MT/V5, right dorsolateral prefrontal cortex (DLPFC) and left anterior cingulated cortex (ACC) were significantly activated. On uncued locations, right superior parietal lobule (SPL) and bilateral area MT/V5 were significantly activated. Conclusion: The AAN exerts control over the PAN, while its function can be in turn modulated by the PAN. There are interaction between the AAN and PAN. In addition, it is also proved that ER-fMRI is a feasible method to revise preexisting cognitive model and theory. (authors)

  13. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  14. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  15. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  16. Donor dopamine treatment in brain dead rats is associated with an improvement in renal function early after transplantation and a reduction in renal inflammation

    NARCIS (Netherlands)

    Hoeger, Simone; Reisenbuechler, Anke; Gottmann, Uwe; Doyon, Fabian; Braun, Claude; Kaya, Ziya; Seelen, Marc A.; van Son, Willem J.; Waldherr, Ruediger; Schnuelle, Peter; Yard, Benito A.

    Brain death (BD) is associated with tissue inflammation. As dopamine treatment of BD donor rats reduces renal monocyte infiltration, we tested if this treatment affects renal function and inflammation in recipients. BD was induced in F344 rats and was maintained for 6 h in all experiments. Dopamine

  17. Implantable microencapsulated dopamine (DA): prolonged functional release of DA in denervated striatal tissue.

    Science.gov (United States)

    McRae, A; Hjorth, S; Mason, D; Dillon, L; Tice, T

    1990-01-01

    Biodegradable controlled-release microcapsule systems made with the biocompatible biodegradable polyester excipient poly [DL-lactide-co-gly-colide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microcapsules encapsulated within two different polymer excipients into denervated striatal tissue assures a prolonged release of the transmitter in vivo. This technology has a considerable potential for basic and possibly clinical research.

  18. Functional MRI in schizophrenia. Diagnostics and therapy monitoring of cognitive deficits of schizophrenic patients by functional MRI

    International Nuclear Information System (INIS)

    Furtner, J.; Prayer, D.; Sachs, G.

    2010-01-01

    Cognitive impairments are core psychopathological components of the symptomatic of schizophrenic patients. These dysfunctions are generally related to attention, executive functions and memory. This report provides information on the importance of using functional magnetic resonance imaging (fMRI) for the diagnostics and therapy monitoring of the different subtypes of cognitive dysfunctions. Furthermore, it describes the typical differences in the activation of individual brain regions between schizophrenic patients and healthy control persons. This information should be helpful in identifying the deficit profile of each patient and create an individual therapy plan. (orig.) [de

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  20. Pharmaco fMRI: Determining the functional anatomy of the effects of medication

    Directory of Open Access Journals (Sweden)

    Britta Wandschneider

    2016-01-01

    Full Text Available Functional MRI studies have helped to elucidate underlying mechanisms in complex neurological and neuropsychiatric disorders. Disease processes often involve complex large-scale network interactions, extending beyond the presumed main disease focus. Given both the complexity of the clinical phenotype and the underlying dysfunctional brain circuits, so called pharmaco-fMRI (ph-MRI studies probe pharmacological effects on functional neuro-anatomy, and can help to determine early treatment response, mechanisms of drug efficacy and side effects, and potentially advance CNS drug development. In this review, we discuss recent ph-MRI research in three major neuropsychiatric and neurological disorders and associated network alterations, namely selective serotonin and noradrenergic reuptake inhibitors in affective disorders and emotional processing circuits; antiepileptic drugs in epilepsy and cognitive networks; and stimulants in attention-deficit/hyperactivity disorder and networks of attention control. We conclude that ph-MRI studies show consistent and reproducible changes on disease relevant networks, and prove sensitive to early pharmacological effects on functional anatomy associated with disease. Further CNS drug research and development would benefit greatly from improved disease phenotyping, or biomarkers, using advanced imaging techniques.

  1. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.

    Science.gov (United States)

    Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K

    2014-02-15

    Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Exploring structure and function of sensory cortex with 7T MRI.

    Science.gov (United States)

    Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T

    2018-01-01

    In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development and function of the midbrain dopamine system: what we know and what we need to.

    Science.gov (United States)

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  5. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    Science.gov (United States)

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  7. Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function

    International Nuclear Information System (INIS)

    Jacques, Audrey E.T.; Sahdev, Anju; Sandrasagara, Madrika; Rockall, Andrea G.; Reznek, Rodney H.; Goldstein, Rick; Chew, Shern; Berney, Daniel

    2008-01-01

    The purpose of this study was to describe the range of appearances of adrenal phaeochromocytomas on T2-weighted MRI, correlate appearances with histopathology, and quantify the incidence of the previously described hyperintense appearance. The appearance and MR characteristics of 44 phaeochromocytomas were reviewed retrospectively. T2-weighted appearances were grouped: (1) 'classical', homogeneous, high signal intensity, isointense to CSF; (2) homogeneous, isointense or minimally hyperintense to spleen, hypointense to CSF; (3) heterogeneous, marbled appearance; (4) heterogeneous, multiple high signal intensity pockets. All 44 adrenal phaeochromocytomas were well circumscribed, 1.2-15 cm in maximum diameter, with no visual or quantitative signal loss on chemical shift imaging. On T2-weighted MRI 5/44 (11%) had group 1 appearance; 15/44 (34%) group 2, 7/44 (16%) group 3; and 17/44 (39%) group 4. Homogeneous group 1 and 2 lesions were smaller (mean 4.5 cm) than heterogeneous group 3 and 4 lesions (mean 6.3 cm). Increasing MRI heterogeneity correlated pathologically with increasing amounts of haemorrhage, necrosis and fibrosis. No MRI features were predictive of malignancy. Non-functioning phaeochromocytomas were larger than functioning lesions. No size difference was seen between syndrome and sporadic lesions. In this large series we report a wide range of appearances of adrenal phaeochromocytomas on T2-weighted MRI. The previously described classical hyperintense phaeochromocytoma is relatively uncommon. (orig.)

  8. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease

    DEFF Research Database (Denmark)

    Hallett, Penelope J; Deleidi, Michela; Astradsson, Arnar

    2015-01-01

    that unilateral engraftment of CM-iPSCs could provide a gradual onset of functional motor improvement contralateral to the side of dopamine neuron transplantation, and increased motor activity, without a need for immunosuppression. Postmortem analyses demonstrated robust survival of midbrain-like dopaminergic......Autologous transplantation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons is a potential clinical approach for treatment of neurological disease. Preclinical demonstration of long-term efficacy, feasibility, and safety of iPSC-derived dopamine neurons in non-human primate...... models will be an important step in clinical development of cell therapy. Here, we analyzed cynomolgus monkey (CM) iPSC-derived midbrain dopamine neurons for up to 2 years following autologous transplantation in a Parkinson's disease (PD) model. In one animal, with the most successful protocol, we found...

  9. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  10. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  11. Incidental MRI Findings in Patients with Impaired Cognitive Function

    International Nuclear Information System (INIS)

    Hwang, Yoon Joon

    2013-01-01

    This study aims to evaluate the incidental findings on brain MRI of patients with cognitive function impairments. We analyzed magnetic resonance (MR) findings of 236 patients with decreased cognitive function. MR protocols include conventional T2 weighted axial images, fluid attenuated inversion recovery axial images, T1 weighted coronal 3-dimensional magnetization-prepared rapid acquisition of gradient echo and diffusion tensor images. We retrospectively evaluated the signal changes that suggest acute/subacute infarction and space occupying lesions which show mass effect. Incidental MR findings were seen in 16 patients. Nine patients (3.8%) showed increased signal intensity on trace map of diffusion tensor images suggesting acute/subacute infarctions. Space occupying lesions were detected in 7 patients, and 3 lesions (1.27%) had mass effect and edema and were considered clinically significant lesions that diminish cognitive functions. Several incidental MR findings were detected in patients with decreased cognitive function, and the incidence of aucte/subacute infarctions were higher. Proper evaluations of MRI in patients with impaired cognitive functions will be helpful in early detection and management of ischemic lesions and space occupying lesions.

  12. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  14. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  15. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  16. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs

    DEFF Research Database (Denmark)

    Lillethorup, Thea Pinholt; Glud, Andreas Nørgaard; Alstrup, Aage Kristian Olsen

    2018-01-01

    weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs....... In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies...

  17. Quantitation of global and regional left ventricular function by MRI

    NARCIS (Netherlands)

    van der Geest, RJ; Reiber, JHC; Reiber, JHC; VanDerWall, EE

    1998-01-01

    Magnetic resonance imaging (MRI) provides several imaging strategies for assessing left ventricular function. As a three-dimensional imaging technique, all measurements can be performed without relying on geometrical assumptions. Global and regional function parameters can be derived from

  18. An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, J.-D.; Huang, C.-H.; Weng, Y.-H.; Lin, K.-J.; Chen, C.-T.

    2007-01-01

    Single-photon emission computed tomography (SPECT) of dopamine transporters with 99m Tc-TRODAT-1 has recently been proposed to offer valuable information in assessing the functionality of dopaminergic systems. Magnetic resonance imaging (MRI) and SPECT imaging are important in the noninvasive examination of dopamine concentration in vivo. Therefore, this investigation presents an automated MRI/SPECT image registration algorithm based on a new similarity metric. This similarity metric combines anatomical features that are characterized by specific binding, the mean count per voxel in putamens and caudate nuclei, and the distribution of image intensity that is characterized by normalized mutual information (NMI). A preprocess, a novel two-cluster SPECT normalization algorithm, is also presented for MRI/SPECT registration. Clinical MRI/SPECT data from 18 healthy subjects and 13 Parkinson's disease (PD) patients are involved to validate the performance of the proposed algorithms. An appropriate color map, such as 'rainbow,' for image display enables the two-cluster SPECT normalization algorithm to provide clinically meaningful visual contrast. The proposed registration scheme reduces target registration error from >7 mm for conventional registration algorithm based on NMI to approximately 4 mm. The error in the specific/nonspecific 99m Tc-TRODAT-1 binding ratio, which is employed as a quantitative measure of TRODAT receptor binding, is also reduced from 0.45±0.22 to 0.08±0.06 among healthy subjects and from 0.28±0.18 to 0.12±0.09 among PD patients

  19. Large-scale Granger causality analysis on resting-state functional MRI

    Science.gov (United States)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  20. Acquisition and analysis strategies in functional MRI at high fields

    International Nuclear Information System (INIS)

    Windischberger, C.

    2001-08-01

    Functional magnetic resonance imaging represents a non-invasive technique to examine neuronal activity in the brain. It applies radio waves to excite nuclear spins, using the emitted signal during relaxation for image generation. Signal modulations from local blood flow and oxygenation level changes caused by neuronal activity are the basis for calculating functional brain maps with high spatial resolution. The present work discusses concepts for improving the spatial and temporal resolution, as well as sophisticated analysis approaches. Besides an exhaustive description of image reconstruction algorithms, computational simulations on echo-shifting in echo-planar imaging are presented and effects on spatial resolution are quantified. The results demonstrate that echo-shifting causes only minimal resolution losses for high signal-to-noise data, but leads to severe resolution degradation (up to 30 %) in images with low signal-to-noise ratios. After an overview of the mechanisms that cause fMRI signal changes subsequent to neuronal activity, explorative analysis algorithms like Fuzzy Cluster Analysis, as well as parametric approaches are described and discussed. In the context of fMRI artifacts, effects of respiratory motion are examined. For the first time, well-defined breathing patterns are used to quantify the influences on fMRI signal intensity. Also, the variability of fMRI activation in a mental rotation paradigm are investigated, using single-trial analysis. Such, intra-subject activation consistency was determined successfully. Finally, in a second study on mental rotation explorative data analysis was applied to retrieve neuro-functional hypotheses. (author)

  1. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in right heart failure after pulmonary regurgitation.

    Science.gov (United States)

    Hyldebrandt, Janus Adler; Agger, Peter; Sivén, Eleonora; Wemmelund, Kristian Borup; Heiberg, Johan; Frederiksen, Christian Alcaraz; Ravn, Hanne Berg

    2015-09-01

    Right ventricular failure (RVF) secondary to pulmonary regurgitation (PR) impairs right ventricular (RV) function and interrupts the interventricular relationship. There are few recommendations for the medical management of severe RVF after prolonged PR. PR was induced in 16 Danish landrace pigs by plication of the pulmonary valve leaflets. Twenty-three pigs served as controls. At reexamination the effect of milrinone, epinephrine, and dopamine was evaluated using biventricular conductance and pulmonary catheters. Seventy-nine days after PR was induced, RV end-diastolic volume index (EDVI) had increased by 33% (P = 0.006) and there was a severe decrease in the load-independent measurement of contractility (PRSW) (-58%; P = 0.003). Lower cardiac index (CI) (-28%; P Milrinone improved RV-PRSW and CI and maintained systemic pressure while reducing central venous pressure (CVP). Epinephrine and dopamine further improved biventricular PRSW and CI equally in a dose-dependent manner. Systemic and pulmonary pressures were higher in the dopamine-treated animals compared with epinephrine-treated animals. None of the treatments improved stroke volume index (SVI) despite increases in contractility. Strong correlation was detected between SVI and LV-EDVI, but not SVI and biventricular contractility. In RVF due to PR, milrinone significantly improved CI, SvO2, and CVP and increased contractility in the RV. Epinephrine and dopamine had equal inotropic effect, but a greater vasopressor effect was observed for dopamine. SV was unchanged due to inability of both treatments to increase LV-EDVI. Copyright © 2015 the American Physiological Society.

  2. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    Science.gov (United States)

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972

  3. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  4. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors

    Science.gov (United States)

    Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine

    2013-03-01

    The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.

  5. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.

    Science.gov (United States)

    Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek

    2010-01-01

    Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.

  6. Functional MRI in Patients with Intracranial Lesions near Language Areas.

    Science.gov (United States)

    Hakyemez, B; Erdogan, C; Yildirim, N; Bora, I; Bekar, A; Parlak, M

    2006-06-30

    We aimed to depict Broca's area and Wernicke's area by word generation and sentence formation paradigms in patients with various intracranial lesions adjacent to language areas using functional MRI technique and to evaluate the ability of functional MRI to lateralize the hemispheric dominance for language. Twenty-three right-handed patients were included in this study. Lesions were classified as low-grade glioma (n=8), high-grade glioma (n=9), metastasis (n=1), meningioma (n=1), arteriovenous malformation (n=2) and mesial temporal sclerosis (n=2). We performed blood-oxygenated-level-dependant functional MRI using a 1.5-T unit. Word generation and sentence formation tasks were used to activate language areas. Language areas were defined as Brodmann 44, 45 (Broca's area) and Brodmann 22 area (Wernicke's area). Laterality index was used to show the dominant hemisphere. Two poorly cooperative patients showed no activation and were excluded from the study. Broca's area was localized in 21 patients (100 %). Wernicke's area, on the other hand, could only be localized in eight of the 21 patients (38 %).The left hemisphere was dominant in 86% of patients while atypical language lateralization (right or bilateral) was demonstrated in 14% of the patients. Bilateral activation areas were shown in 10% of those patients while right cerebral hemisphere was dominant in 4% of the patients. Word generation and sentence formation tasks are especially helpful in localizing Broca's area. Wernicke's area could also be demonstrated in some of the cases. Functional MRI can be used as an important and useful means of demonstrating language areas in patients with lesions adjacent to those areas and depicting the hemispheric dominance.

