WorldWideScience

Sample records for domains reduce amyloid

  1. Formation of amyloid fibers by monomeric light chain variable domains.

    Science.gov (United States)

    Brumshtein, Boris; Esswein, Shannon R; Landau, Meytal; Ryan, Christopher M; Whitelegge, Julian P; Phillips, Martin L; Cascio, Duilio; Sawaya, Michael R; Eisenberg, David S

    2014-10-03

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    Science.gov (United States)

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-09

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*

    Science.gov (United States)

    Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907

  4. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  5. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity

    Science.gov (United States)

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 +/- 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease.

  6. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey Kwai-Wai; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Cappai, Roberto [Department of Pathology and Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W., E-mail: mparker@svi.edu.au [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2007-10-01

    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu{sup 2+} and reduce it to Cu{sup +} through its copper-binding domain (CuBD). The interaction between Cu{sup 2+} and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu{sup 2+} reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production.

  7. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

    Science.gov (United States)

    Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele

    2017-07-01

    Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

  8. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies.

    Science.gov (United States)

    Julian, Mark C; Lee, Christine C; Tiller, Kathryn E; Rabia, Lilia A; Day, Evan K; Schick, Arthur J; Tessier, Peter M

    2015-10-01

    An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee [POSTECH, Pohang (Korea, Republic of)

    2008-11-15

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an

  10. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    International Nuclear Information System (INIS)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee

    2008-01-01

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an important role in

  11. A subcutaneous cellular implant for passive immunization against amyloidreduces brain amyloid and tau pathologies.

    Science.gov (United States)

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    Science.gov (United States)

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  13. Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    van Veluw, Susanne J.; Kuijf, Hugo J.; Charidimou, Andreas; Viswanathan, Anand; Biessels, Geert Jan; Rozemuller, Annemieke J M; Frosch, Matthew P.; Greenberg, Steven M.

    Microhemorrhages are strongly associated with advanced cerebral amyloid angiopathy (CAA). Although it has been frequently proposed that the deposition of Aβ in the walls of cortical vessels directly causes microhemorrhages, this has not been studied in great detail, mainly because the ruptured

  14. Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey K.-W. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); Galatis, Denise; Barnham, Kevin J. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Polekhina, Galina; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Cappai, Roberto [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W.; McKinstry, William J., E-mail: wmckinstry@svi.edu.au [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia)

    2005-01-01

    The binding of Cu{sup 2+} ions to the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease reduces the production of the amyloid β peptide, which is centrally involved in Alzheimer’s disease. Structural studies of the copper-binding domain will provide a basis for structure-based drug design that might prove useful in treating this devastating disease. Alzheimer’s disease is thought to be triggered by production of the amyloid β (Aβ) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu{sup 2+} to the copper-binding domain (CuBD) of APP reduces the production of Aβ in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper binding causes Aβ depletion and will define a potential drug target. The crystallization of CuBD in two different forms suitable for structure determination is reported here.

  15. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    Science.gov (United States)

    Dewji, Nazneen N; Singer, S Jonathan; Masliah, Eliezer; Rockenstein, Edward; Kim, Mihyun; Harber, Martha; Horwood, Taylor

    2015-01-01

    β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  16. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nazneen N Dewji

    Full Text Available β-Amyloid (Aβ accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD. Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP and Presenilin (PS, as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  17. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    Science.gov (United States)

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  18. Amyloid cores in prion domains: Key regulators for prion conformational conversion.

    Science.gov (United States)

    Fernández, María Rosario; Batlle, Cristina; Gil-García, Marcos; Ventura, Salvador

    2017-01-02

    Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.

  19. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils

    Science.gov (United States)

    Louros, Nikolaos N.; Baltoumas, Fotis A.; Hamodrakas, Stavros J.; Iconomidou, Vassiliki A.

    2016-02-01

    Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.

  20. Methods to uncover an antibody epitope in the KPI domain of Alzheimer's amyloid precursor protein for immunohistochemistry in human brain.

    Science.gov (United States)

    Campbell, E; Pearson, R C; Parkinson, D

    1999-11-15

    A novel polyclonal antibody (Ab993), specific for a KPI domain epitope of APP, was characterised for use in immunoprecipitation, Western blotting and immunohistochemistry. Conditioned medium from NTera2/D1 cells was used for immunoprecipitation and Western blots. Paraffin-embedded human brain sections were used for immunohistochemistry. The antibody recognised KPI-containing APP on Western blots after standard solubilisation but immunoprecipitation of soluble APP required reduction with 2-mercaptoethanol followed by alkylation of reduced sulphydryl bonds with sodium iodoacetate. Immunohistochemical staining of human brain sections was significantly enhanced by this pre-treatment. Microwaving of sections also increased immunolabelling, by a mechanism that was additive to reduction and alkylation. Incubation in 80% formic acid did not confer any enhancement of immunoreactivity. Ab993, applied with the methods reported here, is expected to be valuable in investigations of the pathogenesis of Alzheimer's disease to determine the source of the beta-amyloid peptide.

