WorldWideScience

Sample records for domestic waste water

  1. Domestic applications for aerospace waste and water management technologies

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  2. Phyto-treatment of domestic waste water using artificial marshes

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  3. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  4. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  5. Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste

    Verstraeten, Ingrid M.; Fetterman, G.S.; Meyer, M.J.; Bullen, T.; Sebree, S.K.

    2005-01-01

    In Nebraska, a large number (>200) of shallow sand-point and cased wells completed in coarse alluvial sediments along rivers and lakes still are used to obtain drinking water for human consumption, even though construction of sand-point wells for consumptive uses has been banned since 1987. The quality of water from shallow domestic wells potentially vulnerable to seepage from septic systems was evaluated by analyzing for the presence of tracers and multiple isotopes. Samples were collected from 26 sand-point and perforated, cased domestic wells and were analyzed for bacteria, coliphages, nitrogen species, nitrogen and boron isotopes, dissolved organic carbon (DOC), prescription and nonprescription drugs, or organic waste water contaminants. At least 13 of the 26 domestic well samples showed some evidence of septic system effects based on the results of several tracers including DOC, coliphages, NH4+, NO3-, N2, ?? 15N[NO3-] and boron isotopes, and antibiotics and other drugs. Sand-point wells within 30 m of a septic system and contamination from septic waste. Copyright ?? 2005 National Ground Water Association.

  6. Sustainable treatment potential of mixed algal consortia for domestic waste water: Growth and mixotrophy

    Priyanka Murthy

    2015-04-01

    Full Text Available The increasing levels of generation of nutrient-rich waste water pose serious challenge. Conventional biological and chemical methods of waste water treatment have failed in meeting sustainability challenges. Naturally occurring mixed algal species reared in mixotrophic growth modes have been deployed to recover nutrients (N and P from domestic wastewater after anaerobic digestion. In this paper, we present the results pertaining to growth and mixotrophy. Pilot-scale operation shows that the cultivation methods adopted and the use of naturally selected species lead to a tendency among these species to clump at certain stages of growth that in turn float or settle rapidly making algal harvest and thereby the nutrient recovery processes energy efficient. The highest settling rate was found to be 6.37 ± 1.6 g/m2/d. Mixotrophy was seen to contribute 15 – 24 % across the various algal consortia in wastewater (polyculture.

  7. Energy from domestic wast water and kitchen wast with Eureka-HD, An Energy Balance

    Grond, Lukas

    2010-01-01

    Treatment of wastewater is commonly done centralized, bringing high costs for collecting a big flow of low concentrated wastewater. A mixed input of black water, grey water, rainwater and groundwater has a low concentration of contamination making recover

  8. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water.

    Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F

    2015-03-15

    For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles.

  9. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas product

  10. Phytodepuration plant for the treatment of domestic waste water - realized in a hotel. La fitodepurazione degli effluenti domestici - il caso di una struttura alberghiera

    Bonetti, M.

    1982-12-01

    The processes and the parameters which cause eutrophization of a water system are reported. In addition, the advantage of a phytodepuration plant with respect to conventional plants for the treatment of waste waters are listed. In this paper the phytodepuration plant for the treatment of domestic waste water is described which was by ENEA during 1980 and 1981 in collaboration with the Grand Hotel S. Michele in Cetraro (Italy). The plant utilizes the water hyacinth (Eichhornia crassipes) as a biological filter. The results so far obtained suggest the convenience of the phytodepuration system for touristic village, camping or industries which are operating during the summer time.

  11. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced.

  12. Investigation of the spreading and dilution of domestic waste water inputs into a tidal bay using the finite-volume model FVCOM

    Lettmann, Karsten; Wolff, Jörg-Olaf; Liebezeit, Gerd; Meier, Georg

    2010-05-01

    The 'Jade Bay' is a tidal bay located in the western part of the German Wadden Sea, southern North-Sea coast. During particularly heavy rain falls, rain water mixed with domestic waste water is discharged into the bay due to the limited capacities of the waste water treatment plant of the city of Wilhelmshaven. As the discharge point is located only a few hundred meters from a public bathing beach it is important to know spreading and dilution of the waste waters by tidal and wind-driven mixing. To model the behaviour of the waste water plumes, the unstructured mesh finite-volume model FVCOM (Chen and al., 2003) is used, which allows to cover the large area of the Jade and the nearby North Sea with a relatively high resolution near the point of discharge and a coarser resolution at the outer edges of the study side. We adapted the included sediment module of FVCOM to handle the sedimentation, decay and evolution in the bottom sediments of the discharged waste water particles, especially with respect to bacteria. Furthermore, alternative discharge points located in the interior of the Jade bay were tested, which might be more suited for a faster dilution and a smaller residence time of the waste water particles in the tidal bay.

  13. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  14. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report summary

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    This study of water reclamation and waste disposal is directed toward a more efficient utilization of natural resources. From an ecological standpoint improved methods of land use, water processing equipment, and ideal population profiles are investigated. Methods are described whereby significant reduction in water usage can be achieved by the adoption of presently available and practically applied technological concepts. Allowances are made for social, natural, and economic contingencies which are likely to occur up to the year 2000.

  15. Wasted waters.

    Niemczynowicz, J

    1996-11-01

    This article presents the increasing mismanagement of water as a result of increasing delivery of water volume, water pollution, and water wasting. One example of water mismanagement is irrigation, through which 67% of water is withdrawn from the hydrological cycle. In addition, reports from European communities reveal that pesticides from agriculture worsen the existing underground pollution. Furthermore, a 25% drop in land productivity was observed in Africa due to erosion, salinization, water logging, and desertification. Also, 23% of withdrawn water goes to industries, which are the major polluters. Since 1900 about 250,000 tons of cadmium have been produced worldwide, which eventually enter and harm the aquatic and terrestrial ecosystems. Moreover, high mercury levels were observed in Malaysia's Kelang River in the late 1980s, and river pollution in Thailand and Malaysia is recorded to be 30-100 times higher than accepted levels. Aside from that, the human race must also understand that there is a connection between water scarcity and water quality. When there is water pollution, it is expected that many people will suffer diarrheal diseases and intestinal parasite infections, which will further increase the mortality rate to 3.3 million per year. Realizing the severity of the problem, it is suggested that the human race must learn to recycle water like stormwater to prevent scarcity with drinking water.

  16. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    Idiri, Z., E-mail: zmidiri@yahoo.f [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria); Mazrou, H. [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria); Amokrane, A. [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Bedek, S. [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria)

    2010-01-15

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  17. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.

    Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G

    2016-02-01

    The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment.

  18. Drinking Water Temperature Modelling in Domestic Systems

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  19. Characteristics and management of domestic waste in the rural area of Southwest China.

    Han, Zhiyong; Liu, Dan; Lei, Yunhui; Wu, Jing; Li, Shulan

    2015-01-01

    With its rapid development, the rural area of Southwest China has been puzzled by the waste management problem, especially for increasing solid waste and water pollution from the domestic waste. Therefore, in order to efficiently and effectively manage the domestic waste in the rural area of Southwest China, 22 villages were selected randomly to analyse the characteristics of domestic waste, the influence factors of characteristics and resident's willingness of participation in domestic waste management by questionnaires, field samplings and laboratory tests. The results of the rural area of Southwest China indicated that the generation of domestic waste was 178 g d(-1) per capita and it was mainly composed of kitchen waste, inert waste, plastics and paper with a total proportion of 81.98%. The waste bulk density, moisture, ash, combustible and lower calorific value were 107 kg m(-3), 37.04%, 25.73%, 37.23% and 8008 kJ kg(-1), respectively. These characteristics were influenced by the topography, the distance from towns or cities, the villagers' ethnicities and income sources to some extent. Moreover, the distance of 50-800 m between each collection facility and the disposal fee of around ¥5.00 per household per month could be accepted. The working hours of participation in waste management is suggested as 5 hours per day with the income of ¥1000 per capita per month. Based on the outcome of this survey, a waste management system consisting of classified collection, centralised treatment and decentralised treatment was proposed. It is important to ensure financial viability and practical considerations of this system.

  20. Application of SBR technology for domestic waste water treatment; Aplicacion de la tecnologia SBR para el tratamiento de aguas residuales domesticas

    Mace, S.; Mata-Alvarez, J.

    2001-07-01

    The objective of the present study is to give an overall vision of SBR (Sequencing Batch Reactors) technology as an alternative way for treating domestic and municipal wastewaters. This technology has been gaining popularity through years, mainly due to its single-tank design and the ease of its automation. There are a lot of cases in literature dealing with the treatment of this kind of effluents with this technology, whether a lab-scale, pilot scale or industrial scale. Thus, this paper includes relevant experiments found in literature concerning domestic wastewater treatment. There is also a special attention given to an application that has been studied recently: the use of this technology in wastewater treatment plants, concretely for the treatment of the reject water found after anaerobic digesters, which contains high concentrations of ammoniacal nitrogen. (Author)

  1. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  2. Effect of sanitation facilities, domestic solid waste disposal and hygiene practices on water quality in Malawi’s urban poor areas: a case study of South Lunzu Township in the city of Blantyre

    Palamuleni, Lobina G.

    Household water supply problems remain one of the major challenges facing developing countries. In Malawi, there is lack of documentation on the levels and causes of water pollution particularly in peri-urban areas so that meaningful interventions can be adopted. Therefore, a study was carried out in South Lunzu Township a peri-urban area in the city of Blantyre. The study revealed that the major form of sewerage disposal is the on-site sanitation system where about 58.8% of the respondents use traditional pit latrine while in terms of solid waste disposal, the Blantyre City Assembly which is responsible for solid waste collection, has only two collection vans to cater for more than half a million residents (Blantyre City Assembly, 1999. Urban Structure Plan, Draft Background Report, Blantyre.) hence indiscriminate disposal rampant in the area. Water samples collected from the major sources of domestic water supply showed that there are variations in the levels of water pollution between the ground water and surface water sources and between the wet and dry season. For instance, physically, the ground water turbidity levels were in the range of 2-12 mg/l during the dry season but increased to a maximum of 114 mg/l during the wet season while for surface water the turbidity increased from 4 to 408 mg/l over the seasons compared to the WHO standard set at 5 mg/l and the Water Department standard set at 25 mg/l. Chemical pollution for surface water sources show seasonal variations with an increase in the concentration during the wet season, for instance, iron levels ranged from 2.3 to 4.03 mg/l. This is above the WHO and Water Department drinking standards which are 1 and 3 mg/l, respectively. However, bacteriologically both the ground water and the surface water sources are grossly polluted. Ground water spring coliform count ranged from 190/100 ml to 9500/100 ml, and the well 3500/100 ml to 11,000/100 ml having the maximum during the wet season. Surface water

  3. Water: Too Precious to Waste.

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  4. Concrete Production Using Technogenical, Constructional and Domestic Waste

    Marija Vaičienė

    2011-04-01

    Full Text Available The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures. Article in Lithuanian

  5. 关于濮阳农村地区退水污染特点及治理对策初探%Analysis on Main Features and Treatment Measures of the Domestic Waste-water Pollution in Rural Puyang City of China

    杜斌

    2016-01-01

    In China, the rural domestic waste-water usually refers to the sewage that is mainly produced by villagers′daily life�In recent years, China's rural domestic waste-water pollution problem has shown characteristics of a wide range, wide distribution and large discharge�Thus, the rural domestic waste-water pollution problem has got an increasing concern and has gradually become a difficulty and focus in the rural sewage treatment area�Taking Puyang city′s current situation of domestic waste-water long period uncontrolled discharge and the increasingly evident rural domestic waste-water pollution problem into consideration, in order to effectively control the local domestic waste-water pollution and protect the ecological environment, this essay has systematically analyzed the main features of the city's rural domestic waste-water and the problems exist in current waste-water treatment, finally, several countermeasures has been put forward� However, it is worth mentioning that this essay has for the first time put forward the idea of establishing the city′s first rural domestic waste-water treatment and discharge system after comprehensive consideration of the local conditions, which is supposed to be a reference for the civil dealers and a call to change the backward state of lcoal domestic waste-water′s uncontrolled discharge as soon as possible and improve the waste-water treatment awareness of the local residents.%在我国农村退水一般即指农村生活污水。近些年来,我国的农村退水呈现出种类繁多、分布面广、排放量大的特点,退水污染问题开始受到重视,逐渐成为农村污水治理中的难点和重点。本文针对濮阳市农村地区退水长期以来无序排放、退水污染日渐严重的现状,从有效控制退水污染、保护当地生态环境等角度出发,系统分析了该市农村退水的主要特点以及目前治理存在的问题,并探讨提出了治理控制当地退

  6. Study on Rural Domestic Waste Treatment in Loess Plateau Region——Taking Longfang Town in Shaanxi Province as Example

    2011-01-01

    With the continuous development of economy and changes in people's lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods comb...

  7. Economic valuation of domestic water uses.

    Justes, Antón; Barberán, Ramón; Farizo, Begoña A

    2014-02-15

    There are many reasons of concern about the quality of water for domestic uses. The strategic goals of water tariffs must include savings, efficient management and equity in order to optimise availability of the best quality water. The main domestic uses of water are food preparation, personal hygiene and household cleaning; not all of them need the same quality, and for some of them there are even potential substitutes. In order to contribute to this debate, we need to know how these different uses are valued by direct users. This article focuses on eliciting values for different domestic uses, using discrete choice experiments. As far as we know, this is the first time that a differentiated valuation per use has been defined. The paper introduces three innovations in the design of the experiment. The design takes into account decisive variables in household water consumption, such as family size, together with the consumption level, and the options offered in the choice task are combinations of different prices for each of the uses. A latent class model with both common and class-specific random parameters is applied to better account for the influence of heterogeneity in the respondents' choices. The results show that the most valued use depends on the consumption level class.

  8. Preliminary ECLSS waste water model

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  9. Solid Wastes and Water Quality.

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  10. Study on the construction and operation for management system of municipal domestic wastes

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  11. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  12. Tracing Waste Water with Li isotopes

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  13. Accounting for Water Insecurity in Modeling Domestic Water Demand

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  14. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  15. A Benchmarking System for Domestic Water Use

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  16. Development of automated information system for domestic waste logistics management (by the example of Apatity town

    Ladik A. S.

    2016-03-01

    Full Text Available A software system for management information support of domestic waste logistics (by the example of Apatity town has been developed for management information support efficiency enhancement of domestic waste collection and transportation processes in the municipal systems subject to hygiene and sanitary norms and standards. The system is implemented as an interactive multilogic web-service. The system provides computational procedure execution of financial expenditure and ecological damage in the issue of domestic waste collection and transportation and environmental risk minimization on the basis of proposed algorithms for automated synthesis of adaptive journey routes in comparison with existing prototypes

  17. Classification of excessive domestic water consumption using Fuzzy Clustering Method

    Zairi Zaidi, A.; Rasmani, Khairul A.

    2016-08-01

    Demand for clean and treated water is increasing all over the world. Therefore it is crucial to conserve water for better use and to avoid unnecessary, excessive consumption or wastage of this natural resource. Classification of excessive domestic water consumption is a difficult task due to the complexity in determining the amount of water usage per activity, especially as the data is known to vary between individuals. In this study, classification of excessive domestic water consumption is carried out using a well-known Fuzzy C-Means (FCM) clustering algorithm. Consumer data containing information on daily, weekly and monthly domestic water usage was employed for the purpose of classification. Using the same dataset, the result produced by the FCM clustering algorithm is compared with the result obtained from a statistical control chart. The finding of this study demonstrates the potential use of the FCM clustering algorithm for the classification of domestic consumer water consumption data.

  18. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  19. Seroprevalence of hepatitis B and C among domestic and healthcare waste handlers in Belo Horizonte, Brazil.

    Mol, Marcos Pg; Gonçalves, Jéssica P; Silva, Edvania A; Scarponi, Cristiane FdO; Greco, Dirceu B; Cairncross, Sandy; Heller, Leo

    2016-09-01

    Infection with the hepatitis B and C viruses may occur through contact with infected body fluids, including injury with infected sharps. Collectors of domestic or healthcare wastes are potentially exposed to these infections. The aim of this article is to investigate the risk factors associated with the prevalence of hepatitis B and C viruses (HBV and HCV) infection among domestic and healthcare waste workers in Belo Horizonte, Brazil. A cross-sectional study of hepatitis B and C infection was conducted from November 2014 to January 2015, through blood sample collection and interviews about socio-demographic factors with 61 workers exposed to healthcare waste ('exposed') and 461 exposed only to domestic wastes ('unexposed'). The prevalence of antibodies to HCV (Anti-HCV) antibodies was 3.3% in 'exposed' workers and 0.9% in 'unexposed', and of antibody to hepatitis B core antigen (Anti-HBc) was 9.8% and 5.6% in 'exposed' and 'unexposed' workers, respectively. Only 207 (44.9%) of those exposed to domestic waste and 45 (73.8%) of those handling healthcare waste were effectively immunised against hepatitis B virus (HBV). Exposures to domestic waste and to healthcare wastes were associated with similar risks of infection with HBV. The risk of hepatitis C virus (HCV) infection was marginally higher among healthcare waste workers compared with domestic waste workers, probably because of needlestick accidents owing to deficient sharps management systems. Immunisation against hepatitis B and screening tests to ensure the success of vaccination should be a condition for recruitment for both groups of waste workers.

  20. Anaerobic digestion technologies for closing the domestic water, carbon and nutrient cycles.

    Hammes, F; Kalogo, Y; Verstraete, W

    2000-01-01

    Sustainable wastewater treatment requires that household wastewater is collected and treated separately from industrial wastewater and rainwater run-offs. This separate treatment is, however, still inadequate, as more than 70% of the nutrients and much of the chemical oxygen demand (COD) and potential pathogens of a domestic sewage system are confined to the few litres of black water (faeces, urine and toilet water). Whilst grey water can easily be filter treated and re-used for secondary household purposes, black water requires more intensive treatment due to its high COD and microbial (pathogens) content. Recently developed vacuum/dry toilets produce a nutrient rich semi-solid waste stream, which, with proper treatment, offers the possibility of nutrient, carbon, water and energy recovery. This study investigates the terrestrial applicability of Life Support System (LSS) concepts as a framework for future domestic waste management. The possibilities of treating black water together with other types of human-generated solid waste (biowastes/mixed wastes) in an anaerobic reactor system at thermophilic conditions, as well as some post treatment alternatives for product recovery and re-use, are considered. Energy can partially be recovered in the form of biogas produced during anaerobic digestion. The system is investigated in the form of theoretical mass balances, together with an assessment of the current feasibility of this technology and other post-treatment alternatives.

  1. Socioeconomic differentials and availability of domestic water in South Africa

    Dungumaro, Esther W.

    The past few decades has seen massive efforts to increasing provision of domestic water. However, water is still unavailable to many people most of them located in sub-Saharan Africa, South Asia and East Asia. Furthermore, availability of water varies greatly both spatially and temporary. While other people pay so dearly for domestic water others have an easy access to adequate clean water and sanitation. Accessibility and affordability of domestic water and sanitation is determined by a great variety of factors including socioeconomic status of households. The main objective of the paper is to inform on factors which need to be taken into account when coming up with projects to provide domestic water. It is more critical when the issue of water pricing comes into the equation. Water pricing has many facets, including equity, willingness to pay and affordability. In this premise, it is deemed important to understand the socioeconomic characteristics of the people before deciding on the amount of money they will have to pay for water consumption. It is argued that understanding people’s socioeconomic situation will greatly help to ensure that principles of sustainability and equity in water allocation and pricing are achieved. To do so, the paper utilized 2002 South Africa General Household Survey (GHS), to analyze socioeconomic variables and availability of domestic water. Analysis was mainly descriptive. However, logistic regression analysis was also utilized to determine the likelihood of living in a household that obtain water from a safe source. The study found that there is a strong relationship between availability of domestic water and socioeconomic conditions. Economic status, household size and to a lesser extent gender of head of household were found to be strong predictors of living in a household which obtained water from a safe source. The paper recommends that needs and priorities for interventions in water provision should take into account

  2. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  3. Assessment of domestic water quality: case study, Beirut, Lebanon.

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  4. Collection of domestic waste. Review of occupational health problems and their possible causes.

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, A M; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    1995-08-18

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among waste collectors. Based on current knowledge, it appears that the risk factors should be considered as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal of knowledge has accumulated on mechanical load on the spine and energetic load on the cardio-pulmonary system in relation to the handling of waste bags, bins, domestic containers and large containers. However, epidemiologic studies with exposure classification based on field measurement are needed, both to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous airborne exposures have been performed, and the causality of work-related pulmonary problems among waste collectors is unknown. Recent studies have indicated that implementation of

  5. Simultaneous treatment of SO2 containing stack gases and waste water

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  6. The Stady of Legislation on the Utilization of Domestic Sea Water

    苗英霞

    2014-01-01

    The contradiction between shortage of water resource and lack of legislation for using seawater as domestic water was revealed. We started our work from present situation of legislation for using seawater as domestic water. Necessity and feasibility of legislation for using seawater as domestic water were explored which contribute to the healthy development of domestic seawater industry.

  7. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  8. Design package for solar domestic hot water system

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  9. Future United States Domestic Water Demand

    U.S. Environmental Protection Agency — Population projections, estimated per capita consumption rate, and estimated total annual water demand to 2100 for four future projections based off the IPCC SRES...

  10. [Hygienic, chemical and ecotoxicological aspects of the disinfection of biologically treated waste water by ozone and UV light].

    Iske, U; Nelle, T; Oberg, C; Rudolph, K U; Zander-Hauck, S

    1996-02-01

    Biologically treated waste water from two different municipal treatment plants with mainly domestic waste water on the one hand and industrial influenced waste water on the other hand was disinfected by UV-irradiation and ozonation. Hygienic, chemical and eco-toxic effects of the disinfection step were examined. It was found that by ozonation as well as by UV-irradiation the required guide and imperative values for fecal and total coliform bacteria were fulfilled. The UV-irradiation induces no changes concerning chemical waste water quality and toxic effects. In contrast to these results ozonation can lead to alterations in chemistry and toxicity depending on the waste water composition.

  11. A Primer on Waste Water Treatment.

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  12. Uranium in US surface, ground, and domestic waters. Volume 2

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  13. Classifications of central solar domestic hot water systems

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  14. 我国生活废弃物的经济分析与对策%An Economic Analysis and Countermeasures for Domestic Wastes in China

    庄宇

    2005-01-01

    Domestic wastes have become an important topic of environmental protection research. From the social cost of treating domestic wastes, this article analyzes present environmental pollution caused by neglected externality when we discharge domestic wastes in the method of analysis on the difference between marginal personal cost and marginal social cost. It also proves the necessity and the importance of levying pollution tax, and proposes the measures of controlling environmental pollution caused by domestic wastes.

  15. A Benchmarking System for Domestic Water Use

    Dexter V. L. Hunt; Rogers, Christopher D.F.

    2014-01-01

    The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be...

  16. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    Poulsen, O M; Breum, N O; Ebbehøj, N

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans......, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors...... causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal...

  17. Departmental plans of domestic wastes management - evaluation 2002; Plans departementaux d'elimination des dechets menager assimiles - bilan 2002

    NONE

    2004-03-01

    The departmental plans of domestic wastes management are official documents which manage the actions needed to realize the legislative and regulation objectives concerning the domestic wastes and related wastes. A first evaluation has been realized in 1997 for 47 edited plans. In the context of the new wastes policy a new evaluation has been realized by the ADEME in 2002 for 98 plans. It provides the methodology of the study, the analysis of the plans, the sites and management of wastes, economic data, the equipment and investments. (A.L.B.)

  18. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  19. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  20. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

    Esra Uçkun Kiran

    2014-08-01

    Full Text Available In this study, food wastes such as waste bread, savory, waste cakes, cafeteria waste, fruits, vegetables and potatoes were used as sole substrate for glucoamylase production by solid state fermentation. Response surface methodology was employed to optimize the fermentation conditions for improving the production of high activity enzyme. It was found that waste cake was the best substrate for glucoamylase production. Among all the parameters studied, glucoamylase activity was significantly affected by the initial pH and incubation time. The highest glucoamylase activity of 108.47 U/gds was achieved at initial pH of 7.9, moisture content of 69.6% wt., inoculum loading of 5.2×105 cells/gram substrate (gs and incubation time of 6 d. The enzyme preparation could effectively digest 50% suspension of domestic food waste in 24 h with an almost complete saccharification using an enzyme dose of only 2U/g food waste at 60°C.

  1. Environmental sustainability of ozonating municipal waste water

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation....

  2. Lyophilization for Water Recovery From Solid Waste

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  3. Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric;

    2016-01-01

    utilizes the industrial waste heat to prepare DHW via the DH network. A building model of a multi-storey building in Beijing was developed to investigate the technical feasibility. An economic evaluation was made using net present value to compare the annualized cost for individual water heaters and flat......The development of DH (District Heating) is an environmentally friendly and energy-efficient strategy in China. Currently, the vast majority of DH systems are SH (Space Heating) only and do not provide DHW (Domestic Hot Water). DHW is mainly produced by individual water heaters due to the cost......-effective issues of the centralized DHW systems. From the perspective of long-term development, DHW produced via DH systems would be more sustainable because DH is an important precondition for an environmental safe use of domestic waste fuels. This paper presents an approach that uses flat stations meanwhile...

  4. Collection of domestic waste. Review of occupational health problems and their possible causes

    Poulsen, O M; Breum, N O; Ebbehøj, N

    1995-01-01

    as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal...... to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste...... problems, irritation of the eye and skin, and perhaps symptoms of organic dust toxic syndrome (influenza-like symptoms, cough, muscle pains, fever, fatigue, headache) have been reported among workers collecting the biodegradable fraction of domestic waste. The few data available on exposure to bio...

  5. Integrated waste and water management system

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  6. Sustainable treatment of municipal waste water

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....... will develop and implement a methodology to compare and prioritize these technologies and optimizations based on a holistic approach. This will be achieved through the use of life cycle assessment (LCA) along with cost/efficiency analysis with focus on the effects of nutrients, pathogens and micropollutants (i...

  7. An experimental study on recovering heat from domestic drain water

    Ramadan, Mohamad; Al Shaer, Ali; Haddad, Ahmad; Khaled, Mahmoud

    2016-07-01

    This paper concerns an experimental study on a system of heat recovery applied to domestic drain water pipes. The concept suggested consists of using the heat still present in the drain water as a preheating/heating source to the cold water supply of the building. To proceed, an appropriate experimental setup is developed and a coil heat exchanger is used as heat transfer device in the recovery system. Several scenarios are simulated and corresponding parameters are recorded and analyzed. It was shown that the suggested recovery concept can considerably preheat the cold water supply and then decrease the energy consumption. Particularly, up to 8.6 kW of heat were recovered when the cold water supply is initially at 3 °C.