  7. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  8. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  9. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  10. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  11. Development and function of the midbrain dopamine system: what we know and what we need to

    OpenAIRE

    Bissonette, G. B.; Roesch, M. R.

    2015-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson’s disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, in...

  12. Extrastriatal dopamine D-2/3 receptors and cortical grey matter volumes in antipsychotic-naive schizophrenia patients before and after initial antipsychotic treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Pinborg, Lars H.; Raghava, Jayachandra M.

    2017-01-01

    OBJECTIVES: Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 recept...... binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS: Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [(123)I]epidepride single-photon emission computerised tomography (SPECT......), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS: Neither extrastriatal D2/3 receptor BPND at baseline, nor...

  13. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  14. Putting Desire on a Budget: Dopamine and Energy Expenditure, Reconciling Reward and Resources

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2012-07-01

    Full Text Available Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the ‘reward deficiency hypothesis’ as a

  15. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila

    Directory of Open Access Journals (Sweden)

    Tingting Xie

    2018-04-01

    Full Text Available Summary: The neuromodulator dopamine (DA plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay. : The rapid analysis of how dopaminergic circuits regulate behavior is limited by the genetic tools available to target and manipulate small numbers of these neurons. Xie et al. present genetic tools in Drosophila that allow rational targeting of sparse dopaminergic neuronal subsets and selective knockdown of dopamine signaling. Keywords: dopamine, genetics, behavior, neural circuits, neuromodulation, Drosophila

  16. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  17. Smoking-induced dopamine release studied with [11C]raclopride PET

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Cho, Sang Soo; Lee, Do Hoon

    2005-01-01

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with and regulates the activation of the dopaminergic neuron. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [ 11 C]raclopride. Four male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.3±2.6 years) were enrolled in this study. Dopamine D2 receptor radioligand, [ 11 C]raclopride was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3x20s, 2x60s, 2x120s, 1x180s and 22x300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurements of plasma nicotine levels were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as striatal-cerebellar/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean change in binding potential between the baseline and smoking in caudate, Putamen and ventral striatum was 3.7 % , 4.0 % and 8.6 %, respectively. This indicated the striatal dopamine release by smoking. The reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (r 2 =0.91, p=0.04). These data demonstrate that in vivo imaging with [ 11 C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking

  18. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function

    International Nuclear Information System (INIS)

    Bladowska, J.; Sokolska, V.; Sasiadek, M.; Sozanski, T.; Bednarek-Tupikowska, G.

    2010-01-01

    Background: Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. Material/Methods: 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. Results: The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. Conclusions: MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy. (authors)

  19. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.

    Science.gov (United States)

    Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo

    2017-10-01

    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. (1'23I)DaTSCAN and SPET imaging of dopamine carrier in Parkinson's disease (preliminary report)

    International Nuclear Information System (INIS)

    Chmielowski, K.; Szalus, N.; Pakszys, W.; Kulinski, W.; Skrobowska, E.

    2003-01-01

    The authors present own experience in dopamine carrier imaging by means of SPET and ( 123I ) DaTSCAN in Parkinson's disease. The aim of study was an assessment of the functional status of presynaptic dopaminergic system. The material consisted of three patients including one with spontaneous tremor and two with Parkinson's disease. The study was conducted according to EANM quidelines. The thyroid was blocked with sodium perchlorate administered orally (400 mg). ( 123I )DaTSCAN was injected intravenously. After three hours cerebral SPET was carried out using Varicam gamma camera. Reconstruction of SPET images was performed by the method of filtered retrograde projection using a Butterworth filter. SPET images of the brain were assessed visually and semiquantitatively through fusion and superimposing of SPET and MRI images together with marked templates (ROIs) for the corpus striatum.The obtained cerebral SPET results in three patients confirmed the diagnosis of spontaneous tremor in one case and Parkinson's disease in the remaining two subject. No adverse effects of ( 123I )DaTSCAN administration were found. Cocaine analogue, (sI)DaTSCAN, is an easy, safe and useful diagnostic test in SPET imaging of dopamine carrier in Parkinson's diseases and in spontaneous tremor. (author)

  1. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  2. Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Steiniger-Brach, Björn; Helboe, Lone

    2011-01-01

    Post-weaning social isolation of rats produces an array of behavioral and neurochemical changes indicative of altered dopamine function. It has therefore been suggested that post-weaning social isolation mimics some aspects of schizophrenia. Here we replicate and extent these findings to include...... dopamine levels in the nucleus accumbens, it did cause a significant reduction of basal dopamine release in the prefrontal cortex. In addition, social isolation lead to a significantly larger dopamine response to an amphetamine challenge, in both the nucleus accumbens and the prefrontal cortex compared...

  3. Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability.

    Directory of Open Access Journals (Sweden)

    Bertram J Jobst

    Full Text Available Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lung MRI protocol in COPD.20 prospectively enrolled COPD patients (GOLD I-IV underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging, consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed.Median global scores [10(Q1:8.00;Q3:16.00 vs.11(Q1:6.00;Q3:15.00] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (ĸ = 0.86, 95%CI = 0.81-0.91. Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (ĸ = 0.64-1.00, whereas the agreement for the diagnosis of dystelectasis/effusion (ĸ = 0.42, 95%CI = 0.00-0.93 was "moderate" and of tracheal abnormalities (ĸ = 0.21, 95%CI = 0.00-0.75 "fair". Most MRI acquisitions showed at least diagnostic quality at

  4. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  5. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  6. Functional MRI and CT biomarkers in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, J.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom); Institute of Cancer Research and Royal Marsden Hospital, MRI Unit, Sutton (United Kingdom); Payne, G.S.; DeSouza, N.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom)

    2015-04-01

    Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T{sub 1} relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R{sub 2}*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives. (orig.)

  7. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a

  8. Gait improvement after treadmill training in ischemic stroke survivors: A critical review of functional MRI studies ☆

    OpenAIRE

    Xiao, Xiang; Huang, Dongfeng; O’Young, Bryan

    2012-01-01

    Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimot...

  9. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.

    Science.gov (United States)

    Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek

    2016-01-01

    Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  10. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  11. Bayesian spatiotemporal model of fMRI data using transfer functions.

    Science.gov (United States)

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia.

    Science.gov (United States)

    Horga, Guillermo; Cassidy, Clifford M; Xu, Xiaoyan; Moore, Holly; Slifstein, Mark; Van Snellenberg, Jared X; Abi-Dargham, Anissa

    2016-08-01

    Despite the well-established role of striatal dopamine in psychosis, current views generally agree that cortical dysfunction is likely necessary for the emergence of psychotic symptoms. The topographic organization of striatal-cortical connections is central to gating and integration of higher-order information, so a disruption of such topography via dysregulated dopamine could lead to cortical dysfunction in schizophrenia. However, this hypothesis remains to be tested using multivariate methods ascertaining the global pattern of striatal connectivity and without the confounding effects of antidopaminergic medication. To examine whether the pattern of brain connectivity across striatal subregions is abnormal in unmedicated patients with schizophrenia and whether this abnormality relates to psychotic symptoms and extrastriatal dopaminergic transmission. In this multimodal, case-control study, we obtained resting-state functional magnetic resonance imaging data from 18 unmedicated patients with schizophrenia and 24 matched healthy controls from the New York State Psychiatric Institute. A subset of these (12 and 17, respectively) underwent positron emission tomography with the dopamine D2 receptor radiotracer carbon 11-labeled FLB457 before and after amphetamine administration. Data were acquired between June 16, 2011, and February 25, 2014. Data analysis was performed from September 1, 2014, to January 11, 2016. Group differences in the striatal connectivity pattern (assessed via multivariable logistic regression) across striatal subregions, the association between the multivariate striatal connectivity pattern and extrastriatal baseline D2 receptor binding potential and its change after amphetamine administration, and the association between the multivariate connectivity pattern and the severity of positive symptoms evaluated with the Positive and Negative Syndrome Scale. Of the patients with schizophrenia (mean [SEM] age, 35.6 [11.8] years), 9 (50%) were male and 9

  13. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  14. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  15. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    International Nuclear Information System (INIS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-01-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe_3O_4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe_3O_4–SiO_2-mebrofenin composite is an effective MRI contrast agent for liver targeting. - Highlights: • Superparamagnetic magnetite nanoparticles have been synthesized by simple and economical method. • Preperation of functional MNPs as a MRI contrast agent for liver targeting. • Gaining a good r_2 relaxivity of the coated functional nanoparticles.

  16. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  17. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Working memory capacity predicts dopamine synthesis capacity in the human striatum.

    NARCIS (Netherlands)

    Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D'Esposito, M.

    2008-01-01

    Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we

  19. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    International Nuclear Information System (INIS)

    Hoetker, Andreas M.; Tarlinton, Lisa; Gollub, Marc J.; Mazaheri, Yousef; Woo, Kaitlin M.; Goenen, Mithat; Saltz, Leonard B.; Goodman, Karyn A.; Garcia-Aguilar, Julio

    2016-01-01

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K"t"r"a"n"s on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  20. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hoetker, Andreas M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Universitaetsmedizin Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Tarlinton, Lisa; Gollub, Marc J. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Mazaheri, Yousef [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Woo, Kaitlin M.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Saltz, Leonard B. [Memorial Sloan Kettering Cancer Center, Department of Medicine, Gastrointestinal Oncology Service, New York, NY (United States); Goodman, Karyn A. [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Garcia-Aguilar, Julio [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States)

    2016-12-15

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K{sup trans} on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  1. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  2. Intrinsically radiolabelled [(59)Fe]-SPIONs for dual MRI/radionuclide detection.

    Science.gov (United States)

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [(59)Fe]-superparamagnetic iron oxide nanoparticles ([(59)Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. (59)Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [(59)Fe]-SPIONs. The transverse relaxivity of [(59)Fe]-SPIONs (97±3 s(-1)mM(-1)) was characterized and found to be similar to non-radioactive SPIONs (72±10 s(-1)mM(-1)), indicating that (59)Fe incorporation does not alter the SPIONs' MRI contrast properties. [(59)Fe]-SPIONs were used to evaluate the nanoparticle biodistribution by ex vivo gamma counting and MRI. Nude mice (n=15) were injected with [(59)Fe]-SPIONs and imaged at various time points with 7T small animal MRI scanner. Ex vivo biodistribution was evaluated by tissue-based gamma counting. MRI signal contrast qualitatively correlates with the %ID/g of [(59)Fe]-SPIONs, with high contrast in liver (45±6%), medium contrast in kidneys (21±5%), and low contrast in brain (4±6%) at 24 hours. This work demonstrates the synthesis and in vivo application of intrinsically radiolabeled [(59)Fe]-SPIONs for bimodal detection and provides a proof of concept for incorporation of both gamma- and positron-emitting inorganic radionuclides into the core of metal based MRI contrast agent nanoparticles.

  3. Functional MRI of human hypothalamic responses following glucose ingestion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Grond, J. van der

    2005-01-01

    The hypothalamus is intimately involved in the regulation of food intake, integrating multiple neural and hormonal signals. Several hypothalamic nuclei contain glucose-sensitive neurons, which play a crucial role in energy homeostasis. Although a few functional magnetic resonance imaging (fMRI)

  4. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    International Nuclear Information System (INIS)

    Chaudhary, Kapil; Kumaran, S Senthil; Chandra, Sarat P; Wadhawan, Ashima Nehra; Tripathi, Manjari

    2014-01-01

    Functional magnetic resonance imaging (fMRI), a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD) contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery). In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and superior temporal gyrus (STG), during semantic lexical, judgment, comprehension, and semantic memory tasks. Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease

  5. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    Directory of Open Access Journals (Sweden)

    Kapil Chaudhary

    2014-01-01

    Full Text Available Background: Functional magnetic resonance imaging (fMRI, a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. Purpose: fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. Materials and Methods: After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery. Results: In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG, middle frontal gyrus (MFG, and superior temporal gyrus (STG, during semantic lexical, judgment, comprehension, and semantic memory tasks. Conclusion: Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease.

  6. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  7. A Japanese Encephalitis Patient Presenting with Parkinsonism with Corresponding Laterality of Magnetic Resonance and Dopamine Transporter Imaging Findings.

    Science.gov (United States)

    Tadokoro, Koh; Ohta, Yasuyuki; Sato, Kota; Maeki, Takahiro; Sasaki, Ryo; Takahashi, Yoshiaki; Shang, Jingwei; Takemoto, Mami; Hishikawa, Nozomi; Yamashita, Toru; Lim, Chang Kweng; Tajima, Shigeru; Abe, Koji

    2018-03-09

    Japanese encephalitis (JE) survivors often present with nigrostriatal aftereffects with parkinsonian features. A 67-year-old woman with JE showed right-dominant clinical parkinsonism and left-dominant substantia nigra lesions after magnetic resonance imaging (MRI). Dopamine transporter (DAT) imaging using 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ( 123 I-FP-CIT) revealed a corresponding left-dominant decrease. The present case is the first to reveal a clear match of laterality between clinical parkinsonism, MRI-based substantia nigra lesions, and impaired DAT in presynaptic dopaminergic neurons in JE.

  8. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    Science.gov (United States)

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  10. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    Science.gov (United States)

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  11. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI

    Directory of Open Access Journals (Sweden)

    Ryan V. Raut

    2016-01-01

    Full Text Available Functional MRI (fMRI is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR, which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (<10 days from stroke; N = 22 to address this question. These estimates were compared with those from both age-matched (N = 22 and younger (N = 22 healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  12. Dopamine treatment and cognitive functioning in individuals with Parkinson's disease: the "cognitive flexibility" hypothesis seems to work.

    Science.gov (United States)

    Costa, Alberto; Peppe, Antonella; Mazzù, Ilenia; Longarzo, Mariachiara; Caltagirone, Carlo; Carlesimo, Giovanni A

    2014-01-01

    Previous data suggest that (i) dopamine modulates the ability to implement nonroutine schemata and update operations (flexibility processes) and that (ii) dopamine-related improvement may be related to baseline dopamine levels in target pathways (inverted U-shaped hypothesis). To investigate above hypotheses in individuals with Parkinson's disease (PD). Twenty PD patients were administered tasks varying as to flexibility load in two treatment conditions: (i) "off" condition, about 18 hours after dopamine dose and (ii) "on" condition, after dopamine administration. PD patients were separated into two groups: low performers (i.e., performance on Digit Span Backward below the sample mean) and high performers (i.e., performance above the mean). Twenty healthy individuals performed the tasks in two sessions without taking drugs. Passing from the "off" to the "on" state, only low performer PD patients significantly improved their performance on high-flexibility measures (interference condition of the Stroop test; P flexibility tasks. These findings document that high-flexibility processes are sensitive to dopamine neuromodulation in the early phases of PD. This is in line with the hypothesis that striatal dopamine pathways, affected early by PD, are precociously implicated in the expression of cognitive disorders in these individuals.

  13. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  14. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    Science.gov (United States)

    2015-10-01

    including the Wechsler Intelligence Scale for Children (WISC-IV) for verbal and non-verbal intelligence; the Boston Naming Test , which evaluates a...demonstrated congruency between fMRI mappings and patient performance; 2) testing of the fMRI methods we developed for use in POMS patients was carried out...adaptive functional reorganization as a way to explain how some early-stage MS patients are able to perform well in clinical cognitive testing

  15. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  16. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Smoking-induced dopamine release studied with [{sup 11}C]raclopride PET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Cho, Sang Soo; Lee, Do Hoon [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with and regulates the activation of the dopaminergic neuron. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [{sup 11}C]raclopride. Four male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.3{+-}2.6 years) were enrolled in this study. Dopamine D2 receptor radioligand, [{sup 11}C]raclopride was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3x20s, 2x60s, 2x120s, 1x180s and 22x300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurements of plasma nicotine levels were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as striatal-cerebellar/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean change in binding potential between the baseline and smoking in caudate, Putamen and ventral striatum was 3.7 % , 4.0 % and 8.6 %, respectively. This indicated the striatal dopamine release by smoking. The reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (r{sup 2}=0.91, p=0.04). These data demonstrate that in vivo imaging with [{sup 11}C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking.