  1. MILD CHOLESTEROL DEPLETION REDUCES AMYLOID-β PRODUCTION BY IMPAIRING APP TRAFFICKING TO THE CELL SURFACE

    Science.gov (United States)

    Guardia-Laguarta, Cristina; Coma, Mireia; Pera, Marta; Clarimón, Jordi; Sereno, Lidia; Agulló, José M.; Molina-Porcel, Laura; Gallardo, Eduard; Deng, Amy; Berezovska, Oksana; Hyman, Bradley T.; Blesa, Rafael; Gómez-Isla, Teresa; Lleó, Alberto

    2009-01-01

    It has been suggested that cellular cholesterol levels can modulate the metabolism of the amyloid precursor protein (APP) but the underlying mechanism remains controversial. In the current study, we investigate in detail the relationship between cholesterol reduction, APP processing and γ-secretase function in cell culture studies. We found that mild membrane cholesterol reduction led to a decrease in Aβ40 and Aβ42 in different cell types. We did not detect changes in APP intracellular domain or Notch intracellular domain generation. Western blot analyses showed a cholesterol-dependent decrease in the APP C-terminal fragments and cell surface APP. Finally, we applied a fluorescence resonance energy transfer (FRET)-based technique to study APP-Presenilin 1 (PS1) interactions and lipid rafts in intact cells. Our data indicate that cholesterol depletion reduces association of APP into lipid rafts and disrupts APP-PS1 interaction. Taken together, our results suggest that mild membrane cholesterol reduction impacts the cleavage of APP upstream of γ-secretase and appears to be mediated by changes in APP trafficking and partitioning into lipid rafts. PMID:19457132

  2. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  3. Amyloid domains in the cell nucleus controlled by nucleoskeletal protein lamin B1 reveal a new pathway of mercury neurotoxicity

    Science.gov (United States)

    Arnhold, Florian; Gührs, Karl-Heinz

    2015-01-01

    Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates, a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus, suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton. PMID:25699204

  4. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization.

    Science.gov (United States)

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P

    2012-01-01

    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  5. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Alexander S.; Siemer, Ansgar B., E-mail: asiemer@usc.edu [Keck School of Medicine of USC, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute (United States)

    2016-11-15

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  6. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    International Nuclear Information System (INIS)

    Falk, Alexander S.; Siemer, Ansgar B.

    2016-01-01

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  7. Regional brain amyloid-β accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia.

    Science.gov (United States)

    Akhtar, Rizwan S; Xie, Sharon X; Chen, Yin J; Rick, Jacqueline; Gross, Rachel G; Nasrallah, Ilya M; Van Deerlin, Vivianna M; Trojanowski, John Q; Chen-Plotkin, Alice S; Hurtig, Howard I; Siderowf, Andrew D; Dubroff, Jacob G; Weintraub, Daniel

    2017-01-01

    Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative) by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2%) were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%). Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloidamyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.

  8. Regional brain amyloid-β accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia.

    Directory of Open Access Journals (Sweden)

    Rizwan S Akhtar

    Full Text Available Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2% were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%. Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloidamyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.

  9. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    OpenAIRE

    Van Leuven Fred; Wera Stefaan; Van der Auwera Ingrid; Henderson Samuel T

    2005-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results S...

  10. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine R Langlois

    2016-11-01

    Full Text Available Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

  11. Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy

    Science.gov (United States)

    Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo

    2015-01-01

    Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329

  12. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA

    DEFF Research Database (Denmark)

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder

    2007-01-01

    -formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its...

  13. The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation.

    Directory of Open Access Journals (Sweden)

    Alexander I Alexandrov

    Full Text Available Fragmentation of amyloid polymers by the chaperone Hsp104 allows them to propagate as prions in yeast. The factors which determine the frequency of fragmentation are unclear, though it is often presumed to depend on the physical strength of prion polymers. Proteins with long polyglutamine stretches represent a tractable model for revealing sequence elements required for polymer fragmentation in yeast, since they form poorly fragmented amyloids. Here we show that interspersion of polyglutamine stretches with various amino acid residues differentially affects the in vivo formation and fragmentation of the respective amyloids. Aromatic residues tyrosine, tryptophan and phenylalanine strongly stimulated polymer fragmentation, leading to the appearance of oligomers as small as dimers. Alanine, methionine, cysteine, serine, threonine and histidine also enhanced fragmentation, while charged residues, proline, glycine and leucine inhibited polymerization. Our data indicate that fragmentation frequency primarily depends on the recognition of fragmentation-promoting residues by Hsp104 and/or its co-chaperones, rather than on the physical stability of polymers. This suggests that differential exposure of such residues to chaperones defines prion variant-specific differences in polymer fragmentation efficiency.

  14. Two memory associated genes regulated by amyloid precursor protein intracellular domain ovel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Chuandong Zheng; Xi Gu; Zhimei Zhong; Rui Zhu; Tianming Gao; Fang Wang

    2012-01-01

    In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.

  15. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  16. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  17. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    Science.gov (United States)

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    Energy Technology Data Exchange (ETDEWEB)

    Radzimanowski, Jens [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany); Beyreuther, Konrad [Center for Molecular Biology, University Heidelberg, INF282, D-69120 Heidelberg (Germany); Sinning, Irmgard; Wild, Klemens, E-mail: klemens.wild@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany)

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  19. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    International Nuclear Information System (INIS)

    Dai, Jin; He, Jianfeng; Niemi, Antti J.