  8. Patterns, structures and regulations of domestic water cycle systems in China

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  9. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water

    Vengosh, A.; Pankratov, I. [Hydrological Service, Jerusalem (Israel)

    1998-09-01

    To establish geochemical tools for tracing the origin of ground water contamination, the authors examined the variations of Cl/Br and Cl/F (weight) ratios in (1) domestic waste water from the Dan Region Sewage Reclamation Project and from reservoirs in the central coast of Israel; (2) associated contaminated ground water; and (3) pristine ground water from the Mediterranean coastal aquifer of Israel. The data show that supply water, anthropogenic NaCl and fluoridation control the Cl/Br and Cl/F ratios of domestic waste water, and conventional sewage treatment does not affect the anthropogenic inorganic signals. The Cl/Br ratios of ground water contaminated with sewage effluent reflect conservative mixing proportions of sewage and regional ground water components. Sensitivity tests demonstrate that it is possible to detect and distinguish sewage contamination from marine ratios after a sewage contribution of 5 to 15% is mixed with regional ground water. Mixing with Br-enriched fresh water however, would reduce this sensitivity. Since the high Cl/Br signal of sewage effluents is distinguishable from other anthropogenic sources with low Cl/Br ratios and from natural contamination sources, Cl/Br ratios can therefore be a useful inorganic tracer for identification of the origin of contaminated ground water. The Cl/F ratios of sewage-contaminated ground water were higher than those in the original sewage effluent, which suggests retention of fluoride into the aquifer solid phase.

  10. Simulation analysis of domestic water demand and its future uncertainty in water scarce areas

    Shouke WEI; Albrecht GNAUCK; Alin LEI

    2009-01-01

    This paper demonstrates a practical simulation approach to analyze domestic water demand and its future uncertainty in water scarce areas through a case study of Beijing, China. Analytic models and a forecasting model were constructed using statistic and econometric regres-sion approaches. The analytic models were used to analyze the interrelationships between domestic water demand and some socio-economic factors of Beijing. The forecasting model was applied to predict domestic water demand from 2009 to 2015, and this model was validated by comparing the prediction values with the observations. Scenario analysis was applied to simulate uncertainty and risks in domestic water demand in the future. The simulation results proved that domestic water demand will increase from 13.9×108 m3 to 16.7×108 m3 from 2009 to 2015. Three more sustainable strategies were also found through scenario analysis. The simulation and modeling approaches and results would be very supportive for water decision makers in allocating water efficiently and making sustainable water strategies.

  11. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is imp

  12. Domestic waste recycling, collective action and economic incentive: the case in Hong Kong.

    Yau, Yung

    2010-12-01

    Efficacy of waste recycling is one of the key determinants of environmental sustainability of a city. Like other pro-environmental activities, waste recycling cannot be successfully accomplished by just one or two people, but only by a concerted effort of the community. The collective-action dilemma creates a common underlying difficulty in formulating workable solutions to many environmental problems. With a view to the non-excludability of the outcome, rationality drives people to free-ride efforts of others in waste recycling. To solve this free-rider problem, some scholars suggest the use of economic incentive. This article attempts to study the impacts of reward schemes on waste recycling behaviour of residents in 122 private housing estates in Hong Kong. The study is differentiable from the others as the latter mainly focus on domestic waste recycling in low-rise low-density housing while this one looks into the same in a high-rise high-density residential setting. According to the results of analyses on a set of aggregate data, reward schemes are found to have a significant positive relationship with the per-household weight of recyclables collected, keeping other things constant. The research findings suggest that economic incentives do work in promoting waste recycling in Hong Kong. Practical and policy implications follow.

  13. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies.

    Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L

    2017-01-01

    Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development.

  14. Characterization of domestic wastes incineration clinkers. Study on the possibilities of dioxines transfer in the environment; Caracterisation des machefers d'incineration d'ordures menageres. Etude sur les possibilites de transfert de dioxines vers l'environnement

    Bartet, B.

    2001-07-15

    The clinkers, resulting from the domestic wastes incineration, contain dioxines. In order to evaluate the possible transfer of these pollutants in the environment, especially towards the underground water, this document brings together data on the dioxines content in clinkers from domestic wastes incineration, other combustion wastes and soils. After a comparison of the dioxines content and the emission factors, the report presents the experimental study on the transfer vectors identification. (A.L.B.)

  15. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  16. Intraurban Analysis of Domestic Solid Waste Disposal Methods in a Sub-Sahara African City

    Oluwole Samuel Ojewale

    2014-01-01

    Full Text Available The study examined the influence of socioeconomic attributes of residents on domestic solid waste disposal methods in Lagos metropolis, Nigeria. Primary data for the study were obtained through questionnaire administered on residents in Eti-Osa, Ikeja, and Mushin Local Government Areas (LGAs representing the low, medium, and high densities, respectively, into which the sixteen LGAs in Lagos metropolis were stratified. One out of every four wards in each LGA was selected for survey. From a total of 15,275 residential buildings in the ten wards, one out of every forty buildings (2.5% was selected using systematic random sampling where a household head was sampled. Information obtained includes the residential characteristics and the disposal methods. Enquiries into the socioeconomic attributes of the residents showed that 59.9% were high income earners and 76.6% had attained tertiary school education. This study concluded that six disposal methods were common in the study area. Furthermore, through multinomial logistic regression, the influence of socioeconomic characteristics of residents (density, income, age of respondents, educational status, and length of stay on domestic solid waste disposal methods varied significantly in Lagos metropolis. The study established that most of the solid waste disposal methods utilized by residents in Lagos metropolis were not environment-friendly.

  17. The human right to water: the importance of domestic and productive water rights.

    Hall, Ralph P; Van Koppen, Barbara; Van Houweling, Emily

    2014-12-01

    The United Nations (UN) Universal Declaration of Human Rights engenders important state commitments to respect, fulfill, and protect a broad range of socio-economic rights. In 2010, a milestone was reached when the UN General Assembly recognized the human right to safe and clean drinking water and sanitation. However, water plays an important role in realizing other human rights such as the right to food and livelihoods, and in realizing the Convention on the Elimination of All Forms of Discrimination against Women. These broader water-related rights have been recognized but have not yet been operationalized. This paper unravels these broader water-related rights in a more holistic interpretation of existing international human rights law. By focusing on an emerging approach to water services provision--known as 'domestic-plus' services--the paper argues how this approach operationalizes a comprehensive range of socio-economic rights in rural and peri-urban areas. Domestic-plus services provide water for domestic and productive uses around homesteads, which challenges the widespread practice in the public sector of planning and designing water infrastructure for a single-use. Evidence is presented to show that people in rural communities are already using their water supplies planned for domestic uses to support a wide range of productive activities. Domestic-plus services recognize and plan for these multiple-uses, while respecting the priority for clean and safe drinking water. The paper concludes that domestic-plus services operationalize the obligation to progressively fulfill a comprehensive range of indivisible socio-economic rights in rural and peri-urban areas.

  18. Waste water reuse pathways for processing tomato

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow...... a safe use of waste water produced by small communities/industries (≤2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management....

  19. TREATMENT OF DOMESTIC WASTEWATER IN SHALLOW WASTE STABILIZATION PONDS FOR AGRICULTURAL IRRIGATION REUSE

    Valderi Duarte Leite

    2009-12-01

    Full Text Available Waste stabilization ponds are a well established wastewater treatment system being considered by World Health Organization as one of the most appropriated technology for domestic wastewater when agricultural reuse is considered, especially in developing countries. This study was performed in a series of pilot-scale stabilization ponds, being one facultative and three maturation ponds, with depths varying from 0.44 to 0.57 m. The substrate to be treated was composed of a mixture of domestic wastewater and previously anaerobicaly treated leachate. The experimental system was monitored in two different phases, in which the hydraulic retention times were 15 (phase 1 and 10 days (phase 2. Termotolerant coliform removal efficiencies were 3.8 log10 units in both phases while organic matter (BOD5 removal was 87 and 68% for phases 1 and 2, respectively.

  20. for the Waste Water Cleaning Plant

    E. V. Grigorieva

    2010-01-01

    Full Text Available A model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water on the given time interval is stated and solved analytically with the use of the Pontryagin Maximum Principle and Green's Theorem. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  1. Waste water treatment in Bukkerup (VB)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  2. Smart solar tanks for small solar domestic hot water systems

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...... or small hot-water consumption and the risk of oversized solar heating systems and oversized tank volumes is reduced by using smart solar tanks. Based on the investigations it is recommended to start development of smart solar tank units with an oil-fired boiler or a natural gas burner as auxiliary energy...

  3. STUDY ON WASTE WATER TREATMENT PLANTS

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  4. Exploring water and food security: the water footprint of domestic food production in the Gaza Strip

    Recanati, Francesca; Castelletti, Andrea; Dotelli, Giovanni; Melià, Paco

    2016-04-01

    Water scarcity and food security are major issues in the Gaza Strip. This area is characterized by one of the highest densities in the world and it is affected by both severe scarcity of water resources and limited trading possibilities.Given this context, the enhancement of domestic food production is considered a fundamental strategy in achieving food security in the area. For this reason, rural people play a crucial role in implementing sustainable strategies for enhancing the domestic food production while preserving water resources. In order to investigate the effectiveness of existing agricultural scenarios in achieving food security in a sustainable manner, we propose a framework to assess food production systems in terms of their contribution to the nutritional and economic conditions of rural households and their impact on water resources. In particular, the latter has been carried out through the water footprint indicator proposed by the Water Footprint Network. The case study analyzed is a sample farm located in the Gaza Strip, whose food production is based on horticulture, animal husbandry and aquaculture. The study is articulated into two main parts: first, we compare alternative scenarios of vegetal and animal food production in terms of food supply, water consumption and economic income at the household scale; then, we extend the analysis to evaluate the potential contribution of domestic food production to the food security in the whole Gaza Strip, focusing on the nutritional dimension, and providing a preliminary assessment of the environmental and economic sustainability. In particular, we evaluate water appropriation for domestic food production and compare it with the availability of water resources in the region. The outcomes highlight that the domestic food production can potentially satisfy both a basic diet and economic income for rural household, but the related appropriation of freshwater results unsustainable with respect to the fresh

  5. The artificial water cycle: emergy analysis of waste water treatment.

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  6. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system.

    Rezania, Shahabaldin; Din, Mohd Fadhil Md; Taib, Shazwin Mat; Dahalan, Farrah Aini; Songip, Ahmad Rahman; Singh, Lakhweer; Kamyab, Hesam

    2016-01-01

    In this study, water hyacinth (Eichhornia crassipes) was used to treat domestic wastewater. Ten organic and inorganic parameters were monitored in three weeks for water purification. The six chemical, biological and physical parameters included Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH3-N), Total Suspended Solids (TSS), and pH were compared with the Interim National Water Quality Standards, Malaysia River classification (INWQS) and Water Quality Index (WQI). Between 38% to 96% of reduction was observed and water quality has been improved from class III and IV to class II. Analyses for Electricity Conductivity (EC), Salinity, Total Dissolved Solids (TDS) and Ammonium (NH4) were also investigated. In all parameters, removal efficiency was in range of 13-17th day (optimum 14th day) which was higher than 3 weeks except DO. It reveals the optimum growth rate of water hyacinth has great effect on waste water purification efficiency in continuous system and nutrient removal was successfully achieved.

  7. Waste water treatment in Triglav national park

    PETERLIN, BLAŽ

    2012-01-01

    The thesis presents the pollution problems caused by municipal waste water in the protected area of the Triglav National Park. Although most people are not detecting the problem, the consequences of water pollution in the area are clearly visible in the mountain lakes and downstream springs. Water resources near the mountain huts and agricultural land show obvious signs of nurient overload. Non- native plant and animal species recklessly discharged into the natural environment also pose a thr...

  8. Domestic wastewater treatment in waste stabilization ponds for irrigation in Mendoza, Argentina: policies and challenges.

    Vélez, O R; Fasciolo, G E; Bertrano, A V

    2002-01-01

    Arid areas call for imaginative water management solutions to avoid the dangers of water shortages. Growing demands of water for domestic and industrial uses decrease the availability of water for agriculture. It therefore becomes necessary to set up a policy for the use of domestic effluents. For the province of Mendoza, Argentina, with 1,500,000 inhabitants, a master plan was designed as of 1991 for the treatment of domestic effluents and subsequent disposal for irrigation. The guidelines set up by WHO for the use of wastewater in agricultural applications were taken into consideration. At present, the Province of Mendoza has available projects which are either complete, in execution or in the bidding process, entailing secondary treatment capacity with reuse of 320,000 cubic metres/day and an estimated possible irrigation area of 10,000 hectares. With this infrastructure, some strategic lines of action are recommended to establish a policy for the agricultural use of wastewater: (a) to program the use of treated wastewater to avoid discharges to irrigation flows; (b) to develop an institutional scheme for the efficient and safe use of these waters; and (c) develop scientific and technologic know-how to accompany the updated policies.

  9. Planning for community resilience to future United States domestic water demand

    Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching water managers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statisti...

  10. Emissions of PCDD/F and PCB from uncontrolled combustion of domestic waste in Sweden

    Gonczi, M.; Gunnarsson, M.; Johansson, N. [Swedish Environmental Protection Agency, Stockholm (Sweden). Dept. of Environmental Assessment; Hedman, B.; Naslund, M.; Marklund, S. [Umea Univ., Umea (Sweden). Dept. of Environmental Chemistry

    2005-07-01

    Combustion-related activities are the principal source of dioxin and furan (PCDD/F) and polychlorinated biphenyl (PCB) emissions. However, municipal waste combustion is thought to have a low impact on total PCDD/F and PCB total emissions. This study investigated the impacts of uncontrolled backyard combustion of domestic waste. The aim of the study was to determine levels of unintentionally produced persistent organic pollutants (POPs) in Sweden. Nineteen combustion tests were conducted in a steel barrel, and a further 2 tests were conducted using open fires. The garden waste was comprised of wood branches, leaves, and grass. Refuse-derived fuel (RDF) consisted of municipal waste where the combustible fractions had been mechanically sorted from non-combustible waste and waste suitable for composting. PCDD/Fs and PCBs in the flue gas were iso-kinetically sampled with a cooled probe and sampling train. Emission factors were calculated from the relative amounts of carbon in fuel and in sampled emissions of carbon dioxide (CO{sub 2}), carbon monoxide (CO) and HC. Values were corrected for the loss of flue-gas in sampling. Results of the tests were comparable with other studies on uncontrolled combustion. The emissions from the open fires had relatively high levels of PCDD/Fs. It was not possible to determine the cause of significantly higher PCDD/F emissions noted during one of the combustion tests conducted in the steel barrel. It was concluded that levels of PCDD/F emissions in backyard fires are difficult to assess. 4 refs., 1 tab., 1 fig.

  11. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  12. Description of 2005-10 domestic water use for selected U.S. cities and guidance for estimating domestic water use

    Kenny, Joan F.; Juracek, Kyle E.

    2012-01-01

    Domestic water-use and related socioeconomic and climatic data for 2005-10 were used in an analysis of 21 selected U.S. cities to describe recent domestic per capita water use, investigate variables that potentially affect domestic water use, and provide guidance for estimating domestic water use. Domestic water use may be affected by a combination of several factors. Domestic per capita water use for the selected cities ranged from a median annual average of 43 to 177 gallons per capita per day (gpcd). In terms of year-to-year variability in domestic per capita water use for the selected cities, the difference from the median ranged from ± 7 to ± 26 percent with an overall median variability of ± 14 percent. As a percentage of total annual water use, median annual domestic water use for the selected cities ranged from 33 to 71 percent with an overall median of 57 percent. Monthly production and water sales data were used to calculate daily per capita water use rates for the lowest 3 consecutive months (low-3) and the highest 3 consecutive months (high-3) of usage. Median low-3 domestic per capita water use for 16 selected cities ranged from 40 to 100 gpcd. Median high-3 domestic per capita water use for 16 selected cities ranged from 53 to 316 gpcd. In general, the median domestic water use as a percentage of the median total water use for 16 selected cities was similar for the low-3 and high-3 periods. Statistical analyses of combined data for the selected cities indicated that none of the socioeconomic variables, including cost of water, were potentially useful as determinants of domestic water use at the national level. However, specific socioeconomic variables may be useful for the estimation of domestic water use at the State or local level. Different socioeconomic variables may be useful in different States. Statistical analyses indicated that specific climatic variables may be useful for the estimation of domestic water use for some, but not all, of the

  13. Industrial Water Waste, Problems and the Solution

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  14. Process for the biological purification of waste water

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  15. Performances of modern domestic hot-water stores

    Spur, Roman [Czech Technical University in Prague (Czech Republic). Department of Environmental and Building Services, Faculty of Civil Engineering; Fiala, Dusan [Institute of Energy and Sustainable Development, De Montfort University, Leicester (United Kingdom); Nevrala, Dusan [Enplan - heating technology company, Prague (Czech Republic); Probert, Doug [Cranfield University, Bedford (United Kingdom). School of Engineering

    2006-08-15

    Several designs of domestic hot-water (DHW) store, including those with immersed heat-exchangers (HXs), are commercially available. So there is a need for a method that accurately assesses their effectivenesses. In this study, the behaviours of a novel stratified, and two standard, stores were analyzed. The TRNSYS simulation software was enhanced to simulate the functioning of those stores. The resulting mathematical model was validated using measurements obtained from experiments, which required a realistic daily DHW draw-off for testing the DHW systems. Evaluation of a user-related effectivenesses (URE) for each of the three tanks tested showed that the inner configurations of: (i) the tank and (ii) the immersed HX can significantly affect the store's performance. The stratified store was up to 32% more effective than the commonly employed commercially-available store. (author)

  16. Saving energy from waste water

    Wright, Pearce

    1999-03-01

    This paper gives details of energy savings from wastewater in the laundry industry by recycling the water from the last rinse to the first wash, and recovering heat from hot water that is too dirty to recycle. The cost savings achieved at the laundry operated by the Royal London Hospital, and improvements in the steam supply system with water from steam traps collected and returned to the boiler house are reported. Case studies are presented involving energy savings in the textile industry where effluent from the washing stage is recycled to the scouring stage, and in the distillery industry involving recovery of heat from hot water for process preheating. (uk)

  17. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    2012-07-24

    ... CFR Part 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service... related to the Section 306C Water and Waste Disposal (WWD) Loans and Grants Program, which provides water... additional priority points to the colonias that lack access to water or waste disposal systems and...

  18. Numerical Simulation of a Solar Domestic Hot Water System

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  19. EnviroAtlas - Portland, ME -Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using local domestic water use per capita in gallons of water per day (GPD),...

  20. Electrooxidation of organics in waste water

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  1. Integrated water and waste management

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...

  2. 农村生活垃圾治理对策研究%Countermeasures of Rural Domestic Waste Treatment

    潘志坤

    2013-01-01

    针对我国农村垃圾产生量增长迅速,处理缺口较大,环境污染等突出问题,列举了建立“村收集、镇转运、县处理”的城乡生活垃圾收运处理体系,提出了相应的治理对策.%Aiming at the outstanding problems of rural domestic waste in China, such as rapid growth of waste generation, bigger gap of waste treatment, and environmental pollution, the establishment of urban and rural domestic waste collection, transportation and treatment system of village collection, town transportation and county treatment was listed. And the corresponding countermeasures were put forward.

  3. Water Balance Covers For Waste Containment: Principles and Practice

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  4. Wash water waste pretreatment system

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  5. Prevalence of atopic dermatitis in infants by domestic water hardness and season of birth

    Engebretsen, Kristiane Aa; Bager, Peter; Wohlfahrt, Jan;

    2016-01-01

    BACKGROUND: Atopic dermatitis (AD) appears to be more common in regions with hard domestic water and in children with a fall/winter birth. However, it is unknown whether a synergistic effect exists. OBJECTIVE: To evaluate the association between domestic water hardness and season of birth, respec...

  6. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  7. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  8. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  9. A Prototype of Industrial Waste Water Treatment Using Electrocoagulation

    Boriboonsuksri Phonnipha; Jun-krob Natth

    2017-01-01

    This paper proposes a construct of electrocoagulation waste water treatment system. The system consists of reactor tank, skimmer, cyclone tank and sediment tank. Waste water is feed into reactor tank. The electrochemical reaction is made emulsification to waste water. The contaminants are removed from waste water and can be divided to two kinds: light weight suspensions be floating up and another be sediment. The flocculants are skim out and the sediments are pumped out to sludge container. A...

  10. Design of multifamily solar domestic hot water systems using recirculating distribution

    Wedekind, D.R.

    1982-01-01

    This paper describes a study designed to quantify the effect of daily domestic hot water loads and system design on the performance of solar domestic hot water systems employing a recirculating distribution system. A solar domestic hot water system judged representative of the systems funded by the HUD Solar Demonstration Program, along with a modification to this system, was modeled using the TRNSYS simulation computer program. Results of simulations over a representative climatic period show that daily domestic hot water usage significantly affects solar system performance. Notable improvement in system performance can be obtained by the use of a recirculation return to solar storage system configuration within a specific range of daily domestic hot water loads. An optimum system was developed from parametric variations of system design and modeled on an annual basis. Comparison is made to modeled system performance of the original design.

  11. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  12. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential...

  13. Arsenic in industrial waste water from copper production technological process

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  14. Solar detoxification of waste waters

    Herrmann, J. M.

    2000-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer. oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject (7). Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid to the surface. 2. Adsorption of a least one of the reactants. 3. Reaction in the adsorbed phase 4. Desorption of the product (s) 5. Removal of the products from the interface region. (Author) 11 refs.

  15. Solar Detoxification of Waste Waters

    Herrmann, J.M.

    2002-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer, oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new. Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject. Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid phase to the surface 2. Adsorption of a least one of the reactants 3. Reaction in the adsorbed phase 4. Desorption of the products 5. Removal of the products from the interface region. (Author)

  16. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol

    Lopez-Contreras, A.M.; Claassen, P.A.; Mooibroek, H.; Vos, de W.M.

    2000-01-01

    Domestic organic waste (DOW) collected in The Netherlands was analysed and used as substrate for acetone, butanol and ethanol (ABE) production. Two different samples of DOW, referred to as fresh DOW and dried DOW, were treated by extrusion in order to expand the polymer fibres present and to obtain

  17. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...

  18. Promising freeze protection alternatives in solar domestic hot water systems

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  19. Promising freeze protection alternatives in solar domestic hot water systems

    Bradley, David E. [Univ. of Wisconsin, Madison, WI (United States)

    1997-01-01

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  20. Remote Sensing Analysis Techniques and Sensor Requirements to Support the Mapping of Illegal Domestic Waste Disposal Sites in Queensland, Australia

    Katharine Glanville

    2015-10-01

    Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.

  1. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  2. Discussion about the standard system on urban domestic water saving technology in China

    YANG Shujun; REN Xiaoli; GAO Benhu

    2007-01-01

    Standard is the technical foundation of national economic and social development, and it is the basic rule of establishing social regulation.Researching and constituting the standard system of urban domestic water saving technology is to offer important science basis for revising standard plan and standardize research plan. This paper introduces the present situation of our urban domestic water saving technical standard system, problem and the development direction in the future, as well as project planning of constructing urban domestic water saving technical standard system.

  3. Nutrient pollution in shallow aquifers underlying pit latrines and domestic solid waste dumps in urban slums.

    Nyenje, P M; Foppen, J W; Kulabako, R; Muwanga, A; Uhlenbrook, S

    2013-06-15

    The lack of proper on-site sanitation in unsewered low-income areas is becoming an important source of nutrient-rich wastewater leaching to groundwater and can potentially lead to eutrophication. For typical conditions in sub-Saharan Africa, the nutrient loading of nitrogen (N) and phosphorus (P) from on-site sanitation systems to aquifers is largely unknown. In this study, we assessed the dissolved nutrient loads (nitrate (NO3), ammonium (NH4) and orthophosphate (o-PO4)) and the processes likely affecting them in aquifers underlying two on-site sanitation systems in an unsewered low-income urban slum in Kampala, Uganda; a domestic solid waste dump and a site with two pit latrines. The impact of the two types of sites was assessed by comparing the upgradient and downgradient nutrient concentrations and loads along groundwater flow lines. Significant pollution to groundwater originated from the pit latrine site with downgradient nutrient loads increasing by factors of 1.7 for NO3, 10.5 for NH4 and 49 for o-PO4. No effect of leaching of nutrients to groundwater was found from the waste dump. We estimated that approximately 2-20% of total N and less than 1% of total P mass input was lost to groundwater from the pit latrines. The bulk of N leached to groundwater was in the form of NH4. Mn-reducing conditions prevailed in the shallow aquifer which suggested that nitrification was the main process affecting NH4 concentrations. Phosphorus was likely retained in the soils by precipitating as MnHPO4 and Ca5(PO4)3(OH). Our results indicated that pit latrines in alluvial aquifer systems can be highly effective for the removal of nutrients depending on hydrological, hydrochemical and geochemical conditions in the aquifer receiving wastewater. Improvements to make the current pit latrine systems better for nutrient containment are suggested based on findings from this study.

  4. Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

    Grasmanis, D; Greķis, A; Talcis, N

    2013-01-01

    This study presents the analysis of energy consumption for domestic hot water in apartment buildings in Riga. The aggregate data contains information about 39 apartment buildings, including heat energy consumption and domestic hot water (DHW) consumption. The analysis is focused on the heat energy consumption in the DHW system. The analysis characterizes the DHW consumption, energy consumption for DHW and energy losses in the DHW systems in apartment buildings.

  5. Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

    Grasmanis, Dzintars; Talcis, Normunds; Greķis, Aldis

    2015-01-01

    This study presents the analysis of energy consumption for domestic hot water in apartment buildings in Riga, Latvia. The aggregate data contains information about 39 apartment buildings, including heat energy consumption and domestic hot water (DHW) consumption. The analysis is focused on the heat energy consumption and seasonal characteristics in the DHW system.The analysis characterizes the DHW consumption, energy consumption for DHW and energy losses in the DHW systems in apartment buildi...

  6. 生活垃圾焚烧炉混烧医疗废物的利与弊——以上海御桥生活垃圾焚烧发电厂为例%Advantage and Disadvantage of Waste Incinerator Burning Domestic Waste with Medical Waste:Taking Shanghai Yuqiao Domestic Waste Incineration Plant as an Example

    王炜岚

    2013-01-01

    By comparing with operating data of Shanghai Yuqiao Domestic Waste Incineration Plant in 5 years, changes of operational parameter after the waste incinerator burning domestic waste with medical waste were analyzed, as well as influences of the system on operational situation, life cycle of equipment, and production cost.%通过对上海御桥生活垃圾焚烧发电厂前后5a的运行数据的比较,分析了生活垃圾焚烧炉混烧医疗废弃物后运行参数的变化及其系统对运行工况、设备寿命及生产成本的影响.

  7. Measuring domestic water use: A systematic review of methodologies that measure unmetered water use in low-income settings

    Tamason, Charlotte C.; Bessias, Sophia; Villada, Adriana

    2016-01-01

    Objective: To present a systematic review of methods for measuring domestic water use in settings where water meters cannot be used. Methods: We systematically searched EMBASE, PubMed, Water Intelligence Online, Water Engineering and Development Center, IEEExplore, Scielo, and Science Direct data...

  8. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  9. Lesion profiling and subcellular prion localization of cervid chronic wasting disease in domestic cats.