  18. The "Creative Right Brain" Revisited: Individual Creativity and Associative Priming in the Right Hemisphere Relate to Hemispheric Asymmetries in Reward Brain Function.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2017-10-01

    The idea that creativity resides in the right cerebral hemisphere is persistent in popular science, but has been widely frowned upon by the scientific community due to little empirical support. Yet, creativity is believed to rely on the ability to combine remote concepts into novel and useful ideas, an ability which would depend on associative processing in the right hemisphere. Moreover, associative processing is modulated by dopamine, and asymmetries in dopamine functionality between hemispheres may imbalance the expression of their implemented cognitive functions. Here, by uniting these largely disconnected concepts, we hypothesize that relatively less dopamine function in the right hemisphere boosts creativity by releasing constraining effects of dopamine on remote associations. Indeed, participants with reduced neural responses in the dopaminergic system of the right hemisphere (estimated by functional MRI in a reward task with positive and negative feedback), displayed higher creativity (estimated by convergent and divergent tasks), and increased associative processing in the right hemisphere (estimated by a lateralized lexical decision task). Our findings offer unprecedented empirical support for a crucial and specific contribution of the right hemisphere to creativity. More importantly our study provides a comprehensive view on potential determinants of human creativity, namely dopamine-related activity and associative processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Preparation of (7,8-3H) dopamine

    International Nuclear Information System (INIS)

    Shen Qiyuan; Tang Guozhong; Guo Zili

    1986-01-01

    Dopamine is a neurotransmitter in the central nervous system. (7,8- 3 H) dopamine is an important tracer for the study of physiological functions and metabolic processes. It was prepared by catalytic reduction of 3-hydroxy-4-methoxy-8-nitro-styrene with tritium gas. At the end of reaction, hydrobromic acid was added and heated to remove the methoxyl group. The crude product was purified by paper chromatography. The purity of (7,8- 3 H) dopamine was identified by IR, UV, PC and 3 H-NMR spectra. The radiochemical purity was over 95% and the specific activity was 1.26 x 10 12 Bq/mmol (34 Ci/mmol). The distribution of labelled tritium in molecule was shown as follows: 55.4% at position 7 and 44.6% at position 8

  20. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  1. Prospect theory does not describe the feedback-related negativity value function.

    Science.gov (United States)

    Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy

    2012-12-01

    Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.

  2. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  3. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  4. Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.

    Science.gov (United States)

    Scholz-Kornehl, Sabrina; Schwärzel, Martin

    2016-07-27

    Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases

  5. Dynamic interaction between fetal adversity and a genetic score reflecting dopamine function on developmental outcomes at 36 months.

    Directory of Open Access Journals (Sweden)

    Adrianne R Bischoff

    Full Text Available Fetal adversity, evidenced by poor fetal growth for instance, is associated with increased risk for several diseases later in life. Classical cut-offs to characterize small (SGA and large for gestational age (LGA newborns are used to define long term vulnerability. We aimed at exploring the possible dynamism of different birth weight cut-offs in defining vulnerability in developmental outcomes (through the Bayley Scales of Infant and Toddler Development, using the example of a gene vs. fetal adversity interaction considering gene choices based on functional relevance to the studied outcome.36-month-old children from an established prospective birth cohort (Maternal Adversity, Vulnerability, and Neurodevelopment were classified according to birth weight ratio (BWR (SGA ≤0.85, LGA >1.15, exploring a wide range of other cut-offs and genotyped for polymorphisms associated with dopamine signaling (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10- repeat, Met/Met-COMT, composing a score based on the described function, in which hypofunctional variants received lower scores.There were 251 children (123 girls and 128 boys. Using the classic cut-offs (0.85 and 1.15, there were no statistically significant interactions between the neonatal groups and the dopamine genetic score. However, when changing the cut-offs, it is possible to see ranges of BWR that could be associated with vulnerability to poorer development according to the variation in the dopamine function.The classic birth weight cut-offs to define SGA and LGA newborns should be seen with caution, as depending on the outcome in question, the protocols for long-term follow up could be either too inclusive-therefore most costly, or unable to screen true vulnerabilities-and therefore ineffective to establish early interventions and primary prevention.

  6. On the Averaging of Cardiac Diffusion Tensor MRI Data: The Effect of Distance Function Selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be worth consideration. PMID:27754986

  7. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  8. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  9. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    International Nuclear Information System (INIS)

    Capaldi, D; Sheikh, K; Parraga, G; Hoover, D; Yaremko, B; Palma, D

    2016-01-01

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ( 3 He and 129 Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing 1 H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing 1 H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized 3 He/ 129 Xe and dynamic free tidal-breathing 1 H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ( 3 He:VDP He , 129 Xe:VDP Xe , Free-breathing- 1 H:VDP FB ) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP FB was significantly related to VDP He (r=.71; p=.04) and VDP Xe (r=.80; p=.01) and there were also strong spatial relationships (DSC He /DSC Xe =89±3%/77±11

  10. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    Science.gov (United States)

    Richter, Anni; Barman, Adriana; Wüstenberg, Torsten; Soch, Joram; Schanze, Denny; Deibele, Anna; Behnisch, Gusalija; Assmann, Anne; Klein, Marieke; Zenker, Martin; Seidenbecher, Constanze; Schott, Björn H.

    2017-01-01

    Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory. PMID

  11. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    Directory of Open Access Journals (Sweden)

    Anni Richter

    2017-05-01

    Full Text Available Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2 availability in the striatum, and the DRD2 TaqIA (rs1800497 and C957T (rs6277 genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of

  12. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M

    2017-01-01

    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  14. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    Science.gov (United States)

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.

  15. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders.

    Directory of Open Access Journals (Sweden)

    Ekaterina eDobryakova

    2015-03-01

    Full Text Available Fatigue is one of the most pervasive symptoms of multiple sclerosis (MS, and has engendered hundreds of investigations on the topic. While there is a growing literature using various methods to study fatigue, a unified theory of fatigue in MS is yet to emerge. In the current review, we synthesize findings from neuroimaging, pharmacological, neuropsychological and immunological studies of fatigue in MS, which point to a specific hypothesis of fatigue in MS: the dopamine imbalance hypothesis. The communication between the striatum and prefrontal cortex is reliant on dopamine, a modulatory neurotransmitter. Neuroimaging findings suggest that fatigue results from the disruption of communication between these regions. Supporting the dopamine imbalance hypothesis, structural and functional neuroimaging studies show abnormalities in the frontal and striatal regions that are heavily innervated by dopamine neurons. Further, dopaminergic psychostimulant medication has been shown to alleviate fatigue in individuals with traumatic brain injury, chronic fatigue syndrome and in cancer patients, also indicating that dopamine might play an important role in fatigue perception. This paper reviews the structural and functional neuroimaging evidence as well as pharmacological studies that suggest that dopamine plays a critical role in the phenomenon of fatigue. We conclude with how specific aspects of the dopamine imbalance hypothesis can be tested in future research.

  17. Study on dopamine D2 binding capacity in vascular parkinsonism

    International Nuclear Information System (INIS)

    Terashi, Hiroo; Nagata, Ken; Hirata, Yutaka; Hatazawa, Jun; Utsumi, Hiroya

    2001-01-01

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [ 11 C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D 2 receptor (k 3 ) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D 2 receptor binding [%k 3 ] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k 3 did not correspond to that of the parkinsonism. Thus, the striatal dopamine D 2 receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D 2 receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  18. Functional versus Nonfunctional Rehabilitation in Chronic Ischemic Stroke: Evidences from a Randomized Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Maristela C. X. Pelicioni

    2016-01-01

    Full Text Available Motor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI. Twelve hemiparetic chronic stroke patients were selected. Patients were randomly assigned a nonfunctional (NFS or functional (FS rehabilitation scheme. Clinical scales (Fugl-Meyer, ARA test, and modified Barthel and fMRI were applied at four moments: before rehabilitation (P1 and immediately after (P2, 1 month after (P3, and three months after (P4 the end of rehabilitation. The NFS group improved significantly and exclusively their Fugl-Meyer scores at P2, P3, and P4, when compared to P1. On the other hand, the FS group increased significantly in Fugl-Meyer at P2, when compared to P1, and also in their ARA and Barthel scores. fMRI inspection at the individual level revealed that both rehabilitation schemes most often led to decreased activation sparseness, decreased activity of contralesional M1, increased asymmetry of M1 activity to the ipsilesional side, decreased perilesional activity, and decreased SMA activity. Increased M1 asymmetry with rehabilitation was also confirmed by Lateralization Indexes. Our clinical analysis revealed subtle differences between FS and NFS.

  19. Functional brain segmentation using inter-subject correlation in fMRI.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Pajula, Juha; Niemi, Jari; Hari, Riitta; Tohka, Jussi

    2017-05-01

    The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily-life situations. A new exploratory data-analysis approach, functional segmentation inter-subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is highly variable. FuSeISC was tested using fMRI data sets collected during traditional block-design stimuli (37 subjects) as well as naturalistic auditory narratives (19 subjects). The method identified spatially local and/or bilaterally symmetric clusters in several cortical areas, many of which are known to be processing the types of stimuli used in the experiments. The method is not only useful for spatial exploration of large fMRI data sets obtained using naturalistic stimuli, but also has other potential applications, such as generation of a functional brain atlases including both lower- and higher-order processing areas. Finally, as a part of FuSeISC, a criterion-based sparsification of the shared nearest-neighbor graph was proposed for detecting clusters in noisy data. In the tests with synthetic data, this technique was superior to well-known clustering methods, such as Ward's method, affinity propagation, and K-means ++. Hum Brain Mapp 38:2643-2665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  1. [Neurotensin-like oligopeptides as potential antipsychotics: effect on dopamine system].

    Science.gov (United States)

    Kost, N V; Meshavkin, V K; Batishcheva, E Iu; Sokolov, O Iu; Andreeva, L A; Miasoedov, N F

    2011-01-01

    According to published data, peptide neurotensin is considered as endogenous antipsychotic agent. A series of oligopeptides have been synthesized based on the proposed active center of neurotensin. These oligopeptides (called neurotensin-like peptides, NLPs) have been studied on behavioral models, in which the functional state of the dopamine system of animals was modified by apomorphine injections. The results of verticalization, stereotypy, and yawning tests revealed NLPs that behave as antagonists of dopamine receptors. Radioligand analysis showed that these peptides compete for specific binding to these receptors with sulpiride, which is a D2-type selective antagonist of dopamine receptors. The high degree of NLPs efficiency manifested in the behavioral tests and radioligand analysis suggests that the their antipsychotic action can be mediated by dopamine receptors.

  2. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    Science.gov (United States)

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  3. Functional magnetic resonance imaging (fMRI) of motor deficits in schizophrenia

    International Nuclear Information System (INIS)

    Wenz, F.; Floemer, F.; Kaick, G. van

    1995-01-01

    The purpose of this study was to investigate differences in the cerebral activation pattern in ten schizophrenic patients and ten healthy volunteers using functional MRI. fMRI was performed using a modified FLASH sequence (TR/TE/α=100/60/40 ) and a conventional 1.5 T MR scanner. Colorcoded statistical parametric maps based on Student's t-test were calculated. Activation strength was quantified using a 5x6 grid overlay. The volunteers showed a higher activation strength during left hand movement compared to right hand movement. This lateralization effect was reversed in patients who showed overall reduced activation strength. Disturbed interhemispheric balance in schizophrenic patients during motor task performance can be demonstrated using fMRI. (orig.) [de

  4. Emerging role of functional brain MRI in low-grade glioma surgery

    DEFF Research Database (Denmark)

    Friismose, Ancuta; Traise, Peter; Markovic, Ljubo

    Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I...... be used to map eloquent cortex areas, thus minimizing postoperative deficits and improving surgical performance. Findings and procedure details Patients diagnosed with low-grade gliomas located in eloquent brain areas undergo fMRI prior to surgery. The exams are performed on a 3T MR system (Achieva TX....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...

  5. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    Science.gov (United States)

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  6. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  7. The role of genes, stress and dopamine in the development of schizophrenia

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin

    2017-01-01

    The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it was initially based on indirect evidence and findings in patients with established schizophrenia it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis and psychosocial stress. Included among the many genes associated with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid (GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. PMID:27720198

  8. Reward-based hypertension control by a synthetic brain-dopamine interface.

    Science.gov (United States)

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  9. Dopamine reward prediction error responses reflect marginal utility.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Schultz, Wolfram

    2014-11-03

    Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    Science.gov (United States)

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    Science.gov (United States)

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  12. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke Ramsgaard

    2018-01-01

    pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  13. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    OpenAIRE

    Fabri, Mara; Polonara, Gabriele

    2013-01-01

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and moto...

  14. The potential of functional MRI as a biomarker in early Alzheimer’s disease

    OpenAIRE

    Sperling, Reisa

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is a relative newcomer in the field of biomarkers for Alzheimer’s disease (AD). fMRI has several potential advantages, particularly for clinical trials, as it is a non-invasive imaging technique that does not require the injection of contrast agent or radiation exposure and thus can be repeated many times during a longitudinal study. fMRI has relatively high spatial and reasonable temporal resolution, and can be acquired in the same session as stru...

  15. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  16. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  17. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  18. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    OpenAIRE

    de Wit, Sanne; Standing, Holly R.; DeVito, Elise E.; Robinson, Oliver J.; Ridderinkhof, K. Richard; Robbins, Trevor W.; Sahakian, Barbara J.

    2011-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus?response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. Objectives We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. Metho...

  19. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  20. Integration of fMRI, NIROT and ERP for studies of human brain function.

    Science.gov (United States)

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  1. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    Directory of Open Access Journals (Sweden)

    Moisés Mera Iglesias

    2015-01-01

    Full Text Available Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.

  2. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  3. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  4. Inaudible functional MRI using a truly mute gradient echo sequence

    International Nuclear Information System (INIS)

    Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.

    2002-01-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  5. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity.

    Science.gov (United States)

    Chan, Russell W; Leong, Alex T L; Ho, Leon C; Gao, Patrick P; Wong, Eddie C; Dong, Celia M; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X

    2017-08-15

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.