    2016-01-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  20. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  1. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Van Leuven Fred

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I were fed either, a standard diet (SD composed of high carbohydrate/low fat chow, or a ketogenic diet (KD composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by β-hydroxybutyrate (3.85 ± 2.6 mM, compared to SD fed animals (0.29 ± 0.06 mM. In addition, animals fed the KD lost body weight (SD 22.2 ± 0.6 g vs. KD 17.5 ± 1.4 g, p = 0.0067. In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Aβ levels by approximately 25%. Despite changes in ketone levels, body weight, and Aβ levels, the KD diet did not alter behavioral measures. Conclusion Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Aβ and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Aβ. Therefore, dietary strategies aimed at reducing Aβ levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  2. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  3. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  4. ENVIRONMENTAL ENRICHMENT STRENGTHENS CORTICOCORTICAL INTERACTIONS AND REDUCES AMYLOID-β OLIGOMERS IN AGED MICE

    Directory of Open Access Journals (Sweden)

    Marco eMainardi

    2014-01-01

    Full Text Available Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE, a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.

  5. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation.

    Directory of Open Access Journals (Sweden)

    Julio Bacarizo

    Full Text Available The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3 aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i its thermal stability; and (ii its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6₅22 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P2₁2₁2₁, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.

  6. Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin.

    Science.gov (United States)

    Russo, Anna; Diaferia, Carlo; La Manna, Sara; Giannini, Cinzia; Sibillano, Teresa; Accardo, Antonella; Morelli, Giancarlo; Novellino, Ettore; Marasco, Daniela

    2017-02-01

    Nucleophosmin (NPM1) is a multifunctional protein involved in a variety of biological processes including the pathogenesis of several human malignancies and is the most frequently mutated gene in Acute Myeloid Leukemia (AML). To deepen the role of protein regions in its biological activities, lately we reported on the structural behavior of dissected C-terminal domain (CTD) helical fragments. Unexpectedly the H2 (residues 264-277) and H3 AML-mutated regions showed a remarkable tendency to form amyloid-like assemblies with fibrillar morphology and β-sheet structure that resulted as toxic when exposed to human neuroblastoma cells. More recently NPM1 was found to be highly expressed and toxic in neurons of mouse models of Huntington's disease (HD). Here we investigate the role of each residue in the β-strand aggregation process of H2 region of NPM1 by performing a systematic alanine scan of its sequence and structural and kinetic analyses of aggregation of derived peptides by means of Circular Dichorism (CD) and Thioflavin T (Th-T) assay. These solution state investigations pointed out the crucial role exerted by the basic amyloidogenic stretch of H2 (264-271) and to shed light on the initial and main interactions involved in fibril formation we performed studies on fibrils deriving from the related Ala peptides through the analysis of fibrils with birefringence of polarized optical microscopy and wide-angle X-ray scattering (WAXS). This analysis suggested that the presence of branched Ile 269 conferred preferential packing patterns that, instead, appeared geometrically hampered by the aromatic side-chain of Phe 268 . Present investigations could be useful to deepen the knowledge of AML molecular mechanisms and the role of cytoplasmatic aggregates of NPM1c+. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Heterogeneous Seeding of a Prion Structure by a Generic Amyloid Form of the Fungal Prion-forming Domain HET-s(218-289)

    Energy Technology Data Exchange (ETDEWEB)

    Wan, William; Bian, Wen; McDonald, Michele; Kijac, Aleksandra; Wemmer, David E.; Stubbs, Gerald [UCB; (Vanderbilt); (LBNL)

    2013-11-13

    The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. We show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prions in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.

  8. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Small-molecule aggregation inhibitors reduce excess amyloid in a trisomy 16 mouse cortical cell line

    Directory of Open Access Journals (Sweden)

    ANDRÉA C PAULA LIMA

    2008-01-01

    Full Text Available We have previously characterized a number of small molecule organic compounds that prevent the aggregation of the β-amyloid peptide and its neurotoxicity in hippocampal neuronal cultures. We have now evaluated the effects of such compounds on amyloid precursor protein (APP accumulation in the CTb immortalized cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down's syndrome. Compared to a non-trisomic cortical cell line (CNh, CTb cells overexpress APP and exhibit slightly elevated resting intracellular Ca2+ levéis ([Ca2+]¡. Here, we show that the compounds 2,4-dinitrophenol, 3-nitrophenol and 4-anisidine decreased intracellular accumulation of APP in CTb cells. Those compounds were non-toxic to the cells, and slightly increased the basal [Ca2+]¡. Results indícate that the compounds tested can be leads for the development of drugs to decrease intracellular vesicular accumulation of APP in trisomic cells.

  10. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  11. Pro-domain removal in ASP-2 and the cleavage of the amyloid precursor are influenced by pH

    Directory of Open Access Journals (Sweden)

    Austen Brian

    2002-08-01

    Full Text Available Abstract Background One of the signatures of Alzheimer's disease is the accumulation of aggregated amyloid protein, Aβ, in the brain. Aβ arises from cleavage of the Amyloid Precursor protein by β and γ secretases, which present attractive candidates for therapeutic targeting. Two β-secretase candidates, ASP-1 and ASP-2, were identified as aspartic proteases, both of which cleave the amyloid precursor at the β-site. These are produced as immature transmembrane proteins containing a pro-segment. Results ASP-2 expressed in HEK293-cells cleaved the Swedish mutant amyloid precursor at different β-sites at different pHs in vitro. Recent reports show that furin cleaves the pro-peptide of ASP-2, whereas ASP-1 undergoes auto-catalysis. We show that purified recombinant ASP-2 cleaves its own pro-peptide at ph 5 but not pH 8.5 as seen by mass spectrometry, electrophoresis and N-terminal sequencing. Conclusion We suggest that ASP-2 processing as well as activity are influenced by pH, and hence the cellular localisation of the protein may have profound effects on the production of Aβ. These factors should be taken into consideration in the design of potential inhibitors for these enzymes.