    Seelig, D M; Nalls, A V; Flasik, M; Frank, V; Eaton, S; Mathiason, C K; Hoover, E A

    2015-01-01

    Chronic wasting disease (CWD) is an efficiently transmitted, fatal, and progressive prion disease of cervids with an as yet to be fully clarified host range. While outbred domestic cats (Felis catus) have recently been shown to be susceptible to experimental CWD infection, the neuropathologic features of the infection are lacking. Such information is vital to provide diagnostic power in the event of natural interspecies transmission and insights into host and strain interactions in interspecies prion infection. Using light microscopy and immunohistochemistry, we detail the topographic pattern of neural spongiosis (the "lesion profile") and the distribution of misfolded prion protein in the primary and secondary passage of feline CWD (Fel(CWD)). We also evaluated cellular and subcellular associations between misfolded prion protein (PrP(D)) and central nervous system neurons and glial cell populations. From these studies, we (1) describe the novel neuropathologic profile of Fel(CWD), which is distinct from either cervid CWD or feline spongiform encephalopathy (FSE), and (2) provide evidence of serial passage-associated interspecies prion adaptation. In addition, we demonstrate through confocal analysis the successful co-localization of PrP(D) with neurons, astrocytes, microglia, lysosomes, and synaptophysin, which, in part, implicates each of these in the neuropathology of Fel(CWD). In conclusion, this work illustrates the simultaneous role of both host and strain in the development of a unique Fel(CWD) neuropathologic profile and that such a profile can be used to discriminate between Fel(CWD) and FSE.

  10. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  11. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  12. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  13. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  14. Region 9 NPDES Facilities - Waste Water Treatment Plants

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  15. Treatment for hydrazine-containing waste water solution

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  16. Problem Investigation and Countermeasures of Rural Domestic Waste%农村生活垃圾问题调查与对策

    高栋; 潘振华; 张艳美; 邢坤

    2013-01-01

    通过对胶南地区若干自然村生活垃圾处理及其污染问题进行调研对比,探讨适合农村地区生活垃圾处理和污染治理的技术措施.%By comparing domestic waste treatment and pollution problems in several villages of the Jiaonan Area, the technical measures for rural domestic waste treatment and pollution control were discussed.

  17. Aerospace vehicle water-waste management

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  18. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter. The e...... consideration of the required hot water comfort.......CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter....... The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle...

  19. Submerged demineralize system processing of TMI-2 accident waste water

    Sanchez, H.F.; Quinn, G.J.

    1983-02-01

    Accident-generated radioactive waste at Three Mile Island Unit 2 includes a varity of high and low specific-activity waste. The high-specific-activity waste, particularly over one million gallons of contaminated water, required special processing and secondary waste handling. General public utilities and its contractors developed a zeolite-based ion-exchange system called the Submerged Demineralizer System to reduce contamination levels in the water to below allowable limits. Testing and modifications resulted in an operating system that had successfully processed waste water from the Reactor Coolant Bleed Tanks, the Reactor Building Basement, and the Reactor Coolant System as of August 1982. System design objectives were met and decontamination criteria established in 10 CFR 20 were attained. Additional wastes that could not be handled routinely were generated by another water-processing system, called EPICOR II. EPICOR II wastes are discussed. Low-specific-activity (LSA) wastes such as trash and resin-bed waste canisters are also included in handling. LSA wastes are routinely handled and shipped according to existing industry practice. Plant records are summarized to provide approximate yearly volumes and curie loadings of low-specific-activity wastes being shipped off the Island to a commercial burial site.

  20. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    to estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...... for each source was calculated in relation to the total mass flow into the waste water plant, making it possible to evaluate the absolute and relative importance of each type of source. The sources investigated accounted for about 12% of the influx of DEHP, the predominating phthalate, to the waste water...... sample. The deposition concentrations were very low compared to the waste water. The deposition rates showed a seasonal variation with a minimum occurring two month after the winter temperature minimum. Surprisingly, no influence of the wind speed and direction was indicated. The concentration...

  1. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  2. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  3. POSSIBILITIES FOR WASTE WATER UTITLIZATION FROM CANNING INDUSTRY

    A. Kraevska

    2014-03-01

    Full Text Available Waste waters from the different processing sectors (branch, activities of the canning factories was investigated. It was established that the greatest organic pollution is a result of the production of frozen half-fried potatoes. The possibilities of reducing of the organic pollution by cultivating fungi of the genus Aspergillus and Trichoderma in the waste waters was studied.

  4. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  5. Method of treating ammonia-comprising waste water

    Van Loosdrecht, M.C.M.; Jetten, M.S.M.

    1998-01-01

    The invention relates to a method of treating ammonia-comprising waste water in which the bicarbonate ion is the counter ion of the ammonium ion present in the waste water. According to the invention half the ammonium is converted into nitrite, yielding an ammonia- and nitrite-containing solution, a

  6. Decrease of antiandrogenic activity in gray water and domestic wastewater treated by the MBR process.

    Ma, Dehua; Chen, Lujun; Lui, Rui

    2013-03-01

    In order to figure out the variation of the androgens/antiandrogens in wastewater treatment, androgenic/antiandrogenic activities were investigated in two membrane bioreactors (MBR) treating gray water and domestic wastewater, respectively, in Beijing city, China. The androgens and antiandrogens were extracted from water and solid samples by a solid phase extraction (SPE) method and the androgenic/antiandrogenic activities were detected with a recombined androgen receptor (AR) yeast assay. The results showed that there were no androgenic induction activities either in water or in solid samples, but all samples exhibited obvious antiandrogenic activities. The antiandrogenic activities in the suspended solids contributed to 27.4% of the total antiandrogenic activities in gray water and 37.7% in domestic wastewater. Although the concentration of flutamide equivalent (FEQ) of the domestic wastewater (3.1 mg L(-1)) was about three times higher than that of the gray water (1.1 mg L-(1)) in the liquid phase, the effluent FEQ of the two processes was comparable, and the concentrations were 53.7 ± 2.4 μg L(-1) and 68.9 ± 6.0 μg L(-1), respectively. By mass balance analysis, a total of 1825.2 mg FEQ antiandrogens flowed into the gray water and 4914.1 mg flowed into the domestic wastewater treatment process every day. More than 95% of the influent antiandrogens in the liquid phase was removed in both systems. And only 64.5 mg and 69.0 mg FEQ antiandrogens flowed out of gray water and domestic wastewater treatment processes every day. Biodegradation was considered to be the crucial antiandrogen removal mechanism in MBR, which contributed to 98% of the antiandrogen removal in the gray water treatment plant, and 91% in the domestic wastewater treatment plant.

  7. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...

  8. Domestic water uses: characterization of daily cycles in the north region of Portugal.

    Matos, Cristina; Teixeira, Carlos A; Duarte, A A L S; Bentes, I

    2013-08-01

    Nowadays, there is an increasing discussion among specialists about water use efficiency and the best measures to improve it. In Portugal, there have been a few attempts to expand the implementation of in situ water reuse projects. However, there is a lack of information about indoor water uses and how they are influenced by sociodemographic characteristics. There are several studies that investigate per capita global water usage, but the partitioning of this volume per domestic device and daily cycles is yet unknown. Identified as one of the key questions in sustainable building design, the water end-use is of primary importance to the design of hydraulic networks in buildings. In order to overcome this lack, a quantitative characterization of daily water uses for each domestic device was performed, based on a weekly monitoring program in fifty-two different dwellings in the northern region of Portugal (Vila Real, Valpaços and Oporto). For forty of them, each water usage of different domestic devices of each dwelling was recorded. At the same time, the remaining twelve dwellings were also monitored in order to register the volume of water consumed in each utilization of each domestic device. This paper presents the results of this complete monitoring program, using collected data to establish indoor water use patterns for each domestic device, aiming to support a more realistic approach to residential water use. The daily cycles in the different cities, where the monitoring program was performed, are also presented, in order to evaluate possible influences of sociodemographic characteristics.

  9. Non-parametric method for separating domestic hot water heating spikes and space heating

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo;

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...... short-lived spikes in the time series, while the space heating changes in slower patterns during the day dependent on the climate and user behavior. The challenge is to separate the domestic hot water heating spikes from the space heating without affecting the natural noise in the space heating...... measurements. The assumption behind the developed method is that the space heating can be estimated by a non-parametric kernel smoother, such that every value significantly above this kernel smoother estimate is identified as a domestic hot water heating spike. First, it is showed how a basic kernel smoothing...

  10. Life cycle assessment of advanced waste water treatment

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  11. EnviroAtlas - Durham, NC - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using locally available water use data per capita in gallons of water per...

  12. EnviroAtlas - Pittsburgh, PA - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  13. EnviroAtlas - Fresno, CA - Domestic Water Demand per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  14. EnviroAtlas - Cleveland, OH - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community-level domestic water use is calculated using locally available water use data per capita in gallons of water...

  15. EnviroAtlas - Milwaukee, WI - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  16. EnviroAtlas - Portland, OR - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  17. EnviroAtlas - New Bedford, MA - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  18. EnviroAtlas - Green Bay, WI - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  19. EnviroAtlas - Tampa, FL - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  20. EnviroAtlas - Des Moines, IA - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  1. EnviroAtlas - New York, NY - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  2. EnviroAtlas - Austin, TX - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  3. EnviroAtlas - Woodbine, IA - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  4. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  5. EnviroAtlas - Minneapolis/St Paul, MN - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  6. EnviroAtlas - Memphis, TN - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  7. EnviroAtlas - Paterson, NJ - Domestic Water Use per Day by U.S. Census Block Group

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  8. Efficiency Research on Meat Industry Waste Water Treatment Applying the Method of Dissolved Air Flotation

    Valentinas Gerasimovas; Robertas Urbanavičius

    2012-01-01

    To protect environment from industrial pollution, strict requirements for waste water treatment are imposed. The purpose of research is to establish an optimal ratio of saturated liquid and meat industry waste water. Research included JCC “Traidenis” waste water treatment system installed in JSC “BHJ Baltic”. Investigations into treated waste water indicated that an optimal ratio of waste water and saturated liquid was 2/1 under duration time of 8 minutes. Efficient waste water treatment made...

  9. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  10. Microbiological treatment of oil mill waste waters

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpech

  11. Preliminary design package for Sunspot Domestic Hot Water Heating System

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  12. Impact of Training Program to Rationalize Consumption of Domestic Water Usages

    Mohammad Said Damanhouri

    2012-01-01

    Full Text Available Problem statement: Reducing water consumption in terms of scarcity of water in Jordan which needs to rationalize consumption of the domestic water usages by some families in Amman-Jordan. Approach: This study aimed to decrease water consumption in household usages and to involve and encouraging the pioneer students in voluntary efforts to reduce domestic water. The study sample consisted of 121 female students of Princess’ Alia University College represented 121 Jordanian families in Amman. They trained to reduce flow of water and the time during usage water in kitchen; toilet; bathroom; washing cars; and to put a plastic bottle full of half liter of water in the toilet’s water tank. Economical and social variables of families were obtained from special questionnaire of this study, data were formed from previous measurements and information; the data analyzed throughout a simple statistical approach. Results: The families whom represented this study sample have positively responded for the proposed program; through reducing water consumption in domestic usages. The most important factor effects on rationalized water consumption are: Average monthly income, average family members, average of family members ages, the size of water tank of the toilet, size of shower used. Conclusion/Recommendations: The study concluded that the amount of preserved water in a bathroom may reach 25%, in kitchen 29, in toilet 10%, in washing cars 9%, of water consumption before implementation program at each of the previous sectors. The total amount of preserved water in Amman may reach to 11 million cubic meters annually. The study recommends implementing this simple program on the whole of Jordanian families as much as possible and encouraging the Jordanian citizens to use different tools, means, programs that may control water consumption and to recycle the used water as possible.""

  13. Detection of Legionella pneumophila from domestic water and their antibiotic resistance profiles

    ZekiAras; Zafer Sayn

    2015-01-01

    Objective: To investigate the presence of Legionella pneumophila (L. pneumophila) in domestic water in Bitlis province and to determine the in vitro susceptibility of the isolates against several antibiotics. Methods: A total of 320 tap water samples were collected from the urban areas and villages of Bitlis province during the period from May to December 2010. All samples were cultured on plates of buffered charcoal yeast extract agar. L. pneumophila strains were tested for antimicrobial susceptibility by the disk diffusion method. Results: L. pneumophila strains were isolated from six (1.9%) domestic water samples. All isolates were typed as L. pneumophila serogroup 1 by latex agglutination test. Four of strains were isolated in July and two of them were detected in August. Antibiotic susceptibility testing was carried out on six L. pneumophila serogroup 1 isolates. Of the six strains, two was resistant to erythromycin and streptomycin, four were resistant to ampicillin and gentamicin, but all were sensitive to chloramphenicol and doxycycline. Conclusions: Our results indicate that L. pneumophila serogroup 1 is the most common type in the domestic water samples and threats public health. This is the first report of L. pneumophila in domestic water samples from Bitlis province.

  14. Solar system for domestic hot water and space heating

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  15. Rainwater Harvesting Potential for Domestic Water Supply in Edo State

    S. I. Oni; Emmanuel Ege

    2008-01-01

    In the face of increasing scarcity of water resources, there is a need for communities to undertake audits of their current rainwater harvesting potential as a practical and promising alternative solution for water shortage. Despite the importance of rainwater harvest in socio-economic development of communities, very little information exists in the literature concerning it. This paper is an attempt to bridge this gap by examining the techniques and materials used for rainwater harvest with ...

  16. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  17. Water and waste water reclamation in a 21st century space colony

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  18. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  20. Valorization technics by means of vermiculture for fatty wastes resulting from wastes water purification plants

    Vignoles, C. (Service Assainissement, 31 - Toulouse (France))

    Fats, scums and other floating organic wastes extracted from waste water purification plants have always caused important problems of treatment to specialists. Municipal and technical services of Toulouse have elaborated an original valorization process. Results are simultaneously spectacular for environment and economically reasonable. One may think that this natural method is bound to experience interesting developments in the future.

  1. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  2. Attributes of Domestic Water Sources in a Rapidly Urbanizing State Capital in a Developing Economy

    A. E. Olajuyigbe

    2010-01-01

    Full Text Available Problem statement: The efficiency and effectiveness of domestic water sources are often gauged by availability, accessibility and adequacy. This study examined various variables that could be harnessed in measuring these parameters with respect to water supply in Ado-Ekiti, Nigeria. Approach: The purpose of this study is to investigate the various attributes of domestic water sources in Ado-Ekiti, Nigeria. Three residential zones were identified in the city. They included the urban core, transitional zone and urban periphery. A sample size of 1,200 amounting to 4.0% of the total number of households in Ado-Ekiti, was chosen. Specific areas referred to as Data Delineation Areas (DDAs were identified in each zone. Based on the estimated population of each DDA, the number of households to be interviewed was estimated. In consonance with some assumptions, 600 (50.0% questionnaires were administered in the city core while 420 (35.0% and 180 (15.0% questionnaires were administered in the transitional zone and urban periphery, respectively. Subsequently, systematic sampling procedure was adopted in the choice of households to be interviewed. Some of the attributes investigated included the main source of domestic water used by household, access to improved source of water, distance from improved source to residence, average time spent to fetch from main source, average number of trips per person per day, quantity of water used per person per day and attack by water-borne diseases. Results: Households in Ado-Ekiti had access to diverse sources of domestic water including wells, boreholes, streams/rivers/springs, tanker-drawn water and rainwater. However, most households (59.8% depended on wells. Nevertheless, 84.3% had access to improved sources. Only 10.0% of these households obtained supplies from piped water while piped network is largely restricted to the city core. The research showed that distance, time, number of trips and adequacy of supplies

  3. Co-digestion of source segregated domestic food waste to improve process stability

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Cattle slurry and card packaging were used to improve the operational stability of food waste digestion, with the aim of reducing digestate total ammoniacal nitrogen concentrations compared to food waste only. Use of cattle slurry could have major environmental benefits through reducing greenhouse gas emissions associated with current management practices; whilst card packaging is closely linked to food waste and could be co-collected as a source segregated material. Both options increase the...

  4. Optimization of China´s centralized domestic hot water system by applying Danish elements

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric;

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries that have district heating (DH) infrastructure, such as Denmark and China, combine spacing heating (SH) and DHW together, with the aim of having a...

  5. Technical comparison of domestic hot water system which used in China and Denmark

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric;

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries, which have district heating infrastructure, combine spacing heating (SH) and DHW together, with the aim of having a smart, energy efficient and e...

  6. Optimization of China's centralized domestic hot water system by applying Danish elements

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric;

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries that have district heating (DH) infrastructure, such as Denmark and China, combine spacing heating (SH) and DHW together, with the aim of having a...

  7. Enhancing user comfort models for Demand Response solutions for domestic water heating systems

    Belov, Alexander; Vasenev, Alexandr; Havinga, Paul J.M.; Meratnia, Nirvana

    2016-01-01

    Demand Side Management (DSM) solutions for domestic Water Heaters (WHs) can assist consumers benefit financially by optimizing their energy usage. However, users’ dissatisfaction caused by negative impact of DSM on their comfort may force them to reject the provided solutions. To facilitate DSM adop

  8. Solar heating and domestic hot water system installed at North Dallas High School

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  9. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  10. Economies of density for on-site waste water treatment

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied ext

  11. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  12. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  13. Air flotation treatment of salmon processing waste water

    US Fish and Wildlife Service, Department of the Interior — This paper discusses methods for the reduction of the pollution strength of salmon processing waste water. Past research has indicated the success of air pressure...

  14. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this the

  15. The impact of industrial waste of Venezuelan marine water

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  16. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  17. Application of Water Treatment Process for Cold-rolling Waste Water to Be Drained into Natural Water%排至自然水体的冷轧废水处理工艺应用

    尹军喜

    2014-01-01

    The water treatment process for cold rolling waste water to be drained into natural water is introduced. Treatment methods for cold rolling waste water containing chrome, acid, oil, temper mill fluid and thin alkali are summarized. The main problems and functions of the process are also analyzed. This water treatment process has reached the advanced level in the field of domestic cold rolling waste water treatment.%介绍了排至自然水体的冷轧废水处理工艺,综述了冷轧废水中含铬废水、含酸废水、含油废水、平整液废水、稀碱废水的处理方法,对主要问题和功能进行了分析,其处理工艺达到了国内冷轧废水的先进水平。

  18. Impact of domestic sewage on fresh water body.

    Shiddamallayya, N; Pratima, M

    2008-05-01

    In the present study various (physico-chemical) factors were assessed over a period of two years (from February 2002 to January 2004) to note the chemistry and quality of tank water in Bhalki town of Bidar. Physico-chemical factors like pH, dissolved oxygen, magnesium, chlorine, nitrite, sulphates and chemical oxygen demand were found with maximum concentration during summer season. Similarly, during monsoon season free carbon dioxide, alkalinity hardness, calcium, phosphate, silicon, total solids and biological oxygen demand; and in winter season organic matter were recorded. The concentrations viz., pH, hardness and nitrite were more compared to the potable water standard of WHO. The correlation matrix and dendrogram of physico-chemical factors have been computed and analysed. The positive co-relation coefficient observed between pH and magnesium, dissolved oxygen and hardness, free carbondioxide and calcium, alkalinity and nitrite, alkalinityand phosphate, alkalinity and biological oxygen demand, hardness and calcium, hardness and magnesium, magnesium and chlorine, nitrate and phosphate, nitrite and biological oxygen demand, phosphate and organic matter; and silicon and chemical oxygen demand. The dendrogram confirms chlorine, pH, hardness, silicon, total solids and sulphates are the key factors of the change in the chemistry of water body

  19. Method of purifying tenside and detergent contaminated waste waters

    Schieder, E.; Stoiber, R.

    1981-12-01

    Purifying waste waters contaminated with tensides, from nuclear power plants and other plants in which radioactive substances are processed wherein before return of the water to the plant, the water is passed through an evaporator and a mixed-bed filter. Contaminant content of the water is materially reduced by first acidifying the waste water to a ph of 2.5-3, then treating with activated carbon, KNMO/sub 4/, MNSO/sub 4/ and CACO/sub 3/, and thereafter raising the ph to 8.5-9. The mixture is permitted to form a lower sludge layer and a supernatant water layer. The sludge layer is sent to waste disposal and the supernatant layer is directed to the evaporator.

  20. Discharge and Treatment of Waste Water in Denmark

    Larsen, Torben

    1990-01-01

    a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas.......This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...

  1. The National Shipbuilding Research Program. Waste Water Treatment Technology Survey

    1998-05-18

    clearwell . From this clearwell , the contaminated water is transferred to the induced air flotation process. The influent water is chemically pretreated to...stream is directed to a waste oil storage tank while the contaminated water flows into the equalization clearwell . From this clearwell , the...contaminated water flows into the equalization clearwell . From this clearwell , the contaminated water is transferred to the Induced Air Flotation

  2. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  3. A novel domestic electric water heater model for a multi-objective demand side management program

    Paull, Liam; Li, Howard; Chang, Liuchen [University of New Brunswick, Department of Electrical Engineering, Fredericton, NB (Canada)

    2010-12-15

    This paper presents a novel domestic hot water heater model to be used in a multi-objective demand side management program. The model incorporates both the thermal losses and the water usage to determine the temperature of the water in the tank. Water heater loads are extracted from household load data and then used to determine the household water usage patterns. The benefits of the model are: (1) the on/off state of the water heater and temperature of the water in the tank can be accurately predicted, and (2) it enables the development of water usage profiles so that users can be classified based on usage behaviour. As a result, the amount of ancillary services and peak shaving that can be achieved are accurately predictable and can be maximized without adversely affecting users. (author)

  4. Management of Rural Domestic Waste Collection and Transportation in Shenyang%沈阳市农村生活垃圾收运管理探讨

    李季; 张云

    2012-01-01

    介绍了沈阳市农村生活垃圾收运及处理设施现状,分析了收运体系存在的问题,提出应尽快颁布实施农村生活垃圾管理条例,推进农村环卫体制建设以形成市、县、乡、村完善的管理体系,加强农民环保意识普及力度,推进农村生活垃圾处理科技创新,提高农村生活垃圾资源化利用效率等建议.%The status of collection,transportation and treatment facilities for rural domestic waste in Shenyang were introduced.Existing problems in waste collection and transportation system were analyzed.And some suggestions were put forward,that is,promulgating management regulations of rural domestic waste as quickly as possible,promoting the construction of rural environmental sanitation system to form the perfect management system of city,county,town and village,strengthening the popularization of rural environmental awareness,promoting technological innovation of rural domestic waste treatment,improving utilization efficiency of rural domestic waste reclamation,and so on.

  5. Treatment of waste water from textile Finishing mills (Part 7). Comparison and combination of treatment methods on actual waste water

    Widayat; Winiati, W.; Indarto; Amirdin; Kusno, P.; Jufri, R.; Higashi, Kunishige; Hagiwara, Kazuyoshi; Saito, Toshihide; Honda, Shigeru

    1987-03-25

    Comparison of coagulative precipitation treatment, activated sludge treatment, and active carbon adsorption treatment was studied on the actual waste water from two dyeing factories (A and B) located in Bandung City, Indonesia. Quality of waste waters was evaluated by the measurement of pH, COD, BOD, and absorption spectrum. The waste water A had COD value of 180 mg/l, and the ratio of BOD to COD was 1.2. Biological oxidation, therefore, looks effective for this waste water. The COD removals became 67% and 83% by coagulative precipitation method and activated sludge respectively. The coagulative precipitation treatment followed by the activated sludge treatment made COD removal to 100%. The waste water B had COD value of 1005 mg/l, and the ratio of BOD to COD was 0.20. THe COD removal became 58% and 72% by coagulative method and the coagulation method followed by the activated sludge method respectively. For removing dyestuff in the waste water, both coagulative precipitation method and activated carbon absorption treatment were effective. (4 figs, 4 tabs, 3 refs)

  6. Synthesis of Cationic PEM Emulsion and Application in Waste Water Treatment

    ZHANG Zhi-bin; LI Min; FANG Yi; SONG Hong; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    Cationic polymer as a kind of flocculant is widely applied in purification treatment of waste water. Because it has positive charge group, it is able to connect strongly the suspended matters, short cellulose and other microparticles. The research on synthesis of cationic polymer and application in treatment of waste water is very universal abroad. But domestic research on those is not general. The technology of synthesis of PEM is simple, and the production cost is low. It is easy to apply in treatment of waste water.Synthesis of PEM Emulsion FlocculantSome distilled water, PVA(poly(vinyl alcohol)), EA(ethyl acrylate), and K2S2O8(potassium persulfate) were put into reaction vessel. Kept stirring up under nitrogen. When heated the solution to 40℃, dropped the water solution of MTA[(2-methacryloxylethyl)trimethyl ammonium].Maintained the temperature at 70℃, reacted about 7-8 hours. Then got the PEM emulsion. Changed the ratio of EA and MTA. Obtained a series of PEM emulsions.Stability and Convertibility of PEM EmulsionThe test results showed that when the EA/MTA was 85/15, the PEM emulsion was most stable.When the total monomer quantity was 35%, the convertibility of PEM emulsion was the highest,i.e.98.6%.The MTA Copolymerization Ratio and Morphology of PEM EmulsionWhen the monomers EA/MTA=85/15 and total monomer quantity was 35%, the MTA copolymerization ratio of PEM emulsion was 95.15%(the highest), and the PEM emulsion was some microspheres with 100-180nm of diameter.The Test Results of PEM Emulsion in Treatment of Waste Water The PEM emulsion flocculant was applied in treatment of waste water of paper mill, and measured the precipitation time(t) and transmittancy(T). The test results were showed in table 1. The optimum value of PEM which was able to make the waste water of paper mill into clear water was 0.008%.

  7. Status and Prospect of Domestic Waste Incineration%生活垃圾焚烧技术现状思考及展望

    昝文安

    2011-01-01

    Application status of domestic waste incineration technology in China was introduced Understandings of incineration technology and relative standards were expounded, and development of waste incineration technology was expected.%阐述了我国生活垃圾焚烧处理技术应用现状,简述了对焚烧处理技术及相关标准的理解,并对焚烧技术的发展进行展望.

  8. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  9. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  10. Coagulation & Ultra-filtration of Laundry Waste Waters using the Shower Water Reuse System (SWRS)

    2013-12-19

    waste water: Cationic polymers for removal of contaminants and decreased fouling in microfiltration , Journal of Membrane Science (11 2013) Xia... microfiltration of laundry wastewater, Journal of Membrane Science (12 2013) TOTAL: 2 Books Number of Manuscripts: Patents Submitted Patents Awarded...SECURITY CLASSIFICATION OF: The objective was to determine the optimal coagulation conditions for pre-treating laundry waste water before microfiltration

  11. Photocatalytic post-treatment in waste water reclamation systems

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  12. Optimal control of a waste water cleaning plant

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  13. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  14. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  15. Composting of domestic wastes: development and optimization of reactor continuous; Compostaje domestico : desarrollo y optimizacion de un reactor en continuo

    Rad, C.; Gonzalez-Carcedo, S.; Revenga, J. M.; Bustillo-Nunez, J. M.; Marcos-Naveira, L. A. [Universidad de Burgos (Spain); Monje, J. C.; Bustillo-Iglesias, A.

    2002-07-01

    In this work, a mixture of the organic fraction of a domestic waste and wooden chips has been composted using an in vessel composting apparatus with forced aeration and a continuous compost collection system. After three months with a daily addition of a fixed organic charge,temperature and moisture control, five samples of compost were collected and tested in their chemical and biological characteristics. Odour production and low temperatures and moisture contents during the process,high saline concentration and the presence of pathogenic microorganisms in the final product are the main disadvantages of this experience. Although, a good C/N ratio, neutral pH and high levels of nutrients (N and P) in the compost have been achieved,the parameters controlling the process must be improved. (Author) 16 refs.

  16. Investigating the Effectiveness of Ultraviolet (UV Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    Olaoye

    2012-08-01

    Full Text Available Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel, to chlorine dosing and contact withUV light, over a period of seven (7 days without pre-filtration, and additional seven (7 days with pre-filtration. Pre-filtration was accomplished by the use of a calibrated pressure filter. Effluent water samples were taken daily for the two (2 scenarios to the laboratory for physical, chemical and biological analyses. The resultsindicated that UV water purification method was more effective only when pre-filtration of raw water was introduced. With monitored prefiltration prior to ultraviolet purification, the colony count, MPN Coliform Organisms and MPN E. Coli Organisms recorded seven day-average values of 1, 0 and 0, respectively. In both scenarios, it was confirmed that UV method produced no bi-products and did not alter the taste, pH or other properties of water, in contradistiction to chlorine disinfection method

  17. Heavy metals in the waste and in the water discharge area of municipal solid waste

    Luiz Ermindo Cavallet

    2013-12-01

    Full Text Available The county of Paranaguá discards 80 tons of municipal solid waste (MSW daily in the Embocuí landfill without proper treatment. The present study aimed to evaluate the concentration of arsenic (As, cadmium (Cd, chromium (Cr, lead (Pb and mercury (Hg in the dump area and to compare it with reference values for soil and water quality stipulated by CETESB (2005. The methodology of the study involved the collection of waste samples (organic waste mixed with soil from a depth of 1 m deep at 12 points of the dump, and the collection of water samples from a depth of 3 m at 3 points in the deposited waste. Extraction of heavy metals in the water samples was performed according to the USEPA (1999 method and analysis followed ICP-OES (Inductively Coupled Plasma - Atomic Emission Spectrometry. Analysis of the solid waste samples showed the following concentrations: (mg kg -1: As < 10; Cd < 1; Cr = 26; Pb = 52; e Hg = 0.2. The water samples showed the following concentrations: (mg L- 1: As < 5; Cd < 5; Cr =29 e Pb = 10. The amounts of heavy metals in samples of tailings and water from the landfill area fall below the values considered to create a risk of contamination.

  18. Some problems connected with the centralized production of domestic hot water

    Cirillo, E.; Lazzarin, R.; Piccininni, F.; Caliari, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1988-12-01

    In the course of an experimental study carried out on a centralized plant (4 boilers x 27 kW with two 2.6 cubic meters/h return pumps) supplying domestic hot water to 13 condominiums, the energy costs of recirculation were analyzed. Since the losses due to recirculation were of the same order as the useful energy, the influence of the various parameters on the losses was studied and some methods to lower them were proposed.

  19. Energy analysis of a central domestic hot water heating system equipped with condensing boilers

    Cirillo, E.; Lazzarin, R.; Piccininni, F. (Bologna Univ. (Italy). Ist. di Fisica); Caliari, R. (Servizio Energia, Provincia Autonoma di Trento (IT))

    1990-01-01

    An experimental study was carried out on a central plant for the heating of domestic hot water for a block of 143 flats and 15 offices. The behaviour of the condensing boilers serving the plant was examined and the energy costs of recirculation and distribution were analysed. Since the losses due to recirculation are of the same order as the useful energy, the influence of the various parameters on the losses has been studied, and some methods of lowering them are proposed. (author).

  20. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems......The aim of the project is to present results of measurements and theoretical calculations for solar domestic hot water systems installed and tested in the laboratory and in practice. The solar domestic hot water systems from which results are presented are all based on small tanks. Further, reasons...

  1. Application Test of Cowpea with Domestic Waste Compost%生活垃圾堆肥在豇豆上的应用试验

    曾明; 陈康; 许晓波

    2012-01-01

    According to the application test of cowpea with municipal domestic waste compost, the output, quality and cultivating soil have not changed significantly.%通过城市生活垃圾堆肥在豇豆的应用试验,得出其产量、质量以及栽培土壤没有显著变化.

  2. Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria

    Grace Mebi Ayanbimpe

    2013-01-01

    Full Text Available Water used for domestic purposes is ideally required to be free from contaminants. Various contaminants have frequently affected the quality of such water. Water samples were obtained from 150 sources including 72 wells, 60 streams, 17 taps, and one borehole, randomly selected from five residential areas in Jos, Nigeria. Structured questionnaires and one-to- one interview was used to obtain information on features of location and use of facilities in each area. Eighty (53.3% water sources were contaminated, predominantly wells (70.8%. The locations (identified in code with the highest number of contaminated sources were AGO (60.0%, GBU (56.7% and FGD (56.7%. AGD and FGD also had the highest ratio of households to one water source (25:1. Eighty- two fungi were isolated, predominantly Candida tropicalis (23.2%, Candida lipolytica (10.9% and Rhodotorula sp (9.7%. Candida lipolytica was the highest (42.9% contaminant in tap water. Rhodotorula sp was found in all types of water sources sampled. Type of water source had a significant effect (P<0.05 on the presence of some fungi in the water. The residential area (Location had a significant effect on contamination of water sources by some yeasts. Water sources for domestic use in Jos are contaminated by yeasts and yeast-like fungi. Frequency of use, exposure of the facility to dirt, and contaminations of surroundings contribute to the occurrence of fungi in water sources and, by implication, the prevalence of fungal infections.

  3. Water recovery using waste heat from coal fired power plants.

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  4. Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale Sciences Dept.; Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Energy Program; Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geosciences Dept.; Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Physical Chemical and Nano Sciences Center

    2017-01-01

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

  5. Methods for chemical analysis of water and wastes

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  6. Absorption type water chiller fired directly by waste heat

    Sauer, K. L.; Kalwar, K.

    1982-08-01

    The direct use of waste heat as heating element in a water chiller of the absorption type was studied. The chilled water is used as cooling element in the industrial process, producing the waste heat or for conditioning the workplace or further located places. The heat source is gaseous or liquid. The cooling capacity is in the range from 10 to 120 kW. After reviewing the different absorption systems, LiBr/H20 proved to be the most suitable. The process retained for experimenting was the manufacturing of synthetic materials polymer industry and was tested in two different factories. It is proved that the use of absorption type water chillers is practicable with an efficiency of 10% to 25% of the waste heat energy, but that the existing chillers need extensive conversion for obtaining economical operation when using a low temperature heating source.

  7. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  8. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  9. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  10. Experimental analysis on the use of condensing boilers for centralized production of domestic hot water

    Cirillo, E.; Lazzarin, R.; Piccininni, F.; Caliari, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1988-11-01

    The monthly performance of pulse combustion condensing boilers has been studied. The boilers are utilized in a plant for the centralized production of domestic hot water. The heating capacity is 112 kW with a daily production of 15 cubic meter of hot waters at 60 degrees centigrade. The analysis has shown the very good seasonal performance of the boilers even without a suitable plant design. The great importance of the heat distribution system has been outlined in order to reach good overall performance.

  11. Development of electrochemical denitrification from waste water containing ammonium nitrate

    Sawa, Toshio; Hirose, Yasuo; Ishii, Yoshinori; Takatsudo, Atsushi; Wakasugi, Kazuhico; Hayashi, Hiroshi

    1995-12-31

    The authors developed processes to dentrify waste water containing ammonium nitrate discharged from the nuclear fuel manufacturing works and to recover nitric acid and ammonia. For denitrification they applied the operating method and the conditions of operation to make 0.4mM or less from NH{sub 4}NO{sub 3} waste water of 1.5 M by 3 stages of electrodialysis cells. To recover nitric acid and ammonium water, they separated HNO{sub 3} solution of 6 M and NH{sub 4}OH solution with one unit of electrolysis cell, then absorbed NH{sub 3} gas from NH{sub 4}OH solution with water and applied the condition of operation to recover 8 M NH{sub 4}OH solution. The authors demonstrated that treatment and recovery can be carried out stably with actual waste water with a system through the combination of previously mentioned electrodialysis cells, electrolysis cells and an ammonia gas absorber. At present they are planning a plant where NH{sub 4}NO{sub 3} waste water of 4,500 mol can be treated per day.

  12. Ecotoxicity of waste water from industrial fires fighting

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  13. Waste Water Treatment Plants and the Smart Grid

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid...... energy markets and prices. We are in the process of upgrading the current control system to prepare a flexible operation and Smart Grid market integration. The prototype system will be tested online at a plant in Denmark, that in the current market could save up to 300.000 DKK/year in electricity costs...

  14. Process water - waste water - cooling water. Papers; Prozesswasser/Abwasser/Kuehlwasser. Vortraege

    Liese, F. (comp.)

    2002-07-01

    The 39th Metallurgical Seminar focused on water. Modern technologies for water purification and treatment were presented, legal boundary conditions were discussed, and aspects of process water, waste water and cooling water were gone into. Although the boundaries between these three types of water cannot be clearly defined, materials recovery is the prevalent aspect in process water treatment while waste water treatment primarily aims at reducing pollutant concentrations so that both environmental aspects and technical quality standards will be met. This proceedings volume attempts to give its readers a more precise picture of the issues at hand by presenting fundamental research, ecological and legal specifications, and selected examples of industrial applications. [German] Das 39. Metallurgische Seminar beschaeftigt sich mit Wasser. Neben der Praesentation grundsaetzlicher, moderner Techniken zur Reinhaltung und Aufbereitung von Wasser sowie der Darstellung der gesetzlichen Rahmenbedingungen umspannen die Fachvortraege Beitraege zu den Themen Prozesswasser, Abwasser, Kuehlwasser. Wenn auch die Grenzen innerhalb dieser Begriffe teilweise fliessend sind, so zeichnen sich die Prozesswaesser dadurch aus, dass man primaer - wie beispielsweise bei Waschsloesungen und Beizwaessern - an der Wiedergewinnung der Inhaltsstoffe interessiert ist, waehrend bei reinen Abwaessern und Kuehlturmwaessern bzw. deren Abschlaemmungen die massgebliche Aufgabe darin besteht, die Konzentration der Inhaltsstoffe so weit abzusenken, dass man einerseits den Umwelterfordernissen und andererseits den technischen Qualitaetsanforderungen gerecht wird. Ziel dieses Bandes ist es, an Hand von Grundlagen, der Darstellung der oekologischen und behoerdlichen Erfordernisse sowie ausgewaehlter Fallbeispiele aus der Industrie den Leserkreis naeher an diese Thematik heranzufuehren. (orig.)

  15. Quantitative Assessment of Water Use Efficiency in Urban and Domestic Buildings

    Vicente Santiago-Fandiño

    2013-08-01

    Full Text Available This paper discusses the potential of water savings at property, household and urban levels, through the application of environmentally sound technologies (ESTs, as well as their quantification using the software Wise Water. Household centered measures are identified that allow for significant reduction of drinking water consumption with comparatively small effort, and without limitation of comfort. Furthermore, a method for the estimation of water recycling, for rainwater harvesting and for the utilization potential as locally available renewable freshwater is presented. Based on this study, the average drinking water consumption in urban households of industrialized countries could be reduced by approximately one third, without significant investment costs, either within the framework of new constructions or by the remodeling of water and sanitation systems in residential buildings. By using a secondary water quality, the drinking water demand could even be reduced by 50%. In the case of an area-wide application, the overall fresh water demand of cities and the exploitation of fresh water resources could be significantly reduced. Due to the comparability of the domestic water use of the investigated households, the findings are internationally transferable, for example to countries in Europe, Asia, and also the USA.

  16. Facility for generating crew waste water product for ECLSS testing

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  17. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detailed...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  18. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  19. Intermittent Domestic Water Supply: A Critical Review and Analysis of Causal-Consequential Pathways

    S. E. Galaitsi

    2016-06-01

    Full Text Available Communities in many parts of the world, especially in developing countries, face obstacles in supplying continuous water to household consumers. Authorities often cite water scarcity as the cause, but we demonstrate that environmental constraints constitute only one aspect of a multi-dimensional problem. By asking what causes intermittent domestic water supply, this literature review (129 articles identifies 47 conditions of intermittent systems and the causal-consequential pathways between them that can reinforce intermittency. These pathways span several disciplines including engineering, government administration and anthropology, and when viewed together they (1 emphasize the human drivers of intermittency; (2 suggest generalized interventions; and (3 reveal a gap in the literature in terms of meaningful categorizations of the reliability of intermittent supplies. Based on the reliability of consumers’ water access, we propose three categories of intermittency—predictable, irregular, and unreliable—to facilitate comparisons between case studies and transfers of solutions.

  20. Relevance of hydrological variables in water-saving efficiency of domestic rainwater tanks: Multivariate statistical analysis

    Andrade, Leonardo Rosa; Maia, Adelena Gonçalves; Lucio, Paulo Sérgio

    2017-02-01

    This research investigated the relevance of four hydrological variables in the performance of a domestic rainwater harvesting (DRWH) system. The hydrological variables investigated are average annual rainfall (P), precipitation concentration degree (PCD), antecedent dry weather period (ADWP), and ratio of dry days to rainy days (nD/nR). Principal component analyses are used to group the water-saving efficiency into a select set of variables, and the relevance of the hydrological variables in a water-saving efficiency system was studied using canonical correlation analysis. The P associated with PCD, ADWP, or nD/nR attained a better correlation with water-saving efficiency than single P. We conclude that empirical models that represent a large combinations of roof-surface areas, rainwater-tank sizes, water demands, and rainfall regimes should also consider a variable for precipitation temporal variability, and treat it as an independent variable.

  1. Performance monitoring of a multi-unit solar domestic hot water system

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1994-12-01

    A solar domestic hot water (SDHW) system was installed on an existing multi-family apartment building in 1991. Energy monitoring hardware was installed in 1992. It was a preheat system that was retrofitted upstream of existing hot water tanks located in the building. Monitoring of the system continued for eight months. As a result of this monitoring, average daily values could be made available for each month, as well as values of incident solar radiation, outdoor temperature, hot water use, total system energy, auxiliary energy, solar energy delivered to the load, energy loss from the recirculation loop and pump run time. Performance results indicated that the system performed at a level close to simulated values, but that system performance during the summer period was severely reduced due to low hot water usage. 5 refs., 12 figs., 2 tabs.

  2. Monitoring the waste water of LEP

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  3. Prevalence and diversity of Chlamydiales and other amoeba-resisting bacteria in domestic drinking water systems

    J. Lienard

    2017-01-01

    Full Text Available A growing number of human infections incriminate environmental bacteria that have evolved virulent mechanisms to resist amoebae and use them as a replicative niche. These bacteria are designated amoeba-resisting bacteria (ARB. Despite the isolation of these ARB in various human clinical samples, the possible source of infection remains undetermined in most cases. However, it is known that the ARB Legionella pneumophila, for instance, causes a respiratory infection in susceptible hosts after inhalation of contaminated water aerosols from various sources. The Chlamydiales order contains many ARB, such as Parachlamydia acanthamoebae or Simkania negevensis, previously implicated in human respiratory infections with no identified contamination sources. We thus investigated whether domestic water systems are a potential source of transmission of these Chlamydiales to humans by using amoebal culture and molecular methods. Other important ARB such as mycobacteria and Legionella were also investigated, as were their possible amoebal hosts. This work reports for the first time a very high prevalence and diversity of Chlamydiales in drinking water, being detected in 35 (72.9% of 48 investigated domestic water systems, with members of the Parachlamydiaceae family being dominantly detected. Furthermore, various Legionella and mycobacteria species were also recovered, some species of which are known to be causal agents of human infections.

  4. Treatment Technologies for Municipal Domestic Waste in China%我国的城市生活垃圾处理技术

    杜娟

    2011-01-01

    The surge of municipal domestic waste was a serious threat to the environment,thus the innocuous disposal,reduction and beneficial utilization of the waste were more important now than ever before.A review of domestic waste disposal techniques was presented which focused on China's waste incineration technology.Several popular waste incineration technologies were compared and China's waste incineration technology trends were discussed.%城市生活垃圾产量剧增,严重危害人类生存环境,实现垃圾的无害化、减量化、资源化处理迫在眉睫。本文对国内外的垃圾处理技术进行了全面介绍,重点讨论了我国的垃圾焚烧处理技术。讨论评价了不同焚烧技术的优劣并预测了我国垃圾焚烧技术的发展趋势。

  5. N-SINK - reduction of waste water nitrogen load

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  6. Integrated waste and water management in mining and metallurgical industries

    B.K.C.CHAN; S.BOUZALAKOS; A.W.L.DUDENEY

    2008-01-01

    Extractive operations usually co-produce large quantities of unmarketable materials (mineral wastes),most of which are conventionally discarded to dumps (coarse material) and tailings ponds (fines).Escalating cost and regulation worldwide highlight an increasing need for reduction and re-use of such wastes.The present paper introduces a new integrated waste management scheme for solids and water.The scheme was exemplified by novel treatment of synthetic waste and process water linked to the biohydrometallurgical processing of metal sulphide flotation concentrates.Bioleaching of sulphide concentrate leads to two types of solid waste:a ferrihydrite/gypsum precipitate from neutralisation of the bioleach liquor and un-leached gangue.The paper indicates that,depending upon the minor components involved,the solid phases in admixture might be usefully distributed among three types of product:conventional underground backfill,cemented civil engineering backfill (particularly controlled low strength material or CLSM) and manufactured soil.It emphasizes CLSM containing simulated mineral waste,showing that such material can exhibit the required characteristics of strength,porosity and permeability.When toxic components,e.g.,arsenic from refractory gold ore,are present,encapsulation will be required.Process water is typically recycled as far as possible,although any excess should be treated before re-use or discharge.The paper also highlights treatment by reverse osmosis (one of the few methods able to generally remove dissolved components),particularly showing that arsenic in oxidation state +6 can be readily removed for discharge (<50×10-12 As),although additional ion exchange is needed for potable water (<10×10-12 As).

  7. Power from industrial waste waters; Energie aus Industrieabwaessern

    Vith, Christian; Fischer, Peter; Wunsch, Michael; Koeppl, Stefan [Hager und Elsaesser GmbH, Stuttgart (Germany)

    2009-04-15

    Strongly loaded industrial waste waters contain an interesting energy potential. Even if high nitrogen concentrations are present beside a high organic freight, an ideal field of deployment results for the anaerobic pre-treatment. An energy-optimized processing can consist of a combination of fermentation gas production by means of methanization and a nitrogen release by means of deammonification.

  8. Waste water treatment through public-private partnerships

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  9. An Analysis of the Waste Water Treatment Operator Occupation.

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  10. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  11. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  12. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  13. Antioxidative properties of some phototropic microalgae grown in waste water

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Peter

    for the screening and selection of the species. In this study,the potential antioxidant activities of 12 micro algal sample from Chlorella., Spirulina., Euglena, Scenedesmus and Haematococcus species grown in waste water in Kalundborg micro algal facilities were evaluated using three antioxidant assays, including...

  14. Wash water waste pretreatment system study

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  15. Ionometric determination of chloride ion in circulating and waste waters

    Bebeshko, G.I.; Afanas' eva, V.I.; Danielova, I.I.; Dmitriev, M.A.; Radchenko, A.F.

    1986-09-01

    The authors attempt to develop selective ionometric methods to determine chloride ion in waste and circulating waters from technological ore processing, containing significant amounts of sulfide ion and various flotation reagents. These waters contain practically no cations that form hard to dissolve compounds with chloride ion such as Ag/sup +/, Cu/sup +/, Hg/sup +/ or Pb/sup 2 +/. The chloride ion concentration in water varies between 10 and 100 mg/liter. Information is shown on the concentration of the main anions and flotation reagents in waters that were analyzed.

  16. [Changes of bacterial community structure on reusing domestic sewage of Daoxianghujing Hotel to landscape water].

    Zhu, Jing-nan; Wang, Xiao-dan; Zhai, Zhen-hua; Ma, Wen-lin; Li, Rong-qi; Wang, Xue-lian; Li, Yan-hong

    2010-05-01

    A 16S rDNA library was used to evaluate the bacterial diversity and identify dominant groups of bacteria in different treatment pools in the domestic sewage system of the Beijing Daoxianghujing Hotel. The results revealed that there were many types of bacteria in the hotel domestic sewage, and the bacterial Shannon-Weaver diversity index was 3.12. In addition, epsilon Proteobacteria was found to be the dominant group with the ratio of 32%. In addition, both the CFB phylum, Fusobacteria, gamma Proteobacteria and Firmicutes were also reached to 9%-15%. After treated with the reclaimed water station, the bacterial Shannon-Weaver diversity index was reduced to 2. 41 and beta Proteobacteria became the dominant group and occupied 73% of the total clones. However, following artificial wetland training, the bacterial Shannon-Weaver diversity index in the sample increased to 3.38, Actinobacteria arrived to 33% and became the most dominant group; Cyanobacteria reached to 26%, and was the second dominant group. But, the control sample comprised 38% Cyanobacteria, and mainly involved in Cyanobium, Synechoccus and Microcystis, with ratios of 47.1%, 17.6% and 8.8%, respectively. Some bacteria of Microcystis aenruginosa were also detected, which probably resulted in the light bloom finally. Therefore, the bacterial diversity and community structures changed in response to treatment of the hotel domestic sewage; there was no cyanobacteria bloom explosion in the treated water. This study will aid in investigation the changes of microbial ecology in different types of water and providing the useful information for enhancing the cyanobacteria blooms control from ecological angle.

  17. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which...... reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets with periodic flush by hot water above 60 oC as disinfection solution. That makes obstacles of low......, electric boiler, compact heat exchanger, water filter, chlorine dioxide, Monochloramine, UV sterilization, copper and silver electrodes. The implementary conditions, effect, limits as well as economic performance of them are demonstrated. For buildings with complicated networks and large volume, chemical...

  18. Thermal Energy Storage using PCM for Solar Domestic Hot Water Systems: A Review

    Khot, S. A.; Sane, N. K.; Gawali, B. S.

    2012-06-01

    Thermal energy storage using phase chase materials (PCM) has received considerable attention in the past two decades for time dependent energy source such as solar energy. From several experimental and theoretical analyses that have been made to assess the performance of thermal energy storage systems, it has been demonstrated that PCM-based systems are reliable and viable options. This paper covers such information on PCMs and PCM-based systems developed for the application of solar domestic hot water system. In addition, economic analysis of thermal storage system using PCM in comparison with conventional storage system helps to validate its commercial possibility. From the economic analysis, it is found that, PCM based solar domestic hot water system (SWHS) provides 23 % more cumulative and life cycle savings than conventional SWHS and will continue to perform efficiently even after 15 years due to application of non-metallic tank. Payback period of PCM-based system is also less compared to conventional system. In conclusion, PCM based solar water heating systems can meet the requirements of Indian climatic situation in a cost effective and reliable manner.

  19. Modelling a directly coupled photovoltaic pumping system in a solar domestic hot water system

    Bai, Y.; Fraisse, G. [Savoy Univ., Le Bourget du lac (FR). Design Optimization and Environmental Engineering Laboratory (LOCIE)

    2008-07-01

    This paper presents a photovoltaic (PV) powered pumping system applying in a solar domestic hot water (SDHW) system. Two circulators ('Standard' and 'Solar') are employed respectively. A new model of circulator is developed in TRNSYS based on a 'Standard' type that consists of a DC-brushless motor and a centrifugal pump. Model validation is carried out by comparing with the experimental measurement. The experimental performance of these two circulators is analyzed on the aspects of startup and the stable operation stage. (orig.)

  20. Leptospirosis in man, in wild and in domestic animals at waste disposal sites in Cairo.

    Sebek, Z; Sixl, W; Valova, M; Schaffler, R

    1989-01-01

    The authors examined 65 Rattus rattus, 28 pigs, 12 donkeys, 67 goats, 5 sheep, 1 cow and 1 dog as well as 196 inhabitants at two settlements on the waste disposal sites at the periphery of Cairo. Rattus norvegicus were positive in 55.4% for L. ictero-haemorrhagiae, pigs in 14.3% for L. pomona and in 3.6% for L. ictero-haemorrhagiae. 2 out of 12 donkeys were positive for L. pomona, 1 of them for L. pyrogenes and L. icterohaemorrhagiae as well, goats in 1.5% for L. grippotyphosa. Human sera reacted positively in 8.7% of the cases, 7.1% of which with L. bratislava, 1.0% with L. icterohaemorrhagiae and 0.5% with L. grippotyphosa and L. sejroe respectively.

  1. 农村生活固体垃圾的处理现状及影响因素%Treatment Situation and Determinants of Rural Domestic Waste

    王金霞; 李玉敏; 黄开兴; 陈煌

    2011-01-01

    随着我国农村经济与农民收入水平的快速提高,农村生活固体垃圾产生与排放的数量快速增加,已经严重影响了农村环境、农民健康和农业可持续发展.该文的主要目的是基于甘肃和河北省60个村和240个农户的调研资料,深入了解农村生活固体垃圾的处理和管理现状及影响生活固体垃圾有效处理的制约因素.结果表明,大多数村没有处理生活固体垃圾的设施,总体看甘肃省拥有的处理设施要好于河北省.超过一半的村中生活固体垃圾都没有人管理,但部分村开始制定相关的管理计划.描述性统计分析和计量模型的分析结果表明,农村生活固体垃圾的处理状况与农民人均收入水平的提高和交通便利程度的改进有显著正相关关系,而非农就业机会的增加不利于当地生活垃圾的处理.%The volume of rural domestic solid waste has increased substantially, paralleled with the rapid development of rural economy and the growth of farmers' income.The increase of rural domestic solid waste has seriously influenced the rural environment and farmers' health, as well as the sustainable development of agriculture.Based on field surveys of 240 farm households in 60 villages in Gansu and Hebei Provinces, this paper aims to document the evidence of rural domestic solid waste treatment and to explore its determinants in applying the effective treatment of rural domestic solid waste.Descriptive statistics show that most villages have no treatment facilities for domestic solid waste.In general, the available facility in Gansu province is better than that in Hebei province.More than half of the villages have no management arrangement for domestic solid waste, while some villages are planning to improve the management.Consistent with the descriptive statistics, the econometric analysis shows that there is significant positive relationship between the increase of farmers' income and domestic solid

  2. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  3. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  4. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTTs has been done and the findings are summarised on this poster. The review is focused on the relative...... even more treatment trains/scenarios) have already been the subject of more or less detailed LCAs. All life cycle stages may be important and all impact categories (except stratospheric ozone depletion) typically included in LCAs may show significance depending on the actual scenario. Potential impacts...

  5. Olive oil waste waters: Controlled fermentation and materials recovery

    Federici, F.; Montedoro, G.F.; Pozzi, V. (Tuscia Univ., Viterbo (Italy). Detp. di Agrobiologia e Agrochimica Perugia Univ. (Italy). Ist. di Industrie Agrarie UNIECO s.c.r.l., Reggio Emilia (Italy))

    Land and water pollution due to waste water and oils deriving from the processing of olives to produce oil represents a serious environmental problem for Spain, Italy and Greece. This paper reports and discusses the results (time dependent enzyme activity) of performance tests on an innovative fermentation process to be used in olive oil waste water anaerobic digestion. An outline is then given of a demonstration depolymerization/materials recovery (including polyphenols, enzymes, etc.) process scheme based on the the tested fermentation method. The fermentation process tests involved the use of an albidus yeast in an Applikon bench scale experimental device. Process parameters were varied to determine optimum fermentation conditions. The European Communities sponsored one cubic meter/day demonstration plant utilizes a preliminary treatment process based on the use of gelatin, bentonite and polyclar.

  6. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  7. Annual Report of Airborne Discharge Station for Treated Radioactive Waste Water with Tritium in 2015

    HAN; Yi-dan; FENG; Chun-xiao; LONG; Bo-kang; ZHAO; Yu-hang; WANG; Jian-xin

    2015-01-01

    The airborne discharge station for radioactive purity liquid waste water is officially put into operation in 2010,and it is the first facility for treated radioactive waste water with tritium in China.The station is primarily based on the"air humidification"principle for treated waste water

  8. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    2013-10-30

    ... Waste Water in Bulk AGENCY: Coast Guard, DHS. ACTION: Notice of availability and request for comments... shale gas extraction waste water in bulk via barge, and invites public comment. The policy letter... endorsement or letter allowing the barge to transport shale gas extraction waste water in bulk. The...

  9. δ18O values of Sus scrofa blood water and bone phosphate; a marked discrepancy between domestic and wild specimens.

    Longinelli, Antonio; Selmo, Enrico

    2011-12-30

    δ¹⁸O analyses of water in the blood of domestic and wild pigs indicated that large isotopic differences exist between domestic and wild specimens of the same species (Sus scrofa) living in the same area. Similar isotopic differences are found between the δ¹⁸O(PO₄³⁻) values of bones from the two groups of animals. When δ¹⁸O values obtained from recent wild boar bones are introduced in the equation of the isotopic scale determined for domestic pigs, totally unreliable δ¹⁸O values of local meteoric water are obtained. The δ¹⁸O(PO₄³⁻) values measured in three groups of modern wild boar specimens allow the calculation of a first approximate equation which is quite different from that of domestic pigs. This isotopic scale should be accurately re-calibrated for wild animals.

  10. Performance characterization of water recovery and water quality from chemical/organic waste products

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  11. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  12. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    Giedrius Šiupšinskas

    2012-12-01

    Full Text Available The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project Contract No. TREN/FP7EN/239497/”ECOLIFE”.Article in Lithuanian

  13. 郑州市生活垃圾处理现状与对策%Status and Countermeasures of Domestic Waste Treatment in Zhengzhou City

    宋海军; 王铁军

    2012-01-01

    The status of domestic waste treatment in Zhengzhou was analyzed,its problems were pointed out,and its countermeasures suitable for urban development of Zhengzhou were put forward.%分析郑州市生活垃圾处理现状,指出其存在的问题,提出适合郑州市城市发展的生活垃圾治理对策.

  14. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  15. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  16. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  17. Mixed Burning Study on Domestic Refuse and Medical Wastes%生活垃圾和医疗垃圾混烧研究

    马津麟

    2013-01-01

    The paper explicates the market status of the domestic refuse and medical waste incineration;makes research on physical composition, composite elements, toxicity, implementing standards and incinerating furnaces etc.; analyzes the problems caused in mixed burning of domestic refuse and medical waste incineration. From the view point of investment calcu-lation and technical economy, the paper makes comparison on investment beneifts of mixed burning and separated treatment type and concludes that mixed burning of domestic refuse and medical waste incineration can not be introduced.%阐述了生活垃圾焚烧和医疗垃圾焚烧市场的现状;研究了垃圾的物理成分、组成元素、毒理性,以及执行标准、焚烧炉炉型等,分析了生活垃圾与医疗垃圾混烧会出现的问题;从投资估算和技术经济角度对混烧及分别处理方式的投资收益进行对比,最终得出不推荐生活垃圾和医疗垃圾混烧的结论。

  18. Engineered photocatalysts for detoxification of waste water

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  19. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Liangxin Fan

    Full Text Available Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use and cultural backgrounds (age, education.

  20. Treatment of waste thermal waters by ozonation and nanofiltration.

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  1. Enzyme Activities in Waste Water and Activated Sludge

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  2. Domestic rainwater harvesting to improve water supply in rural South Africa

    Mwenge Kahinda, Jean-marc; Taigbenu, Akpofure E.; Boroto, Jean R.

    Halving the proportion of people without sustainable access to safe drinking water and basic sanitation, is one of the targets of the 7th Millennium Development Goals (MDGs). In South Africa, with its mix of developed and developing regions, 9.7 million (20%) of the people do not have access to adequate water supply and 16 million (33%) lack proper sanitation services. Domestic Rainwater Harvesting (DRWH), which provides water directly to households enables a number of small-scale productive activities, has the potential to supply water even in rural and peri-urban areas that conventional technologies cannot supply. As part of the effort to achieve the MDGs, the South African government has committed itself to provide financial assistance to poor households for the capital cost of rainwater storage tanks and related works in the rural areas. Despite this financial assistance, the legal status of DRWH remains unclear and DRWH is in fact illegal by strict application of the water legislations. Beyond the cost of installation, maintenance and proper use of the DRWH system to ensure its sustainability, there is risk of waterborne diseases. This paper explores challenges to sustainable implementation of DRWH and proposes some interventions which the South African government could implement to overcome them.

  3. Water state changes during the composting of kitchen waste.

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents.

  4. Water Quality Management of Bilge Wastes at Pearl Harbor, Hawaii

    1992-12-01

    has not been utilized on a full-scale to remove metals. Lankford and Eckenfelder reported that "reverse osmosis is not a currently (as of 1990...for treatment of concentrated low-volume waste streams" (Lankford and Eckenfelder 1990, 95). Therefore only a small amount of performance data on 48...and solvents (Lankford and Eckenfelder 1990, 96). * Dilution with non-contaminated/pure water will reduce the concentration of all pollutants in the

  5. Research of waste dump water mutagenicity of bacterial detection system SOS chromotest.

    Vojtková, H; Janáková, I

    2011-01-01

    The paper deals with a possible use of the bacterial detection system of SOS chromotest to test mutagenicity of waste dump water checking the mutagenicity degree on real samples from Praksice waste dump, which is a controlled waste dump with mixed industrial, municipal and inert wastes. The waste dump surface water samples were taken from a no-name influent stream springing below the waste dump body between 2005 and 2009. After metabolic activation by microsomal fraction in vitro, medium to high mutagenicity was registered in all the samples. The SOS chromotest is assessed as an effective and economically acceptable method to check and determine the mutagenicity degree of contaminated water.

  6. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  7. Purification of metal electroplating waste waters using zeolites.

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2003-12-01

    The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. The batch method has been employed using metal concentrations in solution ranged from 10 to 200 mg/l and solid/liquid ratios ranged from 2.5 to 10 g/l. The Langmuir model was found to describe well all sorption processes, allowing to establish metal sorption sequences from which the main retention mechanism involved for each metal has been inferred. Synthetic zeolite exhibited about 10 times greater sorption capacities (b(Cr)=0.838 mmol/g, b(Ni)=0.342 mmol/g, b(Zn)=0.499 mmol/g, b(Cu)=0.795 mmol/g, b(Cd)=0.452 mmol/g) than natural zeolite (b(Cr)=0.079 mmol/g, b(Ni)=0.034 mmol/g, b(Zn)=0.053 mmol/g, b(Cu)=0.093 mmol/g, b(Cd)=0.041 mmol/g), appearing, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters.

  8. Chitosan on Reducing Chemical Oxygen Demands in Laundry Waste Water

    Tri Joko

    2016-09-01

    Full Text Available Laundry liquid waste contains several chemical substances in detergent raw materials such as phosphate, surfactants, ammonia, and total suspended solids. The existence of detergent in high concentrations and exceeds the quality standards that have been estabilished in a body of water can lead to cases of enviromental pollution in the form of increased turbidity an Chemical Oxygen Demands (COD levels. Therefore in order to maintain and to ensure the availabillity of water in terms of quality, it requires coagulation-flocculation process to laundry liquid waste before discharging into water bodies. This study aims to determine the decrease of COD levels and turbidity level in laundry liquid waste using chitosan coagulant in “X” laundry, Tembalang District, Semarang. The research is a quasi experimental study with pretest-posttest with control group research design with 6 times replication. The total samples are 60 in wich 24 tested for the levels of turbidity and 6 controls. The test results of Kruskal-Wallis with significance p-value < 0,05 indicates that dosage variation (p=0,000 gives different levels of COD and dosage variation (p=0,000 provide 755,97 mg/l and the advantage levels of turbidity before treatment was 516,20 NTU. The optimum dosage of chitosan coagulant is on the dose of 200 mg/l with the effectiveness decrease of COD levels and turbidity levels on 72,67% an 98,67% respectively.

  9. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata.

    Akinbile, Christopher O; Ogunrinde, Temitope A; Che Bt Man, Hasfalina; Aziz, Hamidi Abdul

    2016-01-01

    Two constructed wetlands, one with Azolla pinnata plant (CW1) and the other without (CW2) for treating domestic wastewaters were developed. Fifteen water parameters which include: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Total Phosphorus (TP), Total Nitrogen (TN), Ammoniacal Nitrogen (NH3N), Turbidity, pH, Electrical Conductivity (EC), Iron (Fe), Magnesium (Mg), Manganese (Mn), and heavy metals such as Lead (Pb) and Zinc (Zn) were analyzed using standard laboratory procedures. The experiments were conducted in two (dry and wet) seasons simultaneously. Results showed considerable reductions in all parameters and metals including Zn in CW1 compared with CW2 in the two seasons considered while Pb and Mn were not detected throughout the study. Zn concentration levels reduced significantly in both seasons just as removal efficiencies of 70.03% and 64.51% were recorded for CW1 while 35.17% and 33.45% were recorded for CW2 in both seasons. There were no significant differences in the removal efficiencies of Fe in both seasons as 99.55%, 59.09%, 88.89%, and 53.56% were recorded in CW1 and CW2 respectively. Azolla pinnata has proved effective in domestic wastewater phytoremediation studies.

  10. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  11. Lipid profiling of some authotrophic microalgae grown on waste water

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    the most suitable microalgae and downstream processing for food and feed production. The present study is part of a big project funded by GUDP (green development and demonstration program of ministry of agriculture and fisheries of Denmark) which aims at developing new processing technologies, so...... that microalgae-biomass can be used as an alternative valuable resource in fish feed. In this work, 10 fresh water and marine microalgae from Chlorella, Scenedesmus, Haematococcus, Nannochloropsis, Nannochloropsis and Dunialiella species grown in waste water in Kalundborg micro algal facility were harvested...

  12. Conflict, Cooperation, and Viability: Interstate Water Resources and Domestic Water Use in the Middle East

    2011-03-01

    relations between states that share major waterways in the Middle East. This thesis also examines current water management strategies and their potential...may be a secondary cause or just the excuse needed to act on existing tensions. Additionally, this thesis reveals that current water management strategies in...happened, despite the intense friction between Turkey, Syria, and Iraq. Chapter V also is a case study, covering the internal water management strategies specific

  13. The role of domestic tap water on Acanthamoeba keratitis in non-contact lens wearers and validation of laboratory methods.

    Koltas, Ismail Soner; Eroglu, Fadime; Erdem, Elif; Yagmur, Meltem; Tanır, Ferdi

    2015-09-01

    Acanthamoeba is increasingly recognized as an important cause of keratitis in non-contact lens wearers while contact lens wear is the leading risk factor for Acanthamoeba keratitis (AK). It is unlikely that the Acanthamoeba colonization is a feature which is effective only in patient's homes with infectious keratitis since the organism has been isolated from domestic tap water. Two hundred and thirty-one (231) corneal scrapings were taken from infectious keratitis cases, and four contact lens solutions and domestic tap waters were taken from 22 out of 44 AK-diagnosed patient's homes. Microscopic examination, culture, PCR, real-time PCR and DNA sequencing analyses were used for AK-diagnosed samples. The real-time PCR was the most sensitive (100 %) one among the methods used in diagnosis of AK. The 44 (19.0 %) out of 231 corneal scrapings, 4/4 (100 %) contact lens solution and 11/22 (50 %) of domestic tap water samples were found to be positive by real-time PCR for Acanthamoeba. A. griffini (T3), A. castellanii (T4) and A. jacobsi (T15) genotypes were obtained from corneal scrapings, contact lens solutions and domestic tap water samples taken from the patient's homes diagnosed with AK. The isolation of Acanthamoeba containing 6/22 (27.3 %) A. griffini (T3), 14/22 (63.6 %) A. castellanii (T4) and 2/22 (9.1 %) A. jacobsi (T15) from the domestic tap water outlets of 22 of 44 (50 %) of patient's homes revealed that is a significant source of these organisms. A. griffini (T3) and A. jacobsi (T15) genotypes have not been determined from AK cases in Turkey previously. Thus, we conclude that Acanthamoeba keratitis is associated with exposition of patients who has ocular trauma or ocular surface disease to domestic tap water in endemic or potentially endemic countries.

  14. 生活垃圾分类收集减量效果探讨%Reduction Effect of Domestic Waste Sorting Collection

    吴冰思

    2013-01-01

    以某区域的生活垃圾分类收集系统为例,分析了减量效果与分类收集投入的关系,结果显示:在分类收集初级阶段,专项分流效果显著;从发展潜力来看,居民家庭厨余果皮垃圾的分类减量是今后的重点.%Taking the domestic waste sorting collection system of a region as the example,the relationship between reduction effect of waste sorting collection and its input was analyzed.The result showed that the effect of specialized waste classification was remarkable at the initial stage.And from the view of development potential,the classification and reduction of household food residue would be the focal point in the future.

  15. Determination of estrogenic potential in waste water without sample extraction.

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  16. Solubility effects in waste-glass/demineralized-water systems

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  17. Behaviors of intercellular materials and nutrients in biological nutrient removal process supplied with domestic wastewater and food waste.

    Chae, So-Ryong; Jeong, Hyeong-Seok; Lim, Jae-Lim; Kang, Seok-Tae; Shin, Hang-Sik; Paik, Byeong-Cheon; Youn, Jong-Ho

    2004-01-01

    A four-stage biological nutrient removal (BNR) process was operated to investigate the effect of anaerobically fermented leachate of food waste (AFLFW) as an external carbon source on nutrient removal from domestic wastewater having a low carbon-to-nitrogen ratio. The BNR system that was supplemented with AFLFW showed a good performance at a sludge retention time (SRT) of 30 days, despite low temperature. With this wastewater, average removal efficiencies of soluble chemical oxygen demand (COD), total nitrogen (T-N), and total phosphorus (T-P) were 88 to 93%, 70 to 74%, and 63 to 68%, respectively. In this study, several kinds of poly-hydroxyalkanoates (PHAs) were observed in cells. These included 24% poly-3-hydroxybutyrate (PHB), 41% poly-3-hydroxyvalerate (PHV), 18% poly-3-hydroxyhexanoate (PHH), 10% poly-3-hydroxyoctanoate (PHO), 5% poly-3-hydroxydecanoate (PHD). and 2% poly-3-hydroxydodecanoate (PHDD), indicating that microorganisms could store various PHAs through the different metabolic pathways. However, breakdown of the enhanced biological phosphorus removal (EBPR) mechanism was observed when SRT increased from 30 to 50 days for the enhancement of nitrification. To study the effect of SRT on EBPR, a sequencing batch reactor (SBR) system that was supplied with glucose was operated at various SRTs of 5, 10, and 15 days. Nitrification and denitrification efficiencies increased as SRT increased. However, the content of intracellular materials such as PHAs, glycogen. and poly-P in cells decreased. From these results, it was concluded that SRT should be carefully controlled to increase nitrification activity and to maintain biological phosphorus removal activity in the BNR process.

  18. Measurements of 222Rn activity concentration in domestic water sources in Penang, northern peninsular Malaysia.

    Muhammad, B G; Jaafar, M S; Azhar, A R; Akpa, T C

    2012-04-01

    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.

  19. Utilization of phase change materials in solar domestic hot water systems

    Mazman, Muhsin; Evliya, Hunay; Paksoy, Halime Oe. [Chemistry Dept., Art and Science Fac., Cukurova University, Balcali, Adana (Turkey); Cabeza, Luisa F.; Nogues, Miquel [Dept. Informatica i Eng. Industrial, Universitat de Lleida, Jaume II 69, 25001 Lleida (Spain); Mehling, Harald [ZAE Bayern, Division 1, Walther-Meissner-Str. 6, 85748 Garching (Germany)

    2009-06-15

    Thermal energy storage systems which keep warm and cold water separated by means of gravitational stratification have been found to be attractive in low and medium temperature thermal storage applications due to their simplicity and low cost. This effect is known as thermal stratification, and has been studied experimentally thoughtfully. This system stores sensible heat in water for short term applications. Adding PCM (phase change material) modules at the top of the water tank would give the system a higher storage density and compensate heat loss in the top layer because of the latent heat of PCM. Tests were performed under real operating conditions in a complete solar heating system that was constructed at the University of Lleida, Spain. In this work, new PCM-graphite compounds with optimized thermal properties were used, such as 80:20 weight percent ratio mixtures of paraffin and stearic acid (PS), paraffin and palmitic acid (PP), and stearic acid and myristic acid (SM). The solar domestic hot water (SDHW) tank used in the experiments had a 150 L water capacity. Three modules with a cylindrical geometry with an outer diameter of 0.176 m and a height of 0.315 m were used. In the cooling experiments, the average tank water temperature dropped below the PCM melting temperature range in about 6-12 h. During reheating experiments, the PCM could increase the temperature of 14-36 L of water at the upper part of the SDHW tank by 3-4 C. This effect took place in 10-15 min. It can be concluded that PS gave the best results for thermal performance enhancement of the SDHW tank (74% efficiency). (author)

  20. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  1. Environmentally-friendly waste water treatment: Removal of ammonium nitrogen and hydrogen sulfide from oil refinery waste water

    Stein, C.; Heine, I.; Sachse, J.; Peper, H. [Holborn Europa Raffinerie GmbH, Hamburg (Germany); Elster, J.

    1998-12-01

    The Holborn Europa Raffinerie (HER) in Hamburg, Germany, achieved a drastic reduction in water and air pollutants by implementation of a two step project. The first step was a modification of the H{sub 2}S-stripping of process water, which resulted ultimately in shutting down the H{sub 2}S-incinerator and conversion of the recovered H{sub 2}S to saleable elementary sulfur. Atmospheric pollution was reduced accordingly by 650 t/a SO{sub 2} and 2,200 t/a CO{sub 2}. In compliance with waste water legislation (requirements of Appendix 45, Waste Water Administrative Regulation), the ammonium nitrogen content of refinery waste water was reduced significantly in a second step. In contrast to the common biological treatment used in many refineries, it was decided to concentrate on physico-chemical treatment of the highly contaminated partstream only. To this end ammonia is effectively stripped out of the partstream under alkaline conditions, and concentrated to a 10% aqueous solution by distillation under reflux. This solution is then injected into the hot vent gas stream of the FCC-regenerator (CO-Boiler) as an NO{sub x} reduction agent, and thus disposed of in an environmentall-friendly manner. The introduction of this combination of field proven processes, namely water treatment by steam stripping and NO{sub x} reduction via SNCR, received government grant support and reduced water pollution by 250 t/a ammonium nitrogen and air pollution by 180 t/a NO{sub x}. In view of the relatively low investment and operating costs, enhanced flexibility of the existing biological water treatment plant, avoidance of additional material waste and drastic reduction of overall refinery emission, the adopted scheme is most certainly a prime example of both economical and ecological optimisation. The scheme also has future potential arising from the projected tightening up in motor fuels specifications (EU specifications for years 2000 and 2005) which will necessitate increased use of

  2. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement.

    Ibekwe, A Mark; Murinda, Shelton E; Graves, Alexandria K

    2011-12-01

    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC), but as others, such as enterotoxigenic E. coli (ETEC). Pulsed field gel electrophoresis (PFGE) was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern due to possible

  3. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern

  4. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic...... costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest...

  5. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    Brand, Marek

    for domestic hot water (DHW) and space heating (SH) systems, from the perspective of both DH customers and the DH company. The aim of this work was therefore to identify, evaluate and suggest solutions. The first part of the research focused on the feasibility of supplying DHW with no increased risk....... The results of numerical simulations considering the influence of the DH network, represented by a 10 m long service pipe connection for the substation equipped with an external bypass with a set-point temperature of 35°C, showed that the time needed to produce 40°C DHW was 11 s with and 15 s without...... the external bypass, respectively. DS 439 suggests 10 s as the reasonable waiting time for DHW, so a low-temperature DH substation based on the instantaneous principle of DHW preparation should be equipped with bypass solution keeping the service pipe warm and reducing the waiting time. Traditional bypass...

  6. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal...

  7. From the tap to the mouth, drinking water quality in the domestic context in Khartoum, Sudan

    Lavie, Emilie; Hassan El-Tayib, Noha

    2013-04-01

    The city of Khartoum experienced a rapid growth and an urban spread towards its periphery that has become denser than the centre. Urban planning was unable to follow the pace of demographic growth (5.5 million inhabitants in 2008), and the establishment of a decent drinking water network is slow. The population is incited to be independent from quantitative variations by storing drinking water, because of water turbidity, many cuts, and pressure decreases. These bad habits of storage, the lack of efficiency of treatment, and the absence of collective supply network maintenance, are responsible for a significant decrease in the physical and biological water quality. The result is a development of water-borne diseases (generally diarrheal symptoms and kidney diseases). Our study aimed at measuring the changes of water quality in these storage recipients, so as to evaluate the possible risks on people health. It demonstrated that the distinction made between quantity and quality in the institutional management of drinking water in Khartoum is a dead-end. It also suggested that treatment would be more efficient and water would have better quality if smaller quantity of drinking water was produced and the amount of wasted water was reduced. Storage is a worsening factor of bacteriological pollution. Then, contrary to what numerous researchers observed in other fieldworks, here the temperature does not limit the bacteriological development and bacteriology does not seem to be in connection with turbidity. Then water storage is an important problem for people's health, responsible for many diarrheal (bacteria) and kidney diseases (salinization). Nevertheless, conscientious of the quantitative deficiency, the Khartoum State Water Cooperation (in charge of water supply) tries to produce more water so as to avoid cuts. On the contrary, we think that the solution is in the maintenance of the infrastructure. Best network (30% of losses occur in the network) and better

  8. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    Georg Reifferscheid

    2002-01-01

    Full Text Available Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  9. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  10. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    2016-12-01

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  11. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  12. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  13. Performance monitoring of a bubble pumped solar domestic hot water system - final report

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1995-12-01

    A new type of solar domestic hot water (SDHW) system for cold climates was described. The bubble pump system is self pumping and self regulating (it circulates anti-freeze). The system transports heat from roof mounted solar collectors to a thermal storage located at a lower level when there is available solar radiation. The design is unique in that it has no moving parts and requires no external electrical or mechanical input to operate. A unit was installed on a row house in Kingston, Ontario, to evaluate its performance. The average daily solar fraction was 32.4 per cent, and the average system efficiency for the monitored period was 13.4 per cent. This was below expectations due to low hot water demand. Performance improved somewhat towards the end of the monitoring period due to increased demand for hot water, improvements to the system, and increased solar insulation. A more realistic annual performance was estimated at 19 per cent for system efficiency and 41 per cent for solar fraction. Further improvements could be expected, especially in mid-winter performance, if the solar collector slope could be increased to a value of 45 to 60 degrees to the horizontal. 8 refs., 14 tabs., 9 figs.

  14. Utilization of VAE Waste Water and Waste Residue%VAE废水和废渣的利用

    刘红卫

    2000-01-01

    the situation of VAE waste water and waste residue applied in the process of paints, adhesive, modified cement, thermal insulation materials is introduced in this paper.%介绍了VAE废水和废渣在涂料、粘合剂、水泥改性以及保温材料加工中的应用情况。

  15. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  16. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  17. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  18. Availability of irrigation water for domestic use in Pakistan: its impact on prevalence of diarrhoea and nutritional status of children

    van der Hoek, Wim; Feenstra, Sabiena G; Konradsen, Flemming

    2002-01-01

    , hygiene, and socioeconomic status. Height-for-age and longitudinal prevalence of diarrhoea were used as outcome measures. Quantity of water available in households was a strong predictor of height-for-age and prevalence of diarrhoea. Children from households with a large storage capacity for water...... of diarrhoea and malnutrition in this area. An integrated approach to water management is needed in irrigation schemes, so that supply of domestic water is given priority when allocating water in time and space within the systems....

  19. Removal of Aluminum from Water and Industrial Waste Water

    Parisa Ghashghaiee pour

    2014-09-01

    Full Text Available This study attempts to introduce a procedure to remove Aluminum ions from drinking water and industrial effluents by using active carbon with different grading as absorbent. Absorption of Aluminum ions were discussed in different conditions of Aluminum concentration, contact time, impact of electrolytes and pH on Aluminum ions absorbency. Both Freundlich and Langmuir isotherms used to investigate the adsorption. Thermodynamics relations governing process, such as specification of ( , ( and the enthalpy of adsorption, were calculated, which showed that Aluminum absorption on active carbon is an endothermic and spontaneous process.

  20. The DST method for solar domestic hot water systems - Research and development for ISO and CEN standards

    Visser, H.; Ree, B.G.C. van der

    1996-01-01

    The Dynamic System Test (DST) method for performance characterization of solar domestic hot water (SDHW) systems has been the subject of international research for a number of years. At present, several countries are using the method and it is being standardized on international and European levels.

  1. Domestic transmission routes of pathogens: the problem of in-house contamination of drinking water during storage in developing countries

    Jensen, Peter Kjaer; Ensink, Jeroen H J; Jayasinghe, Gayathri;

    2002-01-01

    . This shows that extreme contamination values that are often thought to originate within the domestic domain have to be attributed to the public domain transmission, i.e. filling and washing of the water pitchers. This finding has implications for interventions that aim at the elimination of these extreme...

  2. Subcritical and supercritical water oxidation of CELSS model wastes

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  3. Integrated water management system - Description and test results. [for Space Station waste water processing

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  4. Utilization of immobilized urease for waste water treatment

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  5. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...

  6. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  7. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  8. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  9. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  10. The effect of waste water treatment on river metal concentrations: removal or enrichment?

    Teuchies, J.; Bervoets, L.; Cox, T.J.S.; Meire, P.; De Deckere, E.

    2011-01-01

    Purpose Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availabi

  11. The effect of waste water treatment on river metal concentrations: removal or enrichment?

    Teuchies, J.; Bervoets, L.; Cox, T.J.S.; Meire, P.; de Deckere, E.

    2011-01-01

    Purpose Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availabil

  12. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.

  13. Effect of organic carbon content of the domestic bentonite on the performance of buffer material in a high-level waste repository

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The organic carbon content of the domestic bentonite have been measured, and its effects on the performance of buffer are analyzed. The total carbon content and the organic carbon content were in the range of 3160 to 3600 and 2400 to 2800 ppm, respectively. The aqueous phase equilibrium concentrations of total carbon and organic carbon in bentonite-water mixture were in the range of 25 to 50 ppm and 4 to 18 ppm, respectively. The results indicate that the effect of organic matter in the domestic bentonite on the performance of buffer material were insignificant. 33 refs., 15 figs., 10 tabs. (Author)

  14. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  15. 简析生活垃圾卫生填埋场封场设计%Closure Design of Domestic Waste Sanitary Landfill Sites

    吴健萍

    2011-01-01

    Functions of closure of domestic waste sanitary landfill sites were sketched. Main contents about closure design were analyzed, including landfill pile shaping, structure determining of closure cover system, collection and drainage of landfill gas, and collection and discharge of rainwater in landfill pile.%简述了生活垃圾卫生填埋场封场的作用,分析了封场设计中堆体整形、封场覆盖系统结构的确定、填埋气体的收集导排、垃圾堆体雨水的收集排放等主要内容.

  16. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    Manjula Gopinathan

    2012-06-01

    Full Text Available Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with dairy waste water at different C/N ratios. About 50 kg of shredded waste containing dairy waste water, saw dust, and organic fraction of municipal solid waste was placed in static piles of different proportions and 500 ml of effective micro-organisms was added to them. The variation in physical and chemical parameters was monitored throughout the process. Results indicate that co composting of dairy waste water with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.963

  17. PHOTOCATALYTIC DEGRADATION OF WASTE WATER ON. THIN FILMS OF TiO2

    Wu Zhenghuang

    2001-01-01

    The degradation of organic phosphorous pesticide waste water using thin films of TiO2, which was prepared in an atmospheric vertical chemical vapor deposition system, was studied. The results show that the wafer material for coating TiO2, the photocatalytic time, the TiO2 crystal phase, the pH value and the concentration of pesticides in waste water influence the degradation rate. These facts indicate some potential for photocatalytic treatment of waste water by utilizing sunlight.

  18. Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies.

    Todd, Cheridah D; Reyes-Batlle, María; Piñero, José E; Martínez-Carretero, Enrique; Valladares, Basilio; Streete, Don; Lorenzo-Morales, Jacob; Lindo, John F

    2015-09-01

    Free living amoebae (FLA) are amphizoic protozoa that are ubiquitous in nature. Infection with FLA may result in neurological, ocular and skin infections. Exposure to Acanthamoeba occurs frequently through water contact and knowledge of the presence of the organisms in water sources is important in understanding transmission dynamics. The distribution of Acanthamoeba was studied in recreational and domestic water samples collected from across Jamaica. Morphological assessment and polymerase chain reaction revealed Acanthamoeba spp. isolates in 50.6% (42/83) and 17.3% (14/81) of recreational and domestic water, respectively. Sequencing of the DF3 region of the 18S rDNA resulted in the identification of genotypes T3, T4, T5, T10 and T11 corresponding to Acanthamoeba spp: A. griffini, A. triangularis, A. lenticulata, A. culbertsoni and A. hatchetti. Moreover, T4 was the most frequently isolated genotype in both recreational and domestic water. Thermotolerance and osmotolerance assays indicated that most isolates were potentially pathogenic. This is the first report of T3 and T10 genotypes in the Caribbean and the first report of these Acanthamoeba spp. in Jamaican waters. The study shows that there is potential risk of infection to contact wearers who practise poor lens care. Further, Acanthamoeba should be considered as a cause of neurological infections in Jamaica.

  19. Analysis, modeling and optimum design of solar domestic hot water systems

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  20. Biological waste-water treatment of azo dyes

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  1. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  2. ELECTRICITY PRODUCTION FROM WASTE WATER USING MICROBIAL FUEL CELL

    Mannarreddy Prabu

    2012-09-01

    Full Text Available Microbial fuel cells (MFCs an electricity producing device using waste-water treatment, biosensor, eco-friendly and low cost management of energy production. In this study, investigation power generation from waste water compared with their pure culture, mixed culture and different medium ingredients with microorganism. Enhance the power production with different ingredients like monosaccharide’s, nitrogen source and amino acids, these sources increasing the electron shuttle in the medium. Glucose (0.98 V, beef extract (0.85 V and Leucine (0.92 V exhibited maximum power production with the anodic chamber. Different electrode was used; platinum showed that maximum electron capturing in the anodic chamber. The SEM photography clearly showed that biofilm formation of microorganism on the electrode. The output power was compared with mixed culture to pure culture and different ingredients, thus bio electric power was retained maximum 1.03 V in pure culture from Morganella morganii and 1.2 V in mixed culture.

  3. Mercury and methylmercury contents in mine-waste calcine, water, and sediment collected from the Palawan Quicksilver mine, Philippines

    Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.

    2003-01-01

    The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.

  4. Generation of Domestic Solid Waste in Tikrit City and The Effects of Family Size and Incomes Level on the Rate of Generation

    Waleed M. Al Abed Raba

    2013-04-01

    Full Text Available     This research included collection and analysis of (2800 samples from four different neighborhoods in Tikrit over the seasons of the year to cover seasonal changes in the generation rate of domestic solid waste. The generation rate of domestic solid waste is (0.460 kg / person / day. The results also showed that summer season is the most season that produced solid waste (0.487 kg / person / day. While winter is the lowest season (0.422 kg / person / day. The results indicated that Friday and Saturday are the most producing days (0.629 , 0.557 kg / person / days, respectively. The results showed the impact of rural character of Aalam region in reducing the rate of generation of domestic solid waste as the rate of generation of the neighborhoods of the four studied areas was (0.460 kg / person / day. SPSS program using has been adopted as a method of statistical analysis to study the effect of family size and income level have on the generation rate in the city, where the results showed that family size adversely affects the generation rate of solid waste, also the lowest generation rate was recorded for families with high income level.                                                                                                                                  

  5. Study on the Classification of Municipal Domestic Waste Based on Need of Convenient Collection%基于收集便利需要的城市居民生活垃圾分类研究

    杨海民

    2009-01-01

    概述了城市生活垃圾的分类标准及分类,分析了居民家中生活垃圾分类收集的制约因素,介绍了居民家用和住宅小区的垃圾收集箱和垃圾收集设施,并根据分类标准建议完善相应的垃圾分类收集器具和设施.%The classification standard and types of municipal domestic waste are summarized.The limiting factors of classified collection of municipal domestic waste are analyzed.The dustbin and waste collecting facility in resident house and residential district are introduced.The suggestions to perfect the related utensil and facility of waste classified collection are put forward based on the classification standard of waste.

  6. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  7. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  8. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System

    Alireza Valipour

    2015-01-01

    Full Text Available onstructed wetland applications have been limited by a large land requirement and capital investment. This study aimed to improve a shallow pond water hyacinth system by incorporating the advantages of engineered attached microbial growth technique (termed Bio-hedge for on-site domestic wastewater treatment. A laboratory scale continuous-flow system consists of the mesh type matrix providing an additional biofilm surface area of 54 m2/m3. Following one year of experimentation, the process showed more stability and enhanced performance in removing organic matter and nutrients, compared to traditional water hyacinth (by lowering 33%–67% HRT and facultative (by lowering 92%–96% HRT ponds. The wastewater exposed plants revealed a relative growth rate of 1.15% per day, and no anatomical deformities were observed. Plant nutrient level averaged 27 ± 1.7 and 44 ± 2.3 mg N/g dry weight, and 5 ± 1.4 & 9±1.2 mg P/g dry weight in roots and shoots, respectively. Microorganisms immobilized on Bio-hedge media (4.06 × 107 cfu/cm2 and plant roots (3.12 × 104 cfu/cm were isolated and identified (a total of 23 strains. The capital cost was pre-estimated for 1 m3/d wastewater at 78 US$/m3inflow and 465 US$/kg BOD5 removed. This process is a suitable ecotechnology due to improved biofilm formation, reduced footprint, energy savings, and increased quality effluent.

  9. 生活垃圾焚烧厂引风机选用方案的比较%Comparison of Induced Fan in Domestic Waste Incineration Plants

    李军; 陈竹; 王占磊

    2011-01-01

    从运行实际、经济性等方面考虑生活垃圾发电厂引风机的配置万案,开结管实例通行比较表明,王活理圾发电厂若仅考虑节省设备投资,可参照国内热电厂的运行实绩,采用成熟的国产变频引风机.为了提高烟气处理系统的运行稳定性同时兼顾运营的经济性,建议垃圾焚烧厂采用进口变频引风机.%Configuration plan of induced fan in domestic waste incineration plants was determined from the aspect of operation practice and economy. Considering the instances, when only considering retrenching investment of equipments, mature induced fan with transducer made in China is recommended refer to the operation of domestic thermal electricity power plants. To enhance the operation stabilization of flue gas treatment system and economical efficiency of operation, the induced fan with transducer imported is recommended in domestic incineration plants.

  10. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  11. Energy efficiency in the waste water system; Energieeffizienz im Abwasserbereich

    Panckow, Kathrin; Wienke, Andreas (comps.)

    2008-08-15

    The volume 51 of the publication series of the Municipal Environmental Campaign U.A.N. (Hannover, Federal Republic of Germany) reports on the energy efficiency in the waste water section. This volume consists of the following contributions: (a) How much energy is necessary for the sewage plant? (Artur Mennerich); (b) Possibilities of energy saving in the sewer system (Wolfgang Buehler); (c) Possibilities of energy saving at sewage plants: a Survey (Ulf Theilen); (d) Possibilities of energy saving at sewage plants: Examples from the practice (Wilfried Osterloh); (e) Review of the possibilities of power generation at sewage plants (K.-H. Rosenwinkel, Linda Hinken); (f) Potentials of production and utilization of fouling gas (Johannes Mueller); (g) Realisation of a 5 MW biological gas facility with waste heat utilization for sewage sludge drying (Marc Stueben); (h) The micro gas turbine: An alternative for the compact cogeneration plant (Christian Schaum); (i) PR report: Energy efficiency - (rational utilization of energy), energy concepts - (analysis of energy, strategic perspectives) (Martin Mergelmeyer, Gerhard Seibert-Erling).

  12. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  13. Stillwater Wildlife Management Area : Suitability of geothermal waste water for use in waterfowl marsh maintenance

    US Fish and Wildlife Service, Department of the Interior — This report analyzes the suitability of geothermal waste waters for use in waterfowl management. An extensive review of available data on water quality of geothermal...

  14. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  15. Alkaline subcritical water gasification of dairy industry waste (Whey).

    Muangrat, Rattana; Onwudili, Jude A; Williams, Paul T

    2011-05-01

    The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300°C to 390°C, corresponding pressures of 9.5-24.5 MPa and reaction times from 0 min to 120 min. Hydrogen production was affected by the presence of NaOH, the concentration of H(2)O(2), temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390°C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent.

  16. Studies on bacterial activities in aerobic and anaerobic waste water purification.

    Adamse, A D; Deinema, M H; Zehnder, A J

    1984-01-01

    Some aspects of the bacteriology of aerobic and anaerobic waste water purification are discussed in view of current opinions and recent developments in the technology of waste water treatment. Various contributions of scientific workers attached to the Department of Microbiology of the Agricultural University, Wageningen, during the past 65 years are summarized. Besides, present investigations are described and research activities in future indicated.

  17. Selective Oxidation of Organic Compounds in Waste Water by ozone-based oxidation processes

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques. However, in so

  18. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport... Food and Drugs, Food and Drug Administration, in accordance with standards established in title...

  19. Autotrophic nitrogen removal from low strength waste water at low temperature

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, an

  20. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  1. Possibility of Zero Discharge of Waste Leachate from Domestic Waste Incineration Plants%浅析生活垃圾焚烧厂渗沥液污水零排放可能性

    季华文

    2013-01-01

    分析了目前生活垃圾焚烧厂渗沥液主要处理现状,介绍了膜浓缩液的回灌、焚烧、蒸发、高级氧化及回用等主要处理方法;得出一旦解决膜浓缩液的处置问题,渗沥液污水零排放是可能的.%The main status of leachate treatment in domestic waste incineration plants was analyzed. Main treatment methods of the membrane concentrated solution were introduced, including recirculation, incineration, evaporation, advanced oxidation, and reuse. Once the problem of membrane concentrated solution treatment has been solved, the zero discharge of waste leachate is possible.

  2. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use.

  3. 辽宁省生活垃圾现状调查及处理对策研究%Status Investigation and Its Countermeasures of Domestic Waste in Liaoning Province

    王可新

    2012-01-01

    The output and component of domestic waste produced from the typical areas of city,county,town and village of Liaoning were investigated.The status and existing problems in domestic waste treatment and utilization in the urban and rural areas of Liaoning were analyzed and evaluated.%对辽宁省典型地区各市、县、乡镇及村的生活垃圾产生量及组分进行了调查,分析和评价了目前辽宁省城乡生活垃圾处理与利用现状和存在的问题.

  4. 广州传统村落生活垃圾产生特征及处置对策研究%Study on Characteristics and Disposal Countermeasures of Domestic Wastes in Traditional Villages of Guangzhou

    袁金鹏; 王敬平; 周少奇; 杨志泉

    2016-01-01

    以广州市小洲村为研究对象,通过问卷调查和采样分析,研究了生活垃圾的产生特征.结果显示,小洲村人均生活垃圾产生量为0.547 kg·d-1,居民对生活垃圾问题较为关注,但自觉性和对分类知识了解程度不高,不同区域的生活垃圾具有各自特点,总体以有机垃圾、塑料和纸类为主,这些组分占垃圾总量的80.83%~92.02%.结合小洲村特点和生活垃圾现状,提出了依照区域特点规划环卫设施和制定收集模式、利用当地消纳条件就地处理生活垃圾的处理模式.%Taking Xiaozhou village as the research object, the characteristics of domestic wastes were studied based on ques-tionnaire surveys and sampling analysis. The result of this survey showed that domestic waste generated per capita was 0. 547 kg ·d-1 in Xiaozhou village, villagers were concerned about the domestic wastes pollution, but consciousness and recognition were not high, the regional difference of domestic waste was obvious, the organic, plastic and paper wastes were accounted for 80. 83%~92. 02%. Combined with the characteristics and staus of wastes of Xiaozhou village, a disposal mode that planning and construc-ting sanitation facilities according to regional characteristics and making the best of local conditions to dispose domestic waste in-situ was put forward.

  5. Remaking Waste as Water: The Governance of Recycled Effluent for Potable Water Supply

    Katharine Meehan

    2013-02-01

    Full Text Available Water managers increasingly rely on the indirect potable reuse (IPR of recycled effluent to augment potable water supplies in rapidly growing cities. At the same time, the presence of waste – as abject material – clearly remains an object of concern in IPR projects, spawning debate and opposition among the public. In this article, we identify the key governance factors of IPR schemes to examine how waste disrupts and stabilises existing practices and ideologies of water resources management. Specifically, we analyse and compare four prominent IPR projects from the United States and Australia, and identify the techno-scientific, legal, and socio-economic components necessary for successful implementation of IPR projects. This analysis demonstrates that successful IPR projects are characterised by large-scale, centralised infrastructure, state and techno-scientific control, and a political economy of water marked by supply augmentation and unchecked expansion. We argue that – despite advanced treatment – recycled effluent is a parallax object: a material force that disrupts the power geometries embedded in municipal water management. Consequently, successful IPR schemes must stabilise a particular mode of water governance, one in which recycled effluent is highly regulated and heavily policed. We conclude with insights about the future role of public participation in IPR projects.

  6. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  7. QUALITY CHARACTERISTICS OF TECHNOLOGICAL WASTE WATER AFTER HYDRAULIC UNLOADING FISH AT PORTS

    Dorota Janiszewska

    2015-07-01

    Full Text Available In this study characterization of sensory and physical-chemical properties of representative samples of technological waste water after hydraulic unloading fish from fishing vessels, including fishing boats equipped with RSW (Refrigerated Sea Water System or CSW (Chilling Sea Water System system was described. Sensory quality and analytical determinations in technological waste water samples was analyzed. They demonstrated that their sensory quality attributes and physical-chemical properties were different and depending on the destination of fish caught (consumption or industrial fishing, contact time-caught fish with seawater and water temperature (winter or summer season. Because technological waste water has a lot of substance content of protein, fat, nitrogen, phosphorus and chlorine compounds it is a threat to the natural environment. In connection with such a broad problem of utilization of technological waste water from fishing boats for Baltic fish is one of the most important issues to solve for fishermen and environmentalists.

  8. 生活垃圾焚烧发电厂冷却系统节能分析%Energy-saving Analysis of Cooling System in Domestic Waste Incineration Plants

    王颖; 刘云杰; 蒋金明

    2013-01-01

    The energy-saving design points of turbine cycle cooling tower in waste incineration plants were summarized.Combining with domestic waste incineration plants,its application in engineering design was introduced.%归纳了垃圾焚烧发电厂机力通风冷却塔的供电节能设计要点,结合生活垃圾焚烧发电厂,介绍其在工程设计中的应用.

  9. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  10. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  11. Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region.

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2014-04-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

  12. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  13. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  14. Effects of treated waste water irrigation on some qualitative charcterstics of forage sorghum, corn and millet

    alireza emami

    2009-06-01

    Full Text Available In order to study the effects of irrigation with different levels of urban treated waste water on feeding value of forage sorghum (Var. Speed feed and Sugar graze, maize (Var. SC 704 and millet (Var. Nutrifeed an experiment was conducted at Experimental Station No.1, Astan Qods Razavi Mashhad, and Animal Nutrition Laboratory, College of Agriculture, Ferdowsi University of Mashhad. Four varieties of forage plants with five levels of treated waste water: %0, %25, %50, %75 and %100 were compared in a split-plot experiment based on Randomized Complete Block Design with four replications per treatment. Feeding values of forage plants such as Crude Protein content (CP, Neutral Detergent Fiber content (NDF, in vitro Dry Matter Digestibility (DMD, Organic Matter Digestibility (OMD and D-Value were measured. Results showed that treated waste water irrigation had a significant effect on crude protein content. The highest crude protein content was shown at % 100 treated waste water ( %13.76 and the lowest was shown at % treated waste water (%9.54. There were no significant differences between %0 and %25, and also %75 and %100 treated waste water in terms of crude protein content, but there were significant differences between %50 and other treated waste water treatments (except 75% treatments. There were no significant difference between irrigation with different levels of treated waste water in terms of NDF, in vitro DMD, OMD, and D-Value. There were significant differences between forage plants in all studied characteristics, but there were no significant differences on interactions between forage plants and different levels of treated waste water treatments. Forage maize had the highest in vitro DMD at %75 treated waste water and forage sorghum (var. Speed feed had the lowest in vitro DMD at %0 treated waste water treatments with averages of %77.57 and %61.6, respectively. The results indicated that treated waste water increased the percentage of crude

  15. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well......-mixed process without additional water supply. A methane yield of 400 and 445 ml/gVS from OFMSW was achieved in batch and reactor experiments, respectively. Reactor performance with 15 days retention time and an organic loading rate of 4.5 gVS/ld was stable with low VFA concentrations and a VS reduction of 70...

  16. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    Yeo, Siang Yee

    2013-06-20

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  17. Domestic solid waste management and its impacts on human health and the environment in Sharg El Neel Locality, Khartoum State, Sudan.

    Abdellah, A M; Balla, Q I

    2013-11-15

    Due to rapid urbanization in Khartoum State, Domestic Solid Waste (DSW) management remains the biggest obsession that recurrently attracts the attention of the concern authorities and stakeholders. As one of the seven localities comprised the state, the Sharg El Neel Locality was chosen to study the DSW management efficiency. The materials and methods employed in collection of data is a package of techniques, one of which was by conducting interviews using structured and unstructured questions mainly directed to appropriate persons i.e., householders and particular government employees directly engaged in DSW management operations. The main findings reached in this study were that local authorities lack the necessary capacities to handle the immense problems of DSW management. Shortages of funds, inadequate number of workers, lack of transport and facilities and weakness of attitudes of respondents found to be among factors hindering the DSW management. Accordingly, proper scheduled and timing, well-trained public health officers and sanitary overseers and strict sustainable program to controlling flies, rodents, cockroach and other disease vectors are essential to properly managing DSW. Otherwise, problems resulting from solid waste generation in the study area will be magnitudized and the surrounding environment will definitely be deteriorated.

  18. 西南地区农村生活垃圾特征与群众环保意识%Features of Domestic Wastes and Environmental Awareness of People in the Rural Area of Southwest China

    韩智勇; 梅自力; 孔垂雪; 陈细会; 范建强; 谢燕华

    2015-01-01

    随机选择我国西南地区22个自然村,通过问卷调查、现场采样和实验室测试等方法,对当地农村生活垃圾的污染和处理现状,垃圾特征,群众对生活垃圾的认知、支付意愿和影响因素进行调研。结果表明,我国西南地区农村人均生活垃圾产生量为178 g·d-1,主要组分为厨余、灰土、橡胶和纸类。垃圾容重、含水率、灰分、可燃物和热值分别为107 kg·m-3、37�04%、25�73%、37�23%和8008 kJ·kg-1。该地区生活垃圾具有惰性物质含量低、容重低,可回收物比例和热值高的特征。群众对生活垃圾的污染性认知主要来源于直观感受,对可回收生活垃圾的认知直接受当地废品回收商的影响,对有毒有害垃圾的认知不足。年龄、受教育程度和家庭年收入对认知水平有一定的影响,对群众支付意愿无明显影响。群众的支付意愿与垃圾收费呈指数衰减关系,以每户每月不超过5元为宜。在西南地区农村实施生活垃圾处理收费制度已具有一定的基础。%Southwest China plays an important role in sustainable development of the country and has become one of the most important ecological shelters in China. Regarding the increasingly serious pollution of domestic wastes, 22 villages were selected randomly in the rural area of southwest China for investigation of status quo of domestic waste pollution, dis⁃posal of domestic waste, people′s knowledge of domestic waste and their willingness to pay for domestic waste management by means of questionnaires;features of the domestic waste were investigated by field sampling and laboratory test. Results show that the domestic waste generated in that region was 178 g·d-1 per capita and composed mainly of kitchen waste, dust, rubber and paper. The bulk density, moisture content, ash, combustible content and calorie were 107 kg · m-3 , 37�04 %, 25�73 %, 37�23 % and 8 008 k

  19. 对生活垃圾焚烧产物中重金属的探讨%Study on Heave Metals in IncinerationProducts of Domestic Wastes

    杜锋; 程温莹; 程艳茹; 石友香

    2011-01-01

    以成都某生活垃圾焚烧厂为例,通过实验分别研究了焚烧产物中各主要重金属的含量和浸出毒性,由此分析了生活垃圾焚烧产物中的重金属对城市环境的危害。结果表明,该生活垃圾焚烧厂排放的飞灰和炉渣样品中,镉,铜,铅,锌的含量接近或超过国家土壤环境质量标准三级标准,其浸出液pH呈强碱性,镉和飞灰中铅量超过国家浸出液中危害成分浓度限值标准,在环境中存在潜在危害性。在此基础上探讨了生活垃圾中重金属的来源,提出了可行性建议。%Taking a waste incineration plant of Chengdu for example, this study researched the total amount and leaching toxicity of the major heavy metals in burning products, respectively in order to analyze the harmful effects of these heavy metals to the environment during the incineration of domestic wastes. The results show that the content of Cd, Cu, Pb, Zn in tly ash and slag is close or exceed the National Soil Environmental Quality Standard Grade Ⅲ. The leaching solution pH is strongly alkaline. The Cd and Pb in the fly ash have exceed national leachate concentration limit for hazardous constituents, the existence of which has potential hazards to the environment. On this basis, the sources of these heavy metals in domestic wastes are discussed and the feasible proposals are also proposed.

  20. Effect of coagulants upon turbidity removal of waste water from the Chasnala coal mine

    Kumar, G.; Singh, P.K. [Bira Institute of Technology Sindri, Dhanbad (India)

    2009-07-01

    In this paper, attempt has been made to control the extremely high turbidity of mine waste water by using different coagulants and it is observed that ferrous sulphate is the most effective coagulant followed by alum, ferric sulphate and lime. Also combinations of coagulants are used for getting the optimal results. Further steps are also discussed to make this water portable and a scheme of low cost water supply system of mine waste water has been suggested under the Water Management Strategies. 15 refs., 4 figs., 1 tab.

  1. Characterization of domestic gray water from point source to determine the potential for urban residential reuse: a short review

    Edwin, Golda A.; Gopalsamy, Poyyamoli; Muthu, Nandhivarman

    2014-03-01

    This study aims to discern the domestic gray water (GW) sources that is least polluting, at the urban households of India, by examining the GW characteristics, comparing with literature data, reuse standards and suitable treatment technologies. In view of this, the quantitative and qualitative characteristics of domestic GW originating from bath, wash basin, laundry and kitchen sources are determined and compared with established standards for reuse requirements. Quality of different gray water sources is characterized with respect to the physical, chemical, biological, nutrient, ground element and heavy metal properties. The pollutant loads indicate that the diversion techniques are not suitable for household application and, therefore, treatment is necessary prior to storage and reuse. It is observed that the total volume of GW generated exceeds the reuse requirement for suggested reuse such as for flushing and gardening/irrigation. In spite of generating less volume, the kitchen source is found to be the major contributor for most of the pollutant load and, therefore, not recommended to be considered for treatment. It is concluded that treatment of GW from bathroom source alone is sufficient to meet the onsite reuse requirements and thereby significantly reduce the potable water consumption by 28.5 %. Constructed wetland systems and constructed soil filters are suggested as suitable treatment alternatives owing to its ability to treat highly variable pollutant load with lower operational and maintenance cost, which is more practical for tropical and developing countries.

  2. Groundwater quality from private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana

    Risch, Martin R.; Silcox, Cheryl A.

    2016-06-02

    The U.S. Geological Survey provided technical support to the Agency for Toxic Substances and Disease Registry for site selection and sample collection and analysis in a 2012 investigation of groundwater quality from 29 private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana. Petroleum hydrocarbons, oil and grease, aromatic volatile organic compounds, methane concentrations greater than 8,800 micrograms per liter, chloride concentrations greater than 250 milligrams per liter, and gross alpha radioactivity greater than 15 picocuries per liter were reported in the analysis of groundwater samples from 11 wells.

  3. Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980

    Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

    1980-06-01

    A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

  4. A Good Solution for Household Based on Fast Waste Water Blockage Detection

    Mohammad A. Omardin

    2010-01-01

    Full Text Available Problem statement: The waste pipes from the wash basin are always flow in with several waste form kitchen preparation. Due to time consideration the pipe may comes through blockage and need blockage maintenance. Approach: This study presented an invention for early warning blockage detection for a kitchen waste water drain pipe. The waste water pipe some be connected through vertical pipe runs which are usually embedded in the wall. The Fast Waste Water Blockage Detection (FWABET is to create early detection of a blocked waste water level at kitchen appliances means for quick action knowing fluid flow passing through detector and indicates sign and alarm. Results: User society and country will be benefited from FWABET such as restaurants, slaughters house, hotels, hospitals, building developers and plumbing contractors. It is the first invention in Malaysia and can be adapt as a part of building services requirements. Conclusion: It is concluded that by apply the FWABETs, it may reduce the costs and time of blockage waste water blockage drainage maintenance operations.

  5. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  6. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  7. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  8. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    2012-02-08

    ... enhance the energy and water security of Fort Bliss, Texas, which is operationally necessary, financially... waste reduction, and energy and water conservation policies and practices; (2) the construction of a new... Department of the Army Environmental Impact Statement for the Implementation of Energy, Water, and...

  9. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  10. Phytoremediation of Polychlorobiphenyls PCBs in Landfill E-Waste Leachate with Water Hyacinth E.Crassipes

    E.A Omondi; P.K Ndiba and P.G Njuru

    2015-01-01

    Abstract The presence of e-waste in a landfill can release persistent organic pollutants POPs including polychlorinated biphenyls PCBs into the environment. PCBs are a family of more than 200 chemical compounds congeners each of which consists of two benzene rings and one to ten chlorine atoms. This study investigated use of water hyacinth Eichhornia crassipes for phytoremediation of landfill leachate waste containing PCB. Landfill leachate was simulated in the laboratory by spiking water sam...

  11. Isolation and Screening of Water Microbes for Decolourisation of Textile Dye Waste

    J. K. Singh,; Ranjan, R; Pranay P Pankaj

    2016-01-01

    Azo dyes are widely used in textile industry. Unused dyes, consisting mainly non biodegradable released along with waste water streams without any proper pre-treatment which cause nuisance for environment and accumulate in flora as well as fauna. These also exhibit allergic, carcinogenic and mutagenic properties for human beings. Isolation and screening of azo dye degrading bacteria are economic in biodegradation and detoxification. In the present study, 200 waste water samples were collected...

  12. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  13. STS-55 crewmembers repair waste water tank under OV-102's middeck subfloor

    1993-01-01

    STS-55 Pilot Terence T. Henricks uses a spotlight and pen to point out a possible problem area on a waste water tank in the bilge area below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross records the activity with a video camcorder. The crewmembers are participating in an inflight maintenance (IFM) exercise to counter problems experienced with the waste water tank.

  14. Utilization of red mud for the purification of waste waters from nuclear power plants

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  15. Releases from the cooling water system in the Waste Tank Farm

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  16. Releases from the cooling water system in the Waste Tank Farm

    Perkins, W.C.; Lux, C.R.

    1991-12-31

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  17. AN EVALUATION OF APPLICABILITY OF PHYSICO-CHEMICAL THRTIARY TREATMENT OF DOMESTIC WASTE IN A REGION OF TEHRAN, IRAN

    P. Samar

    1985-06-01

    Full Text Available The Purpose of this study was comparison of applicability of tertiary treatment of Tehran domestic sewage with organic and inorganic coagulants or a combination of them. The far test procedure was applied utilizing: alum, polyelectrolyte WT 2600, anionic Polyelectorlyte WT 3000, and nonionic polyelctrolyte WT 2690 as organic coagulants (products of Calgon. The combination of lime with each of the organic coagulants WT 2600 and WT 3000 was subsequently used in jar test analysis. The optimum pH and optimum dosage of each coagulant were determined, based on the removal of turbidity, COD, and suspended solids. The removal of various parameters including COD, and suspended solids, algal nutrients, metals, bacteria, alkalinity, turbidity, and color were assessed by applying of optimum dosage of each coagulant in an evaluation of final selection in physico- chemical treatment. Lime was considered the most suitable among the polyelectrolytes, but combination of lime and polyelectrolytes was comparatively ruled out.

  18. Economies of density for on-site waste water treatment.

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  19. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  20. RURAL DOMESTIC WATER USE UNDER URBANIZATION:A CASE STUDY OF THE PUDONG DISTRICT OF SHANGHAI%城镇化进程中的农民生活用水研究

    杨晓英; 李纪华; 田壮; 聂耳; 方淑波

    2013-01-01

    variables influencing the amount of rural domestic water use include household size,tap water price,source of water for washing clothes,and the ways of bathing.The developed stepwise multiple regression model could explain 41% of the variance in monthly tap water usage.(4) The majority of the surveyed farmers acknowledge the importance of water conservation.However,they tend to limit water conservation to "reducing the amount of tap water use so as to cut water bills." Many farmers considered the more use of groundwater as their major way of water conservation.The free availability of groundwater seems to lead to the widespread practice of water waste.The study results have suggested that more work is needed to ensure the safety of rural domestic water use in the study region,which includes (1) educating farmers to enhance their awareness of water pollution control and water resource protection; (2) guiding farmers' groundwater use and sewage discharge activities to reduce waste and indiscriminate discharge;(3)establishing rural sewage collection and discharge programs and ensuring its proper operation; (4) establishing groundwater protection and management programs to ensure the sustainability of groundwater resources and the protection of groundwater quality.%目前,我国有关农村居民生活用水的系统研究相当缺乏.对地处上海市浦东快速城市化区域的8个村庄进行随机入户调查.在对调查数据进行整理和统计分析的基础上,系统研究当地农民的生活用水行为和影响因素.研究表明:(1)被访农民普遍认为自来水价格过高.家庭收入水平是决定被访农民对水价态度的主要影响因素.(2)自来水价格主要对农户的洗衣行为产生显著影响.认为自来水价格高的农户更倾向于用井水洗衣.(3)影响农户自来水用水量的显著变量包括:农户家庭常住人口、自来水价格、洗衣水源和洗澡方式.(4)被访农民普遍具有节水意识,但大都局限

  1. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  2. The Present State and Trends in Development of Domestic Waste Treatment Technology at home and abroad%国内外生活垃圾处理技术现状与发展趋势

    陆明东

    2013-01-01

      随着世界经济的发展,生活垃圾与日俱增。目前,国内外生活垃圾处理技术主要有堆肥、填埋、焚烧和厌氧发酵技术,从节能减排和循环经济的角度看,垃圾分选,垃圾回收利用,垃圾焚烧发电,垃圾的综合处理是未来的一个发展趋势。%  With the development of the global economy, the domestic solid waste increased. At present, the treatments for domestic solid waste mainly include composting, landfill, incineration, and anaerobic digestion process. The waste sorting, waste reutilization, waste incineration power, and waste comprehensive treatment will be the trends in future from the view of energy saving, emission reduction and circular economy.

  3. A possible case of caprine-associated malignant catarrhal fever in a domestic water buffalo (Bubalus bubalis in Switzerland

    Dettwiler Martina

    2011-12-01

    Full Text Available Abstract Background Malignant catarrhal fever (MCF is a fatal herpesvirus infection, affecting various wild and domestic ruminants all over the world. Water buffaloes were reported to be particularly susceptible for the ovine herpesvirus-2 (OvHV-2 causing the sheep-associated form of MCF (SA-MCF. This report describes the first case of possibly caprine-associated malignant catarrhal fever symptoms in a domestic water buffalo in Switzerland. Case presentation The buffalo cow presented with persistent fever, dyspnoea, nasal bleeding and haematuria. Despite symptomatic therapy, the buffalo died and was submitted to post mortem examination. Major findings were an abomasal ulceration, a mild haemorrhagic cystitis and multifocal haemorrhages on the epicardium and on serosal and mucosal surfaces. Eyes and oral cavity were not affected. Histopathology revealed a mild to moderate lymphohistiocytic vasculitis limited to the brain and the urinary bladder. Although these findings are typical for MCF, OvHV-2 DNA was not detected in peripheral blood lymphocytes or in paraffin-embedded brain, using an OvHV-2 specific real time PCR. With the aid of a panherpesvirus PCR, a caprine herpesvirus-2 (CpHV-2 sequence could be amplified from both samples. Conclusions To our knowledge, this is the first report of malignant catarrhal fever in the subfamily Bovinae, where the presence of CpHV-2 could be demonstrated. The etiological context has yet to be evaluated.

  4. Supercritical water oxidation: application to reduce industrial wastes. Oxidacion en agua supercritica (OASC): aplicacion a la eliminacion de residuos industriales

    Cocero, M.J.; Gonzalez, R.; Fernandez-Polanco, F.

    1994-01-01

    The incineration of wastes presents many problems with environmental laws. A solution could be the Supercritic oxidation water. (SOW). This method is clean, without air pollution. The article analyzes process, depressurization, energetical approvement, and applications for wastes. (Author) 18 refs.

  5. Shallow Discussion on Waste Water Treatment of Oil Reservoir%浅谈油库污水处理工艺

    曲可为

    2011-01-01

    There are many ports along the coast in our country,and it is necessary to clean oil tanks and discharge the oily waste water separated from blow down tanks on a regular basis in many oil reservoir.Besides, the oil tanks should discharge ballast water,in which the oil content can reach 20%,while the oil content is quite complicated.Oil content in oily waste water usually varies from dozens to several thousands of mg/L,and even tens of thousands of mg/L at maximum.According to the occurrence type,the oily waste water is normally sorted as floating oil,dispersed oil,emulsified oil and dissolved oil.The principle of waste water treatment is such that,first to consider recovering oil from the oily waste water to maximum extent,and the treated water should meet the requirement of Regeneration and recycling of municipal waste water and water quality of municipal domestic water GBfF 18920-2002.%我国沿海港口众多,很多油库每天需要清洗油罐并且定期排放罐内分离出来的含油污水,而油轮需要清理压舱水,其压舱水的含油量最大可达20%,而且油质复杂。含油废水中的含油量,一般为几十至几千mg/L,最高可达数万mg/L。而国家规定的允许排放标准仅为10mg/L。根据含油废水中油类存在形式的不同,通常分为浮油、分散油、乳化油和溶解油四种。含油废水的治理原则:首先应该考虑尽可能多的回收含油废水中的油,对治理过的水,应达到国家《城市污水再生利用城市杂用水水质》GB/T18920—2002标准的要求。

  6. Water reuse for domestic consumption. A key element for environmental and economic sustainability

    Coimbra, José; Almeida, Manuela Guedes de

    2013-01-01

    In a context of increasing social awareness about resources conservation, residential water management is essential in ensuring environmental and economic sustainability. An adequate management is attained with integrated solutions, which simultaneously reduce potable water consumption at least in 25% and enable the storage of recovered water. The recovery and storage of underground water can be ensured with the installation of a groundwater drainage network and an underground water deposi...

  7. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    Michael B. Ellison

    2014-05-01

    Full Text Available The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn and metalloids (As and Se in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in “clean” water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn more rapidly than metalloids (As, Mo and Se. Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  8. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.

    Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  9. Effects of Weathering at Waste Rock Dump on Water Quality Inside the Mine Wastes; A Case Study in Korea

    Yim, G.; Cheong, Y.; Park, H.; Ji, S.; Lee, H.

    2008-05-01

    This study was carried out to investigate the route of acid rock drainage production and some of the important factors at the abandoned Geo-pung copper mine in Okcheon, Korea. In this research area, planting and remediation have been carried out to prevent environmental pollution, but these effects turned out to be a failure and that acid rock drainage is observed around waste rock dump and planted vegetation is dying. Currently, the slope of mine waste rock dump in the study site is about 40°. It is composed of particles with a variety of shapes, with the surface exposure to atmosphere being transformed to oxide minerals due to weathering. Since groundwater level underneath the mine wastes is directly related to rainfall, a comparative evaluation of weather records and groundwater level data obtained using on-site measuring device (CTD diver) would allow estimation of locational media-specific pattern of rainfall effect in term of infiltration flux and time of threshold impact on groundwater. Sampling and analysis of there borehole water were conducted in July and September, 2007. It was found that all of the borehole water had highly variable levels of Fe (0.4-588 mg/l), Al (8.2-41.9 mg/l), Cu (6.0-32.2 mg/l), Zn (22.2-226.7 mg/l) and other elements. Also, in general, pH of the borehole waters decreased while electric conducivity measured. Such a high variance in the water quality among different borehole water suggests that geochemical environment inside the mine wastes is largely dependent on the local variation in rainfall infiltration of waste rock dump and underneath groundwater level. Vadose zone which has vertical variation of 2-4 m is directly impacted by amount of rainfall and maintains oxidizing condition due to diffusion of oxygen carred by rainfall. Therefore, sulfide minerals within in the zone continued to be oxidized, producing acid rock drainage. To prevent production of acid rock drainage of mine waste, it is necessary to control infiltration of

  10. Use of radionuclides at small water purification plants and in industrial waste water treatment by radiation adsorption method

    Brusentseva, S.A.; Egorov, G.F.; Shubin, V.N. [and others

    1993-12-31

    An irradiation technique for potable water treatment is described. Use of radionuclides as a source of radiation allows for the automation of the process. The treatment is considered to be effective in waste water treatment to remove phenols, pesticides, and other toxic compounds.

  11. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  12. Domestic Violence

    孙犁

    2014-01-01

    <正>Most of the attention on domestic violence is on the violence perpetrated by the husband towards the wife.It seems that little attention is paid on the infliction of domestic violence on children.Domestic violence on children should not be neglected.Domestic violence on children is everywhere.A survey

  13. New Method of Online Measurement of Oil and Suspended Material Concentration In Flowing Waste Water

    Liao, Hongwei; Xu, Guobing; Xu, Xinqiang; Zhou, Fangde

    2007-06-01

    At present, the most of the measurements of oil and suspended material concentration in waste water measuring are not online surveys. A new method of online measurement of oil and suspended material concentration in flowing waste water is presented. The room experiments and field tests showed that it is suitable to waste water treatment on line. After sampling, It needed to measure immediately the concentration in first time. Then let sample to be in still in 10 - 20 seconds. After that the bulk concentration was measured in second time. Because of the suspended solids having heavy density, they would be dropped from waster water. During ultrasonic operation, emulsify the oil in waster water, the oil and suspended solid would be depart. After that the third time measurement was done. In thus way the concentrations of oil and suspended solids can be measured. At present there are two on-site equipments operating in the Changqing oilfield, and the results are pretty well.

  14. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    Manjula Gopinathan; Meenambal Thirumurthy

    2012-01-01

    Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along wit...

  15. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  16. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  17. Analysis of black fungal biofilms occurring at domestic water taps (II): Potential routes of entry

    G. Heinrichs; I. Hübner; C.K. Schmidt; G.S. de Hoog; G. Haase

    2013-01-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested

  18. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects.

  19. Restoration of wadi aquifers by artificial recharge with treated waste water.

    Missimer, Thomas M; Drewes, Jörg E; Amy, Gary; Maliva, Robert G; Keller, Stephanie

    2012-01-01

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands.

  20. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  1. Recovery of Caprolactam from Waste Water in Caprolactam Production Using Pulsed—sieve—plate Extraction column

    LIUJiangqing; XIEFangyou; 等

    2002-01-01

    Recovery of caprolactam from waste water of caprolactam production factory was investigated using benzence as solvent in a small-scale pulsed-sieve-plate column.First,liquid-liquid equilibrium (LLE) deta were measured,including water-caprolactam-benzene system at low caprolactam concentrations,and waste water-benzene system.Then,the operating regions and mass transfer of the pulsed-sieve-plate column were measured.Finally,the overall apparent heights of a transfer unit based on continuous phase are correlated in terms of the column operation variables.

  2. The elimination of nitrogenized compounds from waste water; Eliminacion de los compuestos nitrogenados en aguas residuales

    Brugger, A. [Zullig AG, Barcelona (Spain)

    1995-12-31

    Nitrogenized compounds play a special role in water biology. Ammonium ions arc toxic for fish and nitrates are harmful for children and older people. A process for oxidizing ammonium ions by nitrification and then eliminating them through denitrification is presented for use in waste water treatment plants. These processes are automatically controlled by electrodes which measures the redox potential and thereby optimize the whole system. The results obtained by automating this process in the Leer waste water treatment plant (Germany) are presented. (Author) 6 refs.

  3. Lost water and nitrogen resources due to EU consumer food waste

    Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G.

    2015-08-01

    The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55-max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7-max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45-max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13-max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127-max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29-max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02-max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.

  4. An Insight into the Selection of Nano Particle for Removing Contaminants in Waste Water

    Pandipriya J

    2014-04-01

    Full Text Available Waste water treatment is a major challenge in automobile industries and manufacturing sectors. In past few decades, research in waste water treatment has gained significant importance. Feasibility of nanoparticles for removing impurities is explored. However the major challenge lies in the synthesis of these nanoparticles. But with the advancements in nanotechnology, non-hazardous nanoparticles of size less than 10nm can be synthesized and morphological characteristics can also be successfully studied. Owing to their extremely smaller size, good absorption characteristics, better chemical reactivity, large surface to volume ratio, nanoparticles are highly suitable for removing metal/non-metal, organic/inorganic contaminants from water. This paper provides an extensive literature survey on the suitability of various nanoparticles for waste water treatment

  5. Comparative Studies on Growth and Remediation of Waste Water by Two Cyanobacterial Biofertilizers

    Vijaya Tartte

    2010-09-01

    Full Text Available Nitrogen fixing cyanobacteria are ecologically significant inputs in improving the plant productivity in tropical countries like India. Large scale cultivation of these organisms using inorganic media is relatively expensive. In the present study utilization of kitchen waste water emerged from a pilgrim centre as a source of nutrients and its remediation was compared using two blue green algal cultures viz. Anabeana variabilis and Nostoc muscorum. A complete randomized design was created for the experiment that was performed on BG-11, 100% and 75% KW (Kitchen Water media. The physicochemical properties of waste water were analyzed before and after cultivation. It was found that the N. muscorum was more effective in removal of phosphorous and nitrogen contaminants from waste water to meet the standards of safe discharge besides producing more biomass compared to A. variabilis.

  6. Technology Research on Municipal Domestic Waste Disposal Using Cement Kiln%利用水泥窑处置城市生活垃圾的技术研究

    陈必鸣; 卢欢亮; 陈伟锋

    2011-01-01

    基于国内外利用水泥窑协同处置城市固体废物的工程实践,分析了生活垃圾作为替代燃料在水泥工业应用的影响因素,并进行利用水泥窑处置城市生活垃圾的技术可行性分析.%The influencing factors of using domestic waste as alternative fuel for cement industry were analyzed by means of introducing engineering practices of municipal solid waste co-disposal by applying cement kiln in domestic and overseas, and its technical feasibility analysis was carried out.

  7. State waste discharge permit application for cooling water and condensate discharges

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  8. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale.

    Palla, A; Gnecco, I; La Barbera, P

    2017-04-15

    In the framework of storm water management, Domestic Rainwater Harvesting (DRWH) systems are recently recognized as source control solutions according to LID principles. In order to assess the impact of these systems in storm water runoff control, a simple methodological approach is proposed. The hydrologic-hydraulic modelling is undertaken using EPA SWMM; the DRWH is implemented in the model by using a storage unit linked to the building water supply system and to the drainage network. The proposed methodology has been implemented for a residential urban block located in Genoa (Italy). Continuous simulations are performed by using the high-resolution rainfall data series for the ''do nothing'' and DRWH scenarios. The latter includes the installation of a DRWH system for each building of the urban block. Referring to the test site, the peak and volume reduction rate evaluated for the 2125 rainfall events are respectively equal to 33 and 26 percent, on average (with maximum values of 65 percent for peak and 51 percent for volume). In general, the adopted methodology indicates that the hydrologic performance of the storm water drainage network equipped with DRWH systems is noticeable even for the design storm event (T = 10 years) and the rainfall depth seems to affect the hydrologic performance at least when the total depth exceeds 20 mm.

  9. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence

    Flanagan, Sara V.; Marvinney, Robert G.; Zheng, Yan

    2014-01-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner’s responsibility to test and treat the water. A mailed household survey was implemented January 2013 in 13 towns of central Maine with the goal of understanding the population’s testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported their well has been tested, for half it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing regularly testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers. PMID:24875279

  10. Installation package for a domestic solar heating and hot water system

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  11. Overview of the principal european and french regulations on air, water and solid wastes

    Piro, M.

    1995-12-31

    This paper summarises French and European regulation on discharges into the environment (excluding radio-active emissions), whether solid, liquid or gaseous, that is to say, covering solid wastes, aqueous effluents and atmospheric emissions. The report includes commentaries allowing a better understanding of the legislation. Three fields are examined: the air, solid wastes and water. For each sector, we have listed the European directives and their application in French law. The chronological order facilitates consultation. (author).

  12. A novel recovery technology of trace precious metals from waste water by combining agglomeration and adsorption

    2007-01-01

    A novel and efficient technology for separating and recovering precious metals from waste water containing traces of Pd and Ag was studied by the combination of agglomeration and adsorption. The recovery process and the impacts of operating conditions such as pH value of waste water, adsorption time, additive quantity of the flocculant and adsorbent on the recovery efficiency were studied experimentally. The results show that Freundlich isothermal equation is suitable for describing the behavior of the recovery process, and the apparent first-order adsorption rate constant k at 25 ℃ is about 0.233 4 h-1 The optimum technology conditions during the recovery process are that pH value is 8-9; the volume ratio of flocculant to waste water is about 1 :(2 000-4 000); the mass ratio of adsorbent to waste water is 1 :(30-40); and processing time is 2-4 h. Finally, the field tests were done at the optimum technology conditions, which show that the total concentration of Pd and Ag in the waste water below 11 mg/L can be reduced to be less than 1 mg/L.

  13. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources.

  14. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks c...

  15. Argentina. Country Case Study on Domestic Policy Frameworks for Adaptation in the Water Sector

    Pochat, V. [Argentine Institute for Water Resources, Universidad Nacional del Litoral, Santa Fe (Argentina); Natenzon, C.E.; Murgida, A.M. [PIRNA, Programa de Investigaciones en Recursos Naturales y Ambiente, Facultad de Filosofia y Letras, Universidad de Buenos Aires, Buenos Aires(Argentina)

    2006-03-15

    Background information for presentation given at the Annex I Expert Group Seminar in Conjunction with the OECD Global Forum on Sustainable Development on 28 March 2006. The main subjects concern the situation in Argentina with regard to Water Resources and their Use, Institutional Arrangements, Impact of Climate Change on Water Resources, Preparedness and Adaptation to Climate Change, and finally Recommendations are given.

  16. 北京市现行生活垃圾管理体系存在问题及对策%Problems and Countermeasures of Domestic Waste Management System in Beijing

    张燕

    2011-01-01

    Some problems of domestic waste management system in Beijing were analyzed, for example, imperfect system of waste sorting construction and operation, deficient fund for waste collection and transportation, and different levels of equipment And its countermeasures were put forward. That is to say, setting up ideas of waste sorting overall process, increasing fund for waste collection and transportation, and providing facilities for waste sorting and transportation are the fundamentality of the solutions. Furthermore, enhancing research on recycling technology and industrial policy, and improving application level of information system are the breakthrough of waste management system.%分析了北京市现行生活垃圾管理体系中存在垃圾分类的系统建设和运行体系不健全,垃圾的收集和运输环节投入资金力量不足,设备参差不齐等问题.提出其解决根本应在于树立垃圾全过程分类的理念,增加收运环节的投入和配备分类运输设施;加快可回收资源技术手段和产业政策的研究及提高信息系统的应用水平是垃圾管理体系的突破.

  17. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    Paul B. Tchounwou

    2005-08-01

    Full Text Available Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium

  18. Consumptive water use associated with food waste: case study of fresh mango in Australia

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  19. Domestic Violence

    Domestic violence is a type of abuse. It usually involves a spouse or partner, but it can also be ... child, elderly relative, or other family member. Domestic violence may include Physical violence that can lead to ...

  20. Anaerobic depuration of waste waters; Depuracion anaerobia de aguas residuales

    Mejias Sanchez, G.; Vazquez Berger, E.; Magana Pietra, A.H. [Facultad de Ingenieria, Universidad Autonoma de yucatan, Merida (Mexico)

    1996-08-01

    Trials were carried out at a 500 l semi-experimental plant using there reactor models-anaerobic filter, fixed film and UASB type-for the anaerobic treatment of waste from different sources. The results after 24 and 48 hours were compared. The greatest efficiency was obtained after 48 hours the aerobic filter reactor (66% displacement), followed by the fixed film reactor (50%) and the UASB model (41%). (Author) 16 refs.

  1. 生产废水余热回收技术应用探讨%Production Waste Water Waste Heat Recovery Technology Application

    曲学明

    2014-01-01

    生产废水余热回收利用节能降耗,减排增效,投资回收期短,经济和社会效益显著。%production waste water waste heat recycling, energy saving and consumption reducing emissions reduction efficiency, short payback period of investment, economic and social benefit is remarkable.

  2. Strains of toxic and harmful microalgae, from waste water, marine, brackish and fresh water.

    Rodríguez-Palacio, M C; Crisóstomo-Vázquez, L; Alvarez-Hernández, S; Lozano-Ramírez, C

    2012-01-01

    Some microalgae are economically important in Mexico and the world because they can be potentially toxic. Algal explosive population growths are named harmful algal blooms and are frequently recorded in Mexico. The authors set up potentially toxic microalgae cultures from the Gulf of Mexico (Garrapatas tideland, Barberena river, Carpintero lagoon in Tamaulipas State; Chalchoapan and Catemaco lakes in Veracruz State), from the Mexican Pacific Ocean, Guerrero, Colima and Michoacán States, and from interior water bodies such as Vicente Aguirre dam, Chapultepec lake and several waste water treatment plants. This research is about the diversity and abundance of phytoplankton in relation a specific site because of harmful algal bloom events. Microalgae cultures are useful in order to solve taxonomic problems, to know life cycles, molecular studies, for the study of toxic species, and the isolation of useful metabolites. The cultures for this research are clonal, non-axenic, semi-continuous, 12:12 light/dark photoperiod, 20 ± 1 °C temperature and 90.5 µmol m(-2)s(-1) illumination. Four different culture media were used. This collection is open to the worldwide scientific community as a source of organisms in controlled conditions that can be used as a useful tool for microalgae research work.

  3. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-01-23

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed.

  4. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only.

  5. Flat plate collectors as facade elements for domestic hot water and heat insulation. Flachkollektoren als Fassadenelemente zur Brauchwassererwaermung und Waermedaemmung

    Flamm, H.; Lochau, R.; Maeiss, M.; Schiele, J.

    1984-07-01

    In a newly constructed south-west-facade 200 m/sup 2/ of flat plate collectors were integrated as construction elements to heat domestic water. The building needs 5-10 m/sup 3/ of hot water per day, i.e. 250-500 kWh/d. The solar circuit runs with a water-glycol-mixture with a specific volume flow rate of 20-40 l/m/sup 2/h. The storage capacity is 8 m/sup 3/, i.e. 40 l/m/sup 2/ collector area. The heating system is bivalent. The total cost was DM 220.000, excepting the cost of facade construction. The observation period was 2 years. The heat flow balance was measured daily using a microprocessor. As far as the construction was concerned, there were no defects during the observation period. The rooms behind solar collectors showed no additional thermal load. The most favourable season for running solar systems is from April to September. In this period the average efficiencies were 15 to 20%, the net energy yield was 76 kWh/m/sup 2/.

  6. Water Hardness as Basic Indicator the Presence Fouling in Domestic Sanitary Facilities

    Julián–Soto F

    2010-04-01

    Full Text Available The monitoring of the water quality was done in the central valleys of Oaxaca state, finding very high concentrations of calcium, magnesium and carbonate in the waters from of deep wells that are located in the periphery of the river Atoyac, unlike the water that comes from the high parts of Etla valley, where there are maximum hardnesses of 140ppm, so for the distribution of both effluent to the city of Oaxaca and neighboring municipalities, suggesting a further dilution of the water treatment plant in "Fortin" in the city of Oaxaca, that after determining the Langelier index and other, with software found in the universal bibliography. The results indicate that water from the river Atoyac, have corrosive properties. In laboratory doing tests, the best dilution was 60 to 40% by volume, of water from Etla Valley and the periphery of the river respectively. Langelier index was converted to a negative, indicating saturation with respect to calcium carbonate (CaCO3 and will tend to dissolve, avoiding the deterioration of the sanitary units.

  7. Variability in the chemistry of private drinking water supplies and the impact of domestic treatment systems on water quality.

    Ander, E L; Watts, M J; Smedley, P L; Hamilton, E M; Close, R; Crabbe, H; Fletcher, T; Rimell, A; Studden, M; Leonardi, G

    2016-12-01

    Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than

  8. State Waste Discharge Permit application, 100-N Sewage Lagoon

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  9. The physico-chemical treatment of laundry waste water; Tratamiento fisicoquimica de aguas residuales de lavanderias

    Susial, P.; Jato, I. G.; Larranaga, I.

    2006-07-01

    Waste water from the washing of clot her is treated with aluminium sulphate + acrylamide to achieve coagulation/flocculation. The analytical data obtained in a jar-test using the FTU as the control parameter demonstrate the efficacy of the process, as reductions in the FTU approaching 100% and elimination rates of 80% in detergents and 85% in the COD were achieved. These results show that coagulation and flocculation are sufficient to treat laundry waste water, even though it contains a high pollutant load, since both organic and inorganic pollutants can be significantly reduced by such operations. (Author) 17 refs.

  10. Water soluble decontamination coating for Defense Waste Processing Facility (DWPF) canisters

    Selby, C.L.

    1986-12-17

    Water soluble sodium borate glass coating was successfully codeveloped by Clemson University (Dr. H.G. Lefort) and Du Pont as an alternative decontamination process to frit slurry blasting of Defense Waste Processing Facility (DWPF) canisters. Slurry blasting requires transport of abrasive slurries, might cause galling by entrapped frit particles, and could result in frit slurry freezeup in pumps and retention basins. Contamination can be removed from precoated canisters with a gentle hot water rinse. Glass waste spilled on a coated canister will spall off spontaneously during canister cooling. A glass coating appears to prevent transfer of contamination to the Canister Decontamination Cell (CDC) guides and cradle. 1 ref., 5 tabs.

  11. Treatment of Zn-Containing Acidic Waste Water by Emulsion Liquid Membrane Process

    王士柱; 何培炯; 郝东萍; 朱永贝睿

    2002-01-01

    Zn-containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. After adjusting the membrane composition, changing the emulsion phase ratio, and adding a scrubbing step, the ELM process operated normally without trouble for emulsion splitting and mass transport throughput. The splitter voltage was decreased to 3.55 kV. The zinc concentration of treated waste water was lowered to less than 10 mgL-1. More than 95% of the zinc was recovered and reused.

  12. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  13. Factors Affecting Water Quality in Domestic Wells in the Upper Floridan Aquifer, Southeastern United States, 1998-2005

    Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.

    2009-01-01

    The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the

  14. Chromium removal from water by activated carbon developed from waste rubber tires.

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  15. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering......This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily...... the value of the coefficient FRUL and τα, which are obtained experimentally as 6.03 and 0.83 respectively, average. monthly total load that is covered by this solar water heating system is estimated....

  16. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy st

  17. 城市生活垃圾综合处理技术在东胜区的应用%The Application on Comprehensive Treatment of Domestic Waste in Dongsheng District

    王旭琴; 李立军

    2011-01-01

    Comprehensive description of research on comprehensive treatment of domestic waste. In this paper, technology and management in the comprehensive treatment base for municipal solid waste of Dongsheng district is introduced. The Successful experience of comprehensive treatment base for municipal solid waste of Dongsheng district can be learn for other city.%综述了生活垃圾综合处理技术的研究进展,对生活垃圾综合处理技术在东胜区生活垃圾综合处理基地的应用进行了介绍。东胜区垃圾综合处理基地的成功经验是可以借鉴的。

  18. Construction of Urban Domestic Waste Collection and Transportation System in Wuxi%无锡市城区生活垃圾收运体系的构建

    李雄伟

    2011-01-01

    Through exploring construction of urban domestic waste collection and transportation system in Wuxi, its successful experience was summarized. That is to say, it could construct waste collection and transportation system, and advance management level of the system by planning in advance, taking construction of large-scale transfer station as the breakthrough point and requirement, and taking key sections of waste collection and transportation system as the turning point.%通过对无锡市城区生活垃圾收运体系建设的探讨,总结了建立该系统的成功经验:规划先行,以大型转运站建设为突破点和条件,以垃圾收运系统关键节点为契机,全面构建垃圾收运系统及提升该系统的管理水平.

  19. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  20. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    Missimer, Thomas M.

    2012-04-26

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country\\'s treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  1. LCA of waste prevention activities: a case study for drinking water in Italy.

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  2. Domestic Water Service Delivery Indicators and Frameworks for Monitoring, Evaluation, Policy and Planning: A Review

    Jamie Bartram

    2013-10-01

    Full Text Available Monitoring of water services informs policy and planning for national governments and the international community. Currently, the international monitoring system measures the type of drinking water source that households use. There have been calls for improved monitoring systems over several decades, some advocating use of multiple indicators. We review the literature on water service indicators and frameworks with a view to informing debate on their relevance to national and international monitoring. We describe the evidence concerning the relevance of each identified indicator to public health, economic development and human rights. We analyze the benefits and challenges of using these indicators separately and combined in an index as tools for planning, monitoring, and evaluating water services. We find substantial evidence on the importance of each commonly recommended indicator—service type, safety, quantity, accessibility, reliability or continuity of service, equity, and affordability. Several frameworks have been proposed that give structure to the relationships among individual indicators and some combine multiple indicator scores into a single index but few have been rigorously tested. More research is needed to understand if employing a composite metric of indicators is advantageous and how each indicator might be scored and scaled.

  3. Partial results summary for solar domestic hot water monitoring in Pennsylvania

    Aungst, W. K.

    Installation procedures, monitoring practices, and results of performance evaluations of 50 HUD-sponsored residential solar flat plate collector systems studied in the field are summarized. The systems consisted of antifreeze, drain-down, and air freeze protection schemes, featured either one- or two-tank thermal storage, and were either roof- or ground-mounted. Residents kept daily records of water flow, temperature, kWh, and elapsed time. The HUD program goals were that one-half of the household daily water needs would be heated by the solar system. An average of 34.5% of the hot water energy was found, although a coefficient of performance of 1.40 was also found, compared to 0.78 and 0.82 for nonsolar water heaters. An average of 9% rate of return on investment was calculated for the solar systems, noting that system efficiencies ranged from 7-79.8%, and the rates of return ranged from 1-22.4%.

  4. STUDY ON APPLICATION OF AERATION BIOLOGICAL FLUID TANK TECHNOLGY IN NH4+—N WASTE WATER TREATMENT

    CHENYi; LUJian-guo

    2003-01-01

    This paper introduces an application of "Aeration biological fluid tank"technology (ABFT) for the treatment of waste water containing NH4+-N and high concentrated chemicals.Highlights were focused on the effects of dissolved oxygen,pH,temperature and retention time on waste water bilogical treatment in order to find out a new approach in treatment of waste time on containing high concentrated NH4+-N.

  5. Water as a transport medium for waste out of towns

    Harremoës, P.

    1999-01-01

    is illustrated by the absence of water-borne diseases in the modem developed city. A new paradigm is introduced based on added concern for the use of resources, pollution of the environment and the concern for the welfare of the coming generations. The water resource is not the unsustainable aspect of urban...

  6. System design package for SIMS prototype system 4, solar heating and domestic hot water

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  7. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  8. System design package for IBM system one: solar heating and domestic hot water

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  9. Potential of domestic sewage effluent treated as a source of water and nutrients in hydroponic lettuce

    Renata da Silva Cuba

    2015-07-01

    Full Text Available The search for alternative sources of water for agriculture makes the use of treated sewage sludge an important strategy for achieving sustainability. This study evaluated the feasibility of reusing treated sewage effluent as alternative source of water and nutrients for the hydroponic cultivation of lettuce (Lactuca sativa L. The experiment was conducted in the greenhouse of the Center for Agricultural Sciences - UFSCar, in Araras, SP. The cultivation took place from February to March 2014. The hydroponic system used was the Nutrient Film Technique, and included three treatments: 1 water supply and mineral fertilizers (TA; 2 use of effluent treated and complemented with mineral fertilizers based on results of previous chemical analysis (TRA; and 3 use of treated effluent (TR. The applied experimental design was four randomly distributed blocks. We evaluated the fresh weight, nutritional status, the microbiological quality of the culture, and the amount of mineral fertilizers used in the treatments. The fresh weights were subjected to analysis of variance and means were compared by the Tukey test at 5% probability. Only the TR treatment showed a significant difference in the evaluated variables, as symptoms of nutritional deficiencies in plants and significant reduction in fresh weights (p <0.01 were found. There was no detectable presence of Escherichia coli in any treatment, and it was possible to use less of some fertilizers in the TRA treatment compared to TA.

  10. Environmental performance evaluation of hot water supplying systems for domestic use

    Luiz Alexandre Kulay

    2015-04-01

    Full Text Available The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmental perspective. The systems were operated under similar conditions. The analysis was conducted by using the Life Cycle Assessment technique, for the impact categories of Climate Change, Acidification Eutrophication and Water, Metal and Fossil Resource depletion. The results indicated that the electric and hybrid systems are less harmful to the environment for all the impact categories under analysis. On the other hand, the gas system provided the worst performance of the group. The solar heating system was penalized due to its dependence on electricity to operate under the conditions in which the study was conducted.

  11. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  12. Ground-water quality and susceptibility of ground water to effects from domestic wastewater disposal in eastern Bernalillo County, central New Mexico, 1990-91

    Blanchard, Paul J.; Kues, Georgianna E.

    1999-01-01

    Eastern Bernalillo County is a historically rural, mountainous area east of Albuquerque, New Mexico. Historically, the primary economic activity consisted of subsistence farming and ranching and support of these activities from small communities. During the last 40 to 50 years, however, the area increasingly has become the site of residential developments. Homes in these developments typically are on 1- to 2-acre lots and are serviced by individual wells and septic systems. Between 1970 and 1990, the population of the area increased from about 4,000 to more than 12,000, and housing units increased from about 1,500 to more than 5,000. Results of analysis of water samples collected from 121 wells throughout eastern Bernalillo County in 1990 indicated that (1) total-nitrate concentrations in 10 samples exceeded the U.S. Environmental Protection Agency national primary drinking-water regulation maximum contaminant level of 10 milligrams per liter as nitrogen; (2) total-nitrate concentrations may be related to the length of time an area has been undergoing development; and (3) large dissolved-chloride concentrations may result from geologic origins, such as interbedded salt deposits or upward movement of saline ground water along faults and fractures, as well as from domestic wastewater disposal. Ground water throughout eastern Bernalillo County was assessed to be highly susceptible to contamination by overlying domestic wastewater disposal because (1) soils in more than 95 percent of eastern Bernalillo County were determined by the U.S. Department of Agriculture Natural Resources Conservation Service to have severe limitations for use as septic-system absorption fields and (2) a fractured carbonate geologic terrane, which typically has large secondary permeability and limited sorption capacity, is at the surface or underlying unconsolidated material in 73 percent of the area. Ground-water-level rises following an episodal precipitation event during July 22-27, 1991

  13. Studying the processes of sulphates and chlorides extraction from water at low-waste water demineralization technology

    Inna M. Тrus

    2014-12-01

    Full Text Available To solve the disposal problem of high-salinity liquid wastes resulting from the water demineralization, researched are the processes of chlorides’ and sulphates’ ion-exchange separation with further sulphates (in the form of calcium sulphate removal from the technological cycle. It is shown that the desulphatized water can be effectively desalinated by reverse osmosis filters, including low-pressure membranes Filmtec TW30-1812-50. The liquid waste obtained in form of concentrates, does contain chlorides, sodium ions and hardness ions. Established is that at these concentrates processing by lime and sodium carbonate or alkali and sodium carbonate they are softened with hardness decrease up to 0,25…0,95 mg-eq/dm3, which allows these solutions’ further electrolysis to obtain alkali and hydrochloric acid. Through direct electrolysis of concentrates, obtained by reverse osmosis water desalination at anionic membrane two-chamber electrolysers, we obtained a disinfectant solution containing chlorine oxigenates (active chlorine, hypochlorite, chlorite and sodium chlorate and duly effective in water sterilization. The resulting solution well keeps its properties and is promising for disinfection of natural and waste waters.

  14. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  15. Development of a Vacuum Crystallizer for the Freeze Concentration of Industrial Waste Water

    Roos, A.C.; Verschuur, R.-J.; Schreurs, B.; Scholz, R.; Jansens, P.J.

    2003-01-01

    Freeze concentration has proven to be a viable technology for the concentration of hazardous industrial waste waters before incineration. Owing to the relatively high investment cost of the technology, its applicability has been limited until now. This paper investigates the feasibility of a vacuum

  16. Water-immiscible solvents for the biological treatment of waste gases.

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the ga

  17. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  18. Water recycling from mixed chromic acid waste effluents by membrane technology

    Frenzel, I.; Stamatialis, D.F.; Wessling, M.

    2006-01-01

    Approaching zero discharge waste on site requires economical treatment technologies for the plating industry, recovering high quality rinse water for reuse. The combination of membranes and evaporation could be an efficient way to downsize the cost and the energy intensive evaporation equipment. In

  19. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers

    The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...

  20. Modelling and automation of the process of phosphate ion removal from waste waters

    L. Lupa

    2008-03-01

    Full Text Available Phosphate removal from waste waters has become an environmental necessity, since these phosphates stimulate the growth of aquatic plants and planktons and contribute to the eutrophication process in general. The physicochemical methods of phosphate ion removal are the most effective and reliable. This paper presents studies on the process of phosphate ion removal from waste waters resulting from the fertiliser industry’s use of the method of co-precipitation with iron salts and with calcium hydroxide as the neutralizing agent. The optimal process conditions were established as those that allow achievement of a maximum degree of separation of the phosphate ions. The precipitate resulting from the co-precipitation process was analysed for chemical composition and establishment of thermal and structural stability, and the aim was also to establish in which form the phosphate ions in the formed precipitate can be found. Based on these considerations, the experimental data obtained in the process of phosphate ion removal from waste waters were analysed mathematically and the equations for the dependence of the degree of phosphate separation and residual concentration versus the main parameters of the process were formulated. In this paper an automated scheme for the phosphate ion removal from waste waters by co-precipitation is presented.

  1. Trend of Mathematical Models in Microbial Fuel Cell for Environmental Energy Refinery from Waste/Water

    Oh, Sung Taek

    A microbial fuel cell (MFC) is a device to use for bio electrochemical energy production. Electrophilic bacteria produce electrons in their metabolic pathway and the electrons can be extracted and concentrated on electrode by the electric potential difference (i.e. Galvanic cell). The bio-electrode may provide new opportunities for the renewable energy in waste water/swage treatment plants.

  2. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...... in the heating system. The heat storage was tested in a heat storage test facility. The most important characteristics of the heat storage were determined by means of the tests and recommendations for the design of the heat storage were given....

  3. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  4. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability.

    Grant, Stanley B; Saphores, Jean-Daniel; Feldman, David L; Hamilton, Andrew J; Fletcher, Tim D; Cook, Perran L M; Stewardson, Michael; Sanders, Brett F; Levin, Lisa A; Ambrose, Richard F; Deletic, Ana; Brown, Rebekah; Jiang, Sunny C; Rosso, Diego; Cooper, William J; Marusic, Ivan

    2012-08-10

    Humans create vast quantities of wastewater through inefficiencies and poor management of water systems. The wasting of water poses sustainability challenges, depletes energy reserves, and undermines human water security and ecosystem health. Here we review emerging approaches for reusing wastewater and minimizing its generation. These complementary options make the most of scarce freshwater resources, serve the varying water needs of both developed and developing countries, and confer a variety of environmental benefits. Their widespread adoption will require changing how freshwater is sourced, used, managed, and priced.

  5. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  6. WATER RESISTANCE OF WOOD - PLASTIC COMPOSITES MADE FROM WASTE MATERIALS RESULTED IN THE FURNITURE MANUFACTURING PROCESS

    Camelia COŞEREANU; Dumitru LICA; Ioan CURTU; Mariana-Domnica STANCIU

    2014-01-01

    The purpose of this paper is to present innovative wood-plastic composites made from waste materials such as ABS (acrylonitrile butadiene styrene) and wood shavings resulted in the furniture manufacturing process. From previous investigations (with regard to physical integrity and compactness of the panels), only mixtures ranging from a ratio of 100% ABS: 0% shavings to 80% ABS: 20% shavings were selected for water resistance testing. Swelling in thickness and water absorption for...

  7. Novel Electrochemical Process for Treatment of Perchlorate in Waste Water

    2011-03-06

    technology combines ion exchange and electrochemistry to provide a selective and reversible method for removing target species from wastewater. In...nanotube nanocomposite for removing perchlorate from drinking water and wastewater. The ESIX technology combines ion exchange and electrochemistry to...potential for perchlorate occurrence in drinking water and food supplies is a human health concern because it can interfere with iodide uptake by the

  8. Comparison of Ground Water Bacterial Cell Sizes from the Agricultural,Domestic and Industrial Areas of Mysore District,Karnataka State,India

    Wadie Ahmed Mokbel; Sadanand M Yamakanamardi

    2008-01-01

    A two-year study on temporal variations in the ground water heterotrophic bacterial cell sizes of free living bacteria(FLB)and particle bound bacteria(PBB)from the agricultural,domestic and industrial areas was carried out from Februar y2005 to January 2007.The overall mean cell length of FLB and PBB was similar in all the ground water studied.However,the season wise grouped data revealed significant seasonal changes in cell length of FLB and PBB,as smaller bacteria were noticed during rainy season in the ground water in agricultural area in both the years,and only in the second year of study in domestic and industrial areas.Generally,it was noticed that there were summer maximum and rainy minimum values of the cell length of PBB in the ground water in agricultural,domestic and industrial areas in the second year of study.The Pearson's correlations showed the presence of 8(in agricultural area),5(in domestic)and 3(in industrial) significant correlations with environmental(Physico-chemical)parameters,respectively.The regression analysis revealed that as much as 12%of variation in the mean length of FL Bwas due to NO3(+)in agricultural area and 9%due to total solids(+)indomestic area.However,the 8% variation in bacterial cell size of FLB was due to Mg(+)in industrial area.Whereas,13%variation in mean length of PBB was due to S04(+)in agncultural area and 10%due to total anions of strong acid(TASA)(+)in domestic area.Furthermore,10% of variation Was due to PO4(+)in industrial area.Thus,the statistical analysis revealed that several environmental variables were potentially responsible for some of the temporal variations in aquatic heterotrophic bacterial cell size,suggesting probably the stressed environment in these ecosystems.

  9. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    . The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR....../year) and the lowest operation (320 EUR/year) expenditures. Electric heater-based concepts consume 5-14 times more electricity, which leads to relatively high annual operation costs (530-970 EUR/year); while investment costs are lower (326-76 EUR/year). The suggested DHW heat pump-based system is cost......-efficient for private consumers already today. Furthermore, application of the micro booster heat pump in low energy houses complies with the energy consumption requirements, set by the recent Danish Building Regulations. The use of electrical heater variants would exceed this limit....

  10. Destruction of representative submarine food waste using supercritical water oxidation.

    Chen, Shiying; Qu, Xuan; Zhang, Rong; Bi, Jicheng

    2015-03-01

    In this study, 13 types of organic materials were oxidized using H2O2 in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99% at temperature of 460 °C and TN conversion reaching 94% at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99% obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100%, the quality of treated water attained levels commensurate with China's Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge-Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol.

  11. Degrading and Detoxifying Industrial Waste Water using Bioremediation Approach

    P. K. Agrawal

    2014-06-01

    Full Text Available Bioremediation uses various microorganisms to detoxify or degrade various harmful substances in the nature, particularly soil and water. In the proposed work, five species of micro-organisms were used to analyse their impact on various physico-chemical parameters of water. In the first attempt the actual physico chemical parameters of the collected sample water were noted down (Fresh sample parameters. Then the sample water was treated with micro-organisms (one at a time. The growth of microbes was noted carefully over 96 hours after inoculation. The physico chemical parameters were recorded again and were compared with the fresh sample parameters. The results were analysed for any change and on this basis an impact factor was developed. The study reveals all the selected microbes have a great capacity of degrading and simplifying the complex molecules into simpler ones. Bioremediative treatment further enhances this capacity and therefore this approach can be utilized on large scale to minimize pollution of water bodies.

  12. THE EFFECT OF INFLUENT CONCENTRATION AND HYDRAULIC LOADING RATE (HLR TO BOD AND COD REMOVAL ON ARTIFICIAL DOMESTIC WASTEWATER TREATMENT (GREY WATER USING UASB REACTOR

    Syafrudin Syafrudin

    2014-05-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor is one of anaerobic biological treatment was develop in late 1970’s. UASB reactor is suitable for the tropic areas because it has a high temperature about 20°-30°C. Domestic wastewater is divided into two types, namely black water and grey water. But in this case used domestic grey water. Grey water is household wastewater from showers, sinks and kitchen. Grey water has a total 75% of the domestic wastewater volume. The research was conducted in laboratory scale. This study performed a variation of Hydraulic Loading Rate (HLR and the influent concentration. There were 25 reactors include 5 variations of influent concentration and 5 Hydraulic Loading Rate’s (HLR variation. The research could asses BOD5 and COD removal with treatment in UASB. Efficiency of BOD5 removal by varying the influent concentration and HLR was about 38%-75% and COD was about 40%-77%. The lower concentration could be increase efficiency BOD5 and COD removal. Influent concentration optimum occurred when middle concentration was about 840 mg/L COD and HLR optimum was 0,05 m3/m2/hour.

  13. 上海村镇生活垃圾分类收集模式与配套设施设置初探%Domestic Waste Classification Collection Mode and Supporting Facilities in Shanghai Rural Area

    谭和平; 胡建平; 吴冰思; 邰俊

    2015-01-01

    分析了上海郊区村镇生活垃圾收运情况、分类收集模式及配套设施情况;对村镇环卫设施的设置提出建议:郊区中镇区垃圾收集点(站)的设置类型及指标要求应当基本与市区一致;村庄中新型居民新村收集设施的设置基本与镇区一致,垃圾房建设标准略高于镇区居民小区垃圾房;传统型村庄垃圾收集设施与综合型的设置指标比较接近。%The status of domestic waste collection and transportation in Shanghai rural area was analyzed, as well as its classification collection mode and supporting facilities. And some suggestions on setting rural environmental sanitation facilities were put forward. That is to say, the setting and parameters of waste collection point (station) in town was as same as those in city. The settings of waste collection facilities in new village and town were basically identical while the construction standard of waste room was slightly higher than those in town. The settings of waste collection facilities in traditional village and comprehensive village were basically identical.

  14. Production of Methane and Water from Crew Plastic Waste

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  15. Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  16. But What Do the Data Say? Lessons in Integrating Science and Policy to Inform International and Domestic Water Management Decisions

    Voss, K.

    2015-12-01

    As scientists we are often encouraged to describe our research in terms of its "broader impacts" - to link our results to a tangible action or change outside of our scientific discipline. Although writing these goals in a proposal is simple, actually executing the proposed "broader impacts" is often more complicated. This presentation will briefly describe several international and domestic experiences that sought to utilize scientific research to inform pressing policy decisions related to water management. The lessons draw from ongoing efforts to improve transboundary groundwater collaboration in the Middle East, mitigate the impact of glacial lake outburst floods in high mountain regions, and prompt a political response to the California drought and groundwater depletion. As current initiatives at the science-policy interface, key challenges and ideas for improvement will be discussed, particularly: effective, concise communication of scientific data, awareness of broader political/economic contexts, and long-term trust building with decision-makers. Finally, this presentation will highlight several opportunities and suggestions to promote graduate students' involvement in these activities and to build skills at the science-policy interface.

  17. Standard Practice for Installation and Service of Solar Domestic Water Heating Systems for One- and Two-Family Dwellings

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This practice provides descriptions of solar domestic water heating systems and sets forth installation and service practices in new and existing one- and two-family dwellings to help ensure adequate operation and safety., 1.2 This practice applies regardless of the fraction of heating requirement supplied by solar energy, the type of conventional fuel used in conjunction with solar, or the heat transfer fluid (or fluids) used as the energy transport medium. However, where more stringent requirements are recommended by the manufacturer, these manufacturer requirements shall prevail. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Sections 6 and 7.

  18. Consumptive water use associated with food waste: case study of fresh mango in Australia

    B. G. Ridoutt

    2009-07-01

    Full Text Available In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water at orchard gate was 2298 l kg−1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg−1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  19. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system.

  20. Abatement of waste gases and water during the processes of semiconductor fabrication

    2002-01-01

    The purpose of this article is to examine the methodsand equipment for abating waste gases and water produced during themanufacture of semiconductor materials and devices. Threeseparating methods and equipment are presented in this article tocontrol three different groups of electronic wastes. The firstgroup includes arsine and phosphine emitted during the processes ofsemiconductor materials manufacture. The abatement procedure forthis group of pollutants consists of adding iodates, cupric andmanganese salts to a multiple shower tower (MST) structure. Thesecond group includes pollutants containing arsenic, phosphorus,HF, HCl, NO2, and SO3 emitted during the manufacture ofsemiconductor materials and devices. The abatement procedureinvolves mixing oxidants and bases in an oval column with aseparator in the middle. The third group consists of the ions ofAs, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in aflocculation-sedimentation compact device equipment. Test resultsshowed that all waste gases and water after the abatementprocedures presented in this article passed the discharge standardsset by the state Environmental Protection Administrationof china.