  6. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Capaldi, D; Sheikh, K; Parraga, G [Robarts Research Institute, The University of Western Ontario, London, Ontario, CA (United States); Department of Medical Biophysics, The University of Western Ontario, London, Ontario, CA (United States); Hoover, D; Yaremko, B; Palma, D [Department of Medical Biophysics, The University of Western Ontario, London, Ontario, CA (United States); Department of Oncology, The University of Western Ontario, London, Ontario, CA (United States)

    2016-06-15

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ({sup 3}He and {sup 129}Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing {sup 1}H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing {sup 1}H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized {sup 3}He/{sup 129}Xe and dynamic free tidal-breathing {sup 1}H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ({sup 3}He:VDP{sub He}, {sup 129}Xe:VDP{sub Xe}, Free-breathing-{sup 1}H:VDP{sub FB}) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP{sub FB} was significantly related to VDP{sub He} (r=.71; p=.04) and VDP{sub Xe} (r=.80; p=.01) and

  7. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  8. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    Science.gov (United States)

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author

  9. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  10. Functional MRI studies of acupuncture analgesia modulating within the human brain

    International Nuclear Information System (INIS)

    Hou Jinwen; Huang Weihao; Wang Qing; Feng Jingwei; Pu Yonglin; Gao Jiahong

    2002-01-01

    Objective: To evaluate the correlation between acupuncture analgesia and specific functional areas of the brain using functional magnetic resonance imaging (fMRI). Methods: Acupuncture stimulation was induced by manipulating acupuncture needle at the acupuncture point, large intestine 4 (LI 4, Hegu) on the right (dominant) hand of 8 healthy subjects. Functional MRI data were obtained from scanning the whole brain. A block-design paradigm was applied. Functional responses were established by students' group t-test analysis. Results: The data sets from 6 of 8 subjects were used in the study. Signal increases and signal decreases elicited by acupuncture stimulating were demonstrated in multiple brain regions. Signal increases in periaqueductal gray matter and ventral posterior nucleus of the left thalamus, and signal decreases in bilateral anterior cingulate cortex and bilateral occipital lobes were considered as the response to the acupuncture modulating within the human brain. Conclusion: The therapeutic effect of acupuncture analgesia was probably produced by the interaction of multiple brain structures of functional connectivity rather than through the activation of a single brain region

  11. Brief exposure to obesogenic diet disrupts brain dopamine networks.

    Directory of Open Access Journals (Sweden)

    Robert L Barry

    Full Text Available We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT activity, which fine-tunes dopamine (DA signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week obesogenic high-fat (HF diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH.We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R availability using [18F]fallypride positron emission tomography (PET.We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling

  12. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    International Nuclear Information System (INIS)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van; Smits, Marion; Lugt, Aad van der; Groot, Marius de; Vrooman, Henri A.; Mattace Raso, Francesco U.; Niessen, Wiro J.; Veen, Frederik M. van der; Prins, Niels D.

    2017-01-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  13. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van [Erasmus MC - University Medical Center Rotterdam, Department of Neurology, Rotterdam (Netherlands); Smits, Marion; Lugt, Aad van der [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Groot, Marius de; Vrooman, Henri A. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Mattace Raso, Francesco U. [Erasmus MC - University Medical Center Rotterdam, Department of Geriatrics, Rotterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Veen, Frederik M. van der [Erasmus University Rotterdam, Institute of Psychology, Rotterdam (Netherlands); Prins, Niels D. [VU University Medical Center, Alzheimer Center, Department of Neurology, Amsterdam (Netherlands)

    2017-09-15

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  14. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    Science.gov (United States)

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  16. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    How can we accumulate knowledge on brain functions? How can we leverage years of research in functional MRI to analyse finer-grained psychological constructs, and build a comprehensive model of the brain? Researchers usually rely on single studies to delineate brain regions recruited by mental processes. They relate their findings to previous works in an informal way by defining regions of interest from the literature. Meta-analysis approaches provide a more principled way to build upon the literature. This thesis investigates three ways to assemble knowledge using activation maps from a large amount of studies. First, we present an approach that uses jointly two similar fMRI experiments, to better condition an analysis from a statistical standpoint. We show that it is a valuable data-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledge on a large scale. Because of the difficulty to associate multiple studies, we resort to using a single dataset sampling a large number of stimuli for our second contribution. This method estimates functional networks associated with functional profiles, where the functional networks are interacting brain regions and the functional profiles are a weighted set of cognitive descriptors. This work successfully yields known brain networks and automatically associates meaningful descriptions. Its limitations lie in the unsupervised nature of this method, which is more difficult to validate, and the use of a single dataset. It however brings the notion of cognitive labels, which is central to our last contribution. Our last contribution presents a method that learns functional atlases by combining several datasets. [Henson 2006] shows that forward inference, i.e. the probability of an activation given a cognitive process, is often not sufficient to conclude on the engagement of brain regions for a cognitive process

  17. Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Jordan, K.; Giesel, F.L.; Villringer, A.

    2003-01-01

    Functional magnetic resonance imaging (fMRI) is the most common noninvasive technique in functional neuroanatomy. The capabilities and limitations of the method will be discussed based on a short review of the current knowledge about the neurovascular relationship. The focus of this article is on current methodical and technical problems regarding fMRI-based detection and localization of neuronal activity. Main error sources and their influence on the reliability and validity of fMRI-methods are presented. Appropriate solution strategies will be proposed and evaluated. Finally, the clinical relevance of MR-based diagnostic methods are discussed. (orig.) [de

  18. Assessment of language lateralization with functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Salagierska-Barwinska, A.; Goraj, B.

    2004-01-01

    fMRI offers powerful methods to delineate which brain regions are engaged in language processing in the intact brain. Until now hemisphere dominance for language has been usually assessed by means of the intraoperative methods: the Wada test or electrocortical stimulation mapping. Recently functional MRI becomes the valuable method in determining hemisphere dominance for language. fMRI study was proved to be concordant with invasive measures. fMRI was carried out in 30 healthy selected participants (15 females: 10 strongly right-handed and 5 strongly left-handed; 15 males: 10 strongly right-handed and 5 strongly left-handed). The subject's handedness was assessed by standardized psychological tests inter alia the 'lateralization inventory'. Two different language tasks were used: a verb generation task and a phonological task. Subjects were scanned,while performing experimental block. The block contained alternately 8 active (language task) and 8 control conditions. Statistical analysis of evoked blood oxygenation level-dependent BOLD) responses, measured with echo planar imagining (1.5 T) were used. During a verb generation task in strongly right or left handed subjects the inferior frontal region was activated on the side opposite to the subject's handedness determined by the psychological test. Our fMRI studies demonstrated no gender effects on brain during these language tasks. Our study suggests that fMRI is a good device for the study of the language organization. The advantage of fMRI is its capacity for exact localization of activated areas. fMRI together with adequate neurolinguistic test could be promising routine preoperative tool in identification hemisphere dominance for language. These results encourage to further investigation for evaluating correlation in patients with brain injuries. (author)

  19. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  20. Inverted-U shaped dopamine actions on human working memory and cognitive control

    Science.gov (United States)

    Cools, R; D’Esposito, M

    2011-01-01

    Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388

  1. Multigenerational effects of adolescent morphine exposure on dopamine D2 receptor function.

    Science.gov (United States)

    Byrnes, John J; Johnson, Nicole L; Carini, Lindsay M; Byrnes, Elizabeth M

    2013-05-01

    The use and misuse of prescription opiates in adolescent populations, and in particular, adolescent female populations, has increased dramatically in the past two decades. Given the significant role that opioids play in neuroendocrine function, exposure to opiates during this critical developmental period could have significant consequences for the female, as well as her offspring. In the current set of studies, we utilized the female rat to model the transgenerational impact of adolescent opiate exposure. We examined locomotor sensitization in response to the dopamine D2/D3 receptor agonist quinpirole in the adult male progeny (F1 and F2 generations) of females exposed to morphine during adolescence. All females were drug-free for at least 3 weeks prior to conception, eliminating the possibility of direct fetal exposure to morphine. Both F1 and F2 progeny of morphine-exposed females demonstrated attenuated locomotor sensitization following repeated quinpirole administration. These behavioral effects were coupled with increased quinpirole-induced corticosterone secretion and upregulated kappa opioid receptor and dopamine D2 receptor (D2R) gene expression within the nucleus accumbens. These results suggest significant modifications in response to repeated D2R activation in the progeny of females exposed to opiates during adolescence. Given the significant role that the D2R plays in psychopathology, adolescent opiate exposure could shift the vulnerability of future offspring to psychological disorders, including addiction. Moreover, that effects are also observed in the F2 generation suggests that adolescent opiate exposure can trigger transgenerational epigenetic modifications impacting systems critical for motivated behavior.

  2. Dopamine modulates risk-taking as a function of baseline sensation-seeking trait.

    Science.gov (United States)

    Norbury, Agnes; Manohar, Sanjay; Rogers, Robert D; Husain, Masud

    2013-08-07

    Trait sensation-seeking, defined as a need for varied, complex, and intense sensations, represents a relatively underexplored hedonic drive in human behavioral neuroscience research. It is related to increased risk for a range of behaviors including substance use, gambling, and risky sexual practice. Individual differences in self-reported sensation-seeking have been linked to brain dopamine function, particularly at D2-like receptors, but so far no causal evidence exists for a role of dopamine in sensation-seeking behavior in humans. Here, we investigated the effects of the selective D2/D3 agonist cabergoline on performance of a probabilistic risky choice task in healthy humans using a sensitive within-subject, placebo-controlled design. Cabergoline significantly influenced the way participants combined different explicit signals regarding probability and loss when choosing between response options associated with uncertain outcomes. Importantly, these effects were strongly dependent on baseline sensation-seeking score. Overall, cabergoline increased sensitivity of choice to information about probability of winning; while decreasing discrimination according to magnitude of potential losses associated with different options. The largest effects of the drug were observed in participants with lower sensation-seeking scores. These findings provide evidence that risk-taking behavior in humans can be directly manipulated by a dopaminergic drug, but that the effectiveness of such a manipulation depends on baseline differences in sensation-seeking trait. This emphasizes the importance of considering individual differences when investigating manipulation of risky decision-making, and may have relevance for the development of pharmacotherapies for disorders involving excessive risk-taking in humans, such as pathological gambling.

  3. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion.

    Science.gov (United States)

    de Wit, Sanne; Standing, Holly R; Devito, Elise E; Robinson, Oliver J; Ridderinkhof, K Richard; Robbins, Trevor W; Sahakian, Barbara J

    2012-01-01

    Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. The dietary intervention of acute dietary phenylalanine and tyrosine depletion (APTD) was adopted to study the effects of reduced global dopamine function on action control. Participants were randomly assigned to either the APTD or placebo group (ns = 14) to allow for a between-subjects comparison of performance on a novel three-stage experimental paradigm. In the initial learning phase, participants learned to respond to different stimuli in order to gain rewarding outcomes. Subsequently, an outcome-devaluation test and a slips-of-action test were conducted to assess whether participants were able to flexibly adjust their behaviour to changes in the desirability of the outcomes. APTD did not prevent stimulus-response learning, nor did we find evidence for impaired response-outcome learning in the subsequent outcome-devaluation test. However, when goal-directed and habitual systems competed for control in the slips-of-action test, APTD tipped the balance towards habitual control. These findings were restricted to female volunteers. We provide direct evidence that the balance between goal-directed and habitual control in humans is dopamine dependent. The results are discussed in light of gender differences in dopamine function and psychopathologies.

  4. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    International Nuclear Information System (INIS)

    Eide, Per Kristian; Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain

  5. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    Science.gov (United States)

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  6. Functional MRI of the pharynx in obstructive sleep apnea (OSA) with rapid 2-D flash sequences

    International Nuclear Information System (INIS)

    Jaeger, L.; Guenther, E.; Gauger, J.; Nitz, W.; Kastenbauer, E.; Reiser, M.

    1996-01-01

    Functional imaging of the pharynx used to be the domain of cineradiography, CT and ultrafast CT. The development of modern MRI techniques led to new access to functional disorders of the pharynx. The aim of this study was to implement a new MRI technique to examine oropharyngeal obstructive mechanisms in patients with obstructive sleep apnea (OSA). Sixteen patients suffering from OSA and 6 healthy volunteers were examined on a 1.5 T whole-body imager ('Vision', Siemens, Erlangen Medical Engineering, Germany) using a circular polarized head coil. Imaging was performed with 2D flash sequences in midsagittal and axial planes. Patients and volunteers were asked to breathe normally through the nose and to simulate snoring and the Mueller maneuver during magnetic resonance imaging (MRI). Prior to MRI, all patients underwent an ear, nose and throat (ENT) examination, functional fiberoptic nasopharyngoscopy and polysomnography. A temporal resolution of 6 images/s and an in-plane resolution of 2.67x1.8 mm were achieved. The mobility of the tongue, soft palate and pharyngeal surface could be clearly delineated. The MRI findings correlated well with the clinical examinations. We propose ultrafast MRI as a reliable and non-invasive method of evaluating pharyngeal obstruction and their levels. (orig.) [de

  7. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  8. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    OpenAIRE

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI image...

  9. Dopamine signaling negatively regulates striatal phosphorylation of Cdk5 at tyrosine 15 in mice.

    Directory of Open Access Journals (Sweden)

    Yukio eYamamura

    2013-02-01

    Full Text Available Striatal functions depend on the activity balance between the dopamine and glutamate neurotransmissions. Glutamate inputs activate cyclin-dependent kinase 5 (Cdk5, which inhibits postsynaptic dopamine signaling by phosphorylating DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa at Thr75 in the striatum. c-Abelson tyrosine kinase (c-Abl is known to phosphorylate Cdk5 at Tyr15 (Tyr15-Cdk5 and thereby facilitates the Cdk5 activity. We here report that Cdk5 with Tyr15 phosphorylation (Cdk5-pTyr15 is enriched in the mouse striatum, where dopaminergic stimulation inhibited phosphorylation of Tyr15-Cdk5 by acting through the D2 class dopamine receptors. Moreover, in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine mouse model, dopamine deficiency caused increased phosphorylation of both Tyr15-Cdk5 and Thr75-DARPP-32 in the striatum, which could be attenuated by administration of L-3,4-dihydroxyphenylalanine and imatinib (STI-571, a selective c-Abl inhibitor. Our results suggest a functional link of Cdk5-pTyr15 with postsynaptic dopamine and glutamate signals through the c-Abl kinase activity in the striatum.

  10. Quantifying functional connectivity in multi-subject fMRI data using component models

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Churchill, Nathan William; Mørup, Morten

    2017-01-01

    of functional connectivity, evaluated on both simulated and experimental resting-state fMRI data. It was demonstrated that highly flexible subject-specific component subspaces, as well as very constrained average models, are poor predictors of whole-brain functional connectivity, whereas the best...

  11. Evaluation of a pre-surgical functional MRI workflow: From data acquisition to reporting.

    Science.gov (United States)

    Pernet, Cyril R; Gorgolewski, Krzysztof J; Job, Dominic; Rodriguez, David; Storkey, Amos; Whittle, Ian; Wardlaw, Joanna

    2016-02-01

    Present and assess clinical protocols and associated automated workflow for pre-surgical functional magnetic resonance imaging in brain tumor patients. Protocols were validated using a single-subject reliability approach based on 10 healthy control subjects. Results from the automated workflow were evaluated in 9 patients with brain tumors, comparing fMRI results to direct electrical stimulation (DES) of the cortex. Using a new approach to compute single-subject fMRI reliability in controls, we show that not all tasks are suitable in the clinical context, even if they show meaningful results at the group level. Comparison of the fMRI results from patients to DES showed good correspondence between techniques (odds ratio 36). Providing that validated and reliable fMRI protocols are used, fMRI can accurately delineate eloquent areas, thus providing an aid to medical decision regarding brain tumor surgery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  13. Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions

    International Nuclear Information System (INIS)

    Liu, Yaou; Dai, Zhengjia; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Li, Kuncheng; Liu, Zheng; Dong, Huiqing; Shu, Ni; He, Yong; Vrenken, Hugo; Wattjes, Mike P.; Barkhof, Frederik

    2016-01-01

    To investigate brain functional connectivity (FC) alterations in patients with clinically isolated syndromes (CIS) presenting without conventional brain MRI lesions, and to identify the FC differences between the CIS patients who converted to multiple sclerosis (MS) and those not converted during a 5-year follow-up. We recruited 20 CIS patients without conventional brain lesions, 28 patients with MS and 28 healthy controls (HC). Normalized voxel-based functional connectivity strength (nFCS) was determined using resting-state fMRI (R-fMRI) and compared among groups. Furthermore, 5-years clinical follow-up of the CIS patients was performed to examine the differences in nFCS between converters and non-converters. Compared to HC, CIS patients showed significantly decreased nFCS in the visual areas and increased nFCS in several brain regions predominately in the temporal lobes. MS patients revealed more widespread higher nFCS especially in deep grey matter (DGM), compared to CIS and HC. In the four CIS patients converting to MS, significantly higher nFCS was found in right anterior cingulate gyrus (ACC) and fusiform gyrus (FG), compared to non-converted patients. We demonstrated both functional impairment and compensation in CIS by R-fMRI. nFCS alteration in ACC and FG seems to occur in CIS patients at risk of developing MS. (orig.)

  14. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene

    Directory of Open Access Journals (Sweden)

    Valentina Vengeliene

    2017-04-01

    Full Text Available The research domain criteria (RDoC matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT gene (Slc6a3_N157K to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.

  15. Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine

    International Nuclear Information System (INIS)

    Lian, Qianwen; Luo, Ai; An, Zhenzhen; Li, Zhuang; Guo, Yongyang; Zhang, Dongxia; Xue, Zhonghua; Zhou, Xibin; Lu, Xiaoquan

    2015-01-01

    Graphical abstract: - Highlights: • A novel AuNPs/Trp-GR composite was fabricated by directly electrochemical deposition. • The composite exhibited excellent electrocatalytic activity towards DA. • The proposed method was applied to real samples. - Abstract: A novel and uniform gold nanoparticles/tryptophan-functionalized graphene nanocomposite (AuNPs/Trp-GR) has been successfully fabricated by directly electrochemical depositing gold onto the surface of tryptophan-functionalized graphene (Trp-GR). The nanostructure of AuNPs/Trp-GR was characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was demonstrated that Au nanoparticles were well dispersed on the surface of Trp-GR which might attribute to the more binding sites provided by Trp-GR for the formation of Au nanoparticles. The electrocatalytic activity of the AuNPs/Trp-GR towards the dopamine (DA) was systematically investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, a wide and valuable linear range (0.5–411 μM), a low detection limit (0.056 μM, S/N = 3), good repeatability and stability were obtained for the determination of DA. Furthermore, the modified electrode was successfully applied to real samples analysis

  16. Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qianwen; Luo, Ai; An, Zhenzhen; Li, Zhuang; Guo, Yongyang; Zhang, Dongxia [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Xue, Zhonghua [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China); Zhou, Xibin, E-mail: zhouxb@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Lu, Xiaoquan, E-mail: Luxq@nwnu.edu.cn [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China)

    2015-09-15

    Graphical abstract: - Highlights: • A novel AuNPs/Trp-GR composite was fabricated by directly electrochemical deposition. • The composite exhibited excellent electrocatalytic activity towards DA. • The proposed method was applied to real samples. - Abstract: A novel and uniform gold nanoparticles/tryptophan-functionalized graphene nanocomposite (AuNPs/Trp-GR) has been successfully fabricated by directly electrochemical depositing gold onto the surface of tryptophan-functionalized graphene (Trp-GR). The nanostructure of AuNPs/Trp-GR was characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was demonstrated that Au nanoparticles were well dispersed on the surface of Trp-GR which might attribute to the more binding sites provided by Trp-GR for the formation of Au nanoparticles. The electrocatalytic activity of the AuNPs/Trp-GR towards the dopamine (DA) was systematically investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, a wide and valuable linear range (0.5–411 μM), a low detection limit (0.056 μM, S/N = 3), good repeatability and stability were obtained for the determination of DA. Furthermore, the modified electrode was successfully applied to real samples analysis.

  17. The dopamine metabolite 3-methoxytyramine is a neuromodulator.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    2010-10-01

    Full Text Available Dopamine (3-hydroxytyramine is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT, can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1. Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

  18. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    Science.gov (United States)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  19. PSP-CBS with Dopamine Deficiency in a Female with a FMR1 Premutation.

    Science.gov (United States)

    Paucar, Martin; Beniaminov, Stanislav; Paslawski, Wojciech; Svenningsson, Per

    2016-10-01

    Premutations in the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS) and FMR1-related primary ovarian insufficiency (POI). Female FMR1 premutation carriers rarely develop motor features. Dual pathology is an emerging phenomenon among FMR1 premutation carriers. Here, we describe a family affected by FMR1-related disorders in which the female index case has developed a rapidly progressive and disabling syndrome of atypical parkinsonism. This syndrome consists of early onset postural instability, echolalia, dystonia, and varying types of apraxia like early onset orobuccal apraxia and oculomotor apraxia. She has also developed supranuclear gaze palsy, increased latency of saccade initiation, and slow saccades. These features are compatible with progressive supranuclear palsy (PSP) of a corticobasal syndrome (CBS) variant. Imaging displays a marked reduction of presynaptic dopaminergic uptake and cerebrospinal fluid analysis showed reduced dopamine metabolism; however, the patient is unresponsive to levodopa. Midbrain atrophy ("hummingbird sign") and mild cerebellar atrophy were found on brain MRI. Her father was affected by a typical FXTAS presentation but also displayed dopamine deficiency along with the hummingbird sign. The mechanisms by which FMR1 premutations predispose to atypical parkinsonism and dopamine deficiency await further elucidation.

  20. A comparative study of single and multiple hand tasks using functional MRI

    International Nuclear Information System (INIS)

    Shin, Byung Suck; Lee, Ho Kyu; Park, Sung Tae; Kim, Dong Eun; Lee, Myung Jun; Choi, Choong Gon; Kim, Jae Kyun; Suh, Dae Chul; Lim, Tae Hwan

    1998-01-01

    The purpose of this study is to assess, using functional MRI and by comparing activated motor sensory areas, the independence of brain activation during single and alternative multiple hand tasks. The subjects were six healthy volunteers. Using at 1.5T Siemens system and single shot FID-EPI sequencing (T2 weighted image; TR/TE 0.96 msec/ 61msec, flip angle 90 deg, matrix size 96 x 128, slice thickness/gap 5 mm/0.8 mm, FOV 200 mm) and T1-weighted anatomic images, functional MRI was performed. The paradigm of motor tasks consisted of appositional finger movements; the first involved the separate use of the right, left, and both hands in sequence. Using cross-correlation method (threshold : 0.6) and fMRI analysis software (stimulate 5.0), functional images were obtained. The activated area of brain cortex, the number of pixel, the average percentage change in signal intensity, and correlation of the time-signal intensity curve in the activated motor area were analysed and compared between the two task groups. Statistical analysis involved the use of Wilcoxon signed-rank test. Brain activation did not differ according to whether the motor task was single or alternative. We therefore suggest that during multiple stimuli, the relevant functional area and neuronal column are activated independently. (author). 19 refs., 2 tabs., 3 figs

  1. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    Science.gov (United States)

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings

  2. Smoking-induced dopamine release studied with [{sup 11}C]Raclopride PET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Cho, Sang Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Do Hoon [Center for Clinical Services, National Cancer Certer, Goyang (Korea, Republic of)] (and others)

    2005-10-15

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [{sup 11}C]raclopride. Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.4 {+-} 1.7 years) were enrolled in this study. [{sup 1C}]raclopride, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3 x 20s, 2 x 60s, 2 x 120s, 1 x 180s and 22 x 300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean decrease in binding potential of [{sup 1C}]raclopride between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, {rho} =0.4). These data demonstrate that in vivo imaging with [{sup 11}C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking.

  3. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  4. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind

    Science.gov (United States)

    Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239

  5. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness

    DEFF Research Database (Denmark)

    Stender, Johan; Gosseries, Olivia; Bruno, Marie-Aurélie

    2014-01-01

    a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). METHODS: For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit...... with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We...... state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis...

  6. The Effects of Acute Dopamine Precursor Depletion on the Cognitive Control Functions of Performance Monitoring and Conflict Processing: An Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Larson, Michael J; Clayson, Peter E; Primosch, Mark; Leyton, Marco; Steffensen, Scott C

    2015-01-01

    Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL) and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR) and phenylalanine (PHE) on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT), error rates, the N450, an event-related potential (ERP) index of conflict monitoring, the conflict slow potential (conflict SP), an ERP index of conflict resolution, and the error-related negativity (ERN) and error positivity (Pe), ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD) or balanced (BAL) mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.

  7. The Effects of Acute Dopamine Precursor Depletion on the Cognitive Control Functions of Performance Monitoring and Conflict Processing: An Event-Related Potential (ERP Study.

    Directory of Open Access Journals (Sweden)

    Michael J Larson

    Full Text Available Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR and phenylalanine (PHE on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT, error rates, the N450, an event-related potential (ERP index of conflict monitoring, the conflict slow potential (conflict SP, an ERP index of conflict resolution, and the error-related negativity (ERN and error positivity (Pe, ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD or balanced (BAL mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.

  8. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  9. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  11. Functional MRI for immediate monitoring stereotactic thalamotomy in a patient with essential tremor

    International Nuclear Information System (INIS)

    Hesselmann, Volker; Schaaf, Maike; Krug, Barbara; Lackner, Klaus; Maarouf, Mohammed; Hunsche, Stefan; Sturm, Volker; Lasek, Kathrin; Wedekind, Christoph

    2006-01-01

    The effect of stereotactic thalamotomy was assessed with pre- and postoperative functional magnetic resonance imaging (fMRI) under motor stimulation. A patient with unilateral essential tremor (ET) of the left arm underwent stereotactically guided thalamotomy of the right ventral intermediate thalamic nucleus (VIM). FMRI was done directly before and after surgery on a 1.5-Tesla scanner. The stimulation paradigm was maintainance of the affected arm in an extended position and hand clenching being performed in a block design manner. Statistical analysis was done with Brain Voyager 2000. After thalamotomy the tremor diminished completely. As a difference between the pre- and postoperative fMRI, a significant activation was found in the VIM contralateral to the activation site, adjacent to the inferior olivary nucleus contralateral to the activation site and in the dorsal cingulum. In conclusion, fMRI can detect the functional effect of thalamotomy for tremor treatment. Direct postoperative fMRI provides a sufficient method for estimating the effect of thalamotomy immediately after intervention. The importance of the intermediate thalamic nucleus and the olivary nucleus in tremor generation is supported by our findings. (orig.)

  12. DOPAMINE EFFECT ON CARDIAC REMODELING IN EXPERIMENT

    Directory of Open Access Journals (Sweden)

    V. R. Veber

    2009-01-01

    Full Text Available Aim. To study morphologic changes in myocardium of Wistar rats caused by single and long term dopamine administration.Methods. In acute study dopamine 10 mkg/kg was administrated to 15 rats by a single intraperitoneal injection. The material was taken in 2, 6, 24 hours and in 1 month after drug administration. In chronic study dopamine 10 mkg/kg was administrated to 15 rats 3 times a day by intraperitoneal injections during 2 weeks. The material was taken just after the drug administration was stopped and in 1 month of animals keeping without stress and drug influences. Control group included 15 rats comparable with experimental animals in age and weight. They were keeped without stress and drug influences. Morphometric parameters of left and right ventricles were evaluated as well as density of cardiomyocytes, collagen, vessels and volume of extracellular space.Results. The enlargement of cardiac fibrosis is found both in acute, and in chronic study. In acute study cardiac fibrosis was located mainly in a right ventricle. In chronic study cardiac fibrosis was located in both ventricles, but also mainly in a right one.Conclusion. Significant morphological «asynchronism» of the left and right ventricles remodeling requires elaboration of methods of myocardium protection and cardiac function control during dopamine administration. 

  13. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    Science.gov (United States)

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  15. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  16. The Use of Functional MRI to Study Appetite Control in the CNS

    Directory of Open Access Journals (Sweden)

    Akila De Silva

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI has provided the opportunity to safely investigate the workings of the human brain. This paper focuses on its use in the field of human appetitive behaviour and its impact in obesity research. In the present absence of any safe or effective centrally acting appetite suppressants, a better understanding of how appetite is controlled is vital for the development of new antiobesity pharmacotherapies. Early functional imaging techniques revealed an attenuation of brain reward area activity in response to visual food stimuli when humans are fed—in other words, the physiological state of hunger somehow increases the appeal value of food. Later studies have investigated the action of appetite modulating hormones on the fMRI signal, showing how the attenuation of brain reward region activity that follows feeding can be recreated in the fasted state by the administration of anorectic gut hormones. Furthermore, differences in brain activity between obese and lean individuals have provided clues about the possible aetiology of overeating. The hypothalamus acts as a central gateway modulating homeostatic and nonhomeostatic drives to eat. As fMRI techniques constantly improve, functional data regarding the role of this small but hugely important structure in appetite control is emerging.

  17. Quantitative evaluation of the reticuloendothelial system function with dynamic MRI.

    Directory of Open Access Journals (Sweden)

    Ting Liu

    Full Text Available To evaluate the reticuloendothelial system (RES function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO using dynamic magnetic resonance imaging (MRI with two-compartment pharmacokinetic modeling.Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg. Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density.The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03. A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005.Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level.

  18. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine

    International Nuclear Information System (INIS)

    Roy, Arup Kumer; In, Insik; Park, Byoungnam; Lee, Kang Seok; Park, Sung Young

    2014-01-01

    Boron nitride nanosheet (BNNS) decorated with silver nanoparticles (AgNPs) was successfully synthesized via mussel-inspired chemistry of dopamine. Poly(dopamine)-functionalized BNNS (PDA-BNNS) was prepared by adding dopamine into the aqueous dispersion of hydroxylated BNNS (OH-BNNS) at alkaline condition. AgNPs were decorated on PDA-BNNS through spontaneous reduction of silver cations by catechol moieties of a PDA layer on BNNS, resulting in AgNP-BNNS with good dispersion stability. Incorporation of PDA on BNNS not only played a role as a surface functionalization method of BNNS, but also provided a molecular platform for creating very sophisticated two-dimensional (2D) BNNS-based hybrid nanomaterials such as metal nanoparticle-decorated BNNS. (paper)

  19. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  20. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  1. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    Science.gov (United States)

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  2. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  3. Three-dimensional anisotropy contrast MRI and functional MRI of the human brain. Clinical application to assess pyramidal tract in patients with brain tumor and infarction

    International Nuclear Information System (INIS)

    Morikawa, Minoru; Kaminogo, Makio; Ishimaru, Hideki; Nakashima, Kazuaki; Kitagawa, Naoki; Ochi, Makoto; Hayashi, Kuniaki; Shibata, Shobu; Kabasawa, Hiroyuki

    2001-01-01

    We describe and evaluate the findings of three-dimensional anisotropy contrast MR axonography (3DAC MRX) and functional MRI (fMRI) in brain tumor and infarction. We obtained diffusion-weighted images (DWI) in 28 patients including 23 brain tumors and 15 acute infarctions located in or near pyramidal tract. Three anisotropic DWIs were transformed into graduations color-coded as red, green and blue, and then composed to form a combined color 3DAC MRX. We also performed functional MRI in 7 of the 28 patients and compared with cortical mapping of 3DAC MRX. 3DAC MRX with 23 brain tumors showed that the ipsilateral pyramidal tract was either discontinuous due to impaired anisotropy (n=8) or compressed due to mass effect (n=15). In 10 patients of acute infarction with motor impairment, pyramidal tract involvement was visually more conspicuous on 3DAC MRX compared to standard DWI. On functional MRI, hand motor activation was observed between blue vertical directional colors of pre- and post central gyrus. In conclusion, 3DAC MRX is a new noninvasive approach for visualization of the white matter neuronal tract and provides the information concerning pyramidal tract involvement. (author)

  4. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia

    NARCIS (Netherlands)

    Hanusch, Christine; Nowak, Kai; Toerlitz, Patrizia; Gill, Ishar S.; Song, Hui; Rafat, Neysan; Brinkkoetter, Paul T.; Leuvenink, Henri G.; Van Ackern, Klaus C.; Yard, Benito A.; Beck, Grietje C.

    2008-01-01

    Background. Endothelial barrier dysfunction severely compromises organ function after reperfusion. Because dopamine pretreatment improves hypothermia mediated barrier dysfunction, we tested the hypothesis that dopamine treatment of lung allografts positively affects tissue damage associated with

  5. Study on dopamine D{sub 2} binding capacity in vascular parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Terashi, Hiroo; Nagata, Ken; Hirata, Yutaka; Hatazawa, Jun [Research Inst. for Brain and Blood Vessels, Akita (Japan); Utsumi, Hiroya [Tokyo Medical Coll. (Japan)

    2001-10-01

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [{sup 11}C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D{sub 2} receptor (k{sub 3}) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D{sub 2} receptor binding [%k{sub 3}] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k{sub 3} did not correspond to that of the parkinsonism. Thus, the striatal dopamine D{sub 2} receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D{sub 2} receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  6. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  7. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  8. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  9. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Directory of Open Access Journals (Sweden)

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  10. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    Science.gov (United States)

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  11. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    Science.gov (United States)

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene.

    Science.gov (United States)

    Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L; Noori, Hamid R; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C; Schloss, Patrick; Spanagel, Rainer

    2017-04-01

    The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene ( Slc6a3 _N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3 _N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. © 2017. Published by The Company of Biologists Ltd.

  13. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. PreSurgMapp: a MATLAB Toolbox for Presurgical Mapping of Eloquent Functional Areas Based on Task-Related and Resting-State Functional MRI.

    Science.gov (United States)

    Huang, Huiyuan; Ding, Zhongxiang; Mao, Dewang; Yuan, Jianhua; Zhu, Fangmei; Chen, Shuda; Xu, Yan; Lou, Lin; Feng, Xiaoyan; Qi, Le; Qiu, Wusi; Zhang, Han; Zang, Yu-Feng

    2016-10-01

    The main goal of brain tumor surgery is to maximize tumor resection while minimizing the risk of irreversible postoperative functional sequelae. Eloquent functional areas should be delineated preoperatively, particularly for patients with tumors near eloquent areas. Functional magnetic resonance imaging (fMRI) is a noninvasive technique that demonstrates great promise for presurgical planning. However, specialized data processing toolkits for presurgical planning remain lacking. Based on several functions in open-source software such as Statistical Parametric Mapping (SPM), Resting-State fMRI Data Analysis Toolkit (REST), Data Processing Assistant for Resting-State fMRI (DPARSF) and Multiple Independent Component Analysis (MICA), here, we introduce an open-source MATLAB toolbox named PreSurgMapp. This toolbox can reveal eloquent areas using comprehensive methods and various complementary fMRI modalities. For example, PreSurgMapp supports both model-based (general linear model, GLM, and seed correlation) and data-driven (independent component analysis, ICA) methods and processes both task-based and resting-state fMRI data. PreSurgMapp is designed for highly automatic and individualized functional mapping with a user-friendly graphical user interface (GUI) for time-saving pipeline processing. For example, sensorimotor and language-related components can be automatically identified without human input interference using an effective, accurate component identification algorithm using discriminability index. All the results generated can be further evaluated and compared by neuro-radiologists or neurosurgeons. This software has substantial value for clinical neuro-radiology and neuro-oncology, including application to patients with low- and high-grade brain tumors and those with epilepsy foci in the dominant language hemisphere who are planning to undergo a temporal lobectomy.

  15. An Introduction to Normalization and Calibration Methods in Functional MRI

    Science.gov (United States)

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  16. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Science.gov (United States)

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  17. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    Science.gov (United States)

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  19. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    International Nuclear Information System (INIS)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-01-01

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm 3 achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm 3 voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm 3 to 0.43 × 0.43 × 2 mm 3 has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain

  20. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  1. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    Science.gov (United States)

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  2. Functional MRI studies in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Zhang Lei; Jin Zhen; Zeng Yawei; Wang Yan; Zang Yufeng

    2004-01-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map

  3. Functional MRI studies in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhang; Zhen, Jin; Yawei, Zeng; Yan, Wang [fMRI Center, Lab of Cognition Science and Learning, National Education Ministry and Department of Radiology, 306 Hospital of PLA, Beijing (China); Yufeng, Zang

    2004-06-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map.

  4. Clinical fMRI of language function in aphasic patients: Reading paradigm successful, while word generation paradigm fails

    International Nuclear Information System (INIS)

    Engstroem, Maria; Landtblom, Anne-Marie; Ragnehed, Mattias; Lundberg, Peter; Karlsson, Marie; Crone, Marie; Antepohl, Wolfram

    2010-01-01

    Background: In fMRI examinations, it is very important to select appropriate paradigms assessing the brain function of interest. In addition, the patients' ability to perform the required cognitive tasks during fMRI must be taken into account. Purpose: To evaluate two language paradigms, word generation and sentence reading for their usefulness in examinations of aphasic patients and to make suggestions for improvements of clinical fMRI. Material and Methods: Five patients with aphasia after stroke or trauma sequelae were examined by fMRI. The patients' language ability was screened by neurolinguistic tests and elementary pre-fMRI language tests. Results: The sentence-reading paradigm succeeded to elicit adequate language-related activation in perilesional areas whereas the word generation paradigm failed. These findings were consistent with results on the behavioral tests in that all patients showed very poor performance in phonemic fluency, but scored well above mean at a reading comprehension task. Conclusion: The sentence-reading paradigm is appropriate to assess language function in this patient group, while the word-generation paradigm seems to be inadequate. In addition, it is crucial to use elementary pre-fMRI language tests to guide the fMRI paradigm decision.

  5. Clinical fMRI of language function in aphasic patients: Reading paradigm successful, while word generation paradigm fails

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Maria; Landtblom, Anne-Marie; Ragnehed, Mattias; Lundberg, Peter (Center for Medical Image Science and Visualization (CMIV), Linkoeping Univ., Linkoeping (Sweden)), e-mail: maria.engstrom@liu.se; Karlsson, Marie; Crone, Marie (Dept. of Clinical and Experimental Medicine/Logopedics, Linkoeping Univ., Linkoeping (Sweden)); Antepohl, Wolfram (Dept. of Clinical and Experimental Medicine/Rehabilitation, Linkoeping Univ., Linkoeping (Sweden))

    2010-07-15

    Background: In fMRI examinations, it is very important to select appropriate paradigms assessing the brain function of interest. In addition, the patients' ability to perform the required cognitive tasks during fMRI must be taken into account. Purpose: To evaluate two language paradigms, word generation and sentence reading for their usefulness in examinations of aphasic patients and to make suggestions for improvements of clinical fMRI. Material and Methods: Five patients with aphasia after stroke or trauma sequelae were examined by fMRI. The patients' language ability was screened by neurolinguistic tests and elementary pre-fMRI language tests. Results: The sentence-reading paradigm succeeded to elicit adequate language-related activation in perilesional areas whereas the word generation paradigm failed. These findings were consistent with results on the behavioral tests in that all patients showed very poor performance in phonemic fluency, but scored well above mean at a reading comprehension task. Conclusion: The sentence-reading paradigm is appropriate to assess language function in this patient group, while the word-generation paradigm seems to be inadequate. In addition, it is crucial to use elementary pre-fMRI language tests to guide the fMRI paradigm decision.

  6. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven; Wetzel, Stephan G. [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Luetschg, Juerg [University Children' s Hospital (UKBB), Basel (Switzerland)

    2008-05-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  7. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    International Nuclear Information System (INIS)

    Haller, Sven; Wetzel, Stephan G.; Luetschg, Juerg

    2008-01-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  8. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis.

    Science.gov (United States)

    Haller, Sven; Wetzel, Stephan G; Lütschg, Jürg

    2008-05-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network.

  9. Analyzing functional, structural, and anatomical correlation of hemispheric language lateralization in healthy subjects using functional MRI, diffusion tensor imaging, and voxel-based morphometry.

    Science.gov (United States)

    James, Jija S; Kumari, Sheela R; Sreedharan, Ruma Madhu; Thomas, Bejoy; Radhkrishnan, Ashalatha; Kesavadas, Chandrasekharan

    2015-01-01

    To evaluate the efficacy of diffusion fiber tractography (DFT) and voxel-based morphometry (VBM) for lateralizing language in comparison with functional magnetic resonance imaging (fMRI) to noninvasively assess hemispheric language lateralization in normal healthy volunteers. The aim of the present study is to evaluate the concordance of language lateralization obtained by diffusion tensor imaging (DTI) and VBM to fMRI, and thus to see whether there exists an anatomical correlate for language lateralization result obtained using fMRI. This is an advanced neuroimaging study conducted in normal healthy volunteers. Fifty-seven normal healthy subjects (39 males and 18 females; age range: 15-40 years) underwent language fMRI and 30 underwent direction DTI. fMRI language laterality index (LI), fiber tract asymmetry index (AI), and tract-based statistics of dorsal and ventral language pathways were calculated. The combined results were correlated with VBM-based volumetry of Heschl's gyrus (HG), planum temporale (PT), and insula for lateralization of language function. A linear regression analysis was done to study the correlation between fMRI, DTI, and VBM measurements. A good agreement was found between language fMRI LI and fiber tract AI, more specifically for arcuate fasciculus (ArcF) and inferior longitudinal fasciculus (ILF). The study demonstrated significant correlations (P based statistics, and PT and HG volumetry for determining language lateralization. A strong one-to-one correlation between fMRI, laterality index, DTI tractography measures, and VBM-based volumetry measures for determining language lateralization exists.

  10. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    Science.gov (United States)

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  11. Visualization and quantification of large bowel motility with functional cine-MRI

    International Nuclear Information System (INIS)

    Buhmann, S.; Wielage, C.; Fischer, T.; Reiser, M.; Lienemann, A.; Kirchhoff, C.; Mussack, T.

    2005-01-01

    Purpose: to develop and evaluate a method to visualize and quantify large bowel motility using functional cine MRI. Methods: fifteen healthy individuals (8males, 7 females, 20 to 45 years old) with no history or present symptoms of bowel disorders were enrolled in a functional cine MRI examination at 6 a. m. after a starving phase for at least eight hours before and after oral administration of Senna tea (mild stimulating purgative). Two consecutive sets of repeated measurements of the entire abdomen were performed using a 1.5T MRI system with coronal T2-weighted HASTE sequences anatomically adjusted to the course of the large bowel. A navigator technique was used for respiratory gating at the level of the right dorsal diaphragm. The changes in diameter (given in cm) were measured at 5 different locations of the ascending (AC), transverse (TC) and descending colon (DC), and assessed as parameters for the bowel motility. Results: the mean values as a statistical measure for large bowel relaxation were determined. Before ingestion of Senna tea, the mean diameter measured 3.41 cm (ascending colon), 3 cm (transverse colon) and 2.67 cm (descending colon). After the ingestion of Senna tea, the mean diameter increased to 3.69 cm (ascending colon) to 3.4 cm (transverse colon) and to 2.9 cm (descending colon). A statistically significant difference was demonstrated with the Wilcoxon test (level of confidence 0.05). For the determination of dynamic increase, the changes of the statistical scatter amplitude to the mean value were expressed as percentage before and after the ingestion of Senna tea. Thereby, an increase in variation and dynamic range was detected for the AC (112.9%) and DC (100%), but a decrease in the dynamics for the TC (69%). Conclusion: a non-invasive method for the assessment of bowel motility was developed for the first time. The use of functional cine MRI utilizing a prokinetic stimulus allowed visualisation and quantification of large bowel motility

  12. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  13. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  14. Linking unfounded beliefs to genetic dopamine availability

    Science.gov (United States)

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  15. Linking unfounded beliefs to genetic dopamine availability

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2015-09-01

    Full Text Available Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity towards unfounded beliefs. 109 healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818 and rs4680, also known as val158met that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioural experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity towards unfounded beliefs, and that this effect was mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  16. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain.

    Science.gov (United States)

    Sinclair, Duncan; Purves-Tyson, Tertia D; Allen, Katherine M; Weickert, Cynthia Shannon

    2014-04-01

    Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.

  17. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tyler J. Bruinsma

    2018-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.

  18. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan)

    2003-03-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  19. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    International Nuclear Information System (INIS)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N.

    2003-01-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  20. Robust preprocessing for stimulus-based functional MRI of the moving fetus.

    Science.gov (United States)

    You, Wonsang; Evangelou, Iordanis E; Zun, Zungho; Andescavage, Nickie; Limperopoulos, Catherine

    2016-04-01

    Fetal motion manifests as signal degradation and image artifact in the acquired time series of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) studies. We present a robust preprocessing pipeline to specifically address fetal and placental motion-induced artifacts in stimulus-based fMRI with slowly cycled block design in the living fetus. In the proposed pipeline, motion correction is optimized to the experimental paradigm, and it is performed separately in each phase as well as in each region of interest (ROI), recognizing that each phase and organ experiences different types of motion. To obtain the averaged BOLD signals for each ROI, both misaligned volumes and noisy voxels are automatically detected and excluded, and the missing data are then imputed by statistical estimation based on local polynomial smoothing. Our experimental results demonstrate that the proposed pipeline was effective in mitigating the motion-induced artifacts in stimulus-based fMRI data of the fetal brain and placenta.

  1. Identification by functional MRI of human cerebral region activated by taste stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Naoya [Osaka Univ. (Japan). Faculty of Dentistry

    2000-09-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  2. Identification by functional MRI of human cerebral region activated by taste stimulation

    International Nuclear Information System (INIS)

    Kakimoto, Naoya

    2000-01-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  3. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  4. Effects of anesthesia on renal function and metabolism in rats assessed by hyperpolarized MRI

    DEFF Research Database (Denmark)

    Qi, Haiyun; Mariager, Christian Østergaard; Lindhardt, Jakob

    2018-01-01

    . In the present study, we aimed to investigate the renal functional and metabolic consequences of 3 typical rodent anesthetics used in preclinical MRI: sevoflurane, inaction, and a mixture of fentanyl, fluanisone, and midazolam (FFM). METHODS: The renal effects of 3 different classes of anesthetics (inactin......, servoflurane, and FFM) were investigated using functional and metabolic MRI. The renal glucose metabolism and hemodynamics was characterized with hyperpolarized [1-13C]pyruvate MRI and by DCE imaging. RESULTS: Rats receiving sevoflurane or FFM had blood glucose levels that were 1.3-fold to 1.4-fold higher than...... rats receiving inactin. A 2.9-fold and 4.8-fold increased13C-lactate/13C-pyruvate ratio was found in the FFM mixture anesthetized group compared with the sevoflurane and the inactin anesthetized groups. The FFM anesthesia resulted in a 50% lower renal plasma flow compared with the sevoflurane...

  5. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    Science.gov (United States)

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  6. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake.

    Directory of Open Access Journals (Sweden)

    Gene-Jack Wang

    Full Text Available Dopamine mediates the rewarding effects of food that can lead to overeating and obesity, which then trigger metabolic neuroadaptations that further perpetuate excessive food consumption. We tested the hypothesis that the dopamine response to calorie intake (independent of palatability in striatal brain regions is attenuated with increases in weight.We used positron emission tomography with [11C]raclopride to measure dopamine changes triggered by calorie intake by contrasting the effects of an artificial sweetener (sucralose devoid of calories to that of glucose to assess their association with body mass index (BMI in nineteen healthy participants (BMI range 21-35.Neither the measured blood glucose concentrations prior to the sucralose and the glucose challenge days, nor the glucose concentrations following the glucose challenge vary as a function of BMI. In contrast the dopamine changes in ventral striatum (assessed as changes in non-displaceable binding potential of [11C]raclopride triggered by calorie intake (contrast glucose - sucralose were significantly correlated with BMI (r = 0.68 indicating opposite responses in lean than in obese individuals. Specifically whereas in normal weight individuals (BMI <25 consumption of calories was associated with increases in dopamine in the ventral striatum in obese individuals it was associated with decreases in dopamine.These findings show reduced dopamine release in ventral striatum with calorie consumption in obese subjects, which might contribute to their excessive food intake to compensate for the deficit between the expected and the actual response to food consumption.

  7. Endogenous versus exogenous lithium clearance for evaluation of dopamine-induced changes in renal tubular function

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Fogh-Andersen, N; Strandgaard, S

    1996-01-01

    1. The present randomized, double-blind cross-over study compared endogenous and exogenous lithium clearance (CLi) for estimation of the effect of dopamine on tubular sodium reabsorption. Twelve normal, salt-repleted male subjects were investigated on three different occasions with either placebo...... or 450 mg or 600 mg of lithium given in random order at 22.00 hours. After an overnight fast, renal clearance studies were performed during a 1 h baseline period and subsequently during the second hour of an infusion of 3 micrograms min-1 kg-1 of dopamine. 2. Baseline values of endogenous CLi.......3-31.0)% (P lithium increased the baseline sodium clearance (CNa), but glomerular filtration rate and urine flow rate remained unchanged. 3. Dopamine increased CNa to similar values on the three study days. CLi increased to 40.9 (35.5-46.5) ml/min (endogenous lithium, P

  8. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis

    Directory of Open Access Journals (Sweden)

    Albert C. Yang

    2017-08-01

    Full Text Available Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.

  9. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    Science.gov (United States)

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  10. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Niggemann Bernd

    2009-12-01

    Full Text Available Abstract Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.

  11. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

    2011-05-01

    Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.

  12. Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine.

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco; Patel, Nisa; Frum, Chris; Lewis, James W

    2010-11-01

    Brain imaging is becoming a powerful tool in the study of human cerebral functions related to close personal relationships. Outside of subcortical structures traditionally thought to be involved in reward-related systems, a wide range of neuroimaging studies in relationship science indicate a prominent role for different cortical networks and cognitive factors. Thus, the field needs a better anatomical/network/whole-brain model to help translate scientific knowledge from lab bench to clinical models and ultimately to the patients suffering from disorders associated with love and couple relationships. The aim of the present review is to provide a review across wide range of functional magnetic resonance imaging (fMRI) studies to critically identify the cortical networks associated with passionate love, and to compare and contrast it with other types of love (such as maternal love and unconditional love for persons with intellectual disabilities). Retrospective review of pertinent neuroimaging literature. Review of published literature on fMRI studies of love illustrating brain regions associated with different forms of love. Although all fMRI studies of love point to the subcortical dopaminergic reward-related brain systems (involving dopamine and oxytocin receptors) for motivating individuals in pair-bonding, the present meta-analysis newly demonstrated that different types of love involve distinct cerebral networks, including those for higher cognitive functions such as social cognition and bodily self-representation. These metaresults provide the first stages of a global neuroanatomical model of cortical networks involved in emotions related to different aspects of love. Developing this model in future studies should be helpful for advancing clinical approaches helpful in sexual medicine and couple therapy. © 2010 International Society for Sexual Medicine.

  13. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  14. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  15. Functional MRI of Multilingual Subjects

    International Nuclear Information System (INIS)

    Cho, Jae Min; Ryoo, Jae Wook; Choi, Dae Seob; Shin, Tae Beom; Chung, Sung Hoon; Kim, Ji Eun; Han, Heon; Kim, Sam Soo; Jeon, Yong Hwan

    2009-01-01

    To evaluate brain activation areas during the processing of languages in multilingual volunteers by functional MRI and to examine the differences between the mother and foreign languages. Nine multilingual (Korean, French, and English speaking) Korean individuals were enrolled in this study. Functional images were acquired during a lexical decision task (LDT) and picture naming task (PNT) in each of the Korean, French and English languages. The areas activated were analyzed topographically in each language and task, and compared between languages. Activation was noted in Broca's area, supramarginal gyrus, fusiform gyrus during the LDT. During the PNT, activation was noted in Broca's area, left prefrontal area, cerebellum, right extrastriated cortex. While Broca's area activation was observed for all languages during LDT, there was more activation in Broca's area and additional activation in the right prefrontal area with foreign languages. During the PNT, there was more activation in the left prefrontal area with foreign languages. Broca's area, which is known as a major language region, was activated by all languages and tasks. The brain activation areas were largely overlapping with the mother and foreign languages. However, there were wider areas of activation and additional different activation areas with foreign languages. These results suggest more cerebral effort during foreign language processing

  16. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    Science.gov (United States)

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  17. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Science.gov (United States)

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  18. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    Science.gov (United States)

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  19. Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review.

    Science.gov (United States)

    Jongkees, Bryant J; Colzato, Lorenza S

    2016-12-01

    An extensive body of research suggests the spontaneous eye blink rate (EBR) is a non-invasive indirect marker of central dopamine (DA) function, with higher EBR predicting higher DA function. In the present review we provide a comprehensive overview of this literature. We broadly divide the available research in studies that aim to disentangle the dopaminergic underpinnings of EBR, investigate its utility in diagnosis of DA-related disorders and responsivity to drug treatment, and, lastly, investigate EBR as predictor of individual differences in DA-related cognitive performance. We conclude (i) EBR can reflect both DA receptor subtype D1 and D2 activity, although baseline EBR might be most strongly related to the latter, (ii) EBR can predict hypo- and hyperdopaminergic activity as well as normalization of this activity following treatment, and (iii) EBR can reliably predict individual differences in performance on many cognitive tasks, in particular those related to reward-driven behavior and cognitive flexibility. In sum, this review establishes EBR as a useful predictor of DA in a wide variety of contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Atlas of regional anatomy of the brain using MRI. With functional correlations

    International Nuclear Information System (INIS)

    Tamraz, J.C.

    2006-01-01

    The volume provides a unique review of the essential topographical anatomy of the brain from an MRI perspective, correlating high-quality anatomical plates with the corresponding high-resolution MRI images. The book includes a historical review of brain mapping and an analysis of the essential reference planes used for the study of the human brain. Subsequent chapters provide a detailed review of the sulcal and the gyral anatomy of the human cortex, guiding the reader through an interpretation of the individual brain atlas provided by high-resolution MRI. The relationship between brain structure and function is approached in a topographical fashion with analysis of the necessary imaging methodology and displayed anatomy. The central, perisylvian, mesial temporal and occipital areas receive special attention. Imaging of the core brain structures is included. An extensive coronal atlas concludes the book. (orig.)

  1. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  2. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  3. Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson's disease?

    Science.gov (United States)

    Laloux, C; Gouel, F; Lachaud, C; Timmerman, K; Do Van, B; Jonneaux, A; Petrault, M; Garcon, G; Rouaix, N; Moreau, C; Bordet, R; Duce, J A; Devedjian, J C; Devos, D

    2017-07-01

    In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Value of functional MRI in evaluation of patients with suspected prostate cancer

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed Mostafa Elian

    2015-12-01

    Conclusion: Functional MRI provided a highly sensitive method in diagnosing and localizing prostate cancer. Being noninvasive, highly sensitive with wider spectrum in nearby pelvic organs assessment in one imaging session, it may totally replace TRUS-guided biopsy.

  5. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  6. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  7. Functional MRI of Language Processing and Recovery

    NARCIS (Netherlands)

    C. Méndez Orellana (Carolina)

    2015-01-01

    markdownabstract__Abstract__ My thesis describe the utility of implementing fMRI to investigate how the language system is reorganized in brain damaged patients. Specifically for aphasia research fMRI allows to show how specific language treatment methods have the potential to enhance language

  8. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    Science.gov (United States)

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron

  9. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  10. Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional 1H-MRI and 23Na-MRI

    International Nuclear Information System (INIS)

    Haneder, S.; Michaely, H.J.; Schoenberg, S.O.; Konstandin, S.; Schad, L.R.; Siebenlist, K.; Wertz, H.; Wenz, F.; Lohr, F.; Boda-Heggemann, J.

    2012-01-01

    Purpose: Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, 23 Na imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Patients and methods Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and 23 Na images were acquired. Mean values/standard deviations for ( 23 Na), the apparent diffusion coefficient (ADC), and R2 * values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary 23 Na-concentration gradients were determined. Results: Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2 * values in all renal parts. Values for mean corticomedullary 23 Na-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001 - p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2 * values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. ( 23 Na) of the renal cranial parts in the 3D-CRT group was significantly reduced

  11. Glutamate and dopamine in schizophrenia: an update for the 21st century

    Science.gov (United States)

    Howes, Oliver; McCutcheon, Rob; Stone, James

    2016-01-01

    The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an up- date on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on the in vivo neuroimaging studies in patients and clinical high risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed. PMID:25586400

  12. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  13. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  14. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  15. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip

    OpenAIRE

    An, Seong Soo; Ankireddy,Seshadri Reddy; Kim,Jongsung

    2015-01-01

    Seshadri Reddy Ankireddy, Jongsung Kim Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do, South Korea Abstract: Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescen...

  16. Dopamine natriuresis in salt-repleted, water-loaded humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Bonde, J

    1997-01-01

    The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers....

  17. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Krestin, G.P.; Fischbach, R.; Vorreuther, R.; Schulthess, G.K. von

    1993-01-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  18. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  19. Beyond dopamine: functional MRI predictors of responsiveness to cognitive behaviour therapy for psychosis

    Directory of Open Access Journals (Sweden)

    Veena Kumari

    2010-02-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:Table Normal; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri,sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Times New Roman; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Times New Roman; mso-bidi-theme-font:minor-bidi;} Despite the favourable effects of antipsychotics on positive symptoms of schizophrenia, many patients continue to suffer from distressing symptoms. Additional benefi ts of cognitive behavior therapy for psychosis (CBTp have been reported for approximately 50% of such patients. Given the role of left hemisphere-based language processes in responsiveness to CBT for depression, and language pathway abnormalities in psychosis, this study examined whether pre-therapy brain activity during a verbal monitoring task predicts CBTp responsiveness in schizophrenia. Fifty-two outpatients, stable on antipsychotics with at least one persistent distressing positive symptom and wishing to receive CBTp adjunctive to their treatment-as-usual, and 20 healthy participants underwent fMRI during monitoring of self- and externally-generated (normal and distorted speech. Subsequently, 26 patients received CBTp for 6-8 months adjunctive to their treatment-as-usual (CBTp + TAU, 20 completers, and 26 continued with their treatment-as-usual (TAU-alone, 18 completers. Symptoms were assessed (blindly at entry and follow-up. The CBTp + TAU and TAU-alone groups had comparable

  20. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  1. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  2. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Individual differences in impulsive action and dopamine transporter function in rat orbitofrontal cortex.

    Science.gov (United States)

    Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T

    2016-01-28

    Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas

    2011-08-01

    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  5. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  6. Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging, and functional MRI

    International Nuclear Information System (INIS)

    Schad, L.R.; Bock, M.; Baudendistel, K.; Essig, M.; Debus, J.; Knopp, M.V.; Engenhart, R.; Lorenz, W.J.

    1996-01-01

    The authors report the sterotactic correlation of different MRI-techniques [MR angiography (MRA), MRI, blood bolus tagging (STAR), and functional MRI] in 10 patients with cerebral arteriovenous malformations (AVM) and its application in precision radiotherapy planning. The patient's head was fixed in a stereotactic localization system. By phantom measurements different materials (steel, aluminium, titanium, plastic, wood, ceramics) used for the stereotactic system were tested for mechanical stability and geometrical MR image distortion. All metallic stereotactic rings led to a more or less dramatic geometrical distortion and signal cancellation in the MR images. The best properties - nearly no distortion and high mechanical stability - are provided by a ceramic ring. If necessary, the remaining geometrical MR image distortion can be 'corrected' by calculations based on modeling the distortion as a fourth-order 2D-polynomial. Using this method multimodality matching can be performed automatically as long as all images are acquired in the same examination and the patient is sufficiently immobilized. Precise definition of the target volume could be performed by the radiotherapist either directly in MR images or in calculated projection MR angiograms. As a result, information about the hemodynamics of the AVM was provided by a 3D-phase-contrast flow measurement and a dynamic MRA with the STAR technique leading to an improved definition of the size of the nidus, and the pattern of the venous drainage. In addition, functional MRI was performed in patients with lesions close to the primary motor cortex area leading to an improved definition of structures at risk for high-dose application in radiosurgery. (orig./MG)

  7. Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl

    Science.gov (United States)

    Yadav, T.; Mukherjee, V.

    2018-05-01

    The potential energy scanning with respect to the different dihedral angles were performed to search possible numbers of dopamine (neutral) conformers and further, fifteen conformers of dopamine were identified on the basis of energy minima. Vibrational frequencies were calculated for all the conformers of dopamine. Density functional theory was employed to carry out all the computations. The exchange correlation functional B3LYP and the basis set 6-31++G(d,p) were included in DFT calculation. The FTIR and FT-Raman spectra of dopamine hydrochloride were also recorded in the spectral region 400-4000 cm-1 and 50-4000 cm-1 respectively. The normal coordinate analysis was also performed to scale DFT calculated force constants and to calculate potential energy distributions. The detailed vibrational spectral analysis and the assignments of the bands, done on the best-fit basis comparison of the experimentally obtained and theoretically calculated IR and Raman spectra, match quite well indicating DFT calculations as very accurate source of normal mode assignments. The interaction of the most stable conformer of dopamine with HCl was also studied to know the effect of hydrogen bond on its geometry and dynamics. The stability of the dopamine in isolated and protonated forms arising from hyperconjugative interactions was also analyzed by natural bond orbital analysis.

  8. Dopamine and extinction: A convergence of theory with fear and reward circuitry

    OpenAIRE

    Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew

    2013-01-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks...

  9. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  10. Relationship between DCE-MRI morphological and functional features and histopathological characteristics of breast cancer

    International Nuclear Information System (INIS)

    Montemurro, Filippo; Redana, Stefania; Aglietta, Massimo; Martincich, Laura; Bertotto, Ilaria; Cellini, Lisa; Sarotto, Ivana; Ponzone, Riccardo; Sismondi, Piero; Regge, Daniele

    2007-01-01

    We studied whether dynamic contrast-enhanced MRI (DCE-MRI) could identify histopathological characteristics of breast cancer. Seventy-five patients with breast cancer underwent DCE-MRI followed by core biopsy. DCE-MRI findings were evaluated following the scoring system published by Fischer in 1999. In this scoring system, five DCE-MRI features, three morphological (shape, margins, enhancement kinetic) and two functional (initial peak of signal intensity (SI) increase and behavior of signal intensity curve), are defined by 14 parameters. Each parameter is assigned points ranging from 0 to 1 or 0 to 2, with higher points for those that are more likely to be associated with malignancy. The sum of all the points defines the degree of suspicion of malignancy, with a score 0 representing the lowest and 8 the highest degree of suspicion. Associations between DCE-MRI features and tumor histopathological characteristics assessed on core biopsies (histological type, grading, estrogen and progesterone receptor status, Ki67 and HER2 status) were studied by contingency tables and logistic regression analysis. We found a significant inverse association between the Fischer's score and HER2-overexpression (odds ratio-OR 0.608, p = 0.02). Based on our results, we suggest that lesions with intermediate-low suspicious DCE-MRI parameters may represent a subset of tumor with poor histopathological characteristics. (orig.)

  11. Motor association cortex activity in Parkinson's disease. A functional MRI study

    International Nuclear Information System (INIS)

    Tada, Yukiko

    1998-01-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  12. Tablet-Based Functional MRI of the Trail Making Test: Effect of Tablet Interaction Mode

    Directory of Open Access Journals (Sweden)

    Mahta Karimpoor

    2017-10-01

    Full Text Available The Trail Making Test (TMT is widely used for assessing executive function, frontal lobe abilities, and visual motor skills. Part A of this pen-and-paper test (TMT-A involves linking numbers randomly distributed in space, in ascending order. Part B (TMT-B alternates between linking numbers and letters. TMT-B is more demanding than TMT-A, but the mental processing that supports the performance of this test remains incompletely understood. Functional MRI (fMRI may help to clarify the relationship between TMT performance and brain activity, but providing an environment that supports real-world pen-and-paper interactions during fMRI is challenging. Previously, an fMRI-compatible tablet system was developed for writing and drawing with two modes of interaction: the original cursor-based, proprioceptive approach, and a new mode involving augmented reality to provide visual feedback of hand position (VFHP for enhanced user interaction. This study characterizes the use of the tablet during fMRI of young healthy adults (n = 22, with half of the subjects performing TMT with VFHP and the other half performing TMT without VFHP. Activation maps for both TMT-A and TMT-B performance showed considerable overlap between the two tablet modes, and no statistically differences in brain activity were detected when contrasting TMT-B vs. TMT-A for the two tablet modes. Behavioral results also showed no statistically different interaction effects for TMT-B vs. TMT-A for the two tablet modes. Tablet-based TMT scores showed reasonable convergent validity with those obtained by administering the standard pen-and-paper TMT to the same subjects. Overall, the results suggest that despite the slightly different mechanisms involved for the two modes of tablet interaction, both are suitable for use in fMRI studies involving TMT performance. This study provides information for using tablet-based TMT methods appropriately in future fMRI studies involving patients and healthy

  13. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  14. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  15. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Carbon nanopillars for enhanced stem cell differentiation and dopamine detection

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Amato, Letizia; Valsesia, Andrea

    of human neural stem cells (hNSCs) into dopaminergic neurons and that they can also be employed for detecting dopamine release from mature neurons attached to them [1]. Here, we report 3D carbon nanopillars, fabricated through colloidal lithography, with even more pronounced effect on the electrochemical......Parkinson’s disease is characterized by a deficit of dopamine in the brain, a neurotransmitter involved in the motor function. One of the future ideas for treatment is cell replacement therapy. Our group has previously shown that pyrolysed 3D carbon micropillars induce spontaneous differentiation...

  17. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  19. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  20. Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Daniela Pinter

    2015-01-01

    Conclusions: The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (microstructural correlates of different cognitive constructs.

  1. Practical Introduction to Cerebral Functional Magnetic Resonance (fMRI)

    International Nuclear Information System (INIS)

    Delgado, Jorge Andres; Rascovsky Simon; Sanz, Alexander; Castrillon, Juan Gabriel

    2008-01-01

    Magnetic resonance (MR ) imaging holds a privileged position within neuroimaging techniques owing to its high anatomic detail and its capacity to study many physiological processes. The appearance of functional magnetic resonance (fMR I) brings more relevance to MR , turning it into a powerful tool with the ability to group, in a single exam, high-resolution anatomy and cerebral function. In this article we describe the principles and some advantages of fMRI compared to other neuro functional imaging modalities. In addition, we present the site wide and analysis requisites for the performance and post-processing of the most common neuro functional experiments in clinical practice. We also include neuro functional images obtained at Instituto de Alta Tecnologia Medica of Antioquia (IATM ) on a healthy volunteer group and two pathological cases. Lastly, we mention some of the practical indications of this technique which is still in an intense development, research and validation phase.

  2. New MRI technologies. Diffusion MRI and its application to functional neuroimaging and analyses of white matter integrity

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo

    2010-01-01

    Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)

  3. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  4. Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Caulo, M; Van Hecke, J; Toma, L; Ferretti, A; Tartaro, A; Colosimo, C; Romani, G L; Uncini, A

    2005-07-01

    Anterograde amnesia in Wernicke-Korsakoff syndrome is associated with diencephalic lesions, mainly in the anterior thalamic nuclei. Whether diencephalic and temporal lobe amnesias are distinct entities is still not clear. We investigated episodic memory for faces using functional MRI (fMRI) in eight controls and in a 34-year-old man with Wernicke-Korsakoff syndrome and diencephalic lesions but without medial temporal lobe (MTL) involvement at MRI. fMRI was performed with a 1.5 tesla unit. Three dual-choice tasks were employed: (i) face encoding (18 faces were randomly presented three times and subjects were asked to memorize the faces); (ii) face perception (subjects indicated which of two faces matched a third face); and (iii) face recognition (subjects indicated which of two faces belonged to the group they had been asked to memorize during encoding). All activation was greater in the right hemisphere. In controls both the encoding and recognition tasks activated two hippocampal regions (anterior and posterior). The anterior hippocampal region was more activated during recognition. Activation in the prefrontal cortex was greater during recognition. In the subject with Wernicke-Korsakoff syndrome, fMRI did not show hippocampal activation during either encoding or recognition. During recognition, although behavioural data showed defective retrieval, the prefrontal regions were activated as in controls, except for the ventrolateral prefrontal cortex. fMRI activation of the visual cortices and the behavioural score on the perception task indicated that the subject with Wernicke-Korsakoff syndrome perceived the faces, paid attention to the task and demonstrated accurate judgement. In the subject with Wernicke-Korsakoff syndrome, although the anatomical damage does not involve the MTL, the hippocampal memory encoding has been lost, possibly as a consequence of the hippocampal-anterior thalamic axis involvement. Anterograde amnesia could therefore be the expression of

  5. Dopamine en overmatig alcoholgebruik: genen in interactie met hun omgeving [Dopamine and excessive alcohol consumption: how genes interact with their environment

    NARCIS (Netherlands)

    Schellekens, A.F.A.; Scholte, R.H.J.; Engels, R.C.M.E.; Verkes, R.J.

    2013-01-01

    background Hereditary factors account for approximately 50% of the risk of developing alcohol dependence. Genes that affect the dopamine function in the brain have been extensively studied as candidate genes. aim To present the results of recent Dutch studies on the interaction between genes and

  6. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    Directory of Open Access Journals (Sweden)

    Roland N Boubela

    2014-02-01

    Full Text Available Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to true neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.. From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  7. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Polymorphisms in the dopamine D4 receptor gene (DRD4) contribute to individual differences in human sexual behavior: desire, arousal and sexual function.

    Science.gov (United States)

    Ben Zion, I Z; Tessler, R; Cohen, L; Lerer, E; Raz, Y; Bachner-Melman, R; Gritsenko, I; Nemanov, L; Zohar, A H; Belmaker, R H; Benjamin, J; Ebstein, R P

    2006-08-01

    Although there is some evidence from twin studies that individual differences in sexual behavior are heritable, little is known about the specific molecular genetic design of human sexuality. Recently, a specific dopamine D4 receptor (DRD4) agonist was shown in rats to induce penile erection through a central mechanism. These findings prompted us to examine possible association between the well-characterized DRD4 gene and core phenotypes of human sexual behavior that included desire, arousal and function in a group of 148 nonclinical university students. We observed association between the exon 3 repeat region, and the C-521T and C-616G promoter region SNPs, with scores on scales that measure human sexual behavior. The single most common DRD4 5-locus haplotype (19%) was significantly associated with Desire, Function and Arousal scores. The current results are consistent with animal studies that show a role for dopamine and specifically the DRD4 receptor in sexual behavior and suggest that one pathway by which individual variation in human desire, arousal and function are mediated is based on allelic variants coding for differences in DRD4 receptor gene expression and protein concentrations in key brain areas.

  9. Functional MRI for planning in neurosurgery; Funktionelle MR-Bildgebung fuer die neurochirurgische Operationsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany)

    2007-07-01

    Beside structural images from CT and MR, functional data about localization of brain activations with different tasks becomes more and more important for presurgical planning. With this method, it's possible to depict mainly primary sensory and motoric areas, but also higher functions like speech and memory. To judge this information adequately, one has to be aware of the variability of activation pattern dependent on chosen threshold. Especially, the absence of such activation at a given location does not necessary mean that this area has no function. The reliability of a measurement strongly depends on efficiency of experimental design and cooperation of the patient. Therefore, short and easy tasks which can be performed in a block design should be preferred. Information about localization of functions determined by fMRI can mainly be used for presurgical planning. Intraoperative usage in the navigation system is problematic due to the brain shift. Therefore, intraoperative imaging together with dynamic adaptation using nonlinear deformation algorithms may improve the value of fMRI in the future. (orig.)

  10. Cardiac MRI in patients with complex CHD following primary or secondary implantation of MRI-conditional pacemaker system.

    Science.gov (United States)

    Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern

    2016-02-01

    In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.

  11. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  12. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  13. Value of Gd-EOB-DTPA-enhanced MRI in assessing liver function

    Directory of Open Access Journals (Sweden)

    WANG Lili

    2015-05-01

    Full Text Available ObjectiveTo explore the value of magnetic resonance imaging (MRI specifically enhanced with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA in assessing the liver function in general population. MethodsUpper abdominal MRI images and Gd-EOB-DTPA-enhanced images, as well as some clinical information, were collected from 41 cases meeting the inclusion and exclusion criteria. Taking the spleen as the control organ, liver-spleen signal intensity contrast (SIliver/spleen and relative liver enhancement (RLE were calculated at 10 min and 20 min after injecting Gd-EOB-DTPA. Differences were evaluated using the independent-samples t-test or Mann-Whitney U test. Corrections were analyzed via Spearman’s rank correlation. ResultsBoth SIliver/spleen at 10 min and 20 min after injection of contrast agent were correlated with Child classification (P<0.05. SIliver/spleen at 20 min had a greater correlation coefficient (r=-0.526 than that at 10 min. The SIliver/spleen with plain scan had no significant correlation with Child classification (P>0.05. RLE at 20 min, but not at 10 min, was correlated with Child classification (r=-0.362, P=0049. Between the cirrhotic and non-cirrhotic groups, SIliver/spleen showed no significant difference (P>0.05. However, SIliver/spleen at 10 min and 20 min, as well as RLE20 min, showed significant differences between the cirrhotic and non-cirrhotic groups (P<0.05. SIliver/spleen at 20 min also exhibited a significant difference between the elevated and normal ALT and TBil groups (both P<0.05. ConclusionGd-EOB-DTPA-enhanced MRI can monitor liver function changes, and SIliver/spleen at 20 min may have an important value in assessing the liver function in general population.

  14. Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea

    Directory of Open Access Journals (Sweden)

    Hitoshi Aonuma

    2016-12-01

    Full Text Available The pond snail Lymnaea learns conditioned taste aversion (CTA and remembers not to respond to food substances that initially cause a feeding response. The possible relationship between how well snails learn to follow taste-aversion training and brain dopamine contents is not known. We examined this relationship and found the following: first, snails in the act of eating just before the commencement of CTA training were poor learners and had the highest dopamine contents in the brain; second, snails which had an ad libitum access to food, but were not eating just before training, were average learners and had lower dopamine contents; third, snails food-deprived for one day before training were the best learners and had significantly lower contents of dopamine compared to the previous two cohorts. There was a negative correlation between the CTA grades and the brain dopamine contents in these three cohorts. Fourth, snails food-deprived for five days before training were poor learners and had higher dopamine contents. Thus, severe hunger increased the dopamine content in the brain. Because dopamine functions as a reward transmitter, CTA in the severely deprived snails (i.e. the fourth cohort was thought to be mitigated by a high dopamine content.

  15. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    OpenAIRE

    Maria A de Souza Silva; C. eMattern; C. eMattern; C.I. eDecheva; Joseph P. Huston; A. eSadile; M. eBeu; H.W. eMüller; Susanne eNikolaus

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We ...

  16. Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study.

    Directory of Open Access Journals (Sweden)

    Rebecca Kuepper

    Full Text Available Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and (18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ(9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis. In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ(9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder, 8 patients with psychotic disorder (high risk psychotic disorder and 7 un-related first-degree relatives (intermediate risk psychotic disorder. PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM, which accounts for time-dependent changes in (18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ(9-THC administration, reflecting dopamine release. While Δ(9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ(9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ(9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis.

  17. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  18. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?

    Science.gov (United States)

    Cecchin, Diego; Palombit, Alessandro; Castellaro, Marco; Silvestri, Erica; Bui, Franco; Barthel, Henryk; Sabri, Osama; Corbetta, Maurizio; Bertoldo, Alessandra

    2017-12-01

    In the last 20 years growing attention has been devoted to multimodal imaging. The recent literature is rich of clinical and research studies that have been performed using different imaging modalities on both separate and integrated positron emission tomography (PET) and magnetic resonance (MR) scanners. However, today, hybrid PET/MR systems measure signals related to brain structure, metabolism, neurochemistry, perfusion, and neuronal activity simultaneously, i.e. in the same physiological conditions. A frequently raised question at meeting and symposia is: "Do we really need a hybrid PET/MR system? Are there any advantages over acquiring sequential and separate PET and MR scans?" The present paper is an attempt to answer these questions specifically in relation to PET combined with functional magnetic resonance imaging (fMRI) and arterial spin labeling. We searched (last update: June 2017) the databases PubMed, PMC, Google Scholar and Medline. We also included additional studies if they were cited in the selected articles. No language restriction was applied to the search, but the reviewed articles were all in English. Among all the retrieved articles, we selected only those performed using a hybrid PET/MR system. We found a total of 17 papers that were selected and discussed in three main groups according to the main radiopharmaceutical used: 18F-fluorodeoxyglucose (18F-FDG) (N.=8), 15O-water (15O-H2O) (N.=3) and neuroreceptors (N.=6). Concerning studies using 18F-FDG, simultaneous PET/fMRI revealed that global aspects of functional organization (e.g. graph properties of functional connections) are partially associated with energy consumption. There are remarkable spatial and functional similarities across modalities, but also discrepant findings. More work is needed on this point. There are only a handful of papers comparing blood flow measurements with PET 15O-H2O and MR arterial spin label (ASL) measures, and they show significant regional CBF differences

  19. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  20. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo [Third Military Medical University, Department of Medical Imaging, College of Biomedical Engineering, Chongqing (China); Liu, Hongliang; Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Yang, Jun; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China)

    2016-05-15

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)