  12. Administration of perioperative penicillin reduces postoperative serum amyloid A response in horses being castrated standing

    DEFF Research Database (Denmark)

    Busk, Peter; Jacobsen, Stine; Martinussen, Torben

    2010-01-01

    Objectives: To compare postoperative inflammatory responses in horses administered perioperative procaine penicillin and those not administered penicillin using acute phase protein serum amyloid A (SAA) as a marker of inflammation. Study Design: Randomized clinical trial. Animals: Stallions (n = 50......) castrated under field conditions. Methods: SAA concentrations were determined on days 0, 3, and 8. Six horses were subsequently excluded because of elevated SAA concentrations on day 0. Of the remaining 50 horses, 26 were administered nonsteroidal anti-inflammatory drug (NSAID) therapy and 24 were...... administered NSAID and 25,000 U/kg procaine penicillin on day 0, 1, and 2. Results: SAA concentrations increased significantly from preoperative levels in both groups, and on day 8 concentrations were significantly (P o .02) higher in horses administered only NSAID than in those administered procaine penicillin...

  13. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  14. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    Science.gov (United States)

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  15. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice.

    Science.gov (United States)

    He, Xiao-Fei; Liu, Dong-Xu; Zhang, Qun; Liang, Feng-Ying; Dai, Guang-Yan; Zeng, Jin-Sheng; Pei, Zhong; Xu, Guang-Qing; Lan, Yue

    2017-01-01

    Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood-brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer's disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1 -green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest

  16. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice

    Directory of Open Access Journals (Sweden)

    Xiao-fei He

    2017-05-01

    Full Text Available Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood–brain barrier (BBB or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF and the interstitial fluid (ISF. A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer’s disease (AD, but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4, astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA; synaptic function was investigated with Thy1–green fluorescent protein (GFP transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95 increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition

  17. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity.

    Science.gov (United States)

    Prado Lima, Mariza G; Schimidt, Helen L; Garcia, Alexandre; Daré, Letícia R; Carpes, Felipe P; Izquierdo, Ivan; Mello-Carpes, Pâmela B

    2018-03-06

    Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-β (Aβ)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aβ-induced oxidative stress and on impairments in learning and memory induced by Aβ. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aβ infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aβ infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aβ neurotoxicity in the AD model tested.

  18. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo.

    Science.gov (United States)

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E

    2017-07-01

    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  20. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models.

    Directory of Open Access Journals (Sweden)

    Anat Frydman-Marom

    Full Text Available An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ play a key role in Alzheimer's disease (AD pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt, which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet.

  1. Allopregnanolone promotes regeneration and reduces β-amyloid burden in a preclinical model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Shuhua Chen

    Full Text Available Previously, we demonstrated that allopregnanolone (APα promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD. In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R, three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing

  2. Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Yue; Wu, Zheng; Bai, Yu-Ting; Wu, Gang-Yi; Chen, Gong

    2017-10-10

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, affecting millions of people worldwide. Although dysfunction of multiple neurotransmitter systems including cholinergic, glutamatergic and GABAergic systems has been associated with AD progression the underlying mechanisms remain elusive. We and others have recently found that GABA content is elevated in AD brains and linked to cognitive deficits in AD mouse models. The glutamic acid decarboxylase 67 (GAD67) is the major enzyme converting glutamate into GABA and has been implied in a number of neurological disorders such as epilepsy and schizophrenia. However, whether Gad67 is involved in AD pathology has not been well studied. Here, we investigate the functional role of GAD67 in an AD mouse model with Gad67 haploinsufficiency that is caused by replacing one allele of Gad67 with green fluorescent protein (GFP) gene during generation of GAD67-GFP mice. To genetically reduce GAD67 in AD mouse brains, we crossed the Gad67 haploinsufficient mice (GAD67-GFP +/- ) with 5xFAD mice (harboring 5 human familial AD mutations in APP and PS1 genes) to generate a new line of bigenic mice. Immunostaining, ELISA, electrophysiology and behavior test were applied to compare the difference between groups. We found that reduction of GAD67 resulted in a significant decrease of amyloid β production in 5xFAD mice. Concurrently, the abnormal astrocytic GABA and tonic GABA currents, as well as the microglial reactivity were significantly reduced in the 5xFAD mice with Gad67 haploinsufficiency. Importantly, the olfactory memory deficit of 5xFAD mice was rescued by Gad67 haploinsufficiency. Our results demonstrate that GAD67 plays an important role in AD pathology, suggesting that GAD67 may be a potential drug target for modulating the progress of AD.

  3. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Science.gov (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.

  4. Reduced amyloidogenic processing of the amyloid β-protein precursor by the small-molecule Differentiation Inducing Factor-1

    Science.gov (United States)

    Myre, Michael A.; Washicosky, Kevin; Moir, Robert D.; Tesco, Giuseppina; Tanzi, Rudolph E.; Wasco, Wilma

    2013-01-01

    The detection of cell cycle proteins in Alzheimer’s disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Aβ properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid β-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Aβ40 and Aβ42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Aβ42 to Aβ40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Aβ. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a γ-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  5. ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy

    NARCIS (Netherlands)

    Carrano, A.; Snkhchyan, H.; Kooij, G.; van der Pol, S.; van Horssen, J.; Veerhuis, R.; Hoozemans, J.J.M.; Rozemuller, A.J.M.; de Vries, H.E.

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia and marked by deposition of amyloid-β (Aβ) within the brain. Alterations of Aβ transporters at the neurovasculature may play a role in the disease process. We investigated the expression of ABC transporters P-glycoprotein (P-gp) and breast

  6. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  7. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice

    DEFF Research Database (Denmark)

    Ordóñez-Gutiérrez, Lara; Re, Francesca; Bereczki, Erika

    2015-01-01

    , it was hypothesized that shifting this equilibrium towards the blood by enhancing peripheral clearance might reduce Aβ levels in the brain: the 'sink effect'. We tested this hypothesis by intraperitoneally injecting APP/PS1 transgenic mice with small unilamellar vesicles containing either phosphatidic acid...... Aβ may be therapeutically relevant in AD. FROM THE CLINICAL EDITOR: Intraperitoneal injection of small unilamellar vesicles containing phosphatidic acid or cardiolipin significantly reduced the amount of amyloid-beta (Aß) peptide in the plasma in a rodent model. Brain levels of Aß were also affected...

  8. Reduced density matrix embedding. General formalism and inter-domain correlation functional.

    Science.gov (United States)

    Pernal, Katarzyna

    2016-08-03

    An embedding method for a one-electron reduced density matrix (1-RDM) is proposed. It is based on partitioning of 1-RDM into domains and describing each domain in the effective potential of the other ones. To assure N-representability of the total 1-RDM N-representability and strong-orthogonality conditions are imposed on the domains. The total energy is given as a sum of single-domain energies and domain-domain electron interaction contributions. Higher than two-body inter-domain interaction terms are neglected. The two-body correlation terms are approximated by deriving inter-domain correlation from couplings of density fluctuations of two domains at a time. Unlike in most density embedding methods kinetic energy is treated exactly and it is not required that densities pertaining to the domains are only weakly overlapping. We propose to treat each domain by a corrected perfect-pairing functional. On a few examples it is shown that the embedding reduced density matrix functional method (ERDMF) yields excellent results for molecules that are well described by a single Lewis structure even if strong static intra-domain or dynamic inter-domain correlation effects must be accounted for.

  9. Efficacy of humidity retention bags for the reduced adsorption and improved cleaning of tissue proteins including prion-associated amyloid to surgical stainless steel surfaces.

    Science.gov (United States)

    Secker, T J; Pinchin, H E; Hervé, R C; Keevil, C W

    2015-01-01

    Increasing drying time adversely affects attachment of tissue proteins and prion-associated amyloid to surgical stainless steel, and reduces the efficacy of commercial cleaning chemistries. This study tested the efficacy of commercial humidity retention bags to reduce biofouling on surgical stainless steel and to improve subsequent cleaning. Surgical stainless steel surfaces were contaminated with ME7-infected brain homogenates and left to dry for 15 to 1,440 min either in air, in dry polythene bags or within humidity retention bags. Residual contamination pre/post cleaning was analysed using Thioflavin T/SYPRO Ruby dual staining and microscope analysis. An increase in biofouling was observed with increased drying time in air or in sealed dry bags. Humidity retention bags kept both protein and prion-associated amyloid minimal across the drying times both pre- and post-cleaning. Therefore, humidity bags demonstrate a cheap, easy to implement solution to improve surgical instrument reprocessing and to potentially reduce associated hospital acquired infections.

  10. NO-flurbiprofen reduces amyloid β, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade

    OpenAIRE

    Abdul-Hay, Samer O.; Luo, Jia; Ashghodom, Rezene T.; Thatcher, Gregory R.J.

    2009-01-01

    The nonsteroidal anti-inflamatory drug (NSAID) flurbiprofen is a selective amyloid lowering agent (SALA) which has been studied clinically in Alzheimer’s disease. HCT-1026 is an ester prodrug of flurbiprofen incorporating a nitrate carrier moiety that in vivo provides NO bioactivity and an improved safety profile. In vitro, HCT-1026 retained the COX inhibitory and NSAID activity of flurbiprofen, but at concentrations at which levels of Aβ1–42 were lowered by flurbiprofen, Aβ1–42 levels were e...

  11. The Tubular Sheaths Encasing Methanosaeta and Methanospirillum Filaments are Functional Amyloids

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Larsen, Poul; Nielsen, Per Halkjær

    Archaea are well-recognized for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes, which often display extremely resistant to chemical and thermal denaturation and resist proteolysis...... techniques to show that the extracellular cell wall sheaths of the methanogenic archaea Methanosaeta and Methanospirillum are functional amyloid structures. Depolymerization of sheaths with formic acid and reducing agents and subsequent MS/MS analysis revealed that the sheaths are composed of a single major...... sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid properties explain the extreme resistance...

  12. Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides

    Directory of Open Access Journals (Sweden)

    Shaobin Yang

    2018-01-01

    Full Text Available The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1 with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.

  13. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  14. [Amyloid goiter].

    Science.gov (United States)

    Hrívó, A; Péter, I; Bánkúti, B; Péley, G; Baska, F; Besznyák, I

    1999-03-21

    Amyloid goitre is at an extremely rare occurrence. Authors review the origin of disease and its symptoms, diagnostic and therapeutic tools. The disease may be due to either primary or secondary systemic or local amyloidosis. Diagnosis may be made even before surgery on anamnestic data, on very rapid growth of thyroid glands, on diffuse appearance, on other symptoms of systemic amyloidosis, on findings of iconographic procedures and on detection of amyloid in aspirates. Final diagnosis is based on histology. Surgical therapy is aiming at avoidance of the existing and the threatening consequences of expanding mass. The outcome is independent from thyroid surgery, it is related to other manifestations of amyloidosis. Concerning with the present case the chronic superior vena cava syndrome and chylous pleural effusion as first described symptoms and asymptomatic hyperthyroxinaemia is emphasised. Neither other organ involvement, nor primary amyloidogenous molecula was found during the 18 months follow up, so patient has secondary and localised amyloidosis.

  15. Glutathione-mimetic D609 alleviates memory deficits and reduces amyloid-β deposition in an AβPP/PS1 transgenic mouse model.

    Science.gov (United States)

    Yang, Hui; Xie, ZhaoHong; Wei, LiFei; Ding, Mao; Wang, Ping; Bi, JianZhong

    2018-04-18

    Excessive extracellular deposition of amyloid-β-peptide (Aβ) in the brain is a pathological hallmark of Alzheimer's disease (AD). Oxidative stress is associated with the onset and progression of AD and contributes to Aβ generation. Tricyclodecan-9-yl-xanthogenate (D609) is a glutathione (GSH)-mimetic compound. Although the antioxidant properties of D609 have been well-studied, its potential therapeutic significance on AD remains unclear. In the present study, we used a mouse model of AD to investigate the effects and the mechanism of action of D609 on AD. We found that D609 treatment significantly improved the spatial learning and alleviated the memory decline in the mice harboring amyloid precursor protein (APP) and presenilin-1 (PS1) double mutations (AβPP/PS1 mice). D609 treatment also increased GSH level, GSH and oxidative glutathione ratio, and superoxide dismutase activity, whereas decreased malondialdehyde and protein carbonyl levels, suggesting that D609 alleviated oxidative stress in AβPP/PS1 mice. In addition, D609 reduced β-secretase 1 level and decreased amyloidogenic processing of AβPP, consequently reducing Aβ deposition in the mice. Thus, our findings suggest that D609 might produce beneficial effects on the prevention and treatment of AD.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  16. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice.

    Science.gov (United States)

    Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.

  17. NO-flurbiprofen reduces amyloid β, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade

    Science.gov (United States)

    Abdul-Hay, Samer O.; Luo, Jia; Ashghodom, Rezene T.; Thatcher, Gregory R.J.

    2009-01-01

    The nonsteroidal anti-inflamatory drug (NSAID) flurbiprofen is a selective amyloid lowering agent (SALA) which has been studied clinically in Alzheimer’s disease. HCT-1026 is an ester prodrug of flurbiprofen incorporating a nitrate carrier moiety that in vivo provides NO bioactivity and an improved safety profile. In vitro, HCT-1026 retained the COX inhibitory and NSAID activity of flurbiprofen, but at concentrations at which levels of Aβ1–42 were lowered by flurbiprofen, Aβ1–42 levels were elevated 200% by HCT-1026. Conversely, at lower concentrations, HCT-1026 behaved as a SALA with greater potency than flurbiprofen. The difference in concentration responses between flurbiprofen and HCT-1026 in vitro suggests different cellular targets; and in no case did a combination of nitrate drug with flurbiprofen provide similar actions. In vivo, HCT-1026 was observed to reverse cognitive deficits induced by scopolamine in two behavioral assays; activity that was also shown by a classical nitrate drug, but not by flurbiprofen. The ability to restore aversive memory and spatial working and reference memory after cholinergic blockade has been demonstrated by other agents that stimulate NO/cGMP signaling. These observations add positively to the preclinical profile of HCT-1026 and NO chimeras in Alzheimer’s disease. PMID:19702655

  18. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  19. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reduced order for nuclear reactor model in frequency and time domain

    International Nuclear Information System (INIS)

    Nugroho, D.H.

    1997-01-01

    In control system theory, a model can be represented by frequency or time domain. In frequency domain, the model was represented by transfer function. in time domain, the model was represented by state space. for the sake of simplification in computation, it is necessary to reduce the model order. the main aim of this research is to find the best in nuclear reactor model. Model order reduction in frequency domain can be done utilizing pole-zero cancellation method; while in time domain utilizing balanced aggregation method the balanced aggregation method was developed by moore (1981). In this paper, the two kinds of method were applied to reduce a nuclear reactor model which was constructed by neutron dynamics and heat transfer equations. to validate that the model characteristics were not change when model order reduction applied, the response was utilized for full and reduced order. it was shown that the nuclear reactor order model can be reduced from order 8 to 2 order 2 is the best order for nuclear reactor model

  1. rBTI reduced β-amyloid-induced toxicity by promoting autophagy-lysosomal degradation via DAF-16 in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Jiao; Cui, Xiaodong; Ma, Xiaoli; Wang, Zhuanhua

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease, of which β-amyloid (Aβ) induced toxicity was suggested as a main cause. Some substances with prolongevity effects have been shown to be protective against AD. In a previous study we demonstrated that a recombinant buckwheat trypsin inhibitor (rBTI) could prolonge the lifespan in Caenorhabditis elegans (C. elegans). Here, we investigated whether rBTI may benefit to mitigate the AD symptom by feeding the AD model C. elegans CL4176. CL4176 is a transgenic C. elegans expressing human Aβ 3-42 in muscle tissue. The results showed that rBTI not only could extend lifespan but also could reduce Aβ toxicity-triggered body paralysis in AD worms. Further study found the accumulation of Aβ was decreased and autophagy-lysosomal degradation pathway was activated in AD worms treated with rBTI. Moreover, the inhibition of autophagy reduced rBTI-mediated paralysis delay. Genetic analyses showed rBTI increased the transcriptional activity of dauer formation abnormal-16 (DAF-16) and the disruption of daf-16 abolished rBTI-mediated protective effect in AD worms. Taken together, these data indicated that rBTI promoted the autophagy-lysosomal degradation pathway to reduce the Aβ-induced toxicity via DAF-16 in an AD model C. elegans, implying that BTI has the potential to protect against AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The prion protein as a receptor for amyloid-beta

    NARCIS (Netherlands)

    Kessels, Helmut W.; Nguyen, Louis N.; Nabavi, Sadegh; Malinow, Roberto

    2010-01-01

    Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic

  3. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  4. Chiral recognition in amyloid fiber growth.

    Science.gov (United States)

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. Functional Amyloids in Reproduction.

    Science.gov (United States)

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  6. Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans.

    Science.gov (United States)

    Shi, Yeu-Ching; Pan, Tzu-Ming; Liao, Vivian Hsiu-Chuan

    2016-09-28

    Amyloid-β (Aβ)-induced oxidative stress and toxicity are leading risk factors for Alzheimer's disease (AD). Monascin (MS) is a novel compound proposed for antioxidative stress applications and is derived from an edible fungus secondary metabolite. This study assessed the effects of MS on oxidative stress, paralysis, Aβ accumulation, and lifespan in the nematode Caenorhabditis elegans and investigated its underlying mechanisms of action. The results showed that MS increased the survival of C. elegans under juglone-induced oxidative stress and attenuated endogenous levels of reactive oxygen species. Furthermore, MS induced a decline in Aβ-induced paralysis phenotype and Aβ deposits in the transgenic strains CL4176 and CL2006 of C. elegans, which expresses human muscle-specific Aβ1-42 in the cytoplasm of body wall muscle cells. In addition, mRNA levels of strain CL4176 of several antioxidant genes (sod-1, sod-2, sod-3, hsp16.2) and daf-16 were up-regulated by MS treatment when compared to the nontreated controls. Further evidence showed that MS treatment in C. elegans strains lacking DAF-16/FOXO did not affect paralysis or lifespan phenotypes. The findings indicate that MS reduces oxidative stress and Aβ toxicity via DAF-16 in C. elegans, suggesting that MS can be used for the prevention of AD-associated oxidative stress complications.

  7. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments.

    Science.gov (United States)

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer's disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery.

  8. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice.

    Science.gov (United States)

    Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; Carneiro, Franciellen Gonçalves; Luz, Aline Pereira; Schiavo, Gustavo Luis; Andrighetti, Matheus Scopel; Scheid, Maylton Grégori; Bolfe, Renan Pereira; Budni, Josiane

    2017-07-03

    Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of age-related dementia. Cognitive decline, beta-amyloid (Aβ) accumulation, neurofibrillary tangles, and neuroinflammation are the main pathophysiological characteristics of AD. Minocycline is a tetracycline derivative with anti-inflammatory properties that has a neuroprotective effect. The aim of this study was to evaluate the effect of minocycline on memory, neurotrophins and neuroinflammation in an animal model of AD induced by the administration of Aβ (1-42) oligomer. Male BALB/c mice were treated with minocycline (50mg/kg) via the oral route for a total of 17days, 24h after intracerebroventricular administration of Aβ (1-42) oligomer. At the end of this period, was performed the radial maze test, and 24h after the last minocycline administration, serum was collected and the cortex and hippocampus were dissected for biochemical analysis. The administration of minocycline reversed the memory impairment caused by Aβ (1-42). In the hippocampus, minocycline reversed the increases in the levels of interleukin (IL-1β), Tumor Necrosis Factor- alpha (TNF-α) and, IL-10 caused by Aβ (1-42). In the cortex, AD-like model increase the levels of IL-1β, TNF-α and, IL-4. Minocycline treatment reversed this. In the serum, Aβ (1-42) increased the levels of IL-1β and IL-4, and minocycline was able to reverse this action, but not to reverse the decrease of IL-10 levels. Minocycline also reversed the increase in the levels of Brain-derived neurotrophic factor (BDNF) in the hippocampus caused by Aβ (1-42), and reduced Nerve Growth Factor (NGF) increases in the total cortex. Therefore, our results indicate that minocycline causes improvements in the spatial memory, and cytokine levels were correlated with this effect in the brain it. Besides this, minocycline reduced BDNF and NGF levels, highlighting the promising effects of minocycline in treating AD-like dementia. Copyright © 2017

  10. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. A method for probing the mutational landscape of amyloid structure.

    Science.gov (United States)

    O'Donnell, Charles W; Waldispühl, Jérôme; Lis, Mieszko; Halfmann, Randal; Devadas, Srinivas; Lindquist, Susan; Berger, Bonnie

    2011-07-01

    Proteins of all kinds can self-assemble into highly ordered β-sheet aggregates known as amyloid fibrils, important both biologically and clinically. However, the specific molecular structure of a fibril can vary dramatically depending on sequence and environmental conditions, and mutations can drastically alter amyloid function and pathogenicity. Experimental structure determination has proven extremely difficult with only a handful of NMR-based models proposed, suggesting a need for computational methods. We present AmyloidMutants, a statistical mechanics approach for de novo prediction and analysis of wild-type and mutant amyloid structures. Based on the premise of protein mutational landscapes, AmyloidMutants energetically quantifies the effects of sequence mutation on fibril conformation and stability. Tested on non-mutant, full-length amyloid structures with known chemical shift data, AmyloidMutants offers roughly 2-fold improvement in prediction accuracy over existing tools. Moreover, AmyloidMutants is the only method to predict complete super-secondary structures, enabling accurate discrimination of topologically dissimilar amyloid conformations that correspond to the same sequence locations. Applied to mutant prediction, AmyloidMutants identifies a global conformational switch between Aβ and its highly-toxic 'Iowa' mutant in agreement with a recent experimental model based on partial chemical shift data. Predictions on mutant, yeast-toxic strains of HET-s suggest similar alternate folds. When applied to HET-s and a HET-s mutant with core asparagines replaced by glutamines (both highly amyloidogenic chemically similar residues abundant in many amyloids), AmyloidMutants surprisingly predicts a greatly reduced capacity of the glutamine mutant to form amyloid. We confirm this finding by conducting mutagenesis experiments. Our tool is publically available on the web at http://amyloid.csail.mit.edu/. lindquist_admin@wi.mit.edu; bab@csail.mit.edu.

  12. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    Science.gov (United States)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the

  13. Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries

    International Nuclear Information System (INIS)

    Pürrer, Michael

    2014-01-01

    Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body models for binaries with aligned-spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation (PE) studies. I provide a frequency-domain singular value decomposition-based surrogate reduced order model that is thousands of times faster for typical system masses and has a faithfulness mismatch of better than ∼0.1% with the original SEOBNRv1 model for advanced LIGO detectors. This model enables PE studies up to signal-to-noise ratios (SNRs) of 20 and even up to 50 for total masses below 50 M ⊙ . This paper discusses various choices for approximations and interpolation over the parameter space that can be made for reduced order models of spinning compact binaries, provides a detailed discussion of errors arising in the construction and assesses the fidelity of such models. (paper)

  14. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    Science.gov (United States)

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  16. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  17. β - amyloid imaging probes

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2007-01-01

    Imaging distribution of β - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the β -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral β - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging β - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for β - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for β - amyloid imaging agent

  18. The B-domain of factor VIII reduces cell membrane attachement to host cells in serum free conditions

    DEFF Research Database (Denmark)

    Kolind, Mille Petersen; Nørby, Peder Lisby; Flintegaard, Thomas Veje

    2010-01-01

    engineered extensively throughout the years to increase the low production yields that initially were obtained from mammalian cell cultures. The scope of this work was to investigate the interaction of rFVIII with the cell membrane surface of the producing cells in serum free medium. We wondered whether...... binding of rFVIII to the cell membrane could be a factor diminishing the production yield. We studied the contribution of the rFVIII B-domain to membrane attachment by transfecting several constructs containing increasing lengths of the B-domain into cells under serum free conditions. We found that 90......% of rFVIII is attached to the cell membrane of the producing cell when the rFVIII variant contains a short B-domain (21 aa). By increasing the length of the B-domain the membrane attached fraction can be reduced to 50% of the total expressed rFVIII. Further, our studies show that the N...

  19. Resveratrol and Amyloid-Beta: Mechanistic Insights

    Directory of Open Access Journals (Sweden)

    Yongming Jia

    2017-10-01

    Full Text Available The amyloid-beta (Aβ hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res, a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP, enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.

  20. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria

    NARCIS (Netherlands)

    Dragoš, A.; Kovács, Á.T.; Claessen, D.

    2017-01-01

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the

  1. Direct identification of amyloids by label-free quantitative LC-MS

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Danielsen, Heidi Nolsøe; Hansen, Susan Hove

    adhesive and therefore bind to pipette tips and other consumables. Pure cultures, large sample volumes and high productivity of amyloids are therefore required for successful purification. We here present a quantitative proteomics technique that allow direct identification of functional amyloid candidates......Direct identification of amyloids by label-free quantitative LC-MS H. N. Danielsen, S. H. Hansen, F.-A. Herbst, P. H. Nielsen, M. S. Dueholm Amyloids are highly ordered fibrillar protