WorldWideScience

Sample records for dopamine agonists systematic

  1. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis

    NARCIS (Netherlands)

    Youssef, Mohamed A. F. M.; van Wely, Madelon; Hassan, Mohamed Ahmed; Al-Inany, Hesham Gaber; Mochtar, Monique; Khattab, Sherif; van der Veen, Fulco

    2010-01-01

    Recently, dopamine agonists were proposed as a prophylactic treatment for ovarian hyperstimulation syndrome (OHSS) in women at high risk in IVF/ICSI treatment cycles. We conducted a systematic review and meta-analysis of randomized trials comparing the prophylactic effect of the dopamine agonist,

  2. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  3. The treatment of Parkinson's disease with dopamine agonists

    Directory of Open Access Journals (Sweden)

    Frank, Wilhelm

    2008-06-01

    Full Text Available Parkinson’s disease is a chronic degenerative organic disease with unknown causes. A disappearance of cells with melanin in the substantia nigra is considered as biological artefact of the disease, which causes a degenerative loss of neurons in the corpus striatum of mesencephalon. This structure produces also the transmitter substance dopamine. Due to this disappearance of cells dopamine is not produced in a sufficient quantity which is needed for movement of the body. The questions of this report are concerned the efficiency and safety of a treatment with dopamine agonists. Furthermore the cost-effectiveness is investigated as well as ethic questions. The goal is to give recommendation for the use of dopamine agonists to the German health system. A systematic literature search was done. The identified studies have different methodological quality and investigate different hypothesis and different outcome criteria. Therefore a qualitative method of information synthesis was chosen. Since the introduction of L-Dopa in the 1960´s it is considered as the most effective substance to reduce all the cardinal symptoms of Parkinson disease. This substance was improved in the course of time. Firstly some additional substances were given (decarbonxylase inhibitors, catechol-o-transferase inhibitors (COMT-inhibitors, monoaminoxydase-inhibitors (MAO-inhibitors and NMDA-antagonists (N-Methyl-d-aspartat-antagonists. In the practical therapy of Parkinson dopamine agonists play an important role, because they directly use the dopamine receptors. The monotherapy of Parkinson disease is basically possible and is used in early stages of the disease. Clinical practise has shown, that an add on therapy with dopamine agonists can led to a reduction of the dose of L-dopa and a reduction of following dyskinesia. The studies for effectiveness include studies for the initial therapy, monotherapy and add-on-therapy. Basically there is a good effectiveness of dopamine

  4. Dopamine agonist withdrawal syndrome: implications for patient care.

    Science.gov (United States)

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  5. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  6. Development of specific dopamine D-1 agonists and antagonists

    International Nuclear Information System (INIS)

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo[a,d]cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo[1,2]cyclohepta[3,4,5d,e]isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC 50 of compound 11 for displacement of 3 H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of 3 H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor

  7. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

    2011-05-01

    Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.

  8. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    Science.gov (United States)

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  9. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  10. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  11. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  12. Dopamine agonists and risk: impulse control disorders in Parkinson's; disease

    OpenAIRE

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J.; Hallett, Mark

    2011-01-01

    Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice an...

  13. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Mizushima Jin

    2012-07-01

    Full Text Available Abstract Dopamine dysregulation syndrome (DDS consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson’s disease (PD. Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  14. Dopamine agonist activity of EMD 23,448

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G E; Pettibone, D J [Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania (USA). Dept. of Pharmacology

    1985-01-01

    EMD 23,448 was examined in tests of dopaminergic function and was found to be an atypical dopamine (DA) agonist. EMD 23,448 was a weak or inactive DA agonist when examined in tests of normal postsynaptic DA receptor function: production of stereotypy in the rat (ED/sub 50/ greater than sign 5.0 mg/kg.i.p.); production of emesis in beagles (minimum effective dose = 81..mu..g/kg i.v.); and, enhanced locomotor activity of the mouse (no excitation in doses <=50 mg/i.p.). Moreover, EMD 23,448 was relatively weak in competing for (/sup 3/H)-apomorphine binding to rat striatal membranes (Ki, 205 nM). On the other hand, this indolyl-3-butylamine did activate supersensitive postsynaptic DA receptors. Specifically, it elicited contralateral turning in rats with a unilateral 6-hydroxydopamine lesion of the substantia nigra (ED/sub 50/ value = 0.9 mg/kg) and did elicit stereotypy in rats given chronic daily haloperidol treatments. EMD 23,448 also exerted pharmacological effects in tests designed to measure activation of dopamine autoreceptors. It inhibited the ..gamma..-butyrolactone-induced increase in striatal dopa levels (ED/sub 50/ = 1 mg/kg i.p.) and produced a dose-related fall in the locomotor activity of the mouse. The results are discussed and contrasted with data derived for apomorphine and the putatively selective autoreceptor agonist (+-)-3-PPP.

  15. Dopamine agonist activity of EMD 23,448

    International Nuclear Information System (INIS)

    Martin, G.E.; Pettibone, D.J.

    1985-01-01

    EMD 23,448 was examined in tests of dopaminergic function and was found to be an atypical dopamine (DA) agonist. EMD 23,448 was a weak or inactive DA agonist when examined in tests of normal postsynaptic DA receptor function: production of stereotypy in the rat (ED 50 greater than sign 5.0 mg/kg.i.p.); production of emesis in beagles (minimum effective dose = 81μg/kg i.v.); and, enhanced locomotor activity of the mouse (no excitation in doses 3 H]-apomorphine binding to rat striatal membranes (Ki, 205 nM). On the other hand, this indolyl-3-butylamine did activate supersensitive postsynaptic DA receptors. Specifically, it elicited contralateral turning in rats with a unilateral 6-hydroxydopamine lesion of the substantia nigra (ED 50 value = 0.9 mg/kg) and did elicit stereotypy in rats given chronic daily haloperidol treatments. EMD 23,448 also exerted pharmacological effects in tests designed to measure activation of dopamine autoreceptors. It inhibited the γ-butyrolactone-induced increase in striatal dopa levels (ED 50 = 1 mg/kg i.p.) and produced a dose-related fall in the locomotor activity of the mouse. The results are discussed and contrasted with data derived for apomorphine and the putatively selective autoreceptor agonist (+-)-3-PPP. (Author)

  16. Long-term outcome of patients with macroprolactinomas initially treated with dopamine agonists

    NARCIS (Netherlands)

    Kars, Marleen; Pereira, Alberto M.; Smit, Johannes W.; Romijn, Johannes A.

    2009-01-01

    Dopamine agonists are the first line therapy for the treatment of prolactinomas. The aim of this study was to assess the outcome of macroprolactinomas during long-term follow-up after initial treatment with dopamine agonists. Retrospective follow-up study. We included 72 consecutive patients (age

  17. The emergence of devastating impulse control disorders during dopamine agonist therapy of the restless legs syndrome.

    Science.gov (United States)

    Dang, Dien; Cunnington, David; Swieca, John

    2011-01-01

    The Restless Legs Syndrome is a common sensorimotor disorder, typically amenable to treatment with dopamine agonist therapy. Dopamine agonists have been associated with emergent impulse control disorders (ICDs) when used in patients with Parkinson disease, and ICDs have now been reported in individuals with RLS on dopamine agonist therapy. Our aim was to characterize cases of emergent ICDs in Australian patients with focus on the dopamine agonists implicated and the social significance of ICDs. A series of RLS patients on dopamine agonist therapy were identified with ICDs over a 2-year period. Additional cases of ICDs were found using a mailout questionnaire designed to capture those with high impulsivity. These patients were assessed using the Barratt Impulsiveness Scale, Version 11, and a modified Minnesota Impulse Disorders Interview. Case records and medication schedules were evaluated. Twelve cases of patients with de novo ICDs were found with a range of impulsive behaviors including pathological gambling, kleptomania, compulsive shopping, and hypersexuality. Criminality, suicidality, and marital discord also were featured. These occurred over a wide range of latencies and l-dopa exposures. This group of Australian RLS patients with ICDs display high levels of impulsivity and is the first to use the BIS-11 questionnaire in this setting. Impulse control disorders can occur over a wide range of dopamine agonist therapy types and dose exposures. Impulse control disorder tendencies may persist, despite withdrawal of dopamine agonists. The emergence of ICDs needs careful consideration in light of their potentially devastating financial, social, and marital consequences.

  18. Ascorbic acid enables reversible dopamine receptor 3H-agonist binding

    International Nuclear Information System (INIS)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-01-01

    The effects of ascorbic acid on dopaminergic 3 H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the 3 H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3 H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3 H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3 H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3 H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3 H-agonist binding to dopamine receptors

  19. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke

    OpenAIRE

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard; Husain, Masud

    2012-01-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, ...

  20. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  1. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    Science.gov (United States)

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  2. Chronic exposure to dopamine agonists affects the integrity of striatal D2 receptors in Parkinson's patients

    Directory of Open Access Journals (Sweden)

    Marios Politis

    2017-01-01

    Full Text Available We aimed to investigate the integrity and clinical relevance of striatal dopamine receptor type-2 (D2R availability in Parkinson's disease (PD patients. We studied 68 PD patients, spanning from early to advanced disease stages, and 12 healthy controls. All participants received one [11C]raclopride PET scan in an OFF medication condition for quantification of striatal D2R availability in vivo. Parametric images of [11C]raclopride non-displaceable binding potential were generated from the dynamic [11C]raclopride scans using implementation of the simplified reference tissue model with cerebellum as the reference tissue. PET data were interrogated for correlations with clinical data related to disease burden and dopaminergic treatment. PD patients showed a mean 16.7% decrease in caudate D2R and a mean 3.5% increase in putaminal D2R availability compared to healthy controls. Lower caudate [11C]raclopride BPND correlated with longer PD duration. PD patients on dopamine agonist treatment had 9.2% reduced D2R availability in the caudate and 12.8% in the putamen compared to PD patients who never received treatment with dopamine agonists. Higher amounts of lifetime dopamine agonist therapy correlated with reduced D2Rs availability in both caudate and putamen. No associations between striatal D2R availability and levodopa treatment and dyskinesias were found. In advancing PD the caudate and putamen D2R availability are differentially affected. Chronic exposure to treatment with dopamine agonists, but no levodopa, suppresses striatal D2R availability, which may have relevance to output signaling to frontal lobes and the occurrence of executive deficits, but not dyskinesias.

  3. Preventing or attenuating amphotericin B nephrotoxicity with dopamine receptor agonists: a literature review

    Directory of Open Access Journals (Sweden)

    Iman Karimzadeh

    2016-09-01

    Full Text Available Nephrotoxicity is generally considered as the most clinically significant and dose-limiting adverse reaction of amphotericin B. Currently, only the clinical effectiveness of salt loading and administering lipid formulations of amphotericin B have been clearly demonstrated to prevent its nephrotoxicity. In this review, we collected the published data related to dopamine receptor agonists in preventing amphotericin B nephrotoxicity. A literature search was conducted by the relevant keywords like ‘‘amphotericin B”, “nephrotoxicity’’, and ‘‘dopamine’’in databases such as Scopus, Medline, Embase and ISI Web of Knowledge. Four relevant articles were considered. Results of all the 3 experimental studies demonstrated that co-administration of dopamine (0.5-10 μg/kg/min as continuous intravenous infusion, SK&F R-105058, a prodrug of fenoldopam (10 mg/kg twice daily, orally or fenoldopam, a relatively selective dopamine receptor type 1 agonist, (0.5 or 1 μg/kg/min as continuous intravenous infusion can at least significantly mitigate the decrease in creatinine clearance caused by amphotericin B. Furthermore, fenoldopam and SK&F R-105058 can also protect against or delay amphotericin B-induced tubular damage. In contrast, the only clinical trial published until now found that simultaneous continuous intravenous infusion of low dose dopamine (3 μg/kg/min had no beneficial effect on the incidence, severity and time onset of developing amphotericin B-induced nephrotoxicity in autologous bone marrow transplant and leukemia patients. Considering the lack of beneficial effects in different settings such as acute kidney injury of any cause, negative results of the only clinical trial, and risk of significant adverse reactions, continuous intravenous infusion of low dose dopamine (1-3 μg/kg/min or selective dopamine receptor type 1 agonists (e.g., fenoldopam currently appears to have no promising clinical role in preventing or attenuating

  4. Impulse control disorders in Chinese Parkinson's disease patients: the effect of ergot derived dopamine agonist.

    Science.gov (United States)

    Auyeung, M; Tsoi, T H; Tang, W K; Cheung, C M; Lee, C N; Li, R; Yeung, Eric

    2011-09-01

    We studied the prevalence and related risk factors of impulse control disorders in Chinese Parkinson's disease patients. We screened all non-demented Parkinson's disease patients attending our Parkinson's disease clinic from August 2009 to March 2010. The clinical characteristics of patients with impulse control disorders and those without were compared. Of the 213 PD subjects screened, 15 (7.0%) with impulse control disorders were identified. Fourteen of these subjects were on both a dopamine agonist and Levodopa, and one was on Levodopa alone. Of the fourteen subjects on both a dopamine agonist and Levodopa, eleven were on bromocriptine and Levodopa; 10.5% of the subjects exposed to bromocriptine had impulse control disorder. Upon multivariate analysis, dose of dopamine agonist used, young age at onset of Parkinson's disease and a history of anxiety or depression were independent predictors for developing impulse control disorders. 7% of our Chinese PD subjects had impulse control disorders. When young Parkinson's disease patients with a history of anxiety or depression are treated with high dose of DA, they are at risk of developing impulse control disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Synthesis and SAR study of a novel series of dopamine receptor agonists

    DEFF Research Database (Denmark)

    Risgaard, R.; Jensen, M.; Jørgensen, M.

    2014-01-01

    The synthesis of a novel series of dopamine receptor agonists are described as well as their in vitro potency and efficacy on dopamine D and D receptors. This series was designed from pergolide and (4aR,10aR)-1-propyl-1,2,3,4,4a,5,10,10a-octahydro-benzo[g]quinolin-6-ol (PHBQ) and resulted in the ...... in the synthesis of (2R,4aR,10aR)-2-methylsulfanylmethyl-4-propyl-3,4,4a,5,10,10a-hexahydro-2H-naphtho[2,3-b][1,4]oxazin-9-ol (compound 27), which has a D and D receptor profile similar to that of the most recently approved drug for Parkinson's disease, rotigotine.......The synthesis of a novel series of dopamine receptor agonists are described as well as their in vitro potency and efficacy on dopamine D and D receptors. This series was designed from pergolide and (4aR,10aR)-1-propyl-1,2,3,4,4a,5,10,10a-octahydro-benzo[g]quinolin-6-ol (PHBQ) and resulted...

  6. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  7. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  8. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  9. The risky business of dopamine agonists in Parkinson disease and impulse control disorders.

    Science.gov (United States)

    Claassen, Daniel O; van den Wildenberg, Wery P M; Ridderinkhof, K Richard; Jessup, Charles K; Harrison, Madaline B; Wooten, G Frederick; Wylie, Scott A

    2011-08-01

    Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's disease (PD), impulse control disorder (ICD) can result from dopaminergic medication use, particularly dopamine agonists (DAA). Behaviors associated with ICD include hypersexuality as well as compulsive gambling, shopping, and eating, and these behaviors are potentially linked to alterations to risk processing. Using the Balloon Analogue Risk Task, we assessed the role of agonist therapy on risk-taking behavior in PD patients with (n = 22) and without (n = 19) active ICD symptoms. Patients performed the task both "on" and "off" DAA. DAA increased risk-taking in PD patients with active ICD symptoms, but it did not affect risk behavior of PD controls. DAA dose was also important in explaining risk behavior. Both groups similarly reduced their risk-taking in high compared to low risk conditions and following the occurrence of a negative consequence, suggesting that ICD patients do not necessarily differ in their abilities to process and adjust to some aspects of negative consequences. Our findings suggest dopaminergic augmentation of risk-taking behavior as a potential contributing mechanism for the emergence of ICD in PD patients. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  10. Peripartum Cardiomyopathy Treatment with Dopamine Agonist and Subsequent Pregnancy with a Satisfactory Outcome.

    Science.gov (United States)

    Melo, Maria Adélia Medeiros E; Carvalho, Jordão Sousa; Feitosa, Francisco Edson de Lucena; Araujo Júnior, Edward; Peixoto, Alberto Borges; Costa Carvalho, Francisco Herlânio; Carvalho, Regina Coeli Marques

    2016-06-01

    Pathophysiological mechanisms of peripartum cardiomyopathy are not yet completely defined, although there is a strong association with various factors that are already known, including pre-eclampsia. Peripartum cardiomyopathy treatment follows the same recommendations as heart failure with systolic dysfunction. Clinical and experimental studies suggest that products of prolactin degradation can induce this cardiomyopathy. The pharmacological suppression of prolactin production by D2 dopamine receptor agonists bromocriptine and cabergoline has demonstrated satisfactory results in the therapeutic response to the treatment. Here we present a case of an adolescent patient in her first gestation with peripartum cardiomyopathy that evolved to the normalized left ventricular function after cabergoline administration, which was used as an adjuvant in cardiac dysfunction treatment. Subsequently, despite a short interval between pregnancies, the patient exhibited satisfactory progress throughout the entire gestation or puerperium in a new pregnancy without any cardiac alterations. Dopamine agonists that are orally used and are affordable in most tertiary centers, particularly in developing countries, should be considered when treating peripartum cardiomyopathy cases. Thieme Publicações Ltda Rio de Janeiro, Brazil.

  11. Dopamine agonists and delusional jealousy in Parkinson's disease: a cross-sectional prevalence study.

    Science.gov (United States)

    Poletti, Michele; Perugi, Giulio; Logi, Chiara; Romano, Anna; Del Dotto, Paolo; Ceravolo, Roberto; Rossi, Giuseppe; Pepe, Pasquale; Dell'Osso, Liliana; Bonuccelli, Ubaldo

    2012-11-01

    Delusional jealousy (DJ) has been described in patients with Parkinson's disease (PD) on dopaminergic therapy, but a role for dopaminergic therapy in DJ has not been established. The current cross-sectional study on DJ investigated its association with dopaminergic therapies compared with their associations with hallucinations and its prevalence in PD patients. Eight hundred five consecutive patients with PD were enrolled between January 2009 and June 2010. DJ was identified in 20 patients (2.48%) and hallucinations in 193 patients (23.98%). In the multivariate logistic regression analyses, dopamine agonists were significantly associated with DJ (odds ratio, 18.1; 95% CI, 3.0-infinity; P = .0002) but not with hallucinations (odds ratio, 0.73; 95% CI, 0.49-1.10; P = .133). These findings suggest that dopamine agonist treatment represents a risk factor for DJ in PD independent of the presence of a dementing disorder, and the presence of this additional nonmotor side effect should be investigated in this clinical population. Copyright © 2012 Movement Disorder Society.

  12. Aortic valve calcification and mild tricuspid regurgitation but no clinical heart disease after 8 years of dopamine agonist therapy for prolactinoma

    NARCIS (Netherlands)

    Kars, Marleen; Delgado, Victoria; Holman, Eduard R.; Feelders, Richard A.; Smit, Johannes W. A.; Romijn, Johannes A.; Bax, Jeroen J.; Pereira, Alberto M.

    2008-01-01

    Treatment with ergot-derived dopamine agonists, pergolide, and cabergoline has been associated with an increased frequency of valvular heart disease in Parkinson's disease. The aim of the present study was to assess the prevalence of valvular heart disease in patients treated with dopamine agonists

  13. The partial dopamine D2 receptor agonist aripiprazole is associated with weight gain in adolescent anorexia nervosa.

    Science.gov (United States)

    Frank, Guido K W; Shott, Megan E; Hagman, Jennifer O; Schiel, Marissa A; DeGuzman, Marisa C; Rossi, Brogan

    2017-04-01

    Finding medication to support treatment of anorexia nervosa has been difficult. Neuroscience-based approaches may help in this effort. Recent brain imaging studies in adults and adolescents with anorexia nervosa suggest that dopamine-related reward circuits are hypersensitive and could provide a treatment target. Here, we present a retrospective chart review of 106 adolescents with anorexia nervosa some of whom were treated with the dopamine D2 receptor partial agonist aripiprazole during treatment in a specialized eating disorder program. The results show that aripiprazole treatment was associated with greater increase in body mass index (BMI) during treatment. The use of dopamine receptor agonists may support treatment success in anorexia nervosa and should be further investigated. © 2017 Wiley Periodicals, Inc.

  14. Pulmonary Artery Occlusion and Mediastinal Fibrosis in a Patient on Dopamine Agonist Treatment for Hyperprolactinemia

    DEFF Research Database (Denmark)

    Su, Junjing; Simonsen, Ulf; Carlsen, Jørn

    2017-01-01

    Unusual forms of pulmonary hypertension include pulmonary hypertension related to mediastinal fibrosis and the use of serotonergic drugs. Here, we describe a patient with diffuse mediastinal fibrosis and pulmonary hypertension while she was on dopamine agonist therapy. A young woman, who...... showed fibrosis and chronic inflammation. Subsequent investigations revealed that diffuse mediastinal fibrosis with concurrent pulmonary hypertension, and not CTEPH, was the most likely diagnosis and cabergoline and bromocriptine may have triggered the fibrotic changes. Both drugs are ergot...... was treated with cabergoline and bromocriptine for hyperprolactinemia, presented with progressive dyspnea over several months. Based on the clinical investigation results, in particular, elevated pulmonary arterial pressures and significant perfusion defects on computed tomography (CT) pulmonary angiography...

  15. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke.

    Science.gov (United States)

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard; Husain, Masud

    2012-08-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, in which each patient was assessed for 20 testing sessions, in three phases: pretreatment (Phase A1), on transdermal rotigotine for 7-11 days (Phase B) and post-treatment (Phase A2), with the exact duration of each phase randomized within limits. Outcome measures included performance on cancellation (visual search), line bisection, visual working memory, selective attention and sustained attention tasks, as well as measures of motor control. Sixteen right-hemisphere stroke patients were recruited, all of whom completed the trial. Performance on the Mesulam shape cancellation task improved significantly while on rotigotine, with the number of targets found on the left side increasing by 12.8% (P = 0.012) on treatment and spatial bias reducing by 8.1% (P = 0.016). This improvement in visual search was associated with an enhancement in selective attention but not on our measures of working memory or sustained attention. The positive effect of rotigotine on visual search was not associated with the degree of preservation of prefrontal cortex and occurred even in patients with significant prefrontal involvement. Rotigotine was not associated with any significant improvement in motor performance. This proof-of-concept study suggests a beneficial role of dopaminergic modulation on visual search and selective attention in patients with hemispatial neglect following stroke.

  16. IGF-1 levels may increase paradoxically with dopamine agonist treatment for prolactinomas.

    Science.gov (United States)

    Akirov, Amit; Greenman, Yona; Glaser, Benjamin; S'chigol, Irena; Mansiterski, Yossi; Eizenberg, Yoav; Shraga-Slutzky, Ilana; Shimon, Ilan

    2018-05-04

    Hyperprolactinemia is common in acromegaly and in these patients, insulin-like growth factor (IGF)-1 level may decrease with dopamine agonist. We report a series of patients with prolactinoma and a paradoxical increase of IGF-1 levels during cabergoline treatment. Clinical characteristics and response to treatment of patients with prolactinomas, in whom normal or slightly elevated baseline IGF-1 levels increased with cabergoline. The cohort consisted of ten prolactinoma patients (nine males, mean age 48 ± 14 years). Mean adenoma size was 23.8 ± 16.2 mm, with cavernous sinus invasion in eight. In five patients baseline IGF-1 levels were normal and in four levels were 1.2-1.5-fold the upper limit of the normal (ULN). One patient had IGF-1 measured shortly after initiating cabergoline and it was 1.4 × ULN. During cabergoline treatment (dose range 0.5-2 mg/week) PRL normalization was achieved in all and tumor shrinkage occurred in seven patients. The mean IGF-1 increase on cabergoline was 1.7 ± 0.4 × ULN. Cabergoline dose reduction or interruption was attempted in five patients and resulted in decreased IGF-1 levels in all, including normalization in two patients. Three patients were eventually diagnosed with acromegaly, one was referred for pituitary surgery followed by complete remission, another patient was switched to somatostatin analogue, and the third was treated by combination of somatostatin analogues with pegvisomant, with reduction of IGF-1 in all these patients. IGF-1 levels may increase to clinically significant levels during cabergoline treatment for PRL-adenoma. We suggest IGF-1 monitoring in all patients treated with dopamine agonists and not only in those presenting symptoms of acromegaly.

  17. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  18. A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey

    International Nuclear Information System (INIS)

    Finnema, Sjoerd J.; Seneca, Nicholas; Farde, Lars; Shchukin, Evgeny; Sovago, Judit; Gulyas, Balazs; Wikstroem, Hakan V.; Innis, Robert B.; Neumeyer, John L.; Halldin, Christer

    2005-01-01

    This study describes the preliminary positron emission tomography (PET) evaluation of a dopamine D 2 -like receptor agonist (R)-2- 11 CH 3 O-N-n-propylnorapomorphine ([ 11 C]MNPA), as a potential new radioligand for in vivo imaging of the high-affinity state of the dopamine D 2 receptor (D 2 R). MNPA is a selective D 2 -like receptor agonist with a high affinity (K i =0.17 nM). [ 11 C]MNPA was successfully synthesized by direct O-methylation of (R)-2-hydroxy-NPA using [ 11 C]methyl iodide and was evaluated in cynomolgus monkeys. This study included baseline PET experiments and a pretreatment study using unlabeled raclopride (1 mg/kg). High uptake of radioactivity was seen in regions known to contain high D 2 R, with a maximum striatum-to-cerebellum ratio of 2.23±0.21 at 78 min and a maximum thalamus-to-cerebellum ratio of 1.37±0.06 at 72 min. The pretreatment study demonstrated high specific binding to D 2 R by reducing the striatum-to-cerebellum ratio to 1.26 at 78 min. This preliminary study indicates that the dopamine agonist [ 11 C]MNPA has potential as an agonist radioligand for the D 2 -like receptor and has potential for examination of the high-affinity state of the D 2 R in human subjects and patients with neuropsychiatric disorders

  19. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  20. Randomized, controlled trial of rasagiline as an add-on to dopamine agonists in Parkinson's disease.

    Science.gov (United States)

    Hauser, Robert A; Silver, Dee; Choudhry, Azhar; Eyal, Eli; Isaacson, Stuart

    2014-07-01

    Dopamine agonists (DA) are often used as first-line monotherapy for the symptomatic control of Parkinson's disease (PD). However, DA monotherapy typically becomes inadequate within a few years, at which time the DA dosage must be increased or other antiparkinsonian medications added. Adding a monoamine oxidase-B (MAO-B) inhibitor to DA monotherapy might improve symptomatic control while maintaining good safety and tolerability. We conducted an 18-week, randomized, double-blind, placebo-controlled trial of rasagiline 1 mg/d as an add-on to DA therapy (ropinirole ≥ 6 mg/d or pramipexole ≥ 1.0 mg/d) in early PD patients whose conditions were not adequately controlled on their current treatment regimen. The primary efficacy variable was the change in total Unified Parkinson Disease Rating Scale (UPDRS) score (sum of parts I, II, and III) from baseline to week 18, comparing rasagiline and placebo groups. The modified intent-to-treat (ITT) population included 321 subjects whose mean ± SD age was 62.6 ± 9.7, and duration of PD was 2.1 ± 2.1 years. Results demonstrated a significantly greater improvement in total UPDRS scores from baseline to week 18 in the rasagiline group compared with the placebo group (least squares [LS] mean difference ± SE, -2.4 ± 0.95; 95% confidence interval [CI], -4.3, -0.5; P = 0.012). Mean improvement (LS mean ± SE) was -3.6 ± 0.68 in the rasagiline group and -1.2 ± 0.68 in the placebo group. Rasagiline was well tolerated, and the most common adverse events (AEs; rasagiline vs. placebo) were dizziness (7.4% vs. 6.1%), somnolence (6.8% vs. 6.7%), and headache (6.2% vs. 4.3%). Rasagiline 1 mg/d provided statistically significant improvement when added to dopamine agonist therapy and was well tolerated. © 2014 International Parkinson and Movement Disorder Society.

  1. Nonergot dopamine-receptor agonists for treating Parkinson's disease – a network meta-analysis

    Directory of Open Access Journals (Sweden)

    Thorlund K

    2014-05-01

    Full Text Available Kristian Thorlund,1,2,4 Ping Wu,3,4 Eric Druyts,3,4 Shawn Eapen,3,4 Edward J Mills2–4 1Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada; 2Stanford Prevention Research Center, Stanford University, Stanford, CA, USA; 3Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; 4Redwood Outcomes, Vancouver, BC, Canada Objective: To compare the efficacy of the three nonergot dopamine-receptor agonists (DAs pramipexole, ropinirole, and rotigotine for the treatment of early and advanced Parkinson's disease (PD. Materials and methods: Bayesian network meta-analyses were performed separately for early and advanced PD, and at time points 11–16 and 24–28 weeks. Outcomes for early PD included improvement on the Unified Parkinson's Disease Rating Scale (UPDRS activities in daily life (UPDRS-II, motor function (UPDRS-III, and their subtotal (UPDRS-II + III. Outcomes for advanced PD also included daily “off time” (hours, but not UPDRS-II + III. Results: Totals of 23 and 24 trials informed early and advanced PD analyses. For early PD UPDRS-II at 11–16 weeks, pramipexole and rotigotine were statistically significantly superior to placebo, but ropinirole was not. For UPDRS-III and UPDRS-II + III, all DAs were statistically significantly better than placebo and exhibited similar improvements. At 24–28 weeks, results were also statistically significant for all DAs versus placebo, and the magnitudes of improvements were similar for pramipexole, ropinirole and rotigotine. Advanced PD improvements on UPDRS-II, UPRDS-III, and off time were statistically significant for pramipexole, ropinirole, and rotigotine versus placebo. At 11–16 weeks, rotigotine yielded slightly smaller effects than ropinirole and pramipexole, but credible intervals on differences were wide. For off time, results were near identical. At 24–28 weeks, results were similar for all three outcomes. Ropinirole yielded a

  2. Effects of a Dopamine Agonist on the Pharmacodynamics of Levodopa in Parkinson Disease

    Science.gov (United States)

    Brodsky, Matthew A.; Park, Byung S.; Nutt, John G.

    2011-01-01

    Background Treatment of Parkinson disease commonly includes levodopa and dopamine agonists; however, the interaction of these 2 drugs is poorly understood. Objective To examine the effects of a dopamine agonist on the motor response to levodopa. Design Double-blind, randomized, placebo-controlled, crossover clinical trial. Setting Ambulatory academic referral center. Patients Thirteen patients with idiopathic Parkinson disease taking levodopa and experiencing motor fluctuations and dyskinesia. Interventions Eligible individuals were randomly assigned to receive pramipexole dihydrochloride or placebo for 4 weeks followed by a 2-hour intravenous levodopa infusion on consecutive days at 2 rates and with blinded assessments. They were then crossed over to the alternate oral therapy for 4 weeks followed by levodopa infusion and reassessment. Main Outcome Measures Change in finger-tapping speed, measured using the area under the curve (AUC) for finger taps per minute across time; peak finger-tapping speed; duration of response; time to “ON” (defined as a 10% increase in finger-tapping speed above baseline); walking speed; and dyskinesia AUC. Results Pramipexole with levodopa infusion increased finger-tapping speed beyond the change in baseline by a mean (SE) of 170 (47.2) per minute×minutes (P=.006) and more than doubled the AUC for finger-tapping speed. Pramipexole increased peak finger-tapping speed by a mean (SE) of 18 (8.5) taps per minute (P=.02) and improved mean (SE) walking speed (15.9 [0.70] vs 18.9 [0.70] seconds, P=.004). Pramipexole prolonged duration of response after levodopa infusion and shortened time to ON. Pramipexole increased mean (SE) baseline dyskinesia scores (26.0 [5.85] vs 12.1 [5.85] points, P = .05) and peak dyskinesia scores with levodopa infusion. Conclusions Pramipexole augmented the motor response to levodopa beyond a simple additive effect and increased the severity of levodopa-induced dyskinesia. When considering a combination of

  3. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  4. Effects of dopamine agonist dose and gender on the prognosis of impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Joutsa, Juho; Martikainen, Kirsti; Vahlberg, Tero; Kaasinen, Valtteri

    2012-12-01

    Cross-sectional studies have demonstrated that Parkinson's disease patients have an increased risk of impulse control disorders, and that the disorders frequently co-exist with depressive symptoms. There have been no previous large-scale prospective studies investigating predictive and prognostic factors of these disorders. A population of 290 Parkinson's disease patients was studied at baseline and approximately 15 months later. The same screening methodology was used at both time-points (demographic and medication data together with the Questionnaire for Impulsive-compulsive Disorders in Parkinson's disease and the Beck Depression Inventory). The data was analyzed separating patients with and without impulse control disorders at baseline to obtain clinically useful prognostic factors. In patients who had impulse control disorders at baseline (n = 119), high dopamine agonist dose was associated with the presence of disorders at follow-up. Dopamine agonist levodopa equivalent daily dose over 160 mg was significantly associated with impulse control disorders with a positive predictive value of 92.5% (95% confidence interval 79.6%-98.4%). In addition, females had a better prognosis of impulse control disorders compared to males. The development of novel impulse control disorders (no disorder at baseline, disorder at follow-up) was associated with a concurrent increase in depression scores. The results suggest that dopamine agonist dose and gender are associated with the prognosis of impulse control disorders. Symptoms of depression emerge together with novel impulse control disorders in Parkinson's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Low levels of PRB3 mRNA are associated with dopamine-agonist resistance and tumor recurrence in prolactinomas.

    Science.gov (United States)

    Wang, Fei; Gao, Hua; Li, Chuzhong; Bai, Jiwei; Lu, Runchun; Cao, Lei; Wu, Yongtu; Hong, Lichuan; Wu, Yonggang; Lan, Xiaolei; Zhang, Yazhuo

    2014-01-01

    Prolactinomas, or prolactin-secreting adenomas, constitute the most common type of hyperfunctioning pituitary adenoma. Dopamine agonists are used as first-line medication for prolactinomas, but the tumors are resistant to the therapy in 5-18 % of patients. To explore potential mechanisms of resistance to bromocriptine (a dopamine agonist), we analyzed six responsive prolactinomas and six resistant prolactinomas by whole-exome sequencing. We identified ten genes with sequence variants that were differentially found in the two groups of tumors. The expression of these genes was then quantified by real-time reverse-transcription PCR (RT-qPCR) in the 12 prolactinomas and in six normal pituitary glands. The mRNA levels of one of the genes, PRB3, were about fourfold lower in resistant prolactinomas than in the responsive tumors (p = 0.02). Furthermore, low PRB3 expression was also associated with tumor recurrence. Our results suggest that low levels of PRB3 mRNA may have a role in dopamine-agonist resistance and tumor recurrence of prolactinomas.

  6. Autonomic failure mimicing dopamine agonist induced vertigo in a patient with macroprolactinoma.

    Science.gov (United States)

    Seiler, L; Braune, S; Borm, K; Magerkurth, C; Talazko, J; Peters, T; Reincke, M

    2002-10-01

    A 68-year-old man presented with general fatigue, increasing adynamia, weakness, vertigo and recurrent syncope. Six weeks earlier the diagnosis of a macroprolactinoma had been established based on a greatly elevated prolactin concentration (161 170 micro U/l) and MR-evidence of a 3.5 cm measuring pituitary mass. The patient had been started on cabergoline (1.5 mg weekly). Orthostatic hypotension due to the dopamine agonist was considered very likely and carbergoline therapy was stopped. However, there was no relief of the symptoms and further syncopes followed. Testing of blood pressure and heart rate regulation, selective testing of postganglionic cardiac neurons with [ 123 J] metaiodobenzylguanidine scintigraphy provided evidence of grossly impaired neurogenic cardiovascular regulation due to failure of postganglionic efferent sympathetic activity. This is characteristic for pure autonomic failure. The patient was treated symptomatically with high fluid intake, compression stockings, fludrohydrocortisone (0.1 mg o.d.s.), piroxicam (20 mg o.d.s.) and etilephrin (10 mg q.d.s.), which enabled him to cope with daily activities without syncope. This case shows that vertigo in a patient with macroprolactinoma is not always related to drug therapy but may be related to other causes.

  7. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  8. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    Science.gov (United States)

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  9. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    Directory of Open Access Journals (Sweden)

    Alexandra N Smith

    Full Text Available The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis. Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  10. Impulse control disorder in patients with Parkinson's disease under dopamine agonist therapy: a multicentre study.

    Science.gov (United States)

    Garcia-Ruiz, Pedro J; Martinez Castrillo, Juan Carlos; Alonso-Canovas, Araceli; Herranz Barcenas, Antonio; Vela, Lydia; Sanchez Alonso, Pilar; Mata, Marina; Olmedilla Gonzalez, Nuria; Mahillo Fernandez, Ignacio

    2014-08-01

    Impulse control disorders (ICDs) encompass a wide spectrum of abnormal behaviour frequently found in cases of Parkinson's disease (PD) treated with dopamine agonists (DAs). The main aim of this study was to analyse ICD prevalence with different DAs. We carried out a multicentre transversal study to evaluate the presence of ICDs in patients with PD chronically treated (>6 months) with a single non-ergolinic DA (pramipexole, ropinirole, or rotigotine). Clinical assessment of ICD was performed using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease. Thirty-nine per cent of patients (91/233) fulfilled the clinical criteria for ICD. The group of patients with ICD symptoms (ICD+) differed from those without ICD symptoms (ICD-) in younger age and type of DA intake. Oral DA treatment (pramipexole and ropinirole) was associated with higher risk of ICDs compared with transdermal DA (rotigotine): 84/197 (42%) patients treated with oral DA developed ICD, versus 7/36 (19%) patients treated with transdermal DA (Fisher's exact text <0.01). In univariate analysis, a younger age (p<0.01), treatment with rasagiline (p<0.05), and especially treatment with an oral DA (pramipexole or ropinirole) (p<0.01) were significantly associated with ICD. Multivariate analysis confirmed that oral DA remained significantly associated with ICD (p: 0.014, OR: 3.14; 1.26-7.83). ICD was significantly associated with the use of the non-ergolinic oral DA (pramipexole and ropinirole) when compared with transdermal non-ergolinic DA (rotigotine). Since pramipexole, ropinirole and rotigotine are non-ergolinic DAs with very similar pharmacodynamic profiles, it is likely that other factors including route of administration (transdermal vs oral) explain the difference in risk of ICD development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2012-12-01

    The relationship between the molecular structure and physical properties of functionalized naturally occurred Ergot-alkaloids as potential dopamine D3 receptor agonists is presented. The molecular modeling of the ergoline-skeleton is based on the comprehensive theoretical study of the binding affinity of the isolated chemicals towards the active sites of the D3 sub-type receptor (D3R) loops. The studied proton accepting ability under physiological conditions allows classifying four types of monocationics, characterizing with the different binding modes to D3R involving selected amino acid residues to the active sites. These results marked the pharmaceutical potential and clinical usage of the reported compounds as antipsychotic drugs for Schizophrenia treatment, since they allowed evaluating the highlights of the different hypothesizes of the biochemical causes the illness. The applied complex approach for theoretical and experimental elucidation, including quantum chemistry method, electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometric (MS) methods, nuclear magnetic resonance and vibrational IR and Raman spectroscopy on the isolated fifteen novel derivatives (1)-(15) and their different protonated forms (1a)-(15a) evidenced a strong dependence of molecular conformation, physical properties and binding affinity. Thus, the semi-synthetic functionalization of the naturally occurred products (NPs), provided significant possibilities to further molecular drugs-design and development of novel derivatives with wanted biological function, using the established profile of selected classes/families of NPs. The work described chiefly the non-linear (NL) approach for the interpretation of the mass chromatograms on the performed hybrid high performance liquid chromatography (HPLC) tandem MS/MS and MS/MS/MS experiments, discussing the merits and great diversity of instrumentation flexibility, thus achieving fundamental

  12. Function and expression differences between ergot and non-ergot dopamine D2 agonists on heart valve interstitial cells.

    Science.gov (United States)

    Oana, Fumiki; Onozuka, Hiroshi; Tsuchioka, Akihiro; Suzuki, Takayuki; Tanaka, Nobuyuki; Kaidoh, Kouichi; Hoyano, Yuji; Hiratochi, Masahiro; Kikuchi, Shinji; Takehana, Yasuo; Shibata, Nobuo

    2014-03-01

    The symptoms of Parkinson's disease are alleviated by dopamine D2 agonists, which are classified as ergot dopamine D2 agonists and non-ergot D2 agonists. Among the former, pergolide has been associated with valvular heart disease, since it has both potent D2 receptor and serotonin 5-HT(2B) receptor agonistic properties. Among the latter, pramipexole has few incidences of heart valve disease onset, since it has an absence of 5-HT(2B) receptor agonism. A [3H]thymidine incorporation assay was performed to monitor function, and microarray global analysis to monitor gene expression, on porcine heart valve interstitial cells (VICs) treated with pergolide or pramipexole. The 5-HT(2B) receptor was abundantly expressed in porcine VICs. The 5-HT(2B) receptor agonist pergolide induced an increase in [3H]thymidine incorporation, accompanied by a decrease in 5-HT(2B) receptor mRNA expression. [3H]thymidine incorporation was blocked by lisuride, a 5-HT(2B) receptor antagonist, and also by LY-294002, a specific inhibitor of PI3K and Akt. Moreover, type 2 iodothyronine deiodinase (Dio2) expression in porcine VICs treated with pergolide was shown, by a global analysis of mRNA, to be markedly increased compared to that induced by pramipexole. Such changes in VICs may correlate with the mechanism of heart valve disease pathogenesis. There were substantial differences (increased [3H]thymidine incorporation, and Dio2 expression) between pergolide and pramipexole, which might correlate with the mechanism of heart valve disease onset.

  13. In vivo brain dopaminergic receptor site mapping using 75Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    International Nuclear Information System (INIS)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a [ 75 Se]-radiolabeled pergolide mesylate derivative, [ 75 Se]-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of [ 75 Se]-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ([ 123 I]-iodoamphetamine). However, [ 123 I]-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that [ 75 Se]-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that [ 75 Se]-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals

  14. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  15. Role of dopamine D4 receptors in copulatory behavior: Studies with selective D4 agonists and antagonists in male rats.

    Science.gov (United States)

    Sanna, Fabrizio; Contini, Andrea; Melis, Maria Rosaria; Argiolas, Antonio

    2015-10-01

    Dopamine influences the anticipatory and consummatory phases of sexual behavior, by acting on receptors of the D2 family (D2, D3 and D4) and in particular of the D2 subtype, although evidence for a role of D4 receptors in erectile function and copulatory behavior is also available. In order to clarify such a role of D4 receptors, the effect of selective D4 receptor agonists and antagonists on copulatory behavior of sexually potent male rats in classic copulation tests with a receptive female, was compared with that of apomorphine and haloperidol, a classic dopamine receptor agonist and antagonist, respectively. PD-168,077 (0.05-0.2mg/kg) and ABT-724 (0.01-0.04mg/kg), two selective D4 receptor agonists, given subcutaneously, improved dose-dependently copulatory behavior as shown by the decrease of mount frequency and post ejaculatory interval induced by PD-168,077, and of mount frequency, ejaculation latency, post ejaculatory and inter intromission intervals induced by ABT-724, and by the increase of ejaculation frequency and copulatory efficacy induced by both drugs. Conversely, L-745,870 (1-5mg/kg), a selective D4 receptor antagonist, given intraperitoneally, impaired dose-dependently copulatory behavior, as shown by the increase in intromission and ejaculation latencies, mount frequency, post ejaculatory interval and the decrease in ejaculation frequency and copulatory efficacy induced by this drug. L-745,870 (5mg/kg) administered before PD-168,077 (0.2mg/kg) or ABT-724 (0.04mg/kg), also abolished completely the facilitatory effects of both PD-168,077 and ABT-724 on sexual behavior. These results confirm the involvement of D4 receptors in specific aspects of male rat copulatory behavior that overlap only partially with those influenced by apomorphine and haloperidol. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A European multicentre survey of impulse control behaviours in Parkinson's disease patients treated with short- and long-acting dopamine agonists

    DEFF Research Database (Denmark)

    Rizos, A; Sauerbier, A; Antonini, A

    2016-01-01

    BACKGROUND AND PURPOSE: Impulse control disorders (ICDs) in Parkinson's disease (PD) are associated primarily with dopamine agonist (DA) use. Comparative surveys of clinical occurrence of impulse control behaviours on longer acting/transdermal DA therapy across age ranges are lacking. The aim...... release PPX (PPX-IR) (19.0%; P controlling...

  17. Aortic valve calcification and mild tricuspid regurgitation but no clinical heart disease after 8 years of dopamine agonist therapy for prolactinoma

    NARCIS (Netherlands)

    M. Kars; V. Delgado (Victoria); E.R. Holman (Eduard); R.A. Feelders (Richard); J.W.A. Smit (Jan); J.A. Romijn (Johannes); J.J. Bax (Jeroen); A.M. Pereira (Alberto)

    2008-01-01

    textabstractObjective: Treatment with ergot-derived dopamine agonists, pergolide, and cabergoline has been associated with an increased frequency of valvular heart disease in Parkinson's disease. The aim of the present study was to assess the prevalence of valvular heart disease in patients treated

  18. Revision of the Classical Dopamine D2 Agonist Pharmacophore Based on an Integrated Medicinal Chemistry, Homology Modelling and Computational Docking Approach

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, N; Harpsøe, Kasper; Kehler, J

    2014-01-01

    The scientific advances during the 1970ies and 1980ies within the field of dopaminergic neurotransmission enabled the development of a pharmacophore that became the template for design and synthesis of dopamine D2 agonists during the following four decades. A major drawback, however, is that this...

  19. The risky business of dopamine agonists in Parkinson disease and impulse control disorders

    NARCIS (Netherlands)

    Claassen, D.O.; van den Wildenberg, W.P.M.; Ridderinkhof, K.R.; Jessup, C.K.; Harrison, M.B.; Wooten, G.F.; Wylie, S.A.

    2011-01-01

    Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's disease (PD), impulse control disorder (ICD) can result from

  20. Capacities of the dopamine receptor agonist pramipexole in the treatment of patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    S N Illarioshkin

    2012-01-01

    Full Text Available Dopaminergic stimulation with levodopa, a biological precursor of dopamine precursor, and dopamine receptor agonists (DRA remains the leading pharmacotherapeutic strategy for Parkinson’s disease (PD. The long-term use of levodopa is associated with the development of characteristic fluctuations in its symptoms and drug-induced dyskinesias so DRA are the drugs of choice and may be used alone and as part of combination therapy in a number of cases of parkinsonism in young patients in particular. Pramipexole (mirapex is one of the most effective representatives of non-ergoline DRA, which has an extensive evidence base. The paper analyzes the heterodirectional properties of pramipexole in detail and its effect on motor (including tremor and nonmotor (depression manifestations of PD and discusses the possible neuroprotective action of the drug. It also separately considers the potential of the new unique 24-hour controlled release formulation: the administration of the drug considerably reduces the dose titration period and enhances patient compliance.

  1. B-HT 920, a dopamine D2 agonist, in the treatment of negative symptoms of chronic schizophrenia.

    Science.gov (United States)

    Ohmori, T; Koyama, T; Inoue, T; Matsubara, S; Yamashita, I

    1993-05-15

    A prospective, nonblind 8-week trial of talipexole dihydrochloride (B-HT 920), a dopamine D2 agonist, was conducted in 15 schizophrenic patients with predominantly negative symptoms. B-HT 920 was initiated at 0.15 mg/day and then adjusted at 0.15-2.4 mg/day on the basis of clinical response and side effects. Dosage of concurrent neuroleptics was fixed at least 3 weeks prior to the trial and was unchanged throughout the study period. In addition to clinical assessment, levels of plasma homovanillic acid (pHVA), a potential index of central dopamine turnover, were measured. There was a small but significant (p pHVA levels and the cluster scores of negative items of BPRS both at weeks 0 and 8 of the trial. The clinical results suggest that activation of D2 receptors was related to partial amelioration of the negative symptoms. The clinical and biochemical findings are consistent with a hypothesis that decreased dopaminergic activity may be related to the etiology of negative symptoms of schizophrenia.

  2. Dopamine agonist increases risk taking but blunts reward-related brain activity.

    Directory of Open Access Journals (Sweden)

    Jordi Riba

    Full Text Available The use of D2/D3 dopaminergic agonists in Parkinson's disease (PD may lead to pathological gambling. In a placebo-controlled double-blind study in healthy volunteers, we observed riskier choices in a lottery task after administration of the D3 receptor-preferring agonist pramipexole thus mimicking risk-taking behavior in PD. Moreover, we demonstrate decreased activation in the rostral basal ganglia and midbrain, key structures of the reward system, following unexpected high gains and therefore propose that pathological gambling in PD results from the need to seek higher rewards to overcome the blunted response in this system.

  3. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    OpenAIRE

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) an...

  4. Past smoking and current dopamine agonist use show an independent and dose-dependent association with impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Valença, Guilherme T; Glass, Philip G; Negreiros, Nadja N; Duarte, Meirelayne B; Ventura, Lais M G B; Mueller, Mila; Oliveira-Filho, Jamary

    2013-07-01

    Previous studies have described the association between dopamine replacement therapy in Parkinson's disease and impulse control disorders. A case-control study was performed to establish the prevalence of four of these behaviors in Brazilian patients with Parkinson's disease on stable dopamine replacement therapy and the possible associated risk factors. We investigated 152 patients and 212 healthy controls for pathological gambling, compulsive sexual behavior and compulsive buying and eating. Overall, patients had more impulsive control disorders than controls (18.4% vs. 4.2%, P Impulse control disorders were more common in younger patients (P = 0.008) and in those taking dopamine agonist (P impulse control disorders were history of smoking (odds ratio = 1.059 for each year of smoking, P = 0.010) and current use of pramipexole (odds ratio = 2.551 for each increase in 1 mg, P impulse control disorders in a dose-dependent manner. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders.

    Science.gov (United States)

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; De Maeyer, J H; Stanghellini, V

    2012-04-01

    The nonselective 5-HT(4) receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT(4) agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006-2008 and DDW 2008-2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT(4) agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT(4) agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT(1) receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT(4) agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT(4) agonists with no hERG or 5-HT(1) affinity (renzapride, clebopride, mosapride). 5-HT(4) agonists for GI disorders differ in chemical structure and selectivity for 5-HT(4) receptors. Selectivity for 5-HT(4) over non-5-HT(4) receptors may influence the agent's safety and overall risk-benefit profile. Based on available evidence, highly selective 5-HT(4) agonists may offer improved safety to treat patients with impaired GI motility. © 2012 Blackwell Publishing Ltd.

  6. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    Science.gov (United States)

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640

  7. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dopamine D2 receptor radiotracers [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Patrick N. [Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada)], E-mail: patrick.mccormick@camhpet.ca; Kapur, Shitij [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2008-01-15

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [{sup 11}C](+)-PHNO ([{sup 11}C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [{sup 3}H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for {sup 11}C and {sup 3}H. The specific binding ratio {l_brace}SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum){r_brace} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs responded indistinguishably in terms of both ED{sub 50} and Hill slope (e.g., (-)-NPA ED{sub 50} values are 0.027 and 0.023 mg/kg for [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride, respectively). In response to AMPH challenge, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [{sup 11}C](+)-PHNO- and [{sup 3}H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo

  9. Dopamine D2 receptor radiotracers [11C](+)-PHNO and [3H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    International Nuclear Information System (INIS)

    McCormick, Patrick N.; Kapur, Shitij; Seeman, Philip; Wilson, Alan A.

    2008-01-01

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [ 11 C](+)-PHNO ([ 11 C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [ 3 H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [ 11 C](+)-PHNO and [ 3 H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for 11 C and 3 H. The specific binding ratio {SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum)} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs responded indistinguishably in terms of both ED 50 and Hill slope (e.g., (-)-NPA ED 50 values are 0.027 and 0.023 mg/kg for [ 11 C](+)-PHNO and [ 3 H]raclopride, respectively). In response to AMPH challenge, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [ 11 C](+)-PHNO- and [ 3 H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo applicability of the D2 two-state model, as described by in vitro binding experiments

  10. Effects of the D1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder.

    Science.gov (United States)

    Rosell, Daniel R; Zaluda, Lauren C; McClure, Margaret M; Perez-Rodriguez, M Mercedes; Strike, K Sloan; Barch, Deanna M; Harvey, Philip D; Girgis, Ragy R; Hazlett, Erin A; Mailman, Richard B; Abi-Dargham, Anissa; Lieberman, Jeffrey A; Siever, Larry J

    2015-01-01

    Pharmacological enhancement of prefrontal D1 dopamine receptor function remains a promising therapeutic approach to ameliorate schizophrenia-spectrum working memory deficits, but has yet to be rigorously evaluated clinically. This proof-of-principle study sought to determine whether the active enantiomer of the selective and full D1 receptor agonist dihydrexidine (DAR-0100A) could attenuate working memory impairments in unmedicated patients with schizotypal personality disorder (SPD). We performed a randomized, double-blind, placebo-controlled trial of DAR-0100A (15 mg/150 ml of normal saline administered intravenously over 30 min) in medication-free patients with SPD (n=16) who met the criteria for cognitive impairment (ie, scoring below the 25th percentile on tests of working memory). We employed two measures of verbal working memory that are salient to schizophrenia-spectrum cognitive deficits, and that clinical data implicate as being associated with prefrontal D1 availability: (1) the Paced Auditory Serial Addition Test (PASAT); and (2) the N-back test (ratio of 2-back:0-back scores). Study procedures occurred over four consecutive days, with working memory testing on Days 1 and 4, and DAR-0100A/placebo administration on Days 2-4. Treatment with DAR-0100A was associated with significantly improved PASAT performance relative to placebo, with a very large effect size (Cohen's d=1.14). Performance on the N-back ratio was also significantly improved; however, this effect rested on both a non-significant enhancement and diminution of 2-back and 0-back performance, respectively; therefore interpretation of this finding is more complicated. DAR-0100A was generally well tolerated, with no serious medical or psychiatric adverse events; common side effects were mild to moderate and transient, consisting mainly of sedation, lightheadedness, tachycardia, and hypotension; however, we were able to minimize these effects, without altering the dose, with supportive

  11. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    Science.gov (United States)

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  12. Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists.

    Science.gov (United States)

    Nowak, Przemysław; Nitka, Dariusz; Kwieciński, Adam; Jośko, Jadwiga; Drab, Jacek; Pojda-Wilczek, Dorota; Kasperski, Jacek; Kostrzewa, Richard M; Brus, Ryszard

    2009-01-01

    To assess the possible modulatory effects of noradrenergic and serotoninergic neurons on dopaminergic neuronal activity, the noradrenergic and serotoninergic neurotoxins DSP-4 N-(2-chlorethyl)-N-ethyl-2-bromobenzylamine (50.0 mg/kg, sc) and 5,7-dihydroxytryptamine (5,7-DHT) (37.5 microg icv, half in each lateral ventricle), respectively, were administered toWistar rats on the first and third days of postnatal ontogeny, and dopamine (DA) agonist-induced behaviors were assessed in adulthood. At eight weeks, using an HPLC/ED technique, DSP-4 treatment was associated with a reduction in NE content of the corpus striatum (> 60%), hippocampus (95%), and frontal cortex (> 85%), while 5,7-DHT was associated with an 80-90% serotonin reduction in the same brain regions. DA content was unaltered in the striatum and the cortex. In the group lesioned with both DSP-4 and 5,7-DHT, quinpirole-induced (DA D(2) agonist) yawning, 7-hydroxy-DPAT-induced (DA D(3) agonist) yawning, and apomorphine-induced (non-selective DA agonist) stereotypies were enhanced. However, SKF 38393-induced (DA D(1) agonist) oral activity was reduced in the DSP-4 + 5,7-DHT group. These findings demonstrate that DA D(2)- and D(3)-agonist-induced behaviors are enhanced while DA D(1)-agonist-induced behaviors are suppressed in adult rats in which brain noradrenergic and serotoninergic innervation of the brain has largely been destroyed. This study indicates that noradrenergic and serotoninergic neurons have a great impact on the development of DA receptor reactivity (sensitivity).

  13. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Fabrizio Fierro

    2017-09-01

    Full Text Available Human G-protein coupled receptors (hGPCRs constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.

  14. Syntheses and in vitro evaluation of fluorinated naphthoxazines as dopamine D2/D3 receptor agonists: radiosynthesis, ex vivo biodistribution and autoradiography of [18F]F-PHNO

    International Nuclear Information System (INIS)

    Vasdev, Neil; Seeman, Philip; Garcia, Armando; Stableford, Winston T.; Nobrega, Jose N.; Houle, Sylvain; Wilson, Alan A.

    2007-01-01

    Introduction: Carbon-11-labeled (+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ([ 11 C]-(+)-PHNO) is a dopamine D2/D3 agonist radioligand that is currently used to image the high-affinity state of dopamine receptors in humans with positron emission tomography (PET). The present study reports the preparation and evaluation of fluorinated (+)-PHNO derivatives. Methods: Five fluorinated (+)-PHNO derivatives were synthesized and tested in vitro for inhibition of binding of [ 3 H]domperidone in homogenates of rat striatum and inhibition of binding to [ 3 H]-(+)-PHNO in homogenates of human-cloned D2Long receptors in Chinese hamster ovary cells and rat striatum. Radiolabeling with fluorine-18 was carried out for the most promising candidate, N-fluoropropyl-(+)-HNO (F-PHNO), and ex vivo biodistribution and autoradiography studies with this radiopharmaceutical were performed in rodents. Results: (+)-PHNO and the fluorinated analogs inhibited binding of [ 3 H]domperidone and [ 3 H]-(+)-PHNO to the high- and low-affinity states of dopamine D2 receptors, consistent with D2 agonist behavior. The average dissociation constant at the high-affinity state of D2, K i High , was 0.4 nM for F-PHNO and proved to be equipotent with (+)-PHNO (0.7 nM). All other fluorinated derivatives were significantly less potent (K i High =2-102 nM). The most promising candidate, F-PHNO, was labeled with fluorine-18 in 5% uncorrected radiochemical yield, with respect to starting fluoride. Ex vivo biodistribution and autoradiography studies in rodents revealed that [ 18 F]F-PHNO rapidly enters the rodent brain. However, this radiotracer does not reveal specific binding in the brain and is rapidly cleared. Conclusions: Five novel dopamine D2/D3 agonists based on (+)-PHNO were synthesized and evaluated in vitro. F-PHNO was shown to behave as a potent D2 agonist in vitro and was therefore radiolabeled with fluorine-18. Despite the promising in vitro pharmacological profile, [ 18

  15. Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study.

    Science.gov (United States)

    Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario

    2017-06-01

    Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors

  16. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    Science.gov (United States)

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  17. THE EFFECT OF INTRASTRIATAL APPLICATION OF DIRECTLY AND INDIRECTLY ACTING DOPAMINE AGONISTS AND ANTAGONISTS ON THE INVIVO RELEASE OF ACETYLCHOLINE MEASURED BY BRAIN MICRODIALYSIS - THE IMPORTANCE OF THE POSTSURGERY INTERVAL

    NARCIS (Netherlands)

    DEBOER, P; DAMSMA, G; SCHRAM, Q; STOOF, JC; ZAAGSMA, J; WESTERINK, BHC

    The effect of intrastriatal application of D-1, D-2 and indirect dopaminergic drugs on the release of striatal acetylcholine as a function of the post-implantation intervals was studied using in vivo microdialysis. The dopamine D-2 agonists LY 171555 and (-)N0437 inhibited the release of striatal

  18. Influence of body weight and type of chow on the sensitivity of rats to the behavioral effects of the direct-acting dopamine receptor agonist quinpirole

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2013-01-01

    Rationale Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. Objectives This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Methods Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high fat (34.3%) chow. Results In rats gaining weight with restricted or free access to high fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032–0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within one week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high fat chow also developed insulin resistance. Conclusions These results show that amount and type of chow alter sensitivity to a direct-acting dopamine receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems. PMID:21544521

  19. Influence of body weight and type of chow on the sensitivity of rats to the behavioral effects of the direct-acting dopamine-receptor agonist quinpirole.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2011-10-01

    Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high-fat (34.3%) chow. In rats gaining weight with restricted or free access to high-fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032-0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high-fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within 1 week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high-fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high-fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high-fat chow also developed insulin resistance. These results show that amount and type of chow alter sensitivity to a direct-acting dopamine-receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems.

  20. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.

    Science.gov (United States)

    Hwang, D R; Kegeles, L S; Laruelle, M

    2000-08-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.

  1. Effect of dopamine D1 agonist A77636 on active allothetic place avoidance, in an animal model of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Stuchlík, Aleš; Bubeníková-Valešová, Věra

    2007-01-01

    Roč. 8, Suppl.1 (2007), s. 186-186 ISSN 1562-2975. [World Congress of Biological Psychiatry. 17.04.2007-21.04.2007, Santiago de Chile] R&D Projects: GA ČR(CZ) GA309/07/0341; GA MZd(CZ) NR9178; GA ČR(CZ) GA309/06/1231; GA MŠk(CZ) LC554; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : dopamine Subject RIV: FH - Neurology

  2. (-)-N-[11C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D2 receptors

    International Nuclear Information System (INIS)

    Hwang, Dah-Ren; Kegeles, Lawrence S.; Laruelle, Marc

    2000-01-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [ 11 C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[ 11 C]NPA was prepared by reacting norapomorphine with [ 11 C]propionyl chloride and a lithium aluminum hydride reduction. [ 11 C]Propionyl chloride was prepared by reacting [ 11 C]CO 2 with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[ 11 C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700±1900 mCi/μmol ( N=7; ranged 110-5200 mCi/μmol at EOS). Rodent biodistribution studies showed high uptake of [ 11 C](-)-NPA in D 2 receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[ 11 C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86±0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D 2 receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D 2 agonist. (-)-[ 11 C]NPA is a promising new D 2 agonist PET tracer for probing D 2 receptors in vivo using PET

  3. Putative dopamine agonist (KB220Z) attenuates lucid nightmares in PTSD patients: role of enhanced brain reward functional connectivity and homeostasis redeeming joy.

    Science.gov (United States)

    McLaughlin, Thomas; Blum, Kenneth; Oscar-Berman, Marlene; Febo, Marcelo; Agan, Gozde; Fratantonio, James L; Simpatico, Thomas; Gold, Mark S

    2015-06-01

    Lucid dreams are frequently pleasant and training techniques have been developed to teach dreamers to induce them. In addition, the induction of lucid dreams has also been used as a way to ameliorate nightmares. On the other hand, lucid dreams may be associated with psychiatric conditions, including Post-Traumatic Stress Disorder (PTSD) and Reward Deficiency Syndrome-associated diagnoses. In the latter conditions, lucid dreams can assume an unpleasant and frequently terrifying character. We present two cases of dramatic alleviation of terrifying lucid dreams in patients with PTSD. In the first case study, a 51-year-old, obese woman, diagnosed with PTSD and depression, had attempted suicide and experienced terrifying lucid nightmares linked to sexual/physical abuse from early childhood by family members including her alcoholic father. Her vivid "bad dreams" remained refractory in spite of 6 months of treatment with Dialectical Behavioral Therapy (DBT) and standard pharmaceutical agents which included prazosin, clonidie and Adderall. The second 39-year-old PTSD woman patient had also suffered from lucid nightmares. The medication visit notes reveal changes in the frequency, intensity and nature of these dreams after the complex putative dopamine agonist KB220Z was added to the first patient's regimen. The patient reported her first experience of an extended period of happy dreams. The second PTSD patient, who had suffered from lucid nightmares, was administered KB220Z to attenuate methadone withdrawal symptoms and incidentally reported dreams full of happiness and laughter. These cases are discussed with reference to the known effects of KB220Z including enhanced dopamine homeostasis and functional connectivity of brain reward circuitry in rodents and humans. Their understanding awaits intensive investigation involving large-population, double-blinded studies.

  4. You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists.

    Science.gov (United States)

    Baladi, Michelle G; Daws, Lynette C; France, Charles P

    2012-07-01

    The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Dopamine D1 receptor agonist treatment attenuates extinction of morphine conditioned place preference while increasing dendritic complexity in the nucleus accumbens core.

    Science.gov (United States)

    Kobrin, Kendra L; Arena, Danielle T; Heinrichs, Stephen C; Nguyen, Olivia H; Kaplan, Gary B

    2017-03-30

    The dopamine D1 receptor (D1R) has a role in opioid reward and conditioned place preference (CPP), but its role in CPP extinction is undetermined. We examined the effect of D1R agonist SKF81297 on the extinction of opioid CPP and associated dendritic morphology in the nucleus accumbens (NAc), a region involved with reward integration and its extinction. During the acquisition of morphine CPP, mice received morphine and saline on alternate days; injections were given immediately before each of eight daily conditioning sessions. Mice subsequently underwent six days of extinction training designed to diminish the previously learned association. Mice were treated with either 0.5mg/kg SKF81297, 0.8mg/kg SKF81297, or saline immediately after each extinction session. There was a dose-dependent effect, with the highest dose of SKF81297 attenuating extinction, as mice treated with this dose had significantly higher CPP scores than controls. Analysis of medium spiny neuron morphology revealed that in the NAc core, but not in the shell, dendritic arbors were significantly more complex in the morphine conditioned, SKF81297-treated mice compared to controls. In separate experiments using mice conditioned with only saline, SKF81297 administration after extinction sessions had no effect on CPP and produced differing effects on dendritic morphology. At the doses used in our experiments, SKF81297 appears to maintain previously learned opioid conditioned behavior, even in the face of new information. The D1R agonist's differential, rather than unidirectional, effects on dendritic morphology in the NAc core suggests that it may be involved in encoding reward information depending on previously learned behavior. Published by Elsevier B.V.

  6. A European multicentre survey of impulse control behaviours in Parkinson's disease patients treated with short- and long-acting dopamine agonists.

    Science.gov (United States)

    Rizos, A; Sauerbier, A; Antonini, A; Weintraub, D; Martinez-Martin, P; Kessel, B; Henriksen, T; Falup-Pecurariu, C; Silverdale, M; Durner, G; Røkenes Karlsen, K; Grilo, M; Odin, P; Chaudhuri, K Ray

    2016-08-01

    Impulse control disorders (ICDs) in Parkinson's disease (PD) are associated primarily with dopamine agonist (DA) use. Comparative surveys of clinical occurrence of impulse control behaviours on longer acting/transdermal DA therapy across age ranges are lacking. The aim of this study was to assess the occurrence of ICDs in PD patients across several European centres treated with short- or long-acting [ropinirole (ROP); pramipexole (PPX)] and transdermal [rotigotine skin patch (RTG)] DAs, based on clinical survey as part of routine clinical care. A survey based on medical records and clinical interviews of patients initiating or initiated on DA treatment (both short- and long-acting, and transdermal) across a broad range of disease stages and age groups was performed. Four hundred and twenty-five cases were included [mean age 68.3 years (range 37-90), mean duration of disease 7.5 years (range 0-37)]. ICD frequencies (as assessed by clinical interview) were significantly lower with RTG (4.9%; P controlling for possible confounding factors. © 2016 EAN.

  7. Pharmacology, pharmacokinetics and metabolism of the dopamine receptor agonist 5-hydroxy-6-methyl-2-di-n-propylaminotetralin (DK-118) in the cat

    International Nuclear Information System (INIS)

    Koons, J.C.

    1985-01-01

    The dopamine receptor agonist 5-hydroxy-6-methyl-2-di-n-propylaminotetralin (DK-118) lowers blood pressure, heart rat and inhibits tachycardia induced in cats by electrical stimulation of sympathetic nerves innervating the heart. DK-118, unlike most of its chemically related dopaminergic analogs, exhibits a slow onset of activity suggesting that one or more metabolites of the drug may be responsible for its pharmacologic effects. The purpose of the work described in this thesis was to gain information regarding the possible bioactivation of DK-118 in cats. In one series of experiments, cats were pretreated with inhibitors of drug metabolism, metyrapone or SKF 525-A, and alterations of the pharmacologic effects of DK-118 determined. A high-performance liquid chromatography assay-using electrochemical detection was developed to quantify urine and plasma concentrations of DK-118 in control, metyrapone pretreated and SKF 525-A pretreated cats. Urinary metabolites of [ 14 C]DK-118 were identified employing HPLC, GC/MS and FAB/MS. Pharmacologic activity and receptor binding of selected metabolites were determined. Data presented in this thesis are consistent with the hypothesis that metabolites contribute to some of the pharmacologic effects of DK-118

  8. 7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2 (1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist

    International Nuclear Information System (INIS)

    Yasuda, Y.; Kikuchi, T.; Suzuki, S.; Tsutsui, M.; Yamada, K.; Hiyama, T.

    1988-01-01

    The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit 14 C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices

  9. Protection against cocaine toxicity in mice by the dopamine D-3/D-2 agonist R-(+)-trans-3,4a,10b-Tetrahydro-4-propyl-2H,5H[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol[(+)-PD 128,907

    NARCIS (Netherlands)

    Witkin, JM; Dijkstra, D; Levant, B; Akunne, HC; Zapata, A; Peters, S; Shannon, HE; Gasior, M

    2004-01-01

    Cocaine abuse is a public health concern with seizures and death being one consequence of overdose. In the present study, dopamine D-3/D-2 receptor agonists dose dependently and completely prevented the convulsant and lethal effects of cocaine. The D-3-preferring agonists

  10. Synthesis and pharmacological evaluation of thiopyran analogues of the dopamine D-3 receptor-selective agonist (4aR,10bR)-(+)-trans-3,4,4a,10b-tetrahydro-4-n-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol (PD 128907)

    NARCIS (Netherlands)

    van Vliet, LA; Rodenhuis, N; Dijkstra, D; Wikstrom, H; Pugsley, TA; Serpa, KA; Meltzer, LT; Heffner, TG; Wise, LD; Lajiness, ME; Huff, RM; Svensson, K; Sundell, S; Lundmark, M

    2000-01-01

    Benzopyranoxazine (+)-7 (PD 128907) is the most dopamine (DA) D-3 receptor-selective agonist presently known. The only structural feature which distinguishes 7 from the analogous nonselective naphthoxazines is an oxygen atom in the 6-position. To extend this series of tricyclic DA agonists we used a

  11. Tinnitus control by dopamine agonist pramipexole in presbycusis patients: a randomized, placebo-controlled, double-blind study.

    Science.gov (United States)

    Sziklai, István; Szilvássy, Judit; Szilvássy, Zoltán

    2011-04-01

    Since the concept of tinnitus dopaminergic pathway emerged, studies have been proposed to investigate if dopaminergic agents influence tinnitus. We hypothesized that pramipexole, an agonist on D2/D3 receptors, may antagonize tinnitus in the presbycusis patients (in the frequency range of 250 to 8,000 Hz) in a dose schedule accepted for the treatment of Parkinson's disease in elderly people. We designed a randomized, prospective, placebo-controlled and double-blind trial. Forty presbycusis patients aged 50 years or older with subjective tinnitus were randomized to two groups (20 patients in both). Patients in the drug group took pramipexole over a period of 4 weeks according to a treatment schedule as follows: week 1, 0.088 mg t.i.d.; week 2, 0.18 mg t.i.d.; week 3, 0.7 mg t.i.d.; week 4, 0.18 mg t.i.d. over 3 days and 0.088 mg t.i.d. the rest of the week. Patients in the second group received placebo. Determination of subjective grading of tinnitus perception, the tinnitus handicap inventory (THI) questionnaire and electrocochleography (ECOG) examinations served as the end points. Subjective audiometry was used to produce secondary data. A significant improvement in tinnitus annoyance is found in the group treated with pramipexole versus placebo with respect to inhibition of tinnitus and a decrease of tinnitus loudness greater than 30 dB. However, neither ECOG nor subjective pure-tone threshold audiometry revealed any change in hearing threshold in response to either pramipexole or placebo. Pramipexole is an effective agent against subjective tinnitus associated with presbycusis at a dose schedule used for the treatment of Parkinson's disease. The drug did not change hearing threshold. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review.

    Science.gov (United States)

    Cruickshank, Moira; Henderson, Lorna; MacLennan, Graeme; Fraser, Cynthia; Campbell, Marion; Blackwood, Bronagh; Gordon, Anthony; Brazzelli, Miriam

    2016-03-01

    Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents. To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs. We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014. Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the data extracted. Random-effects meta

  13. Time- and dose-related effects of a gonadotropin-releasing hormone agonist and dopamine antagonist on reproduction in the Northern leopard frog (Lithobates pipiens).

    Science.gov (United States)

    Vu, Maria; Weiler, Bradley; Trudeau, Vance L

    2017-12-01

    Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone release to control ovulation and spermiation in vertebrates. Dopamine (DA) has a clear inhibitory role in the control of reproduction in numerous teleosts, and emerging evidence suggests that similar mechanisms may exist in amphibians. The interactions between GnRH and DA on spawning success and pituitary gene expression in the Northern leopard frog (Lithobates pipiens) were therefore investigated. Frogs were injected during the natural breeding season with a GnRH agonist [GnRH-A; (Des-Gly 10 , D-Ala 6 , Pro-NHEt 9 )-LHRH; 0.1μg/g and 0.4μg/g] alone and in combination with the dopamine receptor D2 antagonist metoclopramide (MET; 5μg/g and 10μg/g). Injected animals were allowed to breed in outdoor mesocosms. Time to amplexus and oviposition were assessed, and egg mass release, incidences of amplexus, egg mass weight, total egg numbers and fertilization rates were measured. To examine gene expression, female pituitaries were sampled at 12, 24 and 36h following injection of GnRH-A (0.4μg/g) alone and in combination with MET (10μg/g). The mRNA levels of the genes lhb, fshb, gpha, drd2 and gnrhr1 were measured using quantitative real-time PCR. Data were analyzed by a two-way ANOVA. Both GnRH-A doses increased amplexus, oviposition and fertilization alone. Co-injection of MET with GnRH-A did not further enhance spawning success. Injection of GnRH-A alone time-dependently increased expression of lhb, fshb, gpha and gnrhr1. The major effect of MET alone was to decrease expression of drd2. Importantly, the stimulatory effects of GnRH-A on lhb, gpha and gnrhr1 were potentiated by the co-injection of MET at 36h. At this time, expression of fshb was increased only in animals injected with both GnRH-A and MET. Spawning success was primarily driven by the actions of GnRH-A. The hypothesized inhibitory action of DA was supported by pituitary gene expression analysis. The results from this study provide a

  14. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  15. Melatonin and melatonin agonists to prevent and treat delirium in critical illness: a systematic review protocol

    Directory of Open Access Journals (Sweden)

    Jennifer Foster

    2016-11-01

    Full Text Available Abstract Background Delirium is a syndrome characterized by acute fluctuations and alterations in attention and arousal. Critically ill patients are at particularly high risk, and those that develop delirium are more likely to experience poor clinical outcomes such as prolonged duration of ICU and hospital length of stay, and increased mortality. Melatonin and melatonin agonists (MMA have the potential to decrease the incidence and severity of delirium through their hypnotic and sedative-sparing effects, thus improving health-related outcomes. The objective of this review is to synthesize the available evidence pertaining to the efficacy and safety of MMA for the prevention and treatment of ICU delirium. Methods We will search Ovid MEDLINE, Web of Science, EMBASE, PsycINFO, the Cochrane Central Register of Controlled Trials (CENTRAL, and CINAHL to identify studies evaluating MMA in critically ill populations. We will also search http://apps.who.int/trialsearch for ongoing and unpublished studies and PROSPERO for registered reviews. We will not impose restrictions on language, date, or journal of publication. Authors will independently screen for eligible studies using pre-defined criteria; data extraction from eligible studies will be performed in duplicate. The Cochrane Risk of Bias Scale and the Newcastle-Ottawa Scale will be used to assess the risk of bias and quality of randomized and non-randomized studies, respectively. Our primary outcome of interest is delirium incidence, and secondary outcomes include duration of delirium, number of delirium- and coma-free days, use of physical and chemical (e.g., antipsychotics or benzodiazepines restraints, duration of mechanical ventilation, ICU and hospital length of stay, mortality, long-term neurocognitive outcomes, hospital discharge disposition, and adverse events. We will use Review Manager (RevMan to pool effect estimates from included studies. We will present results as relative risks with

  16. Syntheses and in vitro evaluation of fluorinated naphthoxazines as dopamine D2/D3 receptor agonists: radiosynthesis, ex vivo biodistribution and autoradiography of [{sup 18}F]F-PHNO

    Energy Technology Data Exchange (ETDEWEB)

    Vasdev, Neil [PET Centre for Addiction and Mental Health, Toronto, Ontario, Canada, M5T-1R8 (Canada) and Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8 (Canada)]. E-mail: neil.vasdev@camhpet.ca; Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S-1A8 (Canada); Garcia, Armando [PET Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8 (Canada); Stableford, Winston T. [PET Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8 (Canada); Nobrega, Jose N. [PET Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S-1A8 (Canada); Houle, Sylvain [PET Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8 (Canada); Wilson, Alan A. [PET Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8 (Canada)

    2007-02-15

    Introduction: Carbon-11-labeled (+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ([{sup 11}C]-(+)-PHNO) is a dopamine D2/D3 agonist radioligand that is currently used to image the high-affinity state of dopamine receptors in humans with positron emission tomography (PET). The present study reports the preparation and evaluation of fluorinated (+)-PHNO derivatives. Methods: Five fluorinated (+)-PHNO derivatives were synthesized and tested in vitro for inhibition of binding of [{sup 3}H]domperidone in homogenates of rat striatum and inhibition of binding to [{sup 3}H]-(+)-PHNO in homogenates of human-cloned D2Long receptors in Chinese hamster ovary cells and rat striatum. Radiolabeling with fluorine-18 was carried out for the most promising candidate, N-fluoropropyl-(+)-HNO (F-PHNO), and ex vivo biodistribution and autoradiography studies with this radiopharmaceutical were performed in rodents. Results: (+)-PHNO and the fluorinated analogs inhibited binding of [{sup 3}H]domperidone and [{sup 3}H]-(+)-PHNO to the high- and low-affinity states of dopamine D2 receptors, consistent with D2 agonist behavior. The average dissociation constant at the high-affinity state of D2, K {sub i} {sup High}, was 0.4 nM for F-PHNO and proved to be equipotent with (+)-PHNO (0.7 nM). All other fluorinated derivatives were significantly less potent (K {sub i} {sup High}=2-102 nM). The most promising candidate, F-PHNO, was labeled with fluorine-18 in 5% uncorrected radiochemical yield, with respect to starting fluoride. Ex vivo biodistribution and autoradiography studies in rodents revealed that [{sup 18}F]F-PHNO rapidly enters the rodent brain. However, this radiotracer does not reveal specific binding in the brain and is rapidly cleared. Conclusions: Five novel dopamine D2/D3 agonists based on (+)-PHNO were synthesized and evaluated in vitro. F-PHNO was shown to behave as a potent D2 agonist in vitro and was therefore radiolabeled with fluorine-18. Despite the

  17. Effectiveness and safety of alpha agonists for ADHD in population between 6 and 19 years: a systematic review

    Directory of Open Access Journals (Sweden)

    José Calleja

    2012-09-01

    Full Text Available Introduction: Attention deficit hyperactivity disorder (ADHD is generally treated with pharmacological interventions; psychostimulants are first choice. Other alternatives have been used such as alpha agonists (clonidine, hence it is important to know its effectiveness and safety. Purpose: To identify, synthesize and evaluate the best available evidence on the effectiveness and safety of alpha agonists in treating ADHD in the 6-19 year-old population. Methods: A systematic review of intervention studies that evaluated effectiveness comparing alpha agonists to methylphenidate was conducted. Outcomes measured were educational performance, psychosocial functioning, quality of life and adverse effects. The following databases were searched up to February 2012 in English and Spanish: PubMed/MEDLINE, Lilacs, Cochrane, DARE and National Guideline Clearinghouse. The articles that met the inclusion criteria were assessed by two researchers independently. Results: Of the 34 studies found initially, three were included, among which a systematic review and two clinical guidelines. Conclusions: Clonidine is considered an effective second and third line treatment for ADHD symptoms, but it is less effective than stimulants. Its use is associated with many side effects.

  18. Feasibility of a randomized single-blind crossover trial to assess the effects of the second-generation slow-release dopamine agonists pramipexole and ropinirole on cued recall memory in idiopathic mild or moderate Parkinson's disease without cognitive impairment.

    Science.gov (United States)

    Shepherd, Thomas A; Edelstyn, Nicola M J; Longshaw, Laura; Sim, Julius; Watts, Keira; Mayes, Andrew R; Murray, Michael; Ellis, Simon J

    2018-01-01

    The aim was to assess the feasibility of a single-centre, single-blind, randomized, crossover design to explore the effects of two slow-release dopamine agonists, ropinirole and pramipexole, on cued recall in Parkinson's disease. As the design required a switch from the prescribed agonist (pramipexole-to-ropinirole, or ropinirole-to-pramipexole), the primary objectives were to (a) examine the efficacy of processes and procedures used to manage symptoms during the washout period and (b) to use cued recall estimates to inform a power calculation for a definitive trial. Secondary objectives were to assess consent and missing data rates, acceptability of clinical support for the OFF sessions, experience of the OFF sessions and of agonist switching, barriers-to-participation for patients and informal caregivers. Patients were randomized in a 1:1 ratio to two treatment arms and stabilized on each agonist for 6 weeks. The arms differed only in the sequence in which the agonists were administered. Cued recall was assessed ON medication and, following a washout period resulting in 93.75% agonist elimination, OFF medication. A total of 220 patients were screened: 145 were excluded and 75 invitations to participate were sent to eligible patients. Fifty-three patients declined, 22 consented and 16 completed the study. There were no serious adverse events, and rates of non-serious adverse events were equivalent between the agonists. Using the largest standard deviation (SD) of the ON-OFF difference cued recall score (inflated by ~25% to give a conservative estimate of the SD in a definitive trial) and assuming an effect of at least 10% of the observed range of OFF medication cued recall scores for either agonist to be clinically important, a main trial requires a sample size of just under 150 patients. The consent and missing data rates were 29 and 27% respectively. The washout period and the preparation for the OFF sessions were acceptable, and the sessions were manageable

  19. Efficacy and Safety of GLP-1 Receptor Agonists for Type 2 Diabetes Mellitus Treatment: Systematic Review

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    2016-04-01

    Full Text Available Introduction: Glucagon-like peptide analogues are a new class of drugs used in the treatment of type 2 diabetes mellitus that mimic the endogenous hormone glucagon-like peptide 1. Glucagon-like peptide 1 regulates glucose levels by stimulating glucose-dependent insulin secretion, suppressing glucagon secretion, delayed gastric emptying and promoting satiety. The individualized treatment of type 2 diabetes mellitus, using various glucagon--like peptide receptor agonists, has recently been described and the interest related to these drugs continues to grow. Objectives: To review the efficacy and safety of glucagon-like peptide 1 agonists in patients with inadequately controlled type 2 diabetes mellitus on metformin alone, highlighting their added value in therapeutic use comparatively to second line oral therapies used in type 2 diabetes mellitus. Methods: Studies were obtained from electronic searches of The Cochrane Library and PubMed. Randomized controlled trials were selected if they were at least 8 weeks in duration; compared a glucagon-like peptide 1 analogue with an oral anti-diabetic agent in patients experiencing inadequate glycemic control with metformin monotherapy; and reported hemoglobin A1c data in non-pregnant adults with type 2 diabetes mellitus. Results: Of 72 potentially relevant articles identified, 23 were retrieved for detailed evaluation and 10 met the inclusion criteria. The majority of glucagon-like peptide 1 agonists showed equivalent or superior efficacy than most active comparators for reducing hemoglobin A1c, with a greater proportion of patients achieving hemoglobin A1c <7%. Glucagon-like peptide 1 agonists also showed extra-glycemic effects such as weight loss and the reduction of important cardiovascular parameters. Side effects included gastrointestinal complications, mainly nausea, vomiting and diarrhea. The incidence of hypoglycemia was less common for this class of agents. Conclusion: Glucagon-like peptide 1

  20. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor.

    Science.gov (United States)

    Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars

    2013-03-01

    Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.

  1. Chronic administration of the dopamine D2/3 agonist ropinirole invigorates performance of a rodent slot machine task, potentially indicative of less distractible or compulsive-like gambling behaviour.

    Science.gov (United States)

    Cocker, Paul J; Tremblay, M; Kaur, S; Winstanley, Catharine A

    2017-01-01

    Whilst dopamine agonist therapies can successfully manage the symptoms of diseases such as Parkinson's disease (PD), fibromyalgia and restless leg syndrome, they can also cause impulse control and addiction disorders such as gambling disorder (GD). These compulsive behaviours seriously undermine the utility of such treatments. The objective of the study was to model this phenomenon using a rodent slot machine task (rSMT) in order to investigate the neurobiological basis underlying such behavioural changes. Male Long Evans rats were trained to perform the rSMT. The D 2 -like agonist ropinirole, or saline, was then delivered continuously for 28 days via osmotic mini-pump. The effects of ropinirole on baseline rSMT performance, as well as extinction and reinstatement sessions, were determined during this time. Brain samples from key frontostriatal regions implicated in GD and PD were then harvested immediately or after a 4-week washout period during which behaviour returned to pre-drug baseline. Ropinirole invigorated task performance, in that drug treatment resulted in a robust and sustained increase in the number of trials completed. Ex vivo analyses revealed that chronic ropinirole treatment led to a pattern of changes indicative of upregulation within the β-arrestin-AKT-GSK3β intracellular cascade, recently theorised to dominate D 2 -mediated signalling under hyperdopaminergic conditions, in the dorsal striatum, rather than the canonical PKA-dependent signalling pathway associated with D 2 receptor activation. Such findings provide novel insight into the role of dopamine signalling in mediating compulsive-like gambling behaviour and may inform more directed pharmacotherapies for the treatment of both idiopathic and iatrogenic GD.

  2. The impact of therapeutic opioid agonists on driving-related psychomotor skills assessed by a driving simulator or an on-road driving task: A systematic review.

    Science.gov (United States)

    Ferreira, Diana H; Boland, Jason W; Phillips, Jane L; Lam, Lawrence; Currow, David C

    2018-04-01

    Driving cessation is associated with poor health-related outcomes. People with chronic diseases are often prescribed long-term opioid agonists that have the potential to impair driving. Studies evaluating the impact of opioids on driving-related psychomotor skills report contradictory results likely due to heterogeneous designs, assessment tools and study populations. A better understanding of the effects of regular therapeutic opioid agonists on driving can help to inform the balance between individual's independence and community safety. To identify the literature assessing the impact of regular therapeutic opioid agonists on driving-related psychomotor skills for people with chronic pain or chronic breathlessness. Systematic review reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis statement; PROSPERO Registration CRD42017055909. Six electronic databases and grey literature were systematically searched up to January, 2017. Inclusion criteria were as follows: (1) empirical studies reporting data on driving simulation, on-the-road driving tasks or driving outcomes; (2) people with chronic pain or chronic breathlessness; and (3) taking regular therapeutic opioid agonists. Critical appraisal used the National Institutes of Health's quality assessment tools. From 3809 records screened, three studies matched the inclusion criteria. All reported data on people with chronic non-malignant pain. No significant impact of regular therapeutic opioid agonists on people's driving-related psychomotor skills was reported. One study reported more intense pain significantly worsened driving performance. This systematic review does not identify impaired simulated driving performance when people take regular therapeutic opioid agonists for symptom control, although more prospective studies are needed.

  3. Radiosynthesis and in vitro evaluation of 2-(N-alkyl-N-1'-11C-propyl)amino-5-hydroxytetralin analogs as high affinity agonists for dopamine D-2 receptors

    International Nuclear Information System (INIS)

    Shi Bingzhi; Narayanan, Tanjore K.; Yang, Z.-Y.; Christian, Bradley T.; Mukherjee, Jogeshwar

    1999-01-01

    We have developed radiotracers based on agonists that may potentially allow the in vivo assessment of the high affinity (HA) state of the dopamine D-2 receptors. The population of HA state, which is likely the functional state of the receptor, may be altered in certain diseases. We carried out radiosyntheses and evaluated the binding affinities, lipophilicity, and in vitro autoradiographic binding characteristics of three dopamine D-2 receptor agonists: (±)-2-(N,N-dipropyl)amino-5-hydroxytetralin (5-OH-DPAT), (±)-2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), and (±)-2-(N-cyclohexylethyl-N-propyl)amino-5-hydroxytetralin (ZYY-339). In 3 H-spiperone assays using rat striata, ZYY-339 exhibited subnanomolar affinity for D-2 receptor sites ( IC 50 =0.010 nM), PPHT was somewhat weaker ( IC 50 =0.65 nM), and 5-OH-DPAT exhibited the weakest affinity ( IC 50 =2.5 nM) of the three compounds. Radiosynthesis of these derivatives, 2-(N-propyl-N-1'- 11 C-propyl)amino-5-hydroxytetralin ( 11 C-5-OH-DPAT), 2-(N-phenethyl-N-1'- 11 C-propyl)amino-5-hydroxytetralin ( 11 C-PPHT), and 2-(N-cyclohexylethyl-N-1'- 11 C-propyl)amino-5-hydroxytetralin ( 11 C-ZYY-339) was achieved by first synthesizing 11 C-1-propionyl chloride and subsequent coupling with the appropriate secondary amine precursor to form the respective amide, which was then reduced to provide the desired tertiary amine products. The final products were obtained by reverse-phase high performance liquid chromatography (HPLC) purification in radiochemical yields of 5-10% after 60-75 min from the end of 11 CO 2 trapping and with specific activities in the range of 250-1,000 Ci/mmol. In vitro autoradiographs in rat brain slices with 11 C-5-OH-DPAT, 11 C-PPHT, and 11 C-ZYY-339 revealed selective binding of the three radiotracers to the dopamine D-2 receptors in the striata

  4. TRANSDERMAL ADMINISTRATION OF THE DOPAMINE AGONIST N-0437 AND 7 ESTER PRODRUGS - COMPARISON WITH ORAL-ADMINISTRATION IN THE 6-OHDA TURNING MODEL

    NARCIS (Netherlands)

    DENDAAS, [No Value; TEPPER, PG; ROLLEMA, H; HORN, AS

    1990-01-01

    The potent and selective D2-agonist N-0437 [2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin] undergoes considerable first-pass metabolism after oral administration due to glucuronidation of the phenolic group. In an attempt to improve its bioavailability, seven ester prodrugs of N-0437 were

  5. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry.

    Science.gov (United States)

    Gold, Mark S; Badgaiyan, Rajendra D; Blum, Kenneth

    2015-09-01

    This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of dopamine D1 receptor antagonist SCH23390 and D1 agonist A77636 on active allothetic place avoidance, a spatial cognition task

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Valeš, Karel

    2006-01-01

    Roč. 172, č. 2 (2006), s. 250-255 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA309/06/1231; GA ČR(CZ) GP309/03/P126; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial memory * cognition * dopamine Subject RIV: FH - Neurology Impact factor: 2.591, year: 2006

  7. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline

  8. Identification of the Beer Component Hordenine as Food-Derived Dopamine D2 Receptor Agonist by Virtual Screening a 3D Compound Database

    Science.gov (United States)

    Sommer, Thomas; Hübner, Harald; El Kerdawy, Ahmed; Gmeiner, Peter; Pischetsrieder, Monika; Clark, Timothy

    2017-03-01

    The dopamine D2 receptor (D2R) is involved in food reward and compulsive food intake. The present study developed a virtual screening (VS) method to identify food components, which may modulate D2R signalling. In contrast to their common applications in drug discovery, VS methods are rarely applied for the discovery of bioactive food compounds. Here, databases were created that exclusively contain substances occurring in food and natural sources (about 13,000 different compounds in total) as the basis for combined pharmacophore searching, hit-list clustering and molecular docking into D2R homology models. From 17 compounds finally tested in radioligand assays to determine their binding affinities, seven were classified as hits (hit rate = 41%). Functional properties of the five most active compounds were further examined in β-arrestin recruitment and cAMP inhibition experiments. D2R-promoted G-protein activation was observed for hordenine, a constituent of barley and beer, with approximately identical ligand efficacy as dopamine (76%) and a Ki value of 13 μM. Moreover, hordenine antagonised D2-mediated β-arrestin recruitment indicating functional selectivity. Application of our databases provides new perspectives for the discovery of bioactive food constituents using VS methods. Based on its presence in beer, we suggest that hordenine significantly contributes to mood-elevating effects of beer.

  9. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD.

    Science.gov (United States)

    Eagle, Dawn M; Noschang, Cristie; d'Angelo, Laure-Sophie Camilla; Noble, Christie A; Day, Jacob O; Dongelmans, Marie Louise; Theobald, David E; Mar, Adam C; Urcelay, Gonzalo P; Morein-Zamir, Sharon; Robbins, Trevor W

    2014-05-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an 'observing' lever for information about the location of an 'active' lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be beneficial

  10. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD?

    Science.gov (United States)

    Eagle, Dawn M.; Noschang, Cristie; d’Angelo, Laure-Sophie Camilla; Noble, Christie A.; Day, Jacob O.; Dongelmans, Marie Louise; Theobald, David E.; Mar, Adam C.; Urcelay, Gonzalo P.; Morein-Zamir, Sharon; Robbins, Trevor W.

    2014-01-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an ‘observing’ lever for information about the location of an ‘active’ lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5 mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be

  11. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity.

    Science.gov (United States)

    Korte, S Mechiel; Prins, Jolanda; Van den Bergh, Filip S; Oosting, Ronald S; Dupree, Rudy; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Olivier, Berend; Denys, Damiaan A; Garland, Alexis; Güntürkün, Onur

    2017-01-05

    The 5-HT 1A/1B -receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT 1A/1B -receptor activation decreases impulsive choice, but increases impulsive action. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. T156. IN VIVO CHARACTERIZATION OF THE FIRST AGONIST DOPAMINE D1 RECEPTORS PET IMAGING TRACER [18F]MNI-968 IN HUMAN

    Science.gov (United States)

    Tamagnan, Gilles; Barret, Olivier; Alagille, David; Carroll, Vincent; Madonia, Jennifer; Constantinescu, Cristian; SanDiego, Christine; Papin, Caroline; Morley, Thomas; Russell, David; McCarthy, Timothy; Zhang, Lei; Gray, David; Villalobos, Anna; Lee, Chewah; Chen, Jianqing; Seibyl, John; Marek, Kenneth

    2018-01-01

    Abstract Background D1 receptors, which couple to inhibitory G-proteins, have been shown to regulate neuronal growth and development, mediate some behavioral responses. Its function has been shown to be altered in both neurologic and psychiatric disorders. To date, there is a lack of agonist PET tracers for the D1 receptors labeled with 18F with relevance in clinical studies. We report the evaluation in non-human primates of [18F]MNI-968 (PF-06730110), a novel PET radiotracer of the D1 receptors Methods Four brain PET studies, 2 baselines and 2 blockade studies using PF-2562, a D1 partial agonist compound, were conducted for 90 min in two rhesus monkeys with [18F]MNI-968 (169 ± 31 MBq). [18F]PF-06730110 was administered at the same dose level for both monkeys as a bolus followed by a 2-hour infusion, with [18F]MNI-968 administered 30 min into the infusion. Additionally, six brain PET studies were conducted over 180 min (317 ± 49 MBq) in 6 healthy human volunteers (3 test/retest and 3 test). PET data were modeled with 2-tissue compartmental model (2T), Logan graphical analysis (LGA), and non-invasive Logan graphical analysis (NI-LGA) with cerebellar cortex as reference region to estimate total distribution volume VT, and binding potential BPND. For the blockade studies in rhesus monkeys, occupancy was estimated from BPND at baseline and post blockade. Results In rhesus monkeys, [18F]MNI-968 (PF-06730110), penetrated the brain with a peak whole-brain uptake up to ~3% of the injected dose at ~ 6 min post injection and showed a fast washout. The highest signal was found in the caudate, putamen, with moderate extrastriatal uptake. The lowest signal was in the cerebellum. BPND values were up to ~1.4 in the putamen. All three quantification methods (2T, LGA and NI-LGA) were in excellent agreement, with a similar estimated D1 receptors occupancy of PF-06730110 of ~40% for both monkeys in the caudate and putamen. In human, [18F]MNI-968 kinetics appeared to be faster

  13. Ergotamine-derived dopamine agonists and left ventricular function in Parkinson patients: systolic and diastolic function studied by conventional echocardiography, tissue Doppler imaging, and two-dimensional speckle tracking.

    Science.gov (United States)

    Rasmussen, Vibeke Guldbrand; Poulsen, Steen Hvitfeldt; Dupont, Erik; Ostergaard, Karen; Safikhany, Gholamhossein; Egeblad, Henrik

    2008-11-01

    Ergot-derived dopamine agonists (EDDA) induce fibrotic heart valve disease. We aimed to investigate whether EDDA treatment also affects left ventricular (LV) function. Myocardial function was evaluated in 110 Parkinson patients [mean age (63.4 +/- 9.0 years)] treated for at least 6 months with either EDDA (n = 71) or non-EDDA (n = 39). LV ejection fraction did not differ between EDDA and non-EDDA patients [63 +/- 4% vs. 65 +/- 4% (ns)]. There was no difference in prevalence of diastolic dysfunction between EDDA and non-EDDA patients [7% vs. 8% (ns)]. Finally, averaged LV systolic myocardial strain and longitudinal displacement analysed by means of two-dimensional speckle tracking showed no difference between EDDA and non-EDDA patients [strain: 19 +/- 3% vs. 19 +/- 2% (ns) and longitudinal displacement: 12 +/- 2 mm vs. 12 +/- 2 mm (ns)]. Elevated p-NT-proBNP was found in 38% of EDDA patients and in 59% of non-EDDA patients (ns). In contrast to the well-established association between EDDA treatment and valvular fibrosis, EDDA did not have a detectable adverse impact on myocardial systolic and diastolic function.

  14. The dopamine D1 receptor agonist SKF81297 has dose-related effects on locomotor activity but is without effect in a CER trace conditioning procedure conducted with two versus four trials.

    Science.gov (United States)

    Pezze, M A; Marshall, H J; Cassaday, H J

    2016-08-01

    In an appetitively motivated procedure, we have previously reported that systemic treatment with the dopamine (DA) D1 receptor agonist SKF81297 (0.4 and 0.8 mg/kg) depressed acquisition at a 2 s inter-stimulus-interval (ISI), suitable to detect trace conditioning impairment. However since DA is involved in reinforcement processes, the generality of effects across appetitively- and aversively-motivated trace conditioning procedures cannot be assumed. The present study tested the effects of SKF81297 (0.4 and 0.8 mg/kg) in an established conditioned emotional response (CER) procedure. Trace-dependent conditioning was clearly shown in two experiments: while conditioning was relatively strong at a 3-s ISI, it was attenuated at a 30-s ISI. This was shown after two (Experiment 1) or four (Experiment 2) conditioning trials conducted in - as far as possible - the same CER procedure. Contrary to prediction, in neither experiment was there any indication that trace conditioning was attenuated by treatment with 0.4 or 0.8 mg/kg SKF81297. In the same rats, locomotor activity was significantly enhanced at the 0.8 mg/kg dose of SKF81297. These results suggest that procedural details of the trace conditioning variant in use are an important determinant of the profile of dopaminergic modulation.

  15. Risk of thromboembolism with thrombopoietin receptor agonists in adult patients with thrombocytopenia: Systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Catalá-López, Ferrán; Corrales, Inmaculada; de la Fuente-Honrubia, César; González-Bermejo, Diana; Martín-Serrano, Gloria; Montero, Dolores; Saint-Gerons, Diego Macías

    2015-12-21

    Romiplostim and eltrombopag are thrombopoietin receptor (TPOr) agonists that promote megakaryocyte differentiation, proliferation and platelet production. In 2012, a systematic review and meta-analysis reported a non-statistically significant increased risk of thromboembolic events for these drugs, but analyses were limited by lack of statistical power. Our objective was to update the 2012 meta-analysis examining whether TPOr agonists affect thromboembolism occurrence in adult thrombocytopenic patients. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs). Updated searches were conduced on PubMed, Cochrane Central, and publicly available registries (up to December 2014). RCTs using romiplostim or eltrombopag in at least one group were included. Relative risks (RR), absolute risk ratios (ARR) and number needed to harm (NNH) were estimated. Heterogeneity was analyzed using Cochran's Q test and I(2) statistic. Fifteen studies with 3026 adult thrombocytopenic patients were included. Estimated frequency of thromboembolism was 3.69% (95% CI: 2.95-4.61%) for TPOr agonists and 1.46% (95% CI: 0.89-2.40%) for controls. TPOr agonists were associated with a RR of thromboembolism of 1.81 (95% CI: 1.04-3.14) and an ARR of 2.10% (95% CI: 0.03-3.90%) meaning a NNH of 48. Overall, we did not find evidence of statistical heterogeneity (p=0.43; I(2)=1.60%). Our updated meta-analysis suggested that TPOr agonists are associated with a higher risk of thromboemboembolic events compared with controls, and supports the current recommendations included in the European product information on this respect. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  16. Automated preparation of the dopamine D{sub 2/3} receptor agonist ligand [{sup 11}C]-(+)-PHNO for human PET imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Plisson, Christophe, E-mail: Christophe.2.plisson@gsk.com [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom); Huiban, Mickael; Pampols-Maso, Sabina; Singleton, Goerkem; Hill, Samuel P.; Passchier, Jan [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom)

    2012-02-15

    Carbon-11 labelled (+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ([{sup 11}C]-(+)-PHNO) is used as a high-affinity state, dopamine D{sub 2/3} receptor ligand in clinical PET studies. To facilitate its use, robust, rapid, efficient and GMP compliant methods are required for the manufacturing and QC testing processes. Additionally, to allow for full quantification of the resulting signal in the CNS, a reliable method is required to establish the parent plasma concentration over the course of the scan. This paper provides high-quality methods to support clinical application of [{sup 11}C]-(+)-PHNO. - Highlights: Black-Right-Pointing-Pointer Fully automated synthesis of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Rapid multi-step synthesis and QC analysis. Black-Right-Pointing-Pointer Reproducible synthesis process typically yielding more than 3 GBq of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Very low failure rate.

  17. β(2)-Agonists and Physical Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    NARCIS (Netherlands)

    Pluim, Babette M.; de Hon, Olivier; Staal, J. Bart; Limpens, Jacqueline; Kuipers, Harm; Overbeek, Shelley E.; Zwinderman, Aeilko H.; Scholten, Rob J. P. M.

    2011-01-01

    Inhaled β(2)-agonists are commonly used as bronchodilators in the treatment of asthma. Their use in athletes, however, is restricted by anti-doping regulations. Controversies remain as to whether healthy elite athletes who use bronchodilators may gain a competitive advantage. The aim of this

  18. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    Science.gov (United States)

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. © 2010 American Academy of Forensic Sciences.

  19. Valvulopatía cardiaca asociada al uso de agonistas dopaminérgicos en pacientes con hiperprolactinemia Valvular heart disease associated with use of dopaminergic agonists in patients with hyperprolactinemia

    Directory of Open Access Journals (Sweden)

    Yamilé Alvarez Delgado

    2009-12-01

    Full Text Available La cabergolina y la bromocriptina son fármacos agonistas dopaminérgicos utilizados para tratar la hiperprolactinemia, así como la enfermedad de Parkinson. Entre sus efectos adversos considerados como "muy raros" se ha descrito la capacidad de inducir cambios fibróticos en el aparato valvular cardiaco, inicialmente descritos en pacientes con enfermedad de Parkinson, en quienes se emplean dosis superiores a las que de manera habitual se emplean en el tratamiento de la hiperprolactinemia. Varios estudios han señalado la evidencia de estos hechos y de los posibles mecanismos por los cuales la afectación valvular ocurre. Existen hasta el momento pocas investigaciones sobre el asunto en pacientes con hiperprolactinemia, pero la mayoría de ellos indican que su empleo en este tipo de pacientes no produce afectación valvular clínicamente relevante, hecho que pudiera estar en relación con las dosis empleadas (como promedio 10 veces inferiores a las usadas en la enfermedad de Parkinson; sin embargo, se han detectado algunas anomalías subclínicas en el aparato valvular. Dado lo novedoso del tema y la poca evidencia de estos hechos en pacientes tratadas por hiperprolactinemia se ofreció una amplia revisión sobre el tema.Cabergoline and bromocriptine are dopaminergic agonists drugs used in hyperprolactinemia treatment, as well as in patients with Parkinson's disease. Among its adverse effects considered as "very inusual" is included the ability to induce fibrotic changes in cardiac valvular tract first described in patients with Parkinson disease using doses higher than those usually used in hyperprolactinemia treatment. Some studies have mentioned the evidence on these facts and of the possible mechanisms causing the valvular affection. Until now, there are not much researches on this subject in patients with hyperprolactinemia, but most indicated that its use in this kind of patient can not to produce a clinically relevant valvular afection

  20. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Diaz Heijtz Rochellys

    2006-05-01

    Full Text Available Abstract Background Molecular genetic studies suggest the dopamine D1 receptor (D1R may be implicated in attention-deficit/hyperactivity disorder (ADHD. As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. Methods We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg, on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. Results SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum of SHR when compared to WKY rats

  1. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  2. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  3. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  4. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Mazidi, Mohsen; Karimi, Ehsan; Rezaie, Peyman; Ferns, Gordon A

    2017-07-01

    To undertake a systematic review and meta-analysis of randomized controlled trials of the effect of glucagon-like peptide-1 receptor agonist (GLP-1 RAs) therapy on serum C-reactive protein (CRP) concentrations. PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases were searched for the period up until March 16, 2016. Prospective studies evaluating the impact of GLP-1 RAs on serum CRP were identified. A random effects model (using the DerSimonian-Laird method) and generic inverse variance methods were used for quantitative data synthesis. Sensitivity analysis was conducted using the leave-one-out method. Heterogeneity was quantitatively assessed using the I 2 index. Random effects meta-regression was performed using unrestricted maximum likelihood method to evaluate the impact of potential moderator. International Prospective Register for Systematic Reviews (PROSPERO) number CRD42016036868. Meta-analysis of the data from 7 treatment arms revealed a significant reduction in serum CRP concentrations following treatment with GLP-1 RAs (WMD -2.14 (mg/dL), 95% CI -3.51, -0.78, P=0.002; I 2 96.1%). Removal of one study in the meta-analysis did not change the result in the sensitivity analysis (WMD -2.14 (mg/dL), 95% CI -3.51, -0.78, P=0.002; I 2 96.1%), indicating that our results could not be solely attributed to the effect of a single study. Random effects meta-regression was performed to evaluate the impact of potential moderator on the estimated effect size. Changes in serum CRP concentration were associated with the duration of treatment (slope -0.097, 95% CI -0.158, -0.042, Pmeta-analysis suggests that GLP-1 RAs therapy causes a significant reduction in CRP. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity

    NARCIS (Netherlands)

    Korte, S. Mechiel; Prins, Jolanda; van den Bergh, Filip S.; Oosting, Ronald S.; Dupree, Rudy; Korte-Bouws, Gerdien A. H.; Westphal, Koen G. C.; Olivier, Berend; Denys, Damiaan A.; Garland, Alexis; Güntürkün, Onur

    2017-01-01

    The 5-HT1A/1B-receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase

  6. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  7. Neurobiology of D-1 dopamine receptors after neonatal-6-OHDA treatment: Relevance to Lesch-Nyhan disease

    International Nuclear Information System (INIS)

    Breese, G.R.; Duncan, G.E.; Mueller, R.A.; Napier, T.C.

    1986-01-01

    In the present work, experiments with neonatally and adult-6-OHDA-lesioned rats are described which examine the pharmacology of agonists and antagonists with specificity for D 1 and D 2 dopamine receptors. This work permits conclusions concerning the role of D 1 -dopamine receptors in behavior, about the interaction of D 1 receptors with D 2 -dopamine receptors, and about the importance of D 1 -dopamine receptors for the self-mutilation behavior (SMB) observed in rats treated neonatally with 6-OHDA when challenged with dopamine agonists as adults. The relationship of these findings to Lesch-Nyhan disease are also discussed

  8. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  9. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  10. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Zhixia Li

    Full Text Available To synthesize current evidence of the impact of Glucagon-like peptide-1 receptor agonists (GLP-1 RAs on hypoglycemia, treatment discontinuation and glycemic level in patients with type 2 diabetes.Systematic review and network meta-analysis.Literature search (Medline, Embase, the Cochrane library, website of clinical trial, bibliographies of published systematic reviews.Randomized controlled trials with available data comparing GLP-1 RAs with placebo or traditional anti-diabetic drugs in patients with type 2 diabetes.Traditional pairwise meta-analyses within DerSimonian-Laird random effects model and network meta-analysis within a Bayesian framework were performed to calculate odds ratios for the incidence of hypoglycemia, treatment discontinuation, HbA1c<7.0% and HbA1c<6.5%. Ranking probabilities for all treatments were estimated to obtain a treatment hierarchy using the surface under the cumulative ranking curve (SUCRA and mean ranks.78 trials with 13 treatments were included. Overall, all GLP-1 RAs except for albiglutide increased the risk of hypoglycemia when compared to placebo. Reduction in the incidence of hypoglycemia was found for all GLP-1 RAs versus insulin (except for dulaglutide and sulphonylureas. For the incidence of treatment discontinuation, increase was found for exenatide, liraglutide, lixisenatide and taspoglutide versus placebo, insulin and sitagliptin. For glycemic level, decrease was found for all GLP-1 RAs versus placebo. Dulaglutide, exenatide long-acting release (exe_lar, liraglutide and taspoglutide had significant lowering effect when compared with sitagliptin (HbA1c<7.0% and insulin (HbA1c<6.5%. Finally, according to SUCRAs, placebo, thiazolidinediones and albiglutide had the best decrease effect on hypoglycemia; sulphanylureas, sitagliptin and insulin decrease the incidence of treatment discontinuation most; exe_lar and dulaglutide had the highest impact on glycemic level among 13 treatments.Among 13 treatments, GLP

  11. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  12. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  13. Effect of dopamine, dopamine D-1 and D-2 receptor modulation on ACTH and cortisol levels in normal men and women

    DEFF Research Database (Denmark)

    Boesgaard, S; Hagen, C; Andersen, A N

    1990-01-01

    The regulation of the hypothalamic-pituitary-adrenal axis by dopamine is not fully understood. Therefore, we have studied the effect of dopamine, metoclopramide, a D-2 receptor antagonist, and fenoldopam, a specific D-1 receptor agonist, on ACTH and cortisol levels in normal subjects. Normal women...

  14. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  15. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Jessica E Potts

    Full Text Available To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus.Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo in adults with type 2 diabetes and a mean body mass index ≥ 25 kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator.In the mixed treatment comparison (27 trials, the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2 mg/week: -1.62 kg (95% CrI: -2.95 kg, -0.30 kg, exenatide 20 μg: -1.37 kg (95% CI: -222 kg, -0.52 kg, liraglutide 1.2 mg: -1.01 kg (95%CrI: -2.41 kg, 0.38 kg and liraglutide 1.8 mg: -1.51 kg (95% CI: -2.67 kg, -0.37 kg compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss.This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed.

  16. Glucagon-like peptide-1 receptor agonists compared with basal insulins for the treatment of type 2 diabetes mellitus: a systematic review and meta-analysis.

    Science.gov (United States)

    Singh, Sonal; Wright, Eugene E; Kwan, Anita Y M; Thompson, Juliette C; Syed, Iqra A; Korol, Ellen E; Waser, Nathalie A; Yu, Maria B; Juneja, Rattan

    2017-02-01

    Since 2005, several glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have been approved to treat people with type 2 diabetes. These agents are considered for use at the same point in the treatment paradigm as basal insulins. A comprehensive comparison of these drug classes, therefore, can help inform treatment decisions. This systematic review and meta-analysis assessed the clinical efficacy and safety of GLP-1 RAs compared with basal insulins. MEDLINE, EMBASE, CENTRAL and PubMed databases were searched. Randomized clinical trials (RCTs) of ≥16 weeks' duration comparing GLP-1 RAs vs basal insulins in adults with type 2 diabetes inadequately controlled with oral antihyperglycemic drugs were included. Data on the change from baseline to 26 weeks (±10 weeks) of treatment in hemoglobin A1c (HbA1c) and weight, as well as the proportion of patients experiencing hypoglycaemia, were extracted. Fixed-effect pairwise meta-analyses were conducted where data were available from ≥2 studies. Fifteen RCTs were identified and 11 were meta-analysed. The once-weekly GLP-1 RAs, exenatide long acting release (LAR) and dulaglutide, led to greater, statistically significant mean HbA1c reductions vs basal insulins (exenatide: -0.31% [95% confidence interval -0.42, -0.19], dulaglutide: -0.39% [-0.49, -0.29]) whilst once-daily liraglutide and twice-daily exenatide did not (liraglutide: 0.06% [-0.06, 0.18], exenatide: 0.01% [-0.11, 0.13]). Mean weight reduction was seen with all GLP-1 RAs while mean weight gain was seen with basal insulins. Interpretation of the analysis of hypoglycaemia was limited by inconsistent definitions and reporting. Because of the limited number of available studies sensitivity analyses to explore heterogeneity could not be conducted. Although weight reduction is seen with all GLP-1 RA's, only the once-weekly agents, exenatide LAR and dulaglutide, demonstrate significant HbA1c reductions when compared to basal insulins. © 2016 The Authors. Diabetes

  17. Tonic and Phasic Dopamine Fluctuations as Reflected in Beta-power Predict Interval Timing Behavior

    NARCIS (Netherlands)

    Kononowicz, Tadeusz; van Rijn, Hedderik

    It has been repeatedly shown that dopamine impacts interval timing in humans and animals (for a review, see Coull, Cheng, & Meck, 2012). Particularly, administration of dopamine agonists or antagonists speeds-up or slows down internal passage of time, respectively (Meck, 1996). This co-variations in

  18. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type

    NARCIS (Netherlands)

    Lambalk, C. B.; Banga, F. R.; Huirne, J. A.; Toftager, M.; Pinborg, A.; Homburg, R.; van der Veen, F.; van Wely, M.

    2017-01-01

    Most reviews of IVF ovarian stimulation protocols have insufficiently accounted for various patient populations, such as ovulatory women, women with polycystic ovary syndrome (PCOS) or women with poor ovarian response, and have included studies in which the agonist or antagonist was not the only

  19. Burning mouth syndrome in Parkinson’s disease: dopamine as cure or cause?

    OpenAIRE

    Coon, Elizabeth A.; Laughlin, Ruple S.

    2012-01-01

    Burning mouth syndrome has been reported as being more common in Parkinson’s disease patients than the general population. While the pathophysiology is unclear, decreased dopamine levels and dopamine dysregulation are hypothesized to play a role. We report a patient with Parkinson’s disease who developed burning mouth syndrome with carbidopa/levodopa. Our patient had resolution of burning mouth symptoms when carbidopa/levodopa was replaced with a dopamine agonist. Based on our patient’s clini...

  20. Differential Effect of the Dopamine D3 Agonist (±-7-Hydroxy-2-(N,N-di-n-propylamino Tetralin (7-OH-DPAT on Motor Activity between Adult Wistar and Sprague-Dawley Rats after a Neonatal Ventral Hippocampus Lesion

    Directory of Open Access Journals (Sweden)

    Sonia Guzmán-Velázquez

    2011-01-01

    Full Text Available The neonatal ventral hippocampal lesion (nVHL has been widely used as an animal model for schizophrenia. Rats with an nVHL show several delayed behavioral alterations that mimic some symptoms of schizophrenia. Sprague-Dawley (SD rats with an nVHL have a decrease in D3 receptors in limbic areas, but the expression of D3 receptors in Wistar (W rats with an nVHL is unknown. The 7-Hydroxy-2-(N,N-di-n-propylamino tetralin (7-OH-DPAT has been reported as a D3-preferring agonist. Thus, we investigated the effect of (±-7-OH-DPAT (0.25 mg/kg on the motor activity in male adult W and SD rats after an nVHL. The 7-OH-DPAT caused a decrease in locomotion of W rats with an nVHL, but it did not change the locomotion of SD rats with this lesion. Our results suggest that the differential effect of 7-OH-DPAT between W and SD rats with an nVHL could be caused by a different expression of the D3 receptors. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia.

  1. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    Science.gov (United States)

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dopamine regulation of [3H]acetylcholine release from guinea-pig stomach

    International Nuclear Information System (INIS)

    Kusunoki, M.; Taniyama, K.; Tanaka, C.

    1985-01-01

    The involvement of dopamine receptors in cholinergic transmission of guinea-pig stomach was investigated by analyzing the effects of dopamine receptor agonists and antagonists on acetylcholine (ACh) release from this organ. Electrical stimulation (1-20 Hz) of strips of guinea-pig stomach preloaded with [ 3 H] choline induced a [ 3 H]ACh release that was calcium dependent and tetrodotoxin sensitive. Dopamine inhibited this transmural stimulation-induced [ 3 H]ACh release in a concentration-dependent manner (10(-8)-10(-4) M). This effect of dopamine was not altered by 10(-5) M hexamethonium, thereby suggesting that the major dopamine receptors are located on the postganglionic cholinergic neurons. Concentration-response curves for dopamine on [ 3 H]ACh release were inhibited by haloperidol, sulpiride and domperidone but not by prazosin, yohimbine, propranolol and ketanserin. LY 171555, an agonist for the D2 dopamine receptor, but not SKF 38-393, an agonist for the D1 dopamine receptor, to some extent decreased the release of [ 3 H]ACh induced by transmural stimulation. In view of the results, the release of ACh from postganglionic cholinergic neurons is probably required through dopamine receptors antagonized by D2 antagonists but not by adrenergic or serotonin receptor antagonists

  3. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type.

    Science.gov (United States)

    Lambalk, C B; Banga, F R; Huirne, J A; Toftager, M; Pinborg, A; Homburg, R; van der Veen, F; van Wely, M

    2017-09-01

    Most reviews of IVF ovarian stimulation protocols have insufficiently accounted for various patient populations, such as ovulatory women, women with polycystic ovary syndrome (PCOS) or women with poor ovarian response, and have included studies in which the agonist or antagonist was not the only variable between the compared study arms. The aim of the current study was to compare GnRH antagonist protocols versus standard long agonist protocols in couples undergoing IVF or ICSI, while accounting for various patient populations and treatment schedules. The Cochrane Menstrual Disorders and Subfertility Review Group specialized register of controlled trials and Pubmed and Embase databases were searched from inception until June 2016. Eligible trials were those that compared GnRH antagonist protocols and standard long GnRH agonist protocols in couples undergoing IVF or ICSI. The primary outcome was ongoing pregnancy rate. Secondary outcomes were: live birth rate, clinical pregnancy rate, number of oocytes retrieved and safety with regard to ovarian hyperstimulation syndrome (OHSS). Separate comparisons were performed for the general IVF population, women with PCOS and women with poor ovarian response. Pre-planned subgroup analyses were performed for various antagonist treatment schedules. We included 50 studies. Of these, 34 studies reported on general IVF patients, 10 studies reported on PCOS patients and 6 studies reported on poor responders. In general IVF patients, ongoing pregnancy rate was significantly lower in the antagonist group compared with the agonist group (RR 0.89, 95% CI 0.82-0.96). In women with PCOS and in women with poor ovarian response, there was no evidence of a difference in ongoing pregnancy between the antagonist and agonist groups (RR 0.97, 95% CI 0.84-1.11 and RR 0.87, 95% CI 0.65-1.17, respectively). Subgroup analyses for various antagonist treatment schedules compared to the long protocol GnRH agonist showed a significantly lower ongoing

  4. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  5. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  6. Effects of acute and chronic treatments with dopamine D2 and D3 receptor ligands on cocaine versus food choice in rats

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Barrett, Andrew C.; Butler, Paul

    2017-01-01

    effects of dopamine D2- and D3-preferring ligands on choice between intravenous cocaine and palatable food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice and reciprocal decreases in food choice. Acutely, the D2 agonist R-(2)-norpropylapomorphine (NPA......) and antagonist L-741,626 [3-[[4-(4-chlorophenyl)-4-hydroxypiperidin-lyl] methyl-1H-indole] produced leftward and rightward shifts in cocaine dose-effect curves, respectively, whereas the partial agonist terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. Chronically......, the effects of R-(2)-norpropylapomorphine and L-741,626 on cocaine selfadministration showed marked tolerance, whereas suppression of food-reinforced behavior persisted. Acute effects of the D3 ligands were less systematic and most consistent with nonselective decreases in cocaine- and food-maintained...

  7. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  8. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  9. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  10. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  11. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  12. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  13. 5-OXYGENATED N-ALKYL-2-AMINO-1-METHYLTETRALINS AND N,N-DIALKYL-2-AMINO-1-METHYLTETRALINS - EFFECTS OF STRUCTURE AND STEREOCHEMISTRY ON DOPAMINE-D2-RECEPTOR AFFINITY

    NARCIS (Netherlands)

    GROL, CJ; NORDVALL, G; JOHANSSON, AM; HACKSELL, U

    The ability of a series of stereochemically well-defined 5-oxygenated 2-aminotetralins, consisting of dopamine-receptor agonists and antagonists, to displace [H-3]spiperone and [H-3]N-propylnorapomorphine (NPA) from calf-caudate dopamine receptor sites has been evaluated in-vitro. In addition, the

  14. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  15. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors

    NARCIS (Netherlands)

    Yoshida, Y.; Koide, S.; Hirose, N.; Takada, K.; Tomiyama, K; Koshikawa, N.; Cools, A.R.

    1999-01-01

    The effects of the u-receptor agonist fentanyl on extracellular levels of dopamine in rat nucleus accumbens were studied in awake animals by in vivo brain microdialysis. Fentanyl dosedependently increased the levels of dopamine when given intravenously (ug/kg) or via a microdialysis probe placed

  16. Modification of dopamine D2 receptor activity by pergolide in Parkinson's disease : An in vivo study by PET

    NARCIS (Netherlands)

    Linazasoro, G; Obeso, JA; Gomez, JC; Martinez, M; Antonini, A; Leenders, KL

    1999-01-01

    It is well known that chronic administration of pergolide and other dopamine agonists may induce a downregulation of dopamine D2 receptors in the rat model of Parkinson's disease (PD). To our knowledge, this effect has not been demonstrated in vivo in patients with PD. At present, the status of

  17. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  18. Dopamine receptors in the guinea-pig heart. A binding study

    International Nuclear Information System (INIS)

    Sandrini, M.; Benelli, A.; Baraldi, M.

    1984-01-01

    The binding of dopaminergic agonists and antagonists to guinea-pig myocardial membrane preparations was studied using 3 H-dopamine and 3 H-spiperone as radioligand. 3 H-Dopamine bound specifically to heart membranes while 3 H-spiperone did not. A Scatchard analysis of 3 H-dopamine binding showed a curvilinear plot indicating the presence of two dopamine receptor populations that we have termed high- (K/sub d/ = 1.2 nM, B/sub mx/ = 52.9 fmol/mg prot.) and low- (K/sub d/ = 11.8 nM, B/sub mx/ = 267.3 fmol/gm prot.) affinity binding sites, respectively. The charactization of the high-affinity component of 3 H-dopamine binding indicated that the binding is rapid, saturable, stereospecific, pH- and temperature-dependent, and displaced by dopaminergic agonists and antagonists known to act similarly in vivo. The finding that pretreatment with dibenamine (which has been described as an α-adrenoceptor irreversible blocker) did not affect the binding of dopamine to cardiac membrane preparations suggests that α-adrenoceptors and dopamine receptors have separate recognition sites in the heart. It is concluded that 3 H-dopamine binds to specific dopamine receptors in the heart of guinea-pigs

  19. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  20. DOPAMINE AND THE BIOLOGY OF CREATIVITY: LESSONS FROM PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Eugénie eLhommée

    2014-04-01

    Full Text Available BACKGROUND: Parkinson’s disease (PD is characterized by reduced flexibility, conceptualization and visuo-spatial abilities. Although these are essential to creativity, case studies show emergence of creativity during PD. Knowledge about the role of dopamine in creativity so far only stems from a few case reports. We aim at demonstrating that creativity can be induced by dopaminergic treatments in PD, and tends to disappear after withdrawal of dopamine agonists. METHODS: 11 consecutive creative PD patients were selected from candidates for subthalamic deep brain stimulation (STN DBS surgery, and compared to 22 non-creative control PD patients. Motor disability (UPDRS III, cognition (Frontal Score, Mattis scale and behaviour (Ardouin scale were assessed before surgery and one year after. RESULTS: Before surgery, whereas cognitive and motor assessments where similar between groups, dopamine agonist (but not levodopa dosages were higher in creative patients (p=0.01. The Ardouin scale revealed also a specific psycho-behavioural profile of creative patients which had higher scores for mania (pCONCLUSION: Creativity in PD is linked to dopamine agonist therapy, and tends to disappear after STN DBS in parallel to reduction of dopamine agonists, which are relatively selective for the mesolimbic D3 dopamine receptors

  1. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  2. Long acting β2 agonists for stable chronic obstructive pulmonary disease with poor reversibility: a systematic review of randomised controlled trials

    Directory of Open Access Journals (Sweden)

    Mensinkai Shaila

    2004-08-01

    Full Text Available Abstract Background The long acting β2-agonists, salmeterol and formoterol, have been recommended, by some, as first line treatment of stable chronic obstructive pulmonary disease (COPD. We reviewed evidence of efficacy and safety when compared with placebo or anticholinergic agents in patients with poorly reversible COPD. Methods After searching MEDLINE, EMBASE, HealthSTAR, BIOSIS Previews, PASCAL, ToxFile, SciSearch, the Cochrane Library, and PubMed, as well as Web sites, selected journals, reference lists, and contacting drug manufacturers, two reviewers independently screened reports of randomised controlled trials of parallel or crossover design lasting four weeks or longer and including patients with a forced expiratory volume in one second (FEV1 ≤ 75% of predicted, a ratio of FEV1 to forced vital capacity (FVC ≤ 88% of predicted, and Results Twelve trials satisfied our inclusion criteria; eight were high quality (Jadad score >2 and four were low quality (≤ 2. The adequacy of allocation concealment was unclear in all of them. We did not perform a meta-analysis due to differences in trial design and how outcomes were reported. Two trials comparing salmeterol with ipratropium did not detect differences; one trial comparing formoterol and ipratropium described greater improvement with formoterol in morning PEFR (15.3 versus 7.1 l/min, p = 0.040. Of twelve trials comparing long acting β2 agonists with placebo, six reported no improvement in exercise capacity, eleven reported improvements in FEV1 lung function (one reported no improvement, six reported less rescue inhaler usage (one reported no difference and five reported improved dyspnea scores (two reported no improvement. Differences in quality of life were detected in one salmeterol trial ; however, two salmeterol, and one formoterol trial reported no differences. Adverse effects of interest were not reported. Conclusion In terms of clinical outcomes and safety, we could not find

  3. Dopamine receptors play distinct roles in sexual behavior expression of rats with a different sexual motivational tone.

    Science.gov (United States)

    Guadarrama-Bazante, Irma L; Canseco-Alba, Ana; Rodríguez-Manzo, Gabriela

    2014-10-01

    Dopamine (DA) plays a central role in the expression of male sexual behavior. The effects of DA-enhancing drugs on copulation seem to vary depending on the dose of the agonist used, the type of DA receptor activated, and the sexual condition of the animals. The aim of the present study was to carry out a systematic analysis of the effects of dopaminergic agonists on the expression of male sexual behavior by sexually competent rats in different sexual motivational states, that is when sexually active (sexually experienced) and when temporarily inhibited (sexually exhausted). To this end, the same doses of the nonselective DA receptor agonist apomorphine, the selective D2-like DA receptor agonist quinpirole, and the selective D1-like DA receptor agonist SKF38393 were injected intraperitoneally to sexually experienced or sexually exhausted male rats and their sexual behavior was recorded. Low apomorphine doses induced expression of sexual behavior in sexually satiated rats, but only reduced the intromission latency of sexually experienced rats. SKF38393 facilitated the expression of sexual behavior by sexually exhausted rats, but not that of sexually experienced males and quinpirole did not exert an effect in both types of animal. In line with these results, the apomorphine-induced reversal of sexual exhaustion was blocked by the D1-like receptor antagonist SCH23390. The data suggest that DA receptors play distinct roles in the expression of sexual behavior by male rats depending on their motivational state and that activation of D1-like receptors promotes the expression of sexual behavior in satiated rats.

  4. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  5. Systematic Design of Trypsin Cleavage Site Mutated Exendin4-Cysteine 1, an Orally Bioavailable Glucagon-Like Peptide-1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Wenbo Sai

    2017-03-01

    Full Text Available Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance. The goal of the study is to investigate a biologically active exendin-4 analog could be administered orally. Using intraperitoneal glucose tolerance tests, we discovered that exendin4-cysteine administered by oral gavage had a distinct hypoglycemic effect in C57BL/6J mice. Using Rosetta Design and Amber, we designed and screened a series of exendin4-cysteine analogs to identify those that retained biological activity while resisting trypsin digestion. Trypsin Cleavage Site Mutated Exendin4-cysteine 1 (TSME-1, an analog whose bioactivity was similar to exendin-4 and was almost completely resistant to trypsin, was screened out. In addition, TSME-1 significantly normalized the blood glucose levels and the availability of TSME-1 was significantly higher than that of exendin-4 and exendin4-cysteine. Collectively orally administered TSME-1, a trypsin-resistant exendin-4 analog obtained by the system, is a strong candidate for future treatments of type 2 diabetes.

  6. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    OpenAIRE

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social ...

  7. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  8. Characterization of normal and supersensitive dopamine receptors: Effects of ergot drugs and neuropeptides

    International Nuclear Information System (INIS)

    Fuxe, K.; Agnati, L.F.; Koehler, C.; Kuonen, D.; Oegren, S.-O.; Andersson, K.; Hoekfelt, T.; Astra Pharmaceuticals AB, Soedertaelje; Modena Univ.

    1981-01-01

    Dopamine receptors have been characterized by use of radiolabelled dopamine agonists and antagonists. Using ibotenic acid induced lesions of the striatum, evidence was obtained that 3 H-N-propylnorapomorphine ( 3 H-NPA) binding sites and 3H-bromocriptine binding sites are located both on intrastriatal nerve cells and on extrinsic nerve terminals probably mainly originating in the cerebral cortex. Following a 6-hydroxydopamine induced lesion supersensitive dopamine receptors, an increase of binding sites for 3 H-NPA and after one year two different binding sites and behavioural supersensitivity have been observed. The dopamine receptor agonists and especially the dopaminergic ergot derivates have been characterized by studying their affinities for 3 H-bromocriptine, 3 H-spiperone 3 H-ADTN and 3 H-NPA binding sites in vitro and their effects on the specific in vivo binding of 3 H-spiperone and 3 H-NPA has been studied. There might exist 3 types of dopamine-receptors. Actions of dopaminergic ergot drugs have been evaluated at supersensitive dopamine receptors. There is a highly preferential action of CF25-397 at these receptors. Prolonged treatment with pergolide can produce a down regulation of normal dopamine receptors by reducing the density of such receptors. Colecystokinin peptides can in vitro reduce the number of 3 H-NPA binding sites in the striatum. Thus neuropeptides may represent neuromodulators in the dopamine synapses. (M.J.)

  9. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M

    2011-01-01

    It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved...... to be more vulnerable to competition from endogenous dopamine than was the antagonist ligand [(11)C]raclopride, measured ex vivo in mouse striatum, and subsequently in multi-tracer PET studies of analogous design. Based on these results, we predicted that prolonged dopamine depletion would result...... in a preferential increase in agonist binding, and a lesser competition from residual dopamine to the agonist binding. To test this hypothesis we used autoradiography to measure [(3)H]NPA and [(3)H]raclopride binding sites in hemi-parkinsonian rats with unilateral 6-OHDA lesions, with and without amphetamine...

  10. The role of dopamine in human addiction: from reward to motivated attention.

    Science.gov (United States)

    Franken, Ingmar H A; Booij, Jan; van den Brink, Wim

    2005-12-05

    There is general consensus among preclinical researchers that dopamine plays an important role in the development and persistence of addiction. However, the precise role of dopamine in addictive behaviors is far from clear and only a few clinical studies on the role of dopamine in human addiction have been conducted so far. The present paper reviews studies addressing the role of dopamine in humans. There is substantial and consistent evidence that dopamine is involved in the experience of drug reward in humans. Dopamine may also be involved in motivational processes such as drug craving. However, given the inconsistent findings of studies using dopamine receptor (ant)agonists, the role of dopamine in the experience of craving is far from resolved. Recent theories claiming that dopamine signals salience and makes the brain paying attention to biological relevant stimuli may provide an interesting framework for explaining addictive behaviors. There is accumulating evidence that patients with drug and alcohol addiction have an aberrant focus on drug-related stimuli. Although there is some preliminary support for the role of dopamine in these attention processes, more studies have to be carried out in order to test the validity of these theories in human subjects.

  11. Dopamine Modulates Option Generation for Behavior.

    Science.gov (United States)

    Ang, Yuen-Siang; Manohar, Sanjay; Plant, Olivia; Kienast, Annika; Le Heron, Campbell; Muhammed, Kinan; Hu, Michele; Husain, Masud

    2018-05-21

    Animals make innumerable decisions every day, each of which involves evaluating potential options for action. But how are options generated? Although much is now known about decision making when a fixed set of potential options is provided, surprisingly little progress has been made on self-generated options. Some researchers have proposed that such abilities might be modulated by dopamine. Here, we used a new measure of option generation that is quantitative, objective, and culture fair to investigate how humans generate different behavioral options. Participants were asked to draw as many different paths (options) as they could between two points within a fixed time. Healthy individuals (n = 96) exhibited a trade-off between uniqueness (how individually different their options were) and fluency (number of options), generating either many similar or few unique options. To assess influence of dopamine, we first examined patients with Parkinson's disease (n = 35) ON and OFF their dopaminergic medication and compared them to elderly healthy controls (n = 34). Then we conducted a double-blind, placebo-controlled crossover study of the D2 agonist cabergoline in healthy older people (n = 29). Across both studies, dopamine increased fluency but diminished overall uniqueness of options generated, due to the effect of fluency trading off with uniqueness. Crucially, however, when this trade-off was corrected for, dopamine was found to increase uniqueness for any given fluency. Three carefully designed control studies showed that performance on our option-generation task was not related to executing movements, planning actions, or selecting between generated options. These findings show that dopamine plays an important role in modulating option generation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    Science.gov (United States)

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  13. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques.

    Science.gov (United States)

    Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R

    2016-04-01

    Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.

  14. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Weight Loss in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2015-01-01

    Full Text Available To evaluate the effectiveness of glucagon-like peptide-1 receptor agonists (GLP-1 RAs on weight reduction in patients with Type 2 diabetes mellitus (Type 2 DM, a network meta-analysis was conducted. MEDLINE, EMBASE, Cochrane Library, and ClinicalTrials.gov were searched from 1950 to October 2013. Randomized controlled trials (RCTs involving GLP-1 RAs were included if they provided information on body weight. A total of 51 RCTs were included and 17521 participants were enrolled. The mean duration of 51 RCTs was 31 weeks. Exenatide 10 μg twice daily (EX10BID reduced weight compared with exenatide 5 μg twice daily (EX5BID, liraglutide 0.6 mg once daily (LIR0.6QD, liraglutide—1.2 mg once daily (LIR1.2QD, and placebo treatment, with mean differences of −1.07 kg (95% CI: −2.41, −0.02, −2.38 kg (95% CI: −3.71, −1.06, −1.62 kg (95% CI: −2.79, −0.43, and −1.92 kg (95% CI: −2.61, −1.24, respectively. Reductions of weight treated with liraglutide—1.8 mg once daily (LIR1.8QD reach statistical significance (−1.43 kg (95% CI: −2.73, −0.15 versus LIR1.2QD and (−0.98 kg (95% CI: −1.94, −0.02 versus placebo. Network meta-analysis found that EX10BID, LIR1.8QD, and EX2QW obtained a higher proportion of patients with weight loss than other traditional hypoglycemic agents. Our results suggest GLP-1 RAs are promising candidates for weight control in comparison with traditional hypoglycemic drugs, and EX10BID, LIR1.8QD, and EX2QW rank the top three drugs.

  15. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  16. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    OpenAIRE

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  17. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, S.; Noethen, M.M.; Stoeber, G. [Univ. of Bonn (Germany)] [and others

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  18. Characterization of D1 dopamine receptors in the central nervous system

    International Nuclear Information System (INIS)

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D 1 dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D 1 dopamine receptor antagonists, SCH23390. [ 3 H]SCH23390 represents a superior radioligand for labeling the two-state striatal D 1 dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D 1 dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D 1 dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity

  19. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    International Nuclear Information System (INIS)

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-01-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent [ 3 H]acetylcholine release from rabbit retina labeled in vitro with [ 3 H]choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of [ 3 H]acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of [ 3 H]acetylcholine with the following order of potency: apomorphine ≤ SKF(R)82526 3 H]acetylcholine: SCH 23390 (IC50 = 1 nM) 3 H]acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by [ 3 H]SCH 23390, or as determined by adenylate cyclase activity. [ 3 H]SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of [ 3 H]SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate [ 3 H]acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at [ 3 H]SCH 23390 binding sites (r = 0.755, P < .05, n = 8)

  20. PARTIAL AGONISTS, FULL AGONISTS, ANTAGONISTS - DILEMMAS OF DEFINITION

    NARCIS (Netherlands)

    HOYER, D; BODDEKE, HWGM

    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or

  1. Parkinson's disease treatment may cause impulse-control disorder via dopamine D3 receptors.

    Science.gov (United States)

    Seeman, Philip

    2015-04-01

    In treating Parkinson's disease with dopaminergic agonists, such as pramipexole, ropinirole, pergolide, rotigotine, apomorphine, or bromocriptine, it has been observed that a significant number of patients develop impulse-control disorders, such as compulsive shopping, pathological gambling, or hypersexuality. Because the dopamine agonists have high affinities for the dopamine D2 and D3 receptors, the drug dissociation constants of these drugs at the functional high-affinity states of these receptors, namely D2High and D3High, were compared. The data show that, compared to the other dopamine agonist drugs, pramipexole has a relatively high selectivity for the dopamine D3 receptor, as compared to D2, suggesting that the D3 receptor may be a primary target for pramipexole. There is a trend showing that the proportion of impulse-control disorders is related to the selectivity for D3 receptors over D2 receptors, with pramipexole having the highest association with, or frequency of, impulse-control disorders. While the number of studies are limited, the proportion of patients with impulse-control disorder in Parkinson patients treated with an add-on agonist were 32% for pramipexole, 25% for ropinirole, 16% for pergolide, 22% for rotigotine, 10% for apomorphine, and 6.8% for bromocriptine. Clinically, temporary replacement of pramipexole by bromocriptine may provide relief or reversal of the impulsive behavior associated with selective D3 stimulation by either pramipexole or ropinirole, while maintaining D2 stimulation needed for the anti-Parkinson action. © 2015 Wiley Periodicals, Inc.

  2. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M

    2011-01-01

    It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved...... ligands should likewise be fitter than antagonists for detecting responses to denervation in positron emission tomography studies of idiopathic Parkinson's disease. Agonist binding increases in vivo are likely to reflect the composite of a sensitization-like phenomenon, and relatively less competition...... from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism....

  3. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane...... (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects...

  4. Dopamine1 receptors in rat kidneys identified with 125I-Sch 23982

    International Nuclear Information System (INIS)

    Felder, R.A.; Jose, P.A.

    1988-01-01

    Dopamine1 receptors were studied in rat kidney using the selective dopamine1 antagonist 125I-labeled Sch 23982. The specific binding of 125I-Sch 23982 (defined by 5 microM Sch 23390) to renal cortical homogenates incubated at room temperature was rapid, saturable with time and ligand concentration, and reversible. Analysis of Rosenthal plots revealed a single class of receptors with an apparent dissociation constant of 12.2 +/- 1.9 nM and maximum receptor density of 1.03 +/- 0.15 pmol/mg protein (n = 6). However, competition experiments with the dopamine1 antagonist Sch 23390 revealed a low- and high-affinity binding site with inhibition constants of 1 x 10(-6) and 1 x 10(-8) M, respectively. The competition experiments were also indicative of dopamine1 receptors with stereoselectivity noted for dopamine1 but not for dopamine2 antagonists. The inhibition constants for dopamine1 antagonists and agonists were two orders of magnitude greater in renal cortical than striatal homogenates. Different buffers affected striatal but not renal cortical binding. Autoradiographic studies revealed 125I-Sch 23982 binding in renal cortical but not medullary tissue. These studies confirm the presence of dopamine1 receptors in the cortex of the rat kidney

  5. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  6. Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2013-08-01

    Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.

  7. Dopamine hypothesis of mania

    OpenAIRE

    Cookson, John

    2014-01-01

    s­of­the­Speakers­/­Konuşmacı­leriThe discovery of dopamine and its pathwaysDopamine (DA) was first synthesized in 1910 from 3,4-dihydroxy phenyl alanine (DOPA) by Barger and Ewens at Wellcome Laboratories in London. It is a cathecholamine and in the 1940s Blaschko in Cambridge proposed that DA was a precursor in synthesis of the cat-echolamine neurotransmitters noradrenaline (norepinephrine) and adrenaline (epinephrine). In 1957 it was shown to be present in the brain with other catecholamin...

  8. Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A

    2014-06-01

    Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.

  9. Prefrontal cortex, dopamine, and jealousy endophenotype.

    Science.gov (United States)

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  10. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  11. A Systematic Literature Review and Network Meta-Analysis Comparing Once-Weekly Semaglutide with Other GLP-1 Receptor Agonists in Patients with Type 2 Diabetes Previously Receiving 1-2 Oral Anti-Diabetic Drugs.

    Science.gov (United States)

    Witkowski, Michal; Wilkinson, Lars; Webb, Neil; Weids, Alan; Glah, Divina; Vrazic, Hrvoje

    2018-04-19

    Once-weekly semaglutide is a new glucagon-like peptide-1 (GLP-1) analogue administered at a 1.0 or 0.5 mg dose. As head-to-head trials assessing once-weekly semaglutide as an add-on to 1-2 oral anti-diabetic drugs (OADs) vs other GLP-1 receptor agonists (GLP-1 RAs) are limited, a network meta-analysis (NMA) was performed. The objective was to assess the relative efficacy and safety of once-weekly semaglutide vs GLP-1 RAs in patients with type 2 diabetes (T2D) inadequately controlled on 1-2 OADs. A systematic literature review (SLR) was conducted in order to identify trials of GLP-1 RAs in patients inadequately controlled on 1-2 OADs. Data at 24 ± 4 weeks were extracted for efficacy and safety outcomes (feasible for analysis in a NMA), which included the key outcomes of change from baseline in glycated hemoglobin (HbA 1c ), systolic blood pressure (SBP), and weight, as well as discontinuation due to adverse events (AEs). Data were synthesized using a NMA and a Bayesian framework. In total, 26 studies were included across the base case analyses. Once-weekly semaglutide 1.0 mg was associated with significantly greater reductions in HbA 1c and weight vs all GLP-1 RA comparators. Once-weekly semaglutide 0.5 mg also achieved significantly greater reductions in HbA 1c and weight compared with the majority of other GLP-1 RAs. Both doses of once-weekly semaglutide were associated with similar odds of discontinuation due to AEs compared with other GLP-1 RAs. Overall, once-weekly semaglutide 1.0 mg as an add-on to 1-2 OADs is the most efficacious GLP-1 RA in terms of the reduction of HbA 1c and weight from baseline after 6 months of treatment. In addition, the analysis suggests that once-weekly semaglutide is well tolerated and not associated with an increase in discontinuations due to AEs compared with other GLP-1 RAs. Novo Nordisk.

  12. GnRH Agonist Trigger and LH Activity Luteal Phase Support versus hCG Trigger and Conventional Luteal Phase Support in Fresh Embryo Transfer IVF/ICSI Cycles—A Systematic PRISMA Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Thor Haahr

    2017-06-01

    Full Text Available IntroductionThe use of GnRH agonist (GnRHa for final oocyte maturation trigger in oocyte donation and elective frozen embryo transfer cycles is well established due to lower ovarian hyperstimulation syndrome (OHSS rates as compared to hCG trigger. A recent Cochrane meta-analysis concluded that GnRHa trigger was associated with reduced live birth rates (LBRs in fresh autologous IVF cycles compared to hCG trigger. However, the evidence is not unequivocal, and recent trials have found encouraging reproductive outcomes among couples undergoing GnRHa trigger and individualized luteal LH activity support. Thus, the aim was to compare GnRHa trigger followed by luteal LH activity support with hCG trigger in IVF patients undergoing fresh embryo transfer.Material and methodsWe conducted a systematic review and meta-analysis of randomized trials published until December 14, 2016. The population was infertile patients submitted to IVF/ICSI cycles with GnRH antagonist cotreatment who underwent fresh embryo transfer. The intervention was GnRHa trigger followed by LH activity luteal phase support (LPS. The comparator was hCG trigger followed by a standard LPS. The critical outcome measures were LBR and OHSS rate. The secondary outcome measures were number of oocytes retrieved, clinical and ongoing pregnancy rates, and miscarriage rates.ResultsA total of five studies met the selection criteria comprising a total of 859 patients. The LBR was not significantly different between the GnRHa and hCG trigger groups (OR 0.84, 95% CI 0.62, 1.14. OHSS was reported in a total of 4/413 cases in the GnRHa group compared to 7/413 in the hCG group (OR 0.48, 95% CI 0.15, 1.60. We observed a slight, but non-significant increase in miscarriage rate in the GnRHa triggered group compared to the hCG group (OR 1.85; 95% CI 0.97, 3.54.ConclusionGnRHa trigger with LH activity LPS resulted in comparable LBRs compared to hCG trigger. The most recent trials reported LBRs close to unity

  13. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Ghrelin receptor (GHS-R1A) agonists show potential as interventive agents during aging.

    Science.gov (United States)

    Smith, Roy G; Sun, Yuxiang; Jiang, Hong; Albarran-Zeckler, Rosie; Timchenko, Nikolai

    2007-11-01

    Administration of an orally active agonist (MK-0677) of the growth hormone secretagogue receptor (GHS-R1a) to elderly subjects restored the amplitude of endogenous episodic growth hormone (GH) release to that of young adults. Functional benefits include increased lean mass and bone density and modest improvements in strength. In old mice, a similar agonist partially restored function to the thymus and reduced tumor cell growth and metastasis. Treatment of old mice with the endogenous GHS-R1a agonist ghrelin restored a young liver phenotype. The mechanism involves inhibition of cyclin D3:cdk4/cdk6 activity and increased protein phosphatase-2A (PP2A) activity in liver nuclei, which stabilizes the dephosphorylated form of the transcription factor C/EBPalpha preventing the age-dependent formation of the C/EBPalpha-Rb-E2F4-Brm nuclear complex. By inhibiting formation of this complex, repression of E2F target genes is de-repressed and C/EBPalpha regulated expression of Pepck, a regulator of gluconeogenesis, is normalized, thereby restoring a young liver phenotype. In the brain, aging is associated with decline in dopamine function. We investigated the potential neuromodulatory role of GHS-R1a on dopamine action. Neurons were identified in the hippocampus, cortex, substantia nigra, and ventral tegmental areas that coexpressed GHS-R1a and dopamine receptor subtype-1 (D1R). Cell culture studies showed that, in the presence of ghrelin and dopamine, GHS-R and D1R form heterodimers, which modified G-protein signal transduction resulting in amplification of dopamine signaling. We speculate that aging is associated with deficient endogenous ghrelin signaling that can be rescued by intervention with GHS-R1a agonists to improve quality of life and maintain independence.

  15. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dopamins renale virkninger

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1990-01-01

    is frequently employed in cases of acute oliguric renal failure but the results available concerning the therapeutic effect are frequently retrospective and uncontrolled. The results suggest that early treatment with 1-3 micrograms/kg/min dopamine combined with furosemide can postpone or possibly render...

  17. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  18. Regulation of dopamine D2 receptors in a novel cell line (SUP1)

    International Nuclear Information System (INIS)

    Ivins, K.J.; Luedtke, R.R.; Artymyshyn, R.P.; Molinoff, P.B.

    1991-01-01

    A prolactin-secreting cell line, SUP1, has been established from rat pituitary tumor 7315a. In radioligand binding experiments, the D2 receptor antagonist (S)-(-)-3- 125 I iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2- pyrrolidinyl)methyl]benzamide ( 125 I IBZM) labeled a single class of sites in homogenates of SUP1 cells (Kd = 0.6 nM; Bmax = 45 fmol/mg of protein). The sites displayed a pharmacological profile consistent with that of D2 receptors. Inhibition of the binding of 125 I IBZM by dopamine was sensitive to GTP, suggesting that D2 receptors in SUP1 cells are coupled to guanine nucleotide-binding protein(s). In the presence of isobutylmethylxanthine, dopamine decreased the level of cAMP accumulation in SUP1 cells. Dopamine also inhibited prolactin secretion from SUP1 cells. Both the inhibition of cAMP accumulation and the inhibition of prolactin secretion were blocked by D2 receptor antagonists, suggesting that these effects of dopamine were mediated by an interaction with D2 receptors. The regulation of D2 receptors in SUP1 cells by D2 receptor agonists was investigated. Exposure of SUP1 cells to dopamine or to the D2 receptor agonist N-propylnorapomorphine led to increased expression of D2 receptors, with no change in the affinity of the receptors for 125 I IBZM. An increase in the density of D2 receptors in SUP1 cells was evident within 7 hr of exposure to dopamine. Spiroperidol, a D2 receptor antagonist, blocked the effect of dopamine on receptor density. These results suggest that exposure of D2 receptors in SUP1 cells to agonists leads to an up-regulation of D2 receptors. Dopamine retained the ability to inhibit cAMP accumulation in SUP1 cells exposed to dopamine for 24 hr, suggesting that D2 receptors in SUP1 cells are not desensitized by prolonged exposure to agonist

  19. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    DEFF Research Database (Denmark)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun

    2010-01-01

    R-[(11)C]-SKF 82957 is a high-affinity and potent dopamine D(1) receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, f...

  20. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects ...

  1. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  2. New detection of brain dopamine receptors with [3H]dihydroergocryptine

    International Nuclear Information System (INIS)

    Tittler, M.; Weinreich, P.; Seeman, P.

    1977-01-01

    Because dihydroergocryptine (DHE) and closely related ergots are dopamine-mimetic agonists, we tested [ 3 H]DHE as a possible ligand for [ 3 H]dopamine receptors in the calf caudate. In order to avoid [ 3 H]DHE from tagging α-adrenergic receptors, an excess of 500 nM phentolamine was used to block these sites, permitting the dopamine receptors to be measured separately. Specific binding of [ 3 H]DHE was defined as total binding minus that occurring in the presence of 1 μM (+)-butaclamol. Excess phentolamine reduced the specific binding of [ 3 H]DHE from 328 down to 138 fmol/mg, the difference presumably representing α-receptors. The K/sub D/ for [ 3 H]DHE was 0.55 nM (with or without phentolamine), and this high affinity site was blocked (in the presence of phentolamine) by 250 nM apomorphine, 650 nM dopamine, and 1200 nM (-)-norepinephrine, indicating that [ 3 H]DHE was binding to dopamine receptors. All neuroleptics blocked specific [ 3 H]DHE binding in direct relation to the clinical potency of the neuroleptic. The displacement of specific [ 3 H]DHE binding by dopamine or by norepinephrine (in the presence of phentolamine) revealed two subsets of dopamine receptors

  3. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  4. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Schmauss Claudia

    2007-01-01

    Full Text Available Abstract Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of

  5. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  6. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  7. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease.

    Science.gov (United States)

    Merims, Doron; Giladi, Nir

    2008-01-01

    Degeneration of the dopaminergic system in Parkinson's disease and longstanding exposure to dopaminergic drugs may cause reward system malfunction. This may manifest as addiction to l-dopa and behavioral disturbances associated with the impulse control system. These disturbances include: gambling, excessive spending (shopping), hypersexuality and binge eating. We included one such patient's personal story to emphasize the devastating consequences of these potentially reversible phenomena: the patient describes in his own words how gambling induced by an exposure dopamine agonist therapy significantly worsened his disease-related difficulties.

  8. Therapeutic and Imaging Applications of Dopamine Receptors in Breast Cancer

    Science.gov (United States)

    2015-09-01

    schizophrenia, addiction and hyperprolactinemia. Fenol- dopam (Fen) is a high affinity (Kd = 2.3 nM) peripheral D1R agonist,18 which does not...in wild- type and knock-out mice. J Neurosci 2006; 26: 2798–2807. 5 Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J et al...diverse G proteins. Int J Dev Neurosci 2000; 18: 669–677. 8 Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine

  9. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  10. Dopaminergic agonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy....

  11. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  12. 3H-spiroperidol labels dopamine receptors in pituitary and brain

    International Nuclear Information System (INIS)

    Creese, Ian; Schneider, R.; Snijder, S.H.

    1977-01-01

    3 H-Spiroperidol of high specific radioactivity labels dopamine receptors in membranes of bovine caudate nucleus and anterior pituitary. The saturation and kinetic properties of 3 H-spiroperidol binding are similar in the two tissues. In both caudate and pituitary 3 H-spiroperidol displays very high affinity with a dissocation constant of 0.2 - 0.3 nM. The relative potencies of numerous dopamine agonists and antagonists in competing for 3 H-spiroperidol binding are closely similar in anterior pituitary and caudate

  13. The role of spinal pathways in dopamine mediated alteration in the tail-flick reflex in rats

    DEFF Research Database (Denmark)

    Jensen, T S; Schrøder, H D; Smith, D F

    1984-01-01

    The latency of the tail-flick, following intrathecal infusion of the dopamine (DA) agonist, R-apomorphine was measured in rats with intact spinal cord or with spinal cord lesions. Apomorphine failed to influence the tail-flick response in intact rats, whereas it elevated the latency of the tail-f...

  14. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  15. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    International Nuclear Information System (INIS)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun; Knudsen, Gitte M.; Wilson, Alan A.

    2010-01-01

    Introduction: R-[ 11 C]-SKF 82957 is a high-affinity and potent dopamine D 1 receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[ 11 C]-SKF 82957 to image the high-affinity state of the dopamine D 1 receptor with PET. Methods: R-[ 11 C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D 1 binding of R-[ 11 C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor α-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[ 11 C]-SKF 82957 dopamine D 1 binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC 90 5.3±4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[ 11 C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D 1 antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[ 11 C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[ 11 C]SKF 82957. Under such conditions, R-[ 11 C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D 1 receptor by PET.

  16. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  17. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Science.gov (United States)

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    Science.gov (United States)

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  19. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  20. Interactions between aromatase (estrogen synthase) and dopamine in the control of male sexual behavior in quail.

    Science.gov (United States)

    Balthazart, Jacques; Baillien, Michelle; Ball, Gregory F

    2002-05-01

    In male quail, like in other vertebrates including rodents, testosterone acting especially through its estrogenic metabolites is necessary for the activation of male sexual behavior. Also, the administration of dopamine agonists and antagonists profoundly influences male sexual behavior. How the steroid-sensitive neural network and dopamine interact physiologically, remains largely unknown. It is often implicitly assumed that testosterone or its metabolite estradiol, stimulates male sexual behavior via the modification of dopaminergic transmission. We have now identified in quail two possible ways in which dopamine could potentially affect sexual behavior by modulating the aromatization of testosterone into an estrogen. One is a long-acting mechanism that presumably involves the modification of dopaminergic transmission followed by the alteration of the genomic expression of aromatase. The other is a more rapid mechanism that does not appear to be dopamine receptor-mediated and may involve a direct interaction of dopamine with aromatase (possibly via substrate competition). We review here the experimental data supporting the existence of these controls of aromatase activity by dopamine and discuss the possible contribution of these controls to the activation of male sexual behavior.

  1. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone

    International Nuclear Information System (INIS)

    Muhr, C.; Bergstroem, M.L.; Lundberg, P.O.; Bergstroem, K.H.; Hartvig, P.; Lundqvist, H.; Antoni, G.; Langstroem, B.

    1986-01-01

    Two patients with pituitary tumors were examined with positron emission tomography (PET) after intravenous administration of 11C-N-methylspiperone. In repeat studies the patients were given 1 mg of intravenous haloperidol prior to the administration of the radioligand to block the dopamine receptors. High uptakes of the radiolabeled ligand were seen in one of the tumors. With haloperidol pretreatment the uptake was lower, probably mainly showing the remaining unspecific binding. The most marked uptake and the largest effect of haloperidol pretreatment was seen in a patient with a hormonally active prolactinoma. Dopamine receptor binding in pituitary tumors can be demonstrated in vivo with PET, and quantification of this binding is possible using a compartmental model. This technique may be useful in improving our understanding of the variable response to medical treatment of prolactinomas with dopamine agonists as well as in the prediction of the effect of such treatment

  4. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

    Directory of Open Access Journals (Sweden)

    Daisuke Sakano

    2016-07-01

    Full Text Available Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD, a dopamine D2 receptor (DRD2 antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.

  5. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    Science.gov (United States)

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  6. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    (EPS) at therapeutically relevant doses. In the present study, we examined whether the xanomeline-induced functional dopamine antagonism found in rodent studies could also be observed in nonhuman primates. In addition, we studied whether the lack of EPS observed in rodents also applies to primates......Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects...

  7. The pharmacological management of oppositional behaviour, conduct problems, and aggression in children and adolescents with attention-deficit hyperactivity disorder, oppositional defiant disorder, and conduct disorder: a systematic review and meta-analysis. Part 1: psychostimulants, alpha-2 agonists, and atomoxetine.

    Science.gov (United States)

    Pringsheim, Tamara; Hirsch, Lauren; Gardner, David; Gorman, Daniel A

    2015-02-01

    Children with attention-deficit hyperactivity disorder (ADHD) may have oppositional behaviour, conduct problems, and aggression. These symptoms vary in severity, and may be related to a comorbid diagnosis of oppositional defiant disorder (ODD) or conduct disorder (CD). Critical evaluation of the efficacy of ADHD medications may guide the clinician regarding the usefulness of medications for these symptoms. We performed a systematic review and meta-analysis of psychostimulants, alpha-2 agonists, and atomoxetine for oppositional behaviour, conduct problems, and aggression in youth with ADHD, ODD, and CD. The quality of evidence for medications was rated using the Grading of Recommendations Assessment, Development and Evaluation approach. Two systematic reviews and 20 randomized controlled trials were included. There is high-quality evidence that psychostimulants have a moderate-to-large effect on oppositional behaviour, conduct problems, and aggression in youth with ADHD, with and without ODD or CD. There is very-low-quality evidence that clonidine has a small effect on oppositional behaviour and conduct problems in youth with ADHD, with and without ODD or CD. There is moderate-quality evidence that guanfacine has a small-to-moderate effect on oppositional behaviour in youth with ADHD, with and without ODD. There is high-quality evidence that atomoxetine has a small effect on oppositional behaviour in youth with ADHD, with and without ODD or CD. Evidence indicates that psychostimulants, alpha-2 agonists, and atomoxetine can be beneficial for disruptive and aggressive behaviours in addition to core ADHD symptoms; however, psychostimulants generally provide the most benefit.

  8. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  9. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  10. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Science.gov (United States)

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  11. Neuropharmacology of novel dopamine modulators

    NARCIS (Netherlands)

    Beek, Erik Tomas te

    2014-01-01

    De neurotransmitter dopamine speelt een essentiële rol in diverse neurofysiologische functies en is betrokken bij de pathofysiologie van diverse neuropsychiatrische aandoeningen, waaronder de ziekte van Parkinson, schizofrenie, drugsverslaving en hyperprolactinemie. De huidige

  12. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  13. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  14. D-2 dopamine receptor activation reduces free [3H]arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    International Nuclear Information System (INIS)

    Canonico, P.L.

    1989-01-01

    Dopamine reduces the stimulation of intracellular [ 3 H]arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited [ 3 H]arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular [ 3 H]arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels

  15. Effects of Acute and Chronic Treatments with Dopamine D2 and D3 Receptor Ligands on Cocaine versus Food Choice in Rats.

    Science.gov (United States)

    Thomsen, Morgane; Barrett, Andrew C; Butler, Paul; Negus, S Stevens; Caine, S Barak

    2017-07-01

    Dopamine D 3 receptor ligands are potential medications for psychostimulant addiction. Medication assessment may benefit from preclinical studies that evaluate chronic medication effects on choice between an abused drug and an alternative, nondrug reinforcer. This study compared acute and chronic effects of dopamine D 2 - and D 3 -preferring ligands on choice between intravenous cocaine and palatable food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice and reciprocal decreases in food choice. Acutely, the D 2 agonist R -(-)-norpropylapomorphine (NPA) and antagonist L-741,626 [3-[[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1 H -indole] produced leftward and rightward shifts in cocaine dose-effect curves, respectively, whereas the partial agonist terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. Chronically, the effects of R -(-)-norpropylapomorphine and L-741,626 on cocaine self-administration showed marked tolerance, whereas suppression of food-reinforced behavior persisted. Acute effects of the D 3 ligands were less systematic and most consistent with nonselective decreases in cocaine- and food-maintained responding. Chronically, the D 3 agonist PF-592,379 [5-[(2 R ,5 S )-5-methyl-4-propylmorpholin-2-yl]pyridin-2-amine] increased cocaine choice, whereas an intermediate dose of the D 3 antagonist PG01037 [ N -[( E )-4-[4-(2,3-dichlorophenyl)piperazin-1-yl]but-2-enyl]-4-pyridin-2-ylbenzamide] produced a therapeutically desirable decrease in cocaine choice early in treatment; however, tolerance to this effect developed, and lower and higher doses were ineffective. D 3 ligands failed to significantly modify total cocaine intake but caused persistent decreases in food intake. Thus, D 2 -and D 3 -preferring ligands showed distinct profiles, consistent with different pharmacological actions. In addition, these results highlight the role of acute versus chronic treatment

  16. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus

    Directory of Open Access Journals (Sweden)

    John I. Broussard

    2016-03-01

    Full Text Available Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.

  17. Hormones and β-Agonists

    NARCIS (Netherlands)

    Ginkel, van L.A.; Bovee, T.F.H.; Blokland, M.H.; Sterk, S.S.; Smits, N.G.E.; Pleadin, Jelka; Vulić, Ana

    2016-01-01

    This chapter provides some updated information on contemporary methods for hormone and β-agonist analyses. It deals with the classical approaches for the effective detection and identification of exogenous hormones. The chapter examines specific problems related to control strategies for natural

  18. The use of electronic alerts in primary care computer systems to identify the excessive prescription of short-acting beta2-agonists for people with asthma: a systematic review.

    Science.gov (United States)

    McKibben, Shauna; De Simoni, Anna; Bush, Andy; Thomas, Mike; Griffiths, Chris

    2018-04-16

    Computers are increasingly used to improve prescribing decisions in the management of long-term conditions however the effects on asthma prescribing remain unclear. We aimed to synthesise the evidence for the use of computerised alerts that identify excessive prescribing of short-acting beta 2 -agonists (SABAs) to improve asthma management for people with asthma. MEDLINE, CINAHL, Embase, Cochrane and Scopus databases (1990-2016) were searched for randomised controlled trials using electronic alerts to identify excessive prescribing of SABAs for people with asthma in primary care. Inclusion eligibility, quality appraisal (Cochrane risk of bias tool) and data extraction were performed by two independent reviewers. Findings were synthesised narratively. A total of 2035 articles were screened and four trials were eligible. Three studies had low risk of bias: one reported a positive effect on our primary outcome of interest, excessive SABA prescribing; another reported positive effects on the ratio of inhaled corticosteroid (ICS)-SABA prescribing, and asthma control; a third reported no effect on outcomes of interest. One study at high risk of bias reported a reduction in exacerbations and primary care consultations. There is some evidence that electronic alerts reduce excessive prescribing of SABAs, when delivered as part of a multicomponent intervention in an integrated health care system. However due to the variation in health care systems, intervention design and outcomes measured, further research is required to establish optimal design of alerting and intervening systems.

  19. Prolonging survival of corneal transplantation by selective sphingosine-1-phosphate receptor 1 agonist.

    Directory of Open Access Journals (Sweden)

    Min Gao

    Full Text Available Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1 selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival.

  20. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  1. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  2. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  3. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific

  4. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  5. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  6. Binding of [125I]-N-(p-aminophenethyl)spiroperidol to the D-2 dopamine receptor in the neurointermediate lobe of the rat pituitary gland: a thermodynamic study

    International Nuclear Information System (INIS)

    Agui, T.; Amlaiky, N.; Caron, M.G.; Kebabian, J.W.

    1988-01-01

    The novel iodinated ligand [ 125 I]-N-(p-aminophenethyl)spiroperidol ([ 125 I]NAPS) was used to identify the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. The binding of [ 125 I]NAPS was of high affinity and saturable, given that the dissociation constant and the maximal binding were 34.7 +/- 4.8 pM and 21.1 +/- 2.5 fmol/mg of protein, respectively. The ability of dopaminergic agonists and antagonists to compete with [ 125 I]NAPS varied markedly with incubation temperature. The marked decrease of the molar potency associated with increasing incubation temperature in the competitive displacement curve suggested that the binding of five agonists, dopamine, (-)-apomorphine, (-)-n-propylnorapomorphine, N-0434, and LY-171555, to the D-2 dopamine receptor was enthalpy-driven, with a negative change in entropy. In contrast, the binding of three antagonists, fluphenazine, (+)-butaclamol, and domperidone, was entropy-driven, with positive change in entropy, suggesting less temperature-sensitive change in the molar potency. Several molecules gave unanticipated results; the molar potency of two dopamine agonists, bromocriptine and lisuride, was much less temperature-sensitive than the other agonists used in this study. The thermodynamic parameters for the atypical agonists indicated entropy-driven binding. Conversely, the molar potency of (+)-apomorphine, a dopamine receptor antagonist, was markedly affected by incubation temperature, indicating enthalpy-driven binding. Another antagonist, YM-09151-2, was affected by the inclusion of sodium chloride in the assay system: in the absence of sodium chloride, the drug was relatively weak and displayed enthalpy-driven binding; in the presence of sodium chloride, its molar potency was increased and its binding manner turned into entropy-driven

  7. Efeito da teofilina associada ao beta2-agonista inalatório de curta ou longa duração, em pacientes com doença pulmonar obstrutiva crônica estável: revisão sistemática Effect of theophylline associated with short-acting or long-acting inhaled beta2-agonists in patients with stable chronic obstructive pulmonary disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Zacarias

    2007-04-01

    Full Text Available OBJETIVOS: Avaliar se o tratamento com teofilina associada ao beta2-agonista inalatório de curta ou longa duração é mais eficaz que o placebo e que o uso isolado de cada um dos fármacos, para os pacientes com doença pulmonar obstrutiva crônica estável. MÉTODOS: Realizou-se uma revisão sistemática com metanálise, sendo selecionados todos os ensaios clínicos aleatórios e duplo-cegos encontrados na literatura. RESULTADOS: Foram incluídos oito estudos. Teofilina associada ao beta2-agonista vs. placebo: houve melhora estatisticamente significante para o VEF1 (L, com média 0,27 (IC95% 0,11 a 0,43; e para a dispnéia, com média -0,78 (IC95% -1,26 a -0,29. Teofilina associada ao beta2-agonista vs. beta2-agonista isolado: nenhuma das metanálises realizadas detectou diferença entre os grupos. Teofilina associada ao beta2-agonista vs. teofilina isolada: houve melhora estatisticamente significante para a dispnéia, com média -0,19 (IC95% -0,34 a -0,04. CONCLUSÕES: Em pacientes com doença pulmonar obstrutiva crônica estável: 1 teofilina associada ao beta2-agonista é mais eficaz que o placebo, em relação ao VEF1 e dispnéia; 2a teofilina associada ao beta2-agonista é mais eficaz que a teofilina isolada, em relação à dispnéia; e 2b teofilina associada ao beta2-agonista não é mais eficaz que o beta2-agonista isolado, para quaisquer das variáveis estudadas.OBJECTIVES: To determine whether, in stable patients with chronic obstructive pulmonary disease, administration of theophylline in combination with short-acting or long-acting inhaled beta2-agonists is more efficacious than is a placebo or each of these drugs used in isolation. METHODS: A systematic review and meta-analysis were carried out. All randomized and double-blind clinical trials found in the literature were selected. RESULTS: A total of eight studies were included. In comparing the effect of theophylline combined with beta2-agonists to that of a placebo, we found a

  8. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Science.gov (United States)

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  9. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  10. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  11. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  12. L-DOPA reverses the elevated density of D/sub 2/ dopamine receptors in Parkinson's diseased striatum

    Energy Technology Data Exchange (ETDEWEB)

    Guttman, M; Seeman, P

    1985-01-01

    Striatal dopamine receptors werde studied using (/sup 3/H)-spiperone in postmortem tissues of thirty-six patients with Parkinson's Disease. Each tissue was analyzed by the receptor saturation method. In non-treated patients, the D/sub 2/ dopamine receptor density was elevated in the caudate nucleus and putamen compared to controls. In L-DOPA-treated patients, the receptor density was the same as controls. The dissociation constant for (/sup 3/H)-spiperone was similar in all groups. The elevated density of D/sub 2/ receptors in non-treated patients may indicate dopaminergic supersensitivity in this disease. The elevated density was reversed with dopamine agonist therapy, but the density was not lower than control tissues.

  13. Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors.

    Science.gov (United States)

    Gotzes, F; Balfanz, S; Baumann, A

    1994-01-01

    Members of the superfamily of G-protein coupled receptors share significant similarities in sequence and transmembrane architecture. We have isolated a Drosophila homologue of the mammalian dopamine receptor family using a low stringency hybridization approach. The deduced amino acid sequence is approximately 70% homologous to the human D1/D5 receptors. When expressed in HEK 293 cells, the Drosophila receptor stimulates cAMP production in response to dopamine application. This effect was mimicked by SKF 38393, a specific D1 receptor agonist, but inhibited by dopaminergic antagonists such as butaclamol and flupentixol. In situ hybridization revealed that the Drosophila dopamine receptor is highly expressed in the somata of the optic lobes. This suggests that the receptor might be involved in the processing of visual information and/or visual learning in invertebrates.

  14. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    Science.gov (United States)

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  15. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  16. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    , in relatively high concentration (100 muM), partially blocked the activation by 10 muM dopamine, but was without effect on the stimulation by 10 muM D-LSD. The present results indicate that serotonin antagonists, in general, are potent inhibitors of catecholamine-induced stimulation of adenylate cyclase systems in brain cell-free preparations. In addition, these results, coupled with earlier findings on the capacity of D-LSD to interact with serotonin-sensitive adenylate cyclase systems from rat brain23,24 and other neural systems16, strongly suggest that this hallucinogenic agent is capable of acting as an agonist at central dopamine and serotonin receptors, as well as functioning as an antagonist at dopamine, norepinephrine, and serotonin receptors in the brain.

  17. Nicotine receptor partial agonists for smoking cessation

    Directory of Open Access Journals (Sweden)

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  18. Nicotine receptor partial agonists for smoking cessation.

    Science.gov (United States)

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2012-04-18

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist') in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialised register was in December 2011. We also searched online clinical trials registers. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up.The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. Two recent cytisine trials (937 people) found that more participants taking cytisine stopped smoking compared with placebo at longest follow-up, with a pooled RR of

  19. Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential.

    Science.gov (United States)

    Marinelli, M; Barrot, M; Simon, H; Oberlander, C; Dekeyne, A; Le Moal, M; Piazza, P V

    1998-10-01

    Opioid peptides, through mu and delta receptors, play an important part in reward. In contrast, the role of kappa receptors is more controversial. We examined the possible positive reinforcing effects of a selective kappa agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the mu agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 microg/inj) and heroin (30 microg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 microg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that kappa receptors, similarly to mu ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for kappa receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.

  20. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  1. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  2. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  3. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    and liraglutide, as well as the emerging GLP-1R agonists including the long-acting compounds. Expert opinion: An emerging therapeutic trend toward initial or early combination therapy with metformin- and incretin-based therapy is anticipated for patients with type 2 diabetes. GLP-1-based therapy has so far proven...... development may improve the effects of GLP-1 even further with optimized pharmacokinetic profiles resulting in fewer side effects. Meta-analyses have shown promising effects on cardiovascular disease and data from ongoing multicenter trials with cardiovascular endpoints are expected in 2015....

  4. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  5. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    Science.gov (United States)

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  6. The epileptogenic spectrum of opiate agonists.

    Science.gov (United States)

    Snead, O C; Bearden, L J

    1982-11-01

    The present authors gave mu, delta, kappa, epsilon and sigma opiate receptor agonists intracerebroventricularly to rats both singly and in combination while monitoring the electroencephalogram from cortical and depth electrodes. Dose-response curves were plotted with naloxone against the changes produced by each agonist, and the effect of a number of anticonvulsant drugs on agonist-induced seizures was ascertained. Each opiate agonist produced a different seizure pattern with a different naloxone dose-response curve and anticonvulsant profile. The order of convulsive potency was epsilon greater than delta greater than mu greater than sigma much greater than kappa. Petit mal-like seizure activity was unique to the delta agonist, leucine-enkephalin, while only the mu agonist, morphine produced generalized convulsive seizures. These experiments raise the possibility that opiate systems in the brain may be involved in the pathogenesis of a wide spectrum of seizure disorders.

  7. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Science.gov (United States)

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  8. Dopamine agents for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Junker, Anders Ellekær; Als-Nielsen, Bodil; Gluud, Christian

    2014-01-01

    BACKGROUND: Patients with hepatic encephalopathy may present with extrapyramidal symptoms and changes in basal ganglia. These changes are similar to those seen in patients with Parkinson's disease. Dopamine agents (such as bromocriptine and levodopa, used for patients with Parkinson's disease) have...... therefore been assessed as a potential treatment for patients with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of dopamine agents versus placebo or no intervention for patients with hepatic encephalopathy. SEARCH METHODS: Trials were identified through the Cochrane...... hepatic encephalopathy that were published during 1979 to 1982 were included. Three trials assessed levodopa, and two trials assessed bromocriptine. The mean daily dose was 4 grams for levodopa and 15 grams for bromocriptine. The median duration of treatment was 14 days (range seven to 56 days). None...

  9. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  10. AGONISTIC BEHAVIOR OF LABORATORY MICE

    Directory of Open Access Journals (Sweden)

    D. Cinghiţă

    2005-01-01

    Full Text Available In this work we study agonistic behavior of laboratory white mice when they are kept in captivity. For all this experimental work we used direct observation of mice, in small lists, because we need a reduced space to emphasize characteristics of agonistic behavior. Relations between members of the same species that live in organized groups are based in most cases on hierarchical structure. Relations between leader and subservient, decided by fighting, involve a thorough observation between individuals. Each member of a group has its own place on the ierarchical scale depending on resultes of fhights – it can be leader or it can be subsurvient, depending on if it wines or looses the fight. Once hierarchical scale made, every animal will adjust its behavior. After analyzing the obtained data we have enough reasons to believe that after fights the winner, usually, is the massive mouse, but it is also very important the sexual ripeness, so the immature male will be beaten. The leader male had a big exploring area and it checks up all territory.The females can be more aggressive, its fights are more brutal, than male fights are, when they fight for supremacy, but in this case fights are not as frequent as in the case of males. Always the superior female, on hierarchical scale, shows males its own statute, so the strongest genes will be perpetuated.

  11. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  12. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  13. Effect of dopamine-related drugs on duodenal ulcer induced by cysteamine or propionitrile: prevention and aggravation may not be mediated by gastrointestinal secretory changes in the rat

    International Nuclear Information System (INIS)

    Gallagher, G.; Brown, A.; Szabo, S.

    1987-01-01

    Dose- and time-response studies have been performed with dopamine agonists and antagonists using the cysteamine and propionitrile duodenal ulcer models in the rat. The experiments demonstrate that the chemically induced duodenal ulcer is prevented by bromocriptine, lergotrile and reduced by apomorphine or L-dopa. Aggravation of cysteamine-induced duodenal ulcer was seen especially after (-)-butaclamol, (-)-sulpiride, haloperidol and, less effectively, after other dopaminergic antagonists. The duodenal antiulcerogenic action of dopamine agonists was more prominent after chronic administration than after a single dose, whereas the opposite was found concerning the proulcerogenic effect of dopamine antagonists. In the chronic gastric fistula rat, both the antiulcerogens bromocriptine or lergotrile and the proulcerogens haloperidol, pimozide or (-)-N-(2-chlorethyl)-norapomorphine decreased the cysteamine- or propionitrile-induced gastric secretion. No correlation was apparent between the influence of these drugs on duodenal ulcer development and gastric and duodenal (pancreatic/biliary) secretions. In the chronic duodenal fistula rat, decreased acid content was measured in the proximal duodenum after haloperidol, and diminished duodenal pepsin exposure was recorded after bromocriptine. Furthermore, the aggravation by dopamine antagonists of experimental duodenal ulcer probably involves a peripheral component. The site of dopamine receptors and physiologic effects which modulate experimental duodenal ulcer remain to be identified, but their elucidation may prove to be an important element in the pathogenesis and treatment of duodenal ulcer

  14. F229. THE BIOLOGICAL UNDERPINNINGS OF TREATMENT RESPONSE IN DELUSIONAL DISORDER: A SYSTEMATIC REVIEW OF QUALITATIVE EVIDENCE-TO-DATE

    Science.gov (United States)

    González-Rodríguez, Alexandre; Estrada, Francesc; Montalvo, Itziar; Monreal, José Antonio; Palao, Diego; Labad, Javier

    2018-01-01

    Abstract Background The dopamine hypothesis of schizophrenia has been extensively proposed as a neurobiological mechanism that explains the relationship between schizophrenic symptoms and hyperdopaminergic states. This hypothesis is supported by direct and indirect evidence, and it mainly postulates that antipsychotics act blocking dopamine receptors. When focusing on delusional disorder patients, especially delusional disorder somatic type, a great effort towards the search for a biological basis of treatment response has been recently demonstrated. Thus, the main goal of this systematic review was to examine the evidence explaining the biological underpinnings of treatment response in delusional disorder. Methods A systematic review was performed using Pubmed, Scopus and PsycINFO databases (from 1990 to October 2017), according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The following search terms were used: [(‘treat*’ OR ‘therap*’ OR ‘biol*’) AND (‘delusional disorder’)]. This systematic computerized search was completed by additional studies hand-checked through reference lists from the included studies and review articles. Studies were only included if the met our inclusion criteria: (a) the International Classification of Diseases (ICD) or Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis for delusional disorder, (b) be published in peer-reviewed journals, (c) in English, German or Spanish, (d) and reporting a hypothesis for the biological basis of treatment response in delusional disorder, irrespective of method and study design. Exclusion criteria were: (a) studies including organic delusional disorder or (b) somatic delusions secondary to other psychiatric diagnoses. The literature search strategy, data extraction and synthesis was conducted independently by two authors (A.G.R, F.E.). When disagreement, it was solved by consensus. Results A total of 59 articles were

  15. Beta-agonists and animal welfare

    Science.gov (United States)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  16. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    Directory of Open Access Journals (Sweden)

    Maibritt B Andersen

    Full Text Available Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R-6-(3-butylthio-1,2,5-thiadiazol-4-yl-1-azabicyclo[3.2.1]octane (BuTAC exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.

  17. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Translational pharmacology of dopamine receptor agonists and antagonists : prolactin and oxytocin as biomarkers

    NARCIS (Netherlands)

    Stevens, Jasper

    2011-01-01

    For mechanism-based investigations on PK-PD relationships following intranasal administration, the use of advanced animal models and analytical techniques are crucial. As described in this thesis, quantitative information on distinction between extent as well as rate of absorption between

  19. Plasma and urine, pharmacokinetics of the dopamine agonist alpha-dihydroergocryptine in patients with hepatic dysfunction

    NARCIS (Netherlands)

    Althaus, M; de Mey, C; Ezan, E; Ciecko-Michalska, [No Value; Kostka-Trabkal, E; Goszcz, A; Retzow, A

    Objective: The aim of this study was to evaluate the pharmacokinetic behavior of unchanged alpha -dihydroergocryptine (DHEC, Almirid (R), Desitin Arzneimittel GmbH, Hamburg, Germany, under licence of Polichem S.A., Luxembourg) and total DHEC (unchanged DHEC and pooled metabolites) in plasma and

  20. Regulation of tumor's cytokine release and sensitivity to natural killing by dopamine agonistic compounds

    Czech Academy of Sciences Publication Activity Database

    Fišerová, Anna; Pešta, M.; Kovářů, H.; Horváth, Ondřej; Pospíšil, Miloslav

    1999-01-01

    Roč. 4, Suppl 1 (1999), s. 245 ISSN 1107-3756. [World Congress on Advances in Oncology /4./. 07.10.1999-09.10.1999, Athens] R&D Projects: GA ČR GA310/98/0347; GA ČR GV312/98/K034 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EC - Immunology

  1. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  2. Development of dopamine receptor radiopharmaceuticals for the study of neurological and psychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Jogeshwar Mukherjee

    2009-01-02

    Our goals in this grant application are directed towards the development of radiotracers that may allow the study of the high-affinity state (functional state) of the dopamine receptors. There have been numerous reports on the presence of two inter-convertible states of these (G-protein coupled) receptors in vitro. However, there is no report that establishes the presence of these separate affinity states in vivo. We have made efforts in this direction in order to provide such direct in vivo evidence about the presence of the high affinity state. This understanding of the functional state of the receptors is of critical significance in our overall diagnosis and treatment of diseases that implicate the G-protein coupled receptors. Four specific aims have been listed in the grant application: (1). Design and syntheses of agonists (2). Radiosyntheses of agonists (3). In vitro pharmacology of agonists (4). In vivo distribution and pharmacology of labeled derivatives. We have accomplished the syntheses and radiosyntheses of three agonist radiotracers labeled with carbon-11. In vitro and in vivo pharmacological experiments have been accomplished in rats and preliminary PET studies in non-human primates have been carried out. Various accomplishments during the funded years, briefly outlined in this document, have been disseminated by several publications in various journals and presentations in national and international meetings (Society of Nuclear Medicine, Society for Neuroscience and International Symposium on Radiopharmaceutical Chemistry).

  3. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke Ramsgaard

    2018-01-01

    pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  4. [¹¹C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson's disease with impulse control disorders.

    Science.gov (United States)

    Payer, Doris E; Guttman, Mark; Kish, Stephen J; Tong, Junchao; Strafella, Antonio; Zack, Martin; Adams, John R; Rusjan, Pablo; Houle, Sylvain; Furukawa, Yoshiaki; Wilson, Alan A; Boileau, Isabelle

    2015-02-01

    Dopamine agonist medications with high affinity for the D3 dopamine receptor are commonly used to treat Parkinson's disease, and have been associated with pathological behaviors categorized under the umbrella of impulse control disorders (ICD). The aim of this study was to investigate whether ICD in Parkinson's patients are associated with greater D3 dopamine receptor availability. We used positron emission tomography (PET) radioligand imaging with the D3 dopamine receptor preferring agonist [¹¹C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) in Parkinson's patients with (n = 11) and without (n = 21) ICD, and age-, sex-, and education-matched healthy control subjects (n = 18). Contrary to hypotheses, [¹¹C]-(+)-PHNO binding in D3 -rich brain areas was not elevated in Parkinson's patients with ICD compared with those without; instead, [¹¹C]-(+)-PHNO binding in ventral striatum was 20% lower (P = 0.011), correlating with two measures of ICD severity (r = -0.8 and -0.9), which may reflect higher dopamine tone in ventral striatum. In dorsal striatum, where [¹¹C]-(+)-PHNO binding is associated with D2 receptor levels, [¹¹C]-(+)-PHNO binding was elevated across patients compared with controls. We conclude that although D3 dopamine receptors have been linked to the occurrence of ICD in Parkinson's patients. Our findings do not support the hypothesis that D3 receptor levels are elevated in Parkinson's patients with ICD. We also did not find ICD-related abnormalities in D2 receptor levels. Our findings argue against the possibility that differences in D2/3 receptor levels can account for the development of ICD in PD; however, we cannot rule out that differences in dopamine levels (particularly in ventral striatum) may be involved. © 2015 International Parkinson and Movement Disorder Society.

  5. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    Science.gov (United States)

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  6. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  7. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Directory of Open Access Journals (Sweden)

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  8. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  10. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  11. CTDP-32476: A Promising Agonist Therapy for Treatment of Cocaine Addiction

    Science.gov (United States)

    Xi, Zheng-Xiong; Song, Rui; Li, Xia; Lu, Guan-Yi; Peng, Xiao-Qing; He, Yi; Bi, Guo-Hua; Sheng, Siyuan Peter; Yang, Hong-Ju; Zhang, Haiying; Li, Jin; Froimowitz, Mark; Gardner, Eliot L

    2017-01-01

    Agonist-replacement therapies have been successfully used for treatment of opiate and nicotine addiction, but not for cocaine addiction. One of the major obstacles is the cocaine-like addictive potential of the agonists themselves. We report here an atypical dopamine (DA) transporter (DAT) inhibitor, CTDP-32476, that may have translational potential for treating cocaine addiction. In vitro ligand-binding assays suggest that CTDP-32476 is a potent and selective DAT inhibitor and a competitive inhibitor of cocaine binding to the DAT. Systemic administration of CTDP-32476 alone produced a slow-onset, long-lasting increase in extracellular nucleus accumbens DA, locomotion, and brain-stimulation reward. Drug-naive rats did not self-administer CTDP-32476. In a substitution test, cocaine self-administration rats displayed a progressive reduction in CTDP-32476 self-administration with an extinction pattern of drug-taking behavior, suggesting significantly lower addictive potential than cocaine. Pretreatment with CTDP-32476 inhibited cocaine self-administration, cocaine-associated cue-induced relapse to drug seeking, and cocaine-enhanced extracellular DA in the nucleus accumbens. These findings suggest that CTDP-32476 is a unique DAT inhibitor that not only could satisfy ‘drug hunger' through its slow-onset long-lasting DAT inhibitor action, but also render subsequent administration of cocaine ineffectual—thus constituting a novel and unique compound with translational potential as an agonist therapy for treatment of cocaine addiction. PMID:27534265

  12. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  13. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  14. Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions.

    Science.gov (United States)

    Arnt, J

    1985-08-26

    The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.

  15. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  16. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  17. Stereoselectivity of presynaptic autoreceptors modulating dopamine release

    International Nuclear Information System (INIS)

    Arbilla, S.; Langer, S.Z.

    1981-01-01

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [ 3 H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01-1μM enhanced the electrically evoked release of [ 3 H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.1-1 μM) but not to (R)-butaclamol (0.1-10μM) enhanced the field-stimulated release of [ 3 H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1μM) of the stimulated release of [ 3 H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [ 3 H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective. (Auth.)

  18. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    Science.gov (United States)

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  19. Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    International Nuclear Information System (INIS)

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C.

    1989-01-01

    Dopamine receptor types D 1 and D 2 can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D 1 -D 2 interaction in homogenized tissue as revealed by ligand binding. D 2 agonists lowered the binding of [ 3 H]raclopride to D 2 receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D 1 -selective antagonist SCH 23390 prevented the agonist-induced decrease in [ 3 H]raclopride binding to D 2 sites in the striatum but not in the anterior pituitary, which has no D 1 receptors. Conversely, a dopamine-induced reduction in the binding of [ 3 H]SCH 23390 to D 1 receptors could be prevented by the D 2 -selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D 1 -D 2 interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D 2 receptors in the high-affinity state. Thus, the D 1 -D 2 link may be mediated by guanine nucleotide-binding protein components. The link may underlie D 1 -D 2 interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata

  20. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  1. Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.

    Science.gov (United States)

    Jackson, Chad R; Capozzi, Megan; Dai, Heng; McMahon, Douglas G

    2014-03-26

    Visual system development depends on neural activity, driven by intrinsic and light-sensitive mechanisms. Here, we examined the effects on retinal function due to exposure to summer- and winter-like circadian light cycles during development and adulthood. Retinal light responses, visual behaviors, dopamine content, retinal morphology, and gene expression were assessed in mice reared in seasonal photoperiods consisting of light/dark cycles of 8:16, 16:8, and 12:12 h, respectively. Mice exposed to short, winter-like, light cycles showed enduring deficits in photopic retinal light responses and visual contrast sensitivity, but only transient changes were observed for scotopic measures. Dopamine levels were significantly lower in short photoperiod mice, and dopaminergic agonist treatment rescued the photopic light response deficits. Tyrosine hydroxylase and Early Growth Response factor-1 mRNA expression were reduced in short photoperiod retinas. Therefore, seasonal light cycles experienced during retinal development and maturation have lasting influence on retinal and visual function, likely through developmental programming of retinal dopamine.

  2. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    Science.gov (United States)

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.

  3. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  4. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    Science.gov (United States)

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  5. Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor.

    Science.gov (United States)

    Liu, Xiang-Feng; Long, Hai-Jiao; Miao, Xiong-Ying; Liu, Guo-Li; Yao, Hong-Liang

    2017-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a natural abundant flavonoid, is produced in different vegetables and fruits. Fisetin has been reported to relate to various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Dopamine receptors (DRs) belonging to G protein‑coupled receptor family, are known as the target of ~50% of all modern medicinal drugs. DRs consist of various proteins, functioning as transduction of intracellular signals for extracellular stimuli. We found that fisetin performed as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion. Caspase-3 signaling was activated to induce apoptosis for fisetin administration. Furthermore, TGF‑β1 was also inhibited in fisetin-treated liver cancer cells, reducing epithelial-mesenchymal transition (EMT). Additionally, fisetin downregulated VEGFR1, p-ERK1/2, p38 and pJNK, ameliorating liver cancer progression. In vivo, the orthotopically implanted tumors from mice were inhibited by fisetin adminisatration accompanied by prolonged survival rate and higher levels of dopamine. Together, the results indicated a novel therapeutic strategy to suppress liver cancer progression associated with DR2 regulation, indicating that dopamine might be of importance in liver cancer progression.

  6. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  7. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  8. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  9. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    Science.gov (United States)

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  10. Dopamine Increases CD14+CD16+ Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis.

    Science.gov (United States)

    Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2017-06-01

    In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14 + CD16 + monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14 + CD16 + monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14 + CD16 + monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14 + CD16 + monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14 + CD16 + monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14 + CD16 + monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.

  11. Direct demonstration of D1 dopamine receptors in the bovine parathyroid gland using the D1 selective antagonist [125I]-SCH 23982

    International Nuclear Information System (INIS)

    Monsma, F.J. Jr.; Sibley, D.R.

    1989-01-01

    The presence of D1 dopamine receptors in the parathyroid gland has been proposed based on the demonstration of dopaminergic regulation of adenylate cyclase activity and parathyroid hormone release in dispersed bovine parathyroid cells. Using a radioiodinated D1 selective antagonist [125I]-SCH 23982, we have now directly labeled and characterized the D1 dopamine receptors in bovine parathyroid gland membranes. [125I]-SCH 23982 binds in a saturable manner with high affinity and low nonspecific binding to membranes prepared from bovine parathyroid glands. D1 dopamine receptors are present in this preparation at a concentration of approximately 130 fMoles/mg protein and [125I]-SCH 23982 binding increases with increasing protein concentration in a linear fashion. Determination of the Kd using the association (k1) and dissociation (k-1) rate constants revealed good agreement with the Kd determined by saturation analysis (390 pM vs. 682 pM, respectively). Inhibition of 0.3 nM [125I]-SCH 23982 binding by a series of dopaminergic antagonists verified the D1 nature of this binding site, exhibiting appropriate affinities and rank order of potency. The competition curves of all antagonists exhibited Hill coefficients that were not significantly different from 1. Inhibition of [125I]-SCH 23982 binding by dopamine and other dopaminergic agonists revealed the presence of high and low affinity agonist binding sites. Addition of 200 microM GppNHp effected a complete conversion of high affinity dopamine binding sites to a homogeneous population of low affinity dopamine sites. The D1 receptors identified in the parathyroid gland with [125I]-SCH 23982 appear to be pharmacologically identical with those previously characterized in the central nervous system

  12. Detection of dopamine neurotransmission in 'real time'

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    2013-07-01

    Full Text Available Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

  13. DOPA, norepinephrine, and dopamine in rat tissues

    DEFF Research Database (Denmark)

    Eldrup, E; Richter, Erik; Christensen, N J

    1989-01-01

    We studied the effect of unilateral sympathectomy on rat quadriceps and gastrocnemius muscle concentrations of endogenous dihydroxyphenylalanine (DOPA), dopamine (DA), and norepinephrine (NE) and assessed the relationships between these catecholamines in several rat tissues. Catecholamines were...

  14. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model­

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2016-10-01

    Full Text Available Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1. Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.

  15. Dopamine, the medial preoptic area, and male sexual behavior.

    Science.gov (United States)

    Dominguez, Juan M; Hull, Elaine M

    2005-10-15

    The medial preoptic area (MPOA), at the rostral end of the hypothalamus, is important for the regulation of male sexual behavior. Results showing that male sexual behavior is impaired following MPOA lesions and enhanced with MPOA stimulation support this conclusion. The neurotransmitter dopamine (DA) facilitates male sexual behavior in all studied species, including rodents and humans. Here, we review data indicating that the MPOA is one site where DA may act to regulate male sexual behavior. DA agonists microinjected into the MPOA facilitate sexual behavior, whereas DA antagonists impair copulation, genital reflexes, and sexual motivation. Moreover, microdialysis experiments showed increased release of DA in the MPOA as a result of precopulatory exposure to an estrous female and during copulation. DA may remove tonic inhibition in the MPOA, thereby enhancing sensorimotor integration, and also coordinate autonomic influences on genital reflexes. In addition to sensory stimulation, other factors influence the release of DA in the MPOA, including testosterone, nitric oxide, and glutamate. Here we summarize and interpret these data.

  16. Piribedil affects dopamine turnover in cochleas stimulated by white noise.

    Science.gov (United States)

    Gil-Loyzaga, P; Vicente-Torres, M A; Fernández-Mateos, P; Arce, A; Esquifino, A

    1994-09-01

    The presence of dopamine (DA) within the cochlea has been previously reported, indicating that its turnover increases under noise stimulation. In the present report, piribedil, a dopaminergic D2 agonist, was used in order to provide evidence of the activity of D2 receptors in the turnover of DA under noise stimulation. Long-Evans rats were intraperitoneally injected with distilled water or with a solution of piribedil one hour previously to either noise or silence exposure. Noise stimulation was performed in an anechoic chamber at 70, 90 or 110 dB SPL for one hour. The animals were then sacrificed and the cochlear contents of DA and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were quantified by HPLC with electrochemical detection. The administration of piribedil to animals kept in silence did not modify the cochlear DA, DOPAC and HVA content. Noise stimulation resulted in a decrease of the cochlear DA content and an increase of the cochlear DOPAC and HVA contents in vehicle treated animals. The administration of piribedil resulted in a blockade of this noise induced cochlear DA turnover. These results suggest that piribedil stimulates cochlear D2 receptors controlling the cochlear DA release. Piribedil action on D2 receptors could explain the improvement observed in some cochleo-vestibular diseases signs after piribedil treatment.

  17. Dopamine dysregulation syndrome in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    A V Nikitina

    2013-01-01

    Full Text Available Dopamine dysregulation syndrome (DDS is an iatrogenic disease developing during dopaminergic therapy. According to the data available in the literature, DDS develops in 3-4% of the Parkinson’s disease (PD cases. DDS in PD is frequently accompanied by other impulse control disorders (ICD: punding, compulsive shopping, hypersexuality, overeating. 246 patients with PD, of whom 16 (6.4% were found to have DDS, were examined. The patients’ age was 64±7.4 years. Women (n = 10 more often developed DDS than men (n = 6. The patients mainly suffered from the mixed form of the disease. Stages III and IV were diagnosed in 72 and 22%, respectively. The duration of PD was 12+2.6 years. In the PD patients with DDS, the quality-of-life indicators ranged from 19.8 to 90% (54+20.1%. The equivalent dose of levodopa is 1323.4+299 mg/day. DDS was concurrent with other types of ICD in 4 patients: panding in 2, compulsive shopping and punding in 1, and punding and hypersexuality. The doses of levodopa were corrected in patients receiving high doses of dopaminergic drugs. In the patients with DDS concurrent with punding or hypersexuality, the dose of dopaminergic receptor agonists was gradually reduced and subsequently discontinued.

  18. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  19. Dopamine D5 receptor modulates male and female sexual behavior in mice.

    Science.gov (United States)

    Kudwa, A E; Dominguez-Salazar, E; Cabrera, D M; Sibley, D R; Rissman, E F

    2005-07-01

    Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.

  20. Sex differences in effects of dopamine D1 receptors on social withdrawal.

    Science.gov (United States)

    Campi, Katharine L; Greenberg, Gian D; Kapoor, Amita; Ziegler, Toni E; Trainor, Brian C

    2014-02-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dopamine Dysregulation Syndrome and other psychiatric problems in Parkinson’s Disease: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Sibel Ertan

    2011-06-01

    Full Text Available In a small number of patients with Parkinson’s disease (PD, a series of behavioral disorders included within the spectrum of impulsive-compulsive disorders develop under the dopamine replacement therapy (DRT. These behaviors are grouped into three as “impulse control disorders (ICD” characterized by rewards-seeking behaviors, “punding” characterized by aimless, ritualist stereotypical repetative behaviors, and “dopamine dysregulation syndrome (DDS” characterized by drug overuse due to chemical addiction. The prevalance of DDS in PD was reported to be around 3-4%. Patients with DDS have an urge to increase their dopaminergic doses beyond their needs for parkinsonien symptoms. DDS is reported to be more common especially in patients with an early onset of disease, high doses of DRT, previous history of or current depression, history of alcohol or substance abuse, and in those having impulsive personality constantly seeking for a change or novelty. DDS is commonly observed in association with “punding” and ICD. The pathophysiology underlying these disorders is explained by specific mechanisms in addition to DRT. Dopamine is not only responsible in the control of the movement, but also plays an important role in the modulation of brain reward systems. The potential maladaptive dysfunction of the mesolimbic dopaminergic system underlies the pathogenesis of DDS. Although the most potent trigger of DDS in PD is known as L-dopa, subcutaneous apomorphine and oral dopamine agonists could also be responsible from the development of DDS. The patients and caregivers should be informed for these behavioral disorders that might emerge under DRT, the possible risk factors should be questioned before dopaminergic therapy, and the choice of drug should be made under these concerns. In patients with DDS, fast-acting DRT formulations should be avoided. In DDS cases associated with hypomaniac or psychotic episodes, treatment should made with

  2. Dopamine Dysregulation Syndrome and other psychiatric problems in Parkinson’s Disease: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Sibel Ertan

    2011-06-01

    Full Text Available In a small number of patients with Parkinson’s disease (PD, a series of behavioral disorders included within the spectrum of impulsive-compulsive disorders develop under the dopamine replacement therapy (DRT. These behaviors are grouped into three as “impulse control disorders (ICD” characterized by rewards-seeking behaviors, “punding” characterized by aimless, ritualist stereotypical repetative behaviors, and “dopamine dysregulation syndrome (DDS” characterized by drug overuse due to chemical addiction. The prevalance of DDS in PD was reported to be around 3-4%. Patients with DDS have an urge to increase their dopaminergic doses beyond their needs for parkinsonien symptoms. DDS is reported to be more common especially in patients with an early onset of disease, high doses of DRT, previous history of or current depression, history of alcohol or substance abuse, and in those having impulsive personality constantly seeking for a change or novelty. DDS is commonly observed in association with “punding” and ICD. The pathophysiology underlying these disorders is explained by specific mechanisms in addition to DRT. Dopamine is not only responsible in the control of the movement, but also plays an important role in the modulation of brain reward systems. The potential maladaptive dysfunction of the mesolimbic dopaminergic system underlies the pathogenesis of DDS. Although the most potent trigger of DDS in PD is known as L-dopa, subcutaneous apomorphine and oral dopamine agonists could also be responsible from the development of DDS. The patients and caregivers should be informed for these behavioral disorders that might emerge under DRT, the possible risk factors should be questioned before dopaminergic therapy, and the choice of drug should be made under these concerns. In patients with DDS, fast-acting DRT formulations should be avoided. In DDS cases associated with hypomaniac or psychotic episodes, treatment should made with

  3. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  5. Systemic catechol-O-methyl transferase inhibition enables the D{sub 1} agonist radiotracer R-[{sup 11}C]SKF 82957

    Energy Technology Data Exchange (ETDEWEB)

    Palner, Mikael, E-mail: mikael.palner@nru.d [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); McCormick, Patrick; Parkes, Jun [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Knudsen, Gitte M. [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); Wilson, Alan A. [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario (Canada)

    2010-10-15

    Introduction: R-[{sup 11}C]-SKF 82957 is a high-affinity and potent dopamine D{sub 1} receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[{sup 11}C]-SKF 82957 to image the high-affinity state of the dopamine D{sub 1} receptor with PET. Methods: R-[{sup 11}C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D{sub 1} binding of R-[{sup 11}C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor {alpha}-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[{sup 11}C]-SKF 82957 dopamine D{sub 1} binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC{sub 90} 5.3{+-}4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[{sup 11}C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D{sub 1} antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[{sup 11}C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[{sup 11}C]SKF 82957. Under such conditions, R-[{sup 11}C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D{sub 1} receptor by PET.

  6. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    Science.gov (United States)

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  7. Agentes dopaminérgicos e o tratamento da disfunção erétil

    Directory of Open Access Journals (Sweden)

    Neves Gilda

    2004-01-01

    Full Text Available The understanding of the scientific basis of the erectile function expanded rapidly the range of therapies for treating erectile dysfunction in recent years. This article reviews the role of dopamine on the erection mechanisms and its importance for new pro-erectile drug design. The ability of dopaminergic agents to elicit penile erection has been described since 1975 and successively confirmed by numerous studies. The development of apomorphine SL (dopaminergic non selective agonist to enhance erectile function represents a new pharmacological approach to the management of erectile dysfunction using CNS drugs. The search for selective D4 dopaminergic agents is being explored by some research groups and pharmaceutical companies.

  8. Small-molecule AT2 receptor agonists

    DEFF Research Database (Denmark)

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha

    2018-01-01

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist...... with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8......, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also...

  9. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  10. Addiction: beyond dopamine reward circuitry.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  11. Imaging dopamine transmission in schizophrenia

    International Nuclear Information System (INIS)

    Laruelle, M.

    1998-01-01

    Over the last ten years, several positron emission tomography (PET) and single photon computerized tomography (SPECT) studies of the dopamine (DA) system in patients with schizophrenia were performed to test the hypothesis that DA hyperactivity is associated with this illness. In this paper are reviewed the results of fifteen brain imaging studies comparing indices of DA function in drug naive or drug free patients with schizophrenia and healthy controls: thirteen studies included measurements of Da D 2 receptor density, two studies compared amphetamine-induced DA release, and two studies measured DOPA decarboxylase activity, an enzyme involved in DA synthesis. It was conducted a meta-analysis of the studies measuring D 2 receptor density parameters, under the assumption that all tracers labeled the same population of D 2 receptors. This analysis revealed that, compared to healthy controls, patients with schizophrenia present a significant but mild elevation of D 2 receptor density parameters and a significant larger variability of these indices. It was found no statistical evidence that studies performed with radiolabeled butyrophenones detected a larger increase in D 2 receptor density parameters than studies performed with other radioligands, such as benzamides. Studies of presynaptic activity revealed an increase in DA transmission response to amphetamine challenge, and an increase in DOPA decarboxylase activity. Together, these data are compatible with both pre- and post-synaptic alterations of DA transmission in schizophrenia. Future studies should aim at a better characterization of these alterations, and at defining their role in the pathophysiology of the illness

  12. Immunomodulatory Effects Mediated by Dopamine

    Science.gov (United States)

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  13. Immunomodulatory Effects Mediated by Dopamine

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2016-01-01

    Full Text Available Dopamine (DA, a neurotransmitter in the central nervous system (CNS, has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R and D2-like receptors (D2R, D3R, and D4R. The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS, there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  14. Addiction: Beyond dopamine reward circuitry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-01-01

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  15. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  16. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  17. Abundant immunohistochemical expression of dopamine D{sub 2} receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Ferreira, N.P. [Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Barbosa-Coutinho, L.M. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Oliveira, M.C. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2015-03-03

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D{sub 2} receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D{sub 2} receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D{sub 2} receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D{sub 2} receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.

  18. Abundant immunohistochemical expression of dopamine D2 receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    International Nuclear Information System (INIS)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S.; Ferreira, N.P.; Barbosa-Coutinho, L.M.; Oliveira, M.C.

    2015-01-01

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D 2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D 2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D 2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D 2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas

  19. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Cold, Frederik; Gluud, Lise L

    2017-01-01

    Glucagon-like peptide-1 receptor agonist (GLP-1RAs) labels warn about acute pancreatitis (AP) and impose upon doctors the obligation to inform patients about symptoms of AP. Here we systematically reviewed the risk of AP in randomized placebo-controlled trials (RCTs) investigating the effect of GLP...

  20. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults.

    Science.gov (United States)

    Billino, Jutta; Hennig, Jürgen; Gegenfurtner, Karl R

    2016-01-01

    There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val 158 Met polymorphism and the SLC6A3 3'-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val 158 Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3'-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.

  1. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  2. Reciprocity of agonistic support in ravens.

    Science.gov (United States)

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals.

  3. Cerebral vascular effects of hypovolemia and dopamine infusions

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2012-01-01

    Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature.......Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature....

  4. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    Science.gov (United States)

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-03

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. © 2013.

  5. Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany an associative learning deficit.

    Directory of Open Access Journals (Sweden)

    Anna K Garske

    Full Text Available The orbitofrontal cortex (OFC and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.

  6. Pro-dopamine regulator, KB220Z, attenuates hoarding and shopping behavior in a female, diagnosed with SUD and ADHD.

    Science.gov (United States)

    McLaughlin, Thomas; Blum, Kenneth; Steinberg, Bruce; Modestino, Edward J; Fried, Lyle; Baron, David; Siwicki, David; Braverman, Eric R; Badgaiyan, Rajendra D

    2018-03-01

    Background Addictive-like behaviors (e.g., hoarding and shopping) may be the result of the cumulative effects of dopaminergic and other neurotransmitter genetic variants as well as elevated stress levels. We, therefore, propose that dopamine homeostasis may be the preferred goal in combating such challenging and unwanted behaviors, when simple dopaminergic activation through potent agonists may not provide any resolution. Case presentation C.J. is a 38-year-old, single, female, living with her mother. She has a history of substance use disorder as well as attention deficit hyperactivity disorder, inattentive type. She had been stable on buprenorphine/naloxone combination and amphetamine, dextroamphetamine mixed salts for many years when unexpectedly she lost her job for oversleeping and not calling into work. KB200z (a pro-dopamine compound) was added to her regimen for complaints of low drive and motivation. After taking this nutraceutical for 4 weeks, she noticed a marked improvement in her mental status and many behaviors. She noted that her shopping and hoarding addictions had appreciably decreased. Furthermore, her lifelong history of terrifying lucid dreams was eliminated. Finally, she felt more in control; her locus of control shifted from external to more internal. Discussion The hypothesis is that C.J.'s reported, behavioral, and psychological benefits resulted from the pro-dopamine-regulating effect of KB220Z across the brain reward system. Conclusions This effect, we surmise, could be the result of a new dopamine balance, across C.J.'s brain reward system. Dopamine homeostasis is an effect of KB220Z seen in both animal and human placebo-controlled fMRI experiments.

  7. FXR agonist activity of conformationally constrained analogs of GW 4064.

    Science.gov (United States)

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  8. Gonadotropin releasing hormone agonists: Expanding vistas

    Directory of Open Access Journals (Sweden)

    Navneet Magon

    2011-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH agonists are derived from native GnRH by amino acid substitution which yields the agonist resistant to degradation and increases its half-life. The hypogonadotropic hypogonadal state produced by GnRH agonists has been often dubbed as "pseudomenopause" or "medical oophorectomy," which are both misnomers. GnRH analogues (GnRH-a work by temporarily "switching off" the ovaries. Ovaries can be "switched off" for the therapy and therapeutic trial of many conditions which include but are not limited to subfertility, endometriosis, adenomyosis, uterine leiomyomas, precocious puberty, premenstrual dysphoric disorder, chronic pelvic pain, or the prevention of menstrual bleeding in special clinical situations. Rapidly expanding vistas of usage of GnRH agonists encompass use in sex reassignment of male to female transsexuals, management of final height in cases of congenital adrenal hyperplasia, and preserving ovarian function in women undergoing cytotoxic chemotherapy. Hypogonadic side effects caused by the use of GnRH agonists can be tackled with use of "add-back" therapy. Goserelin, leuprolide, and nafarelin are commonly used in clinical practice. GnRH-a have provided us a powerful therapeutic approach to the treatment of numerous conditions in reproductive medicine. Recent synthesis of GnRH antagonists with a better tolerability profile may open new avenues for both research and clinical applications. All stakeholders who are partners in women′s healthcare need to join hands to spread awareness so that these drugs can be used to realize their full potential.

  9. ORAL IBOPAMINE SUBSTITUTION IN PATIENTS WITH INTRAVENOUS DOPAMINE DEPENDENCE

    NARCIS (Netherlands)

    GIRBES, ARJ; MILNER, AR; MCCLOSKEY, BV; ZWAVELING, JH; VANVELDHUISEN, DJ; ZIJLSTRA, JG; LIE, KI

    1995-01-01

    In a prospective open study we evaluated whether intravenous dopamine infusions can be safely switched to enterally administered ibopamine in dopamine-dependent patients. Six patients defined as being clinically stable, normovolaemic, but dopamine dependent, i.e. with repeated inability to stop

  10. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  11. Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  12. Sports doping: Emerging designer and therapeutic B2-agonists

    NARCIS (Netherlands)

    Fragkaki, A.G.; Georgakopoulos, C.; Sterk, S.S.; Nielen, M.W.F.

    2013-01-01

    Beta2-adrenergic agonists, or ß2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of ß2-agonists is prohibited in sports by the World Anti-Doping

  13. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.

    Science.gov (United States)

    Albertson, T E; Joy, R M; Stark, L G

    1984-03-01

    The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  15. Presence of dopamine D-2 receptors in human tumoral cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. (Centre Paul Broca, Paris (France))

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  16. Characterization of the discriminative stimulus produced by the dopamine antagonist tiapride.

    Science.gov (United States)

    Cohen, C; Sanger, D J; Perrault, G

    1997-11-01

    The ability of tiapride, a selective D2/D3 dopamine receptor antagonist, to exert discriminative stimulus control of responding was investigated by training rats to discriminate this drug (30 mg/kg) from saline in a two-lever, food-reinforcement procedure. Acquisition of tiapride discrimination required a relatively lengthy training period (mean of 76 sessions) but stable performance was maintained throughout the 18- month study. The dose of tiapride eliciting 50% tiapride-lever choice (ED50) was 2.2 mg/kg. After determination of the dose-effect curve with tiapride, substitution tests with several dopamine antagonists and other reference compounds were performed. All dopamine antagonists, including amisulpride (ED50 4 mg/kg), sulpiride (18 mg/kg), sultopride (1.5 mg/kg), clebopride (0.13 mg/kg), raclopride (0.16 mg/kg), metoclopramide (1.4 mg/kg), remoxipride (4.8 mg/kg), pimozide (2.7 mg/kg), thioridazine (3.4 mg/kg), olanzapine (0.97 mg/kg), chlorpromazine (1.9 mg/kg), risperidone (0.22 mg/kg) and haloperidol (0.14 mg/kg), except clozapine (>10 mg/kg), produced dose-dependent substitution for tiapride. Tiapride-like stimulus effects were observed at doses that decreased response rates. However, ED50 values for substitution by tiapride, amisulpride, sulpiride, sultopride, pimozide, clebopride and thioridazine were lower than ED50 values for decreasing responding. Additional studies were conducted to evaluate the ability of direct and indirect dopamine agonists to attenuate the tiapride discriminative stimulus. Pretreatment with d-amphetamine and nomifensine antagonized the discriminative stimulus effects of tiapride. Quinpirole, 7-OH-DPAT, bromocriptine and apomorphine partially blocked the stimulus effects of tiapride whereas SKF 38393 did not affect the discrimination. These results from substitution and antagonism tests indicated that the discriminative effects of tiapride are mediated by activity at D2/D3 dopamine receptors.

  17. Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors.

    Science.gov (United States)

    Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L; Flagel, Shelly B

    2016-05-15

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01-0.32mg/kg) or pramipexole (0.032-0.32mg/kg), the D2/D3 antagonist raclopride (0.1mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors.

    Science.gov (United States)

    Bai, Hua-Yi; Cao, Jun; Liu, Na; Xu, Lin; Luo, Jian-Hong

    2009-03-01

    Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable experiences, especially instinctive behaviors such as sex, might modulate traumatic memory through a memory competition mechanism. Here, we first report that male rats persistently expressed much lower fear responses when exposed to females, but not when exposed to males, for 24 h immediately after contextual fear conditioning. Remarkably, this effect of sexual behavior was blocked by either systemic or intrahippocampal injection of the dopamine D1/D5 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and was mimicked by systemic but not intrahippocampal injection of the D1/D5 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (SKF39393). Furthermore, as a candidate mechanism underlying contextual fear memory, the impaired induction of hippocampal long-term potentiation (LTP) elicited by conditioned fear was rescued in male rats immediately exposed to female but not male rats for 24 h. Systemic injection of the dopamine D1/D5 receptor antagonist SCH23390 or agonist SKF38393 prevented or mimicked the effect of sexual behavior on the impaired induction of hippocampal LTP. Thus, our finding suggests that dopaminergic functions may, at least partially, govern competition between contextual fear and enjoyable memories through the modulation of hippocampal LTP.

  19. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    Science.gov (United States)

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  20. Examining the Role of Dopamine D2 and D3 Receptors in Pavlovian Conditioned Approach Behaviors

    Science.gov (United States)

    Fraser, Kurt M.; Haight, Joshua L.; Gardner, Eliot L.; Flagel, Shelly B.

    2016-01-01

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01–0.32 mg/kg) or pramipexole (0.032–0.32 mg/kg), the D2/D3 antagonist raclopride (0.1 mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24 mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. PMID:26909847

  1. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  2. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function.

    Science.gov (United States)

    Sarter, Martin; Albin, Roger L; Kucinski, Aaron; Lustig, Cindy

    2014-07-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function

    Science.gov (United States)

    Sarter, Martin; Albin, Roger L.; Kucinski, Aaron; Lustig, Cindy

    2015-01-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson’s disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive–behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional–motor integration by striatal circuitry. PMID:24805070

  4. Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression.

    Science.gov (United States)

    Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun

    2018-04-20

    Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.

  5. In vivo [3H]spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization

    International Nuclear Information System (INIS)

    Chugani, D.C.; Ackermann, R.F.; Phelps, M.E.

    1988-01-01

    The processes of receptor internalization and recycling have been well-documented for receptors for hormones, growth factors, lysosomal enzymes, and cellular substrates. Evidence also exists that these processes also occur for beta-adrenergic, muscarinic cholinergic, and delta-opiate receptors in frog erythrocytes or cultured nervous tissue. In this study, evidence is presented that agonist-mediated receptor internalization and recycling occurs at the dopamine receptor in rat corpus striatum. First, the in vivo binding of the dopamine antagonist [3H]spiperone was increased by both electrical stimulation and pharmacologically induced increases of dopamine release. Conversely, depletion of dopamine with reserpine decreased in vivo [3H]spiperone binding, but the same reserpine treatment did not alter its in vitro binding. Second, the rate of dissociation of [3H]spiperone from microsomal membranes prepared from rat striatum following in vivo binding was fivefold slower than its dissociation following in vitro equilibrium binding. Mild detergent treatment, employed to disrupt endocytic vesicle membranes, increased the rate of dissociation of in vivo bound [3H]spiperone from microsomal membranes to values not significantly different from its in vitro bound dissociation rate. Third, treatment of rats with chloroquine, a drug that prevents receptor recycling but not internalization, prior to [3H]spiperone injection resulted in a selective increase of in vivo [3H]spiperone binding in the light microsome membranes. The existence of mechanisms that rapidly alter the number of neurotransmitter receptors at synapses provides dynamic regulation of receptors in response to varied acute stimulation states

  6. The Medical Treatment of New-Onset Peripartum Cardiomyopathy: A Systematic Review of Prospective Studies.

    Science.gov (United States)

    Desplantie, Olivier; Tremblay-Gravel, Maxime; Avram, Robert; Marquis-Gravel, Guillaume; Ducharme, Anique; Jolicoeur, E Marc

    2015-12-01

    Peripartum cardiomyopathy (PPCM) is a rare disorder with potentially fatal consequences, which occurs mainly in previously healthy women. The aetiology of PPCM remains unknown and various pathologic mechanisms have been proposed, including immune-mediated injuries and impaired response to oxidative stress and inflammatory cytokines. Several therapies have been studied, but few have been validated in a well-designed randomized controlled trial. In the present study we sought to review the medical treatment intended for acute PPCM. To this end, we performed a systematic review of the literature of randomized and nonrandomized prospective clinical studies. We identified 2 randomized controlled trials that evaluated the dopamine agonist bromocriptine and the inotrope levosimendan, respectively, and 1 nonrandomized study that evaluated the nonselective phosphodiesterase inhibitor pentoxifylline. We reviewed the pathophysiological, pharmacological, and clinical properties for each treatment option identified. Bromocriptine and pentoxifylline both improved left ventricular systolic function and patient-oriented clinical end points and levosimendan did not improve mortality or echocardiographic findings of PPCM. In this review we identified bromocriptine and pentoxifylline, but not levosimendan, as potentially useful agents to improve left ventricle function and outcomes in PPCM. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  8. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  9. DOPAMINE EFFECT ON CARDIAC REMODELING IN EXPERIMENT

    Directory of Open Access Journals (Sweden)

    V. R. Veber

    2009-01-01

    Full Text Available Aim. To study morphologic changes in myocardium of Wistar rats caused by single and long term dopamine administration.Methods. In acute study dopamine 10 mkg/kg was administrated to 15 rats by a single intraperitoneal injection. The material was taken in 2, 6, 24 hours and in 1 month after drug administration. In chronic study dopamine 10 mkg/kg was administrated to 15 rats 3 times a day by intraperitoneal injections during 2 weeks. The material was taken just after the drug administration was stopped and in 1 month of animals keeping without stress and drug influences. Control group included 15 rats comparable with experimental animals in age and weight. They were keeped without stress and drug influences. Morphometric parameters of left and right ventricles were evaluated as well as density of cardiomyocytes, collagen, vessels and volume of extracellular space.Results. The enlargement of cardiac fibrosis is found both in acute, and in chronic study. In acute study cardiac fibrosis was located mainly in a right ventricle. In chronic study cardiac fibrosis was located in both ventricles, but also mainly in a right one.Conclusion. Significant morphological «asynchronism» of the left and right ventricles remodeling requires elaboration of methods of myocardium protection and cardiac function control during dopamine administration. 

  10. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  11. The sigma-1 receptor modulates dopamine transporter conformation and cocaine binding and may thereby potentiate cocaine self-administration in rats.

    Science.gov (United States)

    Hong, Weimin Conrad; Yano, Hideaki; Hiranita, Takato; Chin, Frederick T; McCurdy, Christopher R; Su, Tsung-Ping; Amara, Susan G; Katz, Jonathan L

    2017-07-07

    The dopamine transporter (DAT) regulates dopamine (DA) neurotransmission by recapturing DA into the presynaptic terminals and is a principal target of the psychostimulant cocaine. The sigma-1 receptor (σ 1 R) is a molecular chaperone, and its ligands have been shown to modulate DA neuronal signaling, although their effects on DAT activity are unclear. Here, we report that the prototypical σ 1 R agonist (+)-pentazocine potentiated the dose response of cocaine self-administration in rats, consistent with the effects of the σR agonists PRE-084 and DTG (1,3-di- o -tolylguanidine) reported previously. These behavioral effects appeared to be correlated with functional changes of DAT. Preincubation with (+)-pentazocine or PRE-084 increased the B max values of [ 3 H]WIN35428 binding to DAT in rat striatal synaptosomes and transfected cells. A specific interaction between σ 1 R and DAT was detected by co-immunoprecipitation and bioluminescence resonance energy transfer assays. Mutational analyses indicated that the transmembrane domain of σ 1 R likely mediated this interaction. Furthermore, cysteine accessibility assays showed that σ 1 R agonist preincubation potentiated cocaine-induced changes in DAT conformation, which were blocked by the specific σ 1 R antagonist CM304. Moreover, σ 1 R ligands had distinct effects on σ 1 R multimerization. CM304 increased the proportion of multimeric σ 1 Rs, whereas (+)-pentazocine increased monomeric σ 1 Rs. Together these results support the hypothesis that σ 1 R agonists promote dissociation of σ 1 R multimers into monomers, which then interact with DAT to stabilize an outward-facing DAT conformation and enhance cocaine binding. We propose that this novel molecular mechanism underlies the behavioral potentiation of cocaine self-administration by σ 1 R agonists in animal models. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  13. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    OpenAIRE

    Maria A de Souza Silva; C. eMattern; C. eMattern; C.I. eDecheva; Joseph P. Huston; A. eSadile; M. eBeu; H.W. eMüller; Susanne eNikolaus

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We ...

  14. Dopamine activates masculine sexual behavior independent of the estrogen receptor alpha.

    Science.gov (United States)

    Wersinger, S R; Rissman, E F

    2000-06-01

    Estrogen receptor alpha (ERalpha) is believed to be a critical part of the regulatory processes involved in normal reproduction and sexual behavior. However, in this study we show the ERalpha is not required for display of masculine sexual behavior. Male and female, ERalpha knock-out (ERalphaKO) and wild-type mice were gonadectomized and implanted with testosterone. Sexual behavior and social preferences were tested after injection of the dopamine agonist, apomorphine (APO), or vehicle. All wild-type mice showed normal masculine behavior, including mounts and pelvic thrusts in females, and ejaculation in males. In agreement with past reports, ERalphaKO mice, given vehicle, failed to show mating behavior. Yet, ERalphaKO males given APO showed masculine copulatory behavior and chemoinvestigatory behavior directed at females. ERalphaKO females, treated with APO, mounted and thrusted when tested with receptive females. HPLC revealed that wild-type and ERalphaKO mice had equivalent catecholamine content in brain regions associated with masculine sexual behavior. These data show that the ERalpha is not essential during development or adulthood for the expression of masculine sexual behavior in mice. Moreover, dopamine can activate sexual behavior via a mechanism that either acts on an ER other than ERalpha or via an estrogen-independent pathway.

  15. Striatal dopamine D2/3 receptor availability in treatment resistant depression.

    Directory of Open Access Journals (Sweden)

    Bart P de Kwaasteniet

    Full Text Available Several studies demonstrated improvement of depressive symptoms in treatment resistant depression (TRD after administering dopamine agonists which suggest abnormal dopaminergic neurotransmission in TRD. However, the role of dopaminergic signaling through measurement of striatal dopamine D(2/3 receptor (D2/3R binding has not been investigated in TRD subjects. We used [(123I]IBZM single photon emission computed tomography (SPECT to investigate striatal D2/3R binding in TRD. We included 6 severe TRD patients, 11 severe TRD patients on antipsychotics (TRD AP group and 15 matched healthy controls. Results showed no significant difference (p = 0.75 in striatal D2/3R availability was found between TRD patients and healthy controls. In the TRD AP group D2/3R availability was significantly decreased (reflecting occupancy of D2/3Rs by antipsychotics relative to TRD patients and healthy controls (p<0.001 but there were no differences in clinical symptoms between TRD AP and TRD patients. This preliminary study therefore does not provide evidence for large differences in D2/3 availability in severe TRD patients and suggests this TRD subgroup is not characterized by altered dopaminergic transmission. Atypical antipsychotics appear to have no clinical benefit in severe TRD patients who remain depressed, despite their strong occupancy of D2/3Rs.

  16. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  17. A Dopamine Hypothesis of Autism Spectrum Disorder.

    Science.gov (United States)

    Pavăl, Denis

    2017-01-01

    Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. While several theories have emerged, the pathogenesis of ASD remains unknown. Although studies report dopamine signaling abnormalities in autistic patients, a coherent dopamine hypothesis which could link neurobiology to behavior in ASD is currently lacking. In this paper, we present such a hypothesis by proposing that autistic behavior arises from dysfunctions in the midbrain dopaminergic system. We hypothesize that a dysfunction of the mesocorticolimbic circuit leads to social deficits, while a dysfunction of the nigrostriatal circuit leads to stereotyped behaviors. Furthermore, we discuss 2 key predictions of our hypothesis, with emphasis on clinical and therapeutic aspects. First, we argue that dopaminergic dysfunctions in the same circuits should associate with autistic-like behavior in nonautistic subjects. Concerning this, we discuss the case of PANDAS (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections) which displays behaviors similar to those of ASD, presumed to arise from dopaminergic dysfunctions. Second, we argue that providing dopamine modulators to autistic subjects should lead to a behavioral improvement. Regarding this, we present clinical studies of dopamine antagonists which seem to have improving effects on autistic behavior. Furthermore, we explore the means of testing our hypothesis by using neuroreceptor imaging, which could provide comprehensive evidence for dopamine signaling dysfunctions in autistic subjects. Lastly, we discuss the limitations of our hypothesis. Along these lines, we aim to provide a dopaminergic model of ASD which might lead to a better understanding of the ASD pathogenesis. © 2017 S. Karger AG, Basel.

  18. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Anna Brancato

    Full Text Available Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further

  19. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.

    Science.gov (United States)

    Staley, J K; Mash, D C

    1996-10-01

    The mesolimbic dopaminergic system plays a primary role in mediating the euphoric and rewarding effects of most abused drugs. Chronic cocaine use is associated with an increase in dopamine neurotransmission resulting from the blockade of dopamine uptake and is mediated by the activation of dopamine receptors. Recent studies have suggested that the D3 receptor subtype plays a pivotal role in the reinforcing effects of cocaine. The D3 receptor-preferring agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) is a reinforcer in rhesus monkeys trained to self-administer cocaine, but not in cocainenaive monkeys. In vitro autoradiographic localization of [3H]-(+)-7-OH-DPAT binding in the human brain demonstrated that D3 receptors were prevalent and highly localized over the ventromedial sectors of the striatum. Pharmacological characterization of [3H]-(+)-7-OH-DPAT binding to the human nucleus accumbens demonstrated a rank order of potency similar to that observed for binding to the cloned D3 receptor expressed in transfected cell lines. Region-of-interest analysis of [3H]-(+)-7-OH-DPAT binding to the D3 receptor demonstrated a one- to threefold elevation in the number of binding sites over particular sectors of the striatum and substantia nigra in cocaine overdose victims as compared with age-matched and drug-free control subjects. The elevated number of [3H]-(+)-7-OH-DPAT binding sites demonstrates that adaptive changes in the D3 receptor in the reward circuitry of the brain are associated with chronic cocaine abuse. These results suggest that the D3 receptor may be a useful target for drug development of anticocaine medications.

  20. Social modulation of learned behavior by dopamine in the basal ganglia: insights from songbirds.

    Science.gov (United States)

    Leblois, Arthur

    2013-06-01

    Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson's disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG-thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG-dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Directory of Open Access Journals (Sweden)

    Stefano Cinque

    2018-02-01

    Full Text Available Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT knockout (KO and heterozygous (HET mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1. Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT–HET dams bred with DAT–HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats’ sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT. During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH and RO-5203648, a trace amine-associated receptor 1 (TAAR1 partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2, serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

  2. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    Science.gov (United States)

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  3. Occupancy of pramipexole (Sifrol at cerebral dopamine D2/3 receptors in Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Angela Deutschländer

    2016-01-01

    Full Text Available Whereas positron emission tomography (PET with the antagonist ligand [18F]fallypride reveals the composite of dopamine D2 and D3 receptors in brain, treatment of Parkinson's disease (PD patients with the D3-prefering agonist pramipexole should result in preferential occupancy in the nucleus accumbens, where the D3-subtype is most abundant. To test this prediction we obtained pairs of [18F]fallypride PET recordings in a group of nine PD patients, first in a condition of treatment as usual with pramipexole (ON-Sifrol; 3 × 0.7 mg p.d., and again at a later date, after withholding pramipexole 48–72 h (OFF-Sifrol; in that condition the serum pramipexole concentration had declined by 90% and prolactin levels had increased four-fold, in conjunction with a small but significant worsening of PD motor symptoms. Exploratory comparison with historical control material showed 14% higher dopamine D2/3 availability in the more-affected putamen of patients OFF medication. On-Sifrol there was significant (p ˂ 0.01 occupancy at [18F]fallypride binding sites in globus pallidus (8% thalamus (9% and substantia nigra (19%, as well as marginally significant occupancy in frontal and temporal cortex of patients. Contrary to expectation, comparison of ON- and OFF-Sifrol results did not reveal any discernible occupancy in nucleus accumbens, or elsewhere in the extended striatum; present methods should be sensitive to a 10% change in dopamine D2/3 receptor availability in striatum; the significant findings elsewhere in the basal ganglia and in cerebral cortex are consistent with a predominance of D3 receptors in those structures, especially in substantia nigra, and imply that therapeutic effects of pramipexole may be obtained at sites outside the extended striatum.

  4. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex.

    Science.gov (United States)

    Pezze, Marie A; Marshall, Hayley J; Fone, Kevin C F; Cassaday, Helen J

    2015-11-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  6. Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.

    Science.gov (United States)

    Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José

    2006-03-01

    The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.

  7. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  8. Dianicline, a novel α4β2 nicotinic acetylcholine receptor partial agonist, for smoking cessation: a randomized placebo-controlled clinical trial

    DEFF Research Database (Denmark)

    Tonstad, Serena; Holme, Ingar; Tønnesen, Philip

    2011-01-01

    Dianicline is a α4β2 nicotinic acetylcholine receptor partial agonist, a class of drugs that includes varenicline and cytisine. Varenicline is efficacious for smoking cessation, while cytisine has not been studied systematically. The efficacy of dianicline has not been previously tested in an ade......Dianicline is a α4β2 nicotinic acetylcholine receptor partial agonist, a class of drugs that includes varenicline and cytisine. Varenicline is efficacious for smoking cessation, while cytisine has not been studied systematically. The efficacy of dianicline has not been previously tested...

  9. Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Lang, Manja; Brandt, Erik

    2006-01-01

    [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P functions as a low-potency antagonist but a high-potency full inverse agonist on the ghrelin receptor. Through a systematic deletion and substitution analysis of this peptide, the C-terminal carboxyamidated pentapeptide wFwLX was identified as the core...... structure, which itself displayed relatively low inverse agonist potency. Mutational analysis at 17 selected positions in the main ligand-binding crevice of the ghrelin receptor demonstrated that ghrelin apparently interacts only with residues in the middle part of the pocket [i.e., between transmembrane...... upon both AspII:20 and GluIII:09. The identified pharmacophore can possibly serve as the basis for targeted discovery of also nonpeptide inverse agonists for the ghrelin receptor....

  10. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    Science.gov (United States)

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  11. Selective labelling of dopamine (D2) receptors in rat striatum by [3H]domperidone but not by [3H]spiperone

    International Nuclear Information System (INIS)

    Lazareno, S.; Nahorski, S.R.

    1982-01-01

    Specific binding of [ 3 H]spiperone and [ 3 H]domperidone, displaceable by 1 μM d-butaclamol, was examined in rat striatal membranes. Initial saturation and displacement experiments indicated that [ 3 H]spiperone bound to more sites than [ 3 H]domperidone and that, whilst all displacing drugs were more potent against [ 3 H]domperidone, this difference in potency was greatest for dopamine agonists and specific antagonists and least for 5HT-related drugs. Sulpiride displaced [ 3 H]spiperone biphasically, and was used at a concentration of 50 μM to examine two classes of [ 3 H]spiperone binding: site 1 displaceable by sulpiride, and site 2 displaceable by butaclamol but not by sulpiride. Site 1 had twice the capacity of site 2 and ten times the affinity for [ 3 H]spiperone. Dopaminergic drugs displaced preferentially from site 1, whilst 5HT-related drugs were more potent against site 2. GTP reduced the potency of dopamine, noradrenaline and, to a lesser extent, 5HT at site 1, but had no effect at site 2. [ 3 H]Domperidone sites had the same capacity as [ 3 H]spiperone site 1, and dopamine, noradrenaline and 5HT, in the absence or presence of GTP, and sulpiride had essentially identical affinities for [ 3 H]domperidone sites and [ 3 H]spiperone site 1. It is concluded that [ 3 H]domperidone and [ 3 H]spiperone label an identical population of dopamine (D 2 ) receptors, whilst [ 3 H]spiperone also labels a substantial number of non-dopamine sites, at least some of which are 5TH-related. [ 3 H]Domperidone is the better radioligand for dopamine receptors. (Auth.)

  12. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis

    Science.gov (United States)

    2016-01-01

    The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy. PMID:25826710

  13. Link between D sub 1 and D sub 2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C. (Univ. of Toronto (Canada))

    1989-12-01

    Dopamine receptor types D{sub 1} and D{sub 2} can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D{sub 1}-D{sub 2} interaction in homogenized tissue as revealed by ligand binding. D{sub 2} agonists lowered the binding of ({sup 3}H)raclopride to D{sub 2} receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D{sub 1}-selective antagonist SCH 23390 prevented the agonist-induced decrease in ({sup 3}H)raclopride binding to D{sub 2} sites in the striatum but not in the anterior pituitary, which has no D{sub 1} receptors. Conversely, a dopamine-induced reduction in the binding of ({sup 3}H)SCH 23390 to D{sub 1} receptors could be prevented by the D{sub 2}-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D{sub 1}-D{sub 2} interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D{sub 2} receptors in the high-affinity state. Thus, the D{sub 1}-D{sub 2} link may be mediated by guanine nucleotide-binding protein components. The link may underlie D{sub 1}-D{sub 2} interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata.

  14. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  15. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  16. Evaluation of partial beta-adrenoceptor agonist activity.

    Science.gov (United States)

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  17. Regional in vivo binding of (/sup 3/H)N-propylnorapomorphine in the mouse brain. Evidence for labelling of central dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C; Fuxe, K; Ross, S B [Astra Pharmaceuticals AB, Soedertaelje (Sweden)

    1981-07-10

    Tail vein injections of (/sup 3/H)N-propylnorapomorphine ((/sup 3/H)NPA) in male mice resulted in a dose-related accumulation of radioactivity in the following brain regions: striatum (max), olfactory tubercle and cerebellum (min). The specific binding was saturable with increasing concentrations of the drug and stereospecifically displaced by (+)butaclamol. Dopamine agonists (apomorphine, NPA and bromocriptine) and antagonists (spiperone, haloperidol, (+)butaclamol and l-sulpiride) all caused dose-dependent prevention of (/sup 3/H)NPA binding. Mianserin, phenoxybenzamine and propranolol did not prevent the in vivo (/sup 3/H)NPA binding suggesting that (/sup 3/H)NPA binds specifically to dopamine receptors in the striatum and the olfactory tubercle of the mouse.

  18. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    Science.gov (United States)

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  19. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  20. Sulfoximines as potent RORγ inverse agonists.

    Science.gov (United States)

    Ouvry, Gilles; Bihl, Franck; Bouix-Peter, Claire; Christin, Olivier; Defoin-Platel, Claire; Deret, Sophie; Feret, Christophe; Froude, David; Hacini-Rachinel, Feriel; Harris, Craig S; Hervouet, Catherine; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Parnet, Veronique; Pascau, Coralie; Pascau, Jonathan; Pierre, Romain; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent F

    2018-05-01

    Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. GLP-1 agonists for type 2 diabetes

    DEFF Research Database (Denmark)

    Jespersen, Maria J; Knop, Filip K; Christensen, Mikkel

    2013-01-01

    and legal documents in the form of assessment reports from the European Medicines Agency and the United States Food and Drug Administration. EXPERT OPINION: GLP-1-based therapy combines several unique mechanisms of action and have the potential to gain widespread use in the fight against diabetes......Within recent years, glucagon-like peptide 1 receptor agonists (GLP-1-RA) have emerged as a new treatment option for type 2 diabetes. The GLP-1-RA are administered subcutaneously and differ substantially in pharmacokinetic profiles. AREAS COVERED: This review describes the pharmacokinetics...

  2. Clinical usefulness of dopamine transporter imaging

    International Nuclear Information System (INIS)

    Kim, Jong Min; Kim, Yu Kyeong; Kim, Sang Eun; Jeon, Beom S.

    2007-01-01

    Imaging of the dopamine transporter (DAT) provides a marker for the integrity of presynaptic nigrostriatal dopaminergic system. DAT density is reduced in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. In patients with suspicious parkinsonism, normal DAT imaging suggests an alternative diagnosis such as essential tremor, vascular parkinsonism, or drug-induced parkinsonism. DAT imaging is a useful tool to aid clinician's differential diagnosis in parkinsonism

  3. Dopamine Signaling in reward-related behaviors

    OpenAIRE

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specifi...

  4. Sports doping: emerging designer and therapeutic β2-agonists.

    Science.gov (United States)

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future. © 2013.

  5. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  7. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Linking unfounded beliefs to genetic dopamine availability

    Science.gov (United States)

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  9. Linking unfounded beliefs to genetic dopamine availability

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2015-09-01

    Full Text Available Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity towards unfounded beliefs. 109 healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818 and rs4680, also known as val158met that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioural experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity towards unfounded beliefs, and that this effect was mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  10. New genetic findings in schizophrenia: is there still room for the dopamine hypothesis of schizophrenia?

    Directory of Open Access Journals (Sweden)

    Vanessa Nieratschker

    2010-05-01

    Full Text Available Schizophrenia is a highly heritable disorder, but the identification of specific genes has proven to be a difficult endeavour. Genes involved in the dopaminergic system are considered to be major candidates since the “dopamine hypothesis” of impairment in dopaminergic neurotransmission is one of the most widely accepted hypotheses of the aetiology of schizophrenia. The overall findings from candidate studies do provide some support for the “dopamine hypothesis”. However, results from the first systematic genome-wide association (GWA studies have implicated variants within ZNF804A, NRGN, TCF4, and variants in the MHC region on chromosome 6p22.1. Although these genes may not immediately impact on dopaminergic neurotransmission, it remains possible that downstream impairments in dopaminergic function are caused. Furthermore, only a very small fraction of all truly associated genetic variants have been detected and many more associated variants will be identified in the future by GWA studies and alternative approaches. The results of these studies may allow a more comprehensive re-evaluation of the dopamine hypothesis.

  11. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    OpenAIRE

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abuse...

  12. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  13. The dopamine transporter: role in neurotoxicity and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Bannon, Michael J [Department of Psychiatry and Behavioral Neuroscience, Pharmacology, and Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  14. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  15. Practical Approach for the Clinical Use of Dopamine Transporter Imaging

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2008-01-01

    Dopamine transporter imaging is useful in the diagnosis of Parkinson's disease and the most successful technique in the clinical use of neuroreceptor imaging. Recently, several radiopharmaceuticals including I-123 FP-CIT, Tc-99m TRODAT, and F-18 FP-CIT for dopamine transporter imaging have been approved for the routine clinical use in several European countries, Taiwan and Korea, respectively. This review summarized the practical issue for the routine clinical examination of dopamine transporter imaging

  16. Urolinin: The First Linear Peptidic Urotensin-II Receptor Agonist.

    Science.gov (United States)

    Bandholtz, Sebastian; Erdmann, Sarah; von Hacht, Jan Lennart; Exner, Samantha; Krause, Gerd; Kleinau, Gunnar; Grötzinger, Carsten

    2016-11-23

    This study investigated the role of individual U-II amino acid positions and side chain characteristics important for U-IIR activation. A complete permutation library of 209 U-II variants was studied in an activity screen that contained single substitution variants of each position with one of the other 19 proteinogenic amino acids. Receptor activation was measured using a cell-based high-throughput fluorescence calcium mobilization assay. We generated the first complete U-II substitution map for U-II receptor activation, resulting in a detailed view into the structural features required for receptor activation, accompanied by complementary information from receptor modeling and ligand docking studies. On the basis of the systematic SAR study of U-II, we created 33 further short and linear U-II variants from eight to three amino acids in length, including d- and other non-natural amino acids. We identified the first high-potency linear U-II analogues. Urolinin, a linear U-II agonist (nWWK-Tyr(3-NO 2 )-Abu), shows low nanomolar potency as well as improved metabolic stability.

  17. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    DEFF Research Database (Denmark)

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul

    2010-01-01

    to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials....

  18. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  19. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  20. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  1. Effect of GLP-1 Receptor Agonist Treatment on Body weight in Obese Antipsychotic-treated Patients with Schizophrenia

    DEFF Research Database (Denmark)

    Ishøy, Pelle L; Knop, Filip K; Broberg, Brian V

    2017-01-01

    AIMS: Schizophrenia is associated with cardiovascular co-morbidity and a reduced life-expectancy of up to 20 years. Antipsychotics are dopamine D2 receptor antagonists and the standard of medical care in schizophrenia, but the drugs are associated with severe metabolic side effects like obesity...... and diabetes. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are registered for treatment of both obesity and type 2 diabetes. We investigated metabolic effects of the GLP-1RA, exenatide once-weekly, in non-diabetic, antipsychotic-treated, obese patients with schizophrenia. MATERIAL AND METHODS......: Antipsychotic-treated, obese, non-diabetic, schizophrenia spectrum patients were randomized to double-blinded adjunctive treatment with once-weekly subcutaneous exenatide (n = 23) or placebo (n = 22) injections for three months. The primary outcome was body weight loss after treatment and repeated measures...

  2. Demonstration of conjugated dopamine in monkey CSF by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Elchisak, M A; Powers, K H; Ebert, M H

    1982-09-01

    A method for measuring unconjugated and conjugated dopamine in body tissues and fluids is described. Conjugated dopamine was hydrolyzed in acid to unconjugated dopamine, separated from the sample matrix by alumina chromatography, and assayed by gas chromatography-mass spectrometry. Conjugated dopamine was detected in greater concentrations than unconjugated dopamine in CSF taken from lateral ventricle or thecal sac of the Rhesus monkey. Haloperidol administration did not increase the levels of conjugated dopamine in lumbar CSF.

  3. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  4. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    Science.gov (United States)

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  5. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  6. Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine D2-like receptor agonist quinpirole

    Czech Academy of Sciences Publication Activity Database

    Hatalová, Hana; Radostová, Dominika; Pištíková, Adéla; Valeš, Karel; Stuchlík, Aleš

    2014-01-01

    Roč. 8, APR 11 (2014), s. 122 ISSN 1662-5153 R&D Projects: GA MZd(CZ) NT13386; GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : flexibility * reversal * rats * quinpirol * obsessive-compulsive disorder Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  7. QUANTITATIVE-DETERMINATION OF THE DOPAMINE AGONIST LISURIDE IN PLASMA USING HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY WITH FLUORESCENCE DETECTION

    NARCIS (Netherlands)

    WOLTHERS, BG; KAMERBEEK, WDJV; VANBEUSEKOM, CM; ELSHOF, F; BUITENHUIS, AWD; BRUNT, EPR; LAKKE, JPWF

    1993-01-01

    An HPLC method for the determination of lisuride hydrogen maleate in plasma is described. After addition of ergotamine tartrate as internal standard, plasma is extracted with diethyl ether. Following evaporation of the solvent and redissolving in methanol the extract is injected on a silica HPLC

  8. Quantitative determination of the dopamine agonist lisuride in plasma using high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Wolthers, B G; Verhagen Kamerbeek, W D; van Beusekom, C M; Elshof, F; de Ruyter Buitenhuis, A W; Brunt, E P; Lakke, J P

    1993-12-08

    An HPLC method for the determination of lisuride hydrogen maleate in plasma is described. After addition of ergotamine tartrate as internal standard, plasma is extracted with diethyl ether. Following evaporation of the solvent and redissolving in methanol the extract is injected on a silica HPLC column and lisuride is monitored by fluorescence detection using an excitation wavelength of 322 nm and an emission wavelength of 405 nm. The method is sufficiently accurate and precise with a detection limit of 20 pg/ml lisuride in plasma. The usefulness of the method is demonstrated by measurements of lisuride levels after oral intake of a 0.6 mg dose of the drug by a healthy male volunteer, showing a peak level of 1266 pg/ml, 45 min after intake.

  9. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  10. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  11. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...

  12. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  13. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...

  14. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  15. Principles of agonist recognition in Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    , functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically...

  16. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  17. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  18. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  19. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  20. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  1. Novos agonistas dopaminérgicos

    Directory of Open Access Journals (Sweden)

    MATTOS JAMES PITÁGORAS DE

    1999-01-01

    Full Text Available Apresentamos breve revisão da literatura sobre os agonistas dopaminérgicos. Referimos os cinco receptores conhecidos e onde estão localizados, as vantagens e as desvantagens de sua utilização nos pacientes com a doença de Parkinson.Introduzidos com o objetivo principal de controlar as limitações da levodopa, aumentando a janela terapêutica, analisamos a farmacocinética, a eficácia e os efeitos colaterais da cabergolina, do ropinirole e do pramipexole.

  2. Graphene Oxide Modified Electrodes for Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2017-01-01

    Full Text Available Dopamine (DA is one of the most important catecholamine neurotransmitters that plays an important role in the central nervous, renal, hormonal, and cardiovascular systems. Since its discovery, tremendous effort has been made and various techniques have been developed for the DA detection. Recently, graphene-based materials have attracted a tremendous amount of attention due to their high sensitivity and rapid response towards effective detection of DA. This review focuses on current advances of graphene-based materials for DA detection based on recent articles published in the last five years.

  3. Illicit dopamine transients: reconciling actions of abused drugs.

    Science.gov (United States)

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  5. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  6. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  7. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  8. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  9. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks.

    Science.gov (United States)

    Nickla, Debora L; Totonelly, Kristen; Dhillon, Balprit

    2010-11-01

    The dopaminergic system has been implicated in ocular growth regulation in chicks and monkeys. In both, dopamine D2 agonists inhibit the development of myopia in response to form deprivation, and in chicks, to negative lenses as well. Because there is mounting evidence that the choroidal response to defocus plays a role in ocular growth regulation, we asked whether the effective agonists also elicit transient thickening of the choroid concomitant with the growth inhibition. Negative lenses mounted on velcro rings were worn on one eye starting at age 8-12 days. Intravitreal injections (20 μl; dose = 10 nmole) of the agonist (dissolved in saline) or saline, were given through the superior temporal sclera using a 30G needle. Eyes were injected daily at noon, for 4 days, and the lenses immediately replaced. Agonists used were apomorphine (non-specific; n = 17), quinpirole (D2; n = 10), SKF-38393 (D1; n = 9), and saline controls (n = 22). For the antagonists, the same protocol was used, but on each day, the lenses were removed for 2 h. Immediately prior to lens-removal, the antagonist was injected (20 μl; dose = 5 nmole). Antagonists used were methylergonovine (non-specific; n = 12), spiperone (D2; n = 20), SCH-23390 (D1; n = 6) and saline controls (n = 27). Comparisons to saline (continuous lens wear) controls were from the agonist experiment. Axial dimensions were measured using high frequency A-scan ultrasonography at the start of lens wear, and on day 4 prior to the injections, and then again 3 h later. Refractive errors were measured using a Hartinger's refractometer at the end of the experiment. Apomorphine and quinpirole inhibited the refractive response to the hyperopic defocus induced by the negative lenses (drug vs saline controls: -1.3 and 1.2 D vs -5.6 D; p effect was axial: both drugs prevented the excessive ocular elongation (change in axial length: 233 and 205 μm vs 417 μm; p effects of periods of vision on lens

  10. Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder.

    Science.gov (United States)

    Galaj, Ewa; Ewing, Scott; Ranaldi, Robert

    2018-06-01

    In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Dopamine receptors in the Parkinsonian brain

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, U K; Loennberg, P; Koskinen, V [Turku Univ. (Finland). Dept. of Neurology

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using /sup 3/H-spiroperidol. The specific binding of /sup 3/H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of /sup 3/H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of /sup 3/H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy.

  12. Dopamine receptors in the Parkinsonian brain

    International Nuclear Information System (INIS)

    Rinne, U.K.; Loennberg, P.; Koskinen, V.

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using 3 H-spiroperidol. The specific binding of 3 H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of 3 H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of 3 H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy. (author)

  13. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    Science.gov (United States)

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis.

  14. Multigenerational effects of adolescent morphine exposure on dopamine D2 receptor function.

    Science.gov (United States)

    Byrnes, John J; Johnson, Nicole L; Carini, Lindsay M; Byrnes, Elizabeth M

    2013-05-01

    The use and misuse of prescription opiates in adolescent populations, and in particular, adolescent female populations, has increased dramatically in the past two decades. Given the significant role that opioids play in neuroendocrine function, exposure to opiates during this critical developmental period could have significant consequences for the female, as well as her offspring. In the current set of studies, we utilized the female rat to model the transgenerational impact of adolescent opiate exposure. We examined locomotor sensitization in response to the dopamine D2/D3 receptor agonist quinpirole in the adult male progeny (F1 and F2 generations) of females exposed to morphine during adolescence. All females were drug-free for at least 3 weeks prior to conception, eliminating the possibility of direct fetal exposure to morphine. Both F1 and F2 progeny of morphine-exposed females demonstrated attenuated locomotor sensitization following repeated quinpirole administration. These behavioral effects were coupled with increased quinpirole-induced corticosterone secretion and upregulated kappa opioid receptor and dopamine D2 receptor (D2R) gene expression within the nucleus accumbens. These results suggest significant modifications in response to repeated D2R activation in the progeny of females exposed to opiates during adolescence. Given the significant role that the D2R plays in psychopathology, adolescent opiate exposure could shift the vulnerability of future offspring to psychological disorders, including addiction. Moreover, that effects are also observed in the F2 generation suggests that adolescent opiate exposure can trigger transgenerational epigenetic modifications impacting systems critical for motivated behavior.

  15. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Dopamine modulates risk-taking as a function of baseline sensation-seeking trait.

    Science.gov (United States)

    Norbury, Agnes; Manohar, Sanjay; Rogers, Robert D; Husain, Masud

    2013-08-07

    Trait sensation-seeking, defined as a need for varied, complex, and intense sensations, represents a relatively underexplored hedonic drive in human behavioral neuroscience research. It is related to increased risk for a range of behaviors including substance use, gambling, and risky sexual practice. Individual differences in self-reported sensation-seeking have been linked to brain dopamine function, particularly at D2-like receptors, but so far no causal evidence exists for a role of dopamine in sensation-seeking behavior in humans. Here, we investigated the effects of the selective D2/D3 agonist cabergoline on performance of a probabilistic risky choice task in healthy humans using a sensitive within-subject, placebo-controlled design. Cabergoline significantly influenced the way participants combined different explicit signals regarding probability and loss when choosing between response options associated with uncertain outcomes. Importantly, these effects were strongly dependent on baseline sensation-seeking score. Overall, cabergoline increased sensitivity of choice to information about probability of winning; while decreasing discrimination according to magnitude of potential losses associated with different options. The largest effects of the drug were observed in participants with lower sensation-seeking scores. These findings provide evidence that risk-taking behavior in humans can be directly manipulated by a dopaminergic drug, but that the effectiveness of such a manipulation depends on baseline differences in sensation-seeking trait. This emphasizes the importance of considering individual differences when investigating manipulation of risky decision-making, and may have relevance for the development of pharmacotherapies for disorders involving excessive risk-taking in humans, such as pathological gambling.

  17. Dopamine D/sub 2/ and D/sub 1/ receptors: biochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Niznik, H B

    1986-01-01

    In order to label dopamine D/sub 2/ receptors reversibly and selectively the potent substituted benzamide neuroleptic, YM-09151-2, was tritium labeled and its binding characteristics to striatal homogenates investigated. (/sup 3/H) YM-09151-2 bound to D/sub 2/ receptors with high affinity in a specific, saturable, reversible and sodium dependent fashion, displaying an appropriate pharmacological D/sub 2/ receptor profile. (/sup 3/H) YM-09151-2 appears to be the ligand of choice for labeling D/sub 2/ receptors since it displays approximately 20-fold lower affinity for serotonergic S/sub 2/ receptors than does (/sup 3/H) spiperone. As an initial step towards the molecular identification of the ligand binding subunit of the striatal D/sub 2/ receptor, photolabile analogues of the substituted benzamide clebopride were synthesized and their reversible and irreversible binding interactions to D/sub 2/ receptors characterized. D/sub 2/ receptor photoinactivation was prevented in a concentration and stereoselective manner by dopaminergic agonists and antagonists. In vivo biodistribution studies with (/sup 125/I) iodoazidoclebopride confirmed the ligand's ability to bind to D/sub 2/ receptor-rich regions and as such, may become a useful tool for the molecular characterization of D/sub 2/ receptor proteins. Digitonin solubilized striatal dopamine D/sub 2/ and D/sub 1/ receptors can be completely separated with full retention of biological activity by steric exclusion High Pressure Liquid Chromatography (HPLC) with corresponding Stokes radii of 7.1 and 5.6 nm.

  18. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    Science.gov (United States)

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  19. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  20. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  1. Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another.

    Science.gov (United States)

    DiFeliceantonio, Alexandra G; Berridge, Kent C

    2016-05-01

    Pavlovian cues for rewards can become attractive incentives: approached and 'wanted' as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here it was reported that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs. goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in the DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in the DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits, was suggested by: (i) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection; and (ii) DAMGO in the DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, the current results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. The role of multiple dopamine receptors in apomorphine and N-n-propylnorapomorphine-induced climbing and hypothermia.

    Science.gov (United States)

    Moore, N A; Axton, M S

    1990-03-20

    Apomorphine and N-n-propylnorapomorphine (NPA) were compared for their ability to induce stereotyped cage climbing and hypothermia in mice. Climbing behavior was produced by similar doses of apomorphine and NPA (0.625-2.5 mg/kg s.c.), whereas NPA was 43 times more potent than apomorphine in inducing a hypothermic response. SKF38393 caused a shift to the left in the dose-response curve for NPA-induced climbing, the ED50 changing from 0.98 to 0.014 mg/kg. SKF38393 had no effect on apomorphine-induced climbing behaviour. The climbing response produced by apomorphine was antagonised by both D-1 and D-2 antagonists. Climbing behaviour induced by NPA (2.5 mg/kg) could be antagonised by SCH23390 but not by clebopride, however climbing behaviour induced by a low dose of NPA (0.06 mg/kg) plus SKF38393 could be blocked by both D-1 and D-2 receptor antagonists. The hypothermic responses produced by either apomorphine or NPA could only be reversed by the selective D-2 antagonist, clebopride. These results demonstrate that dopamine agonist-induced stereotyped cage climbing requires both D-1 and D-2 receptor stimulation, whereas the hypothermic response is D-2-mediated. The results also show that it is possible to assess the relative activity of a dopamine agonist at D-1 or D-2 receptors in vivo by comparing the ability of the compound to induce hypothermia and climbing behaviour.

  3. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  4. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  5. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  6. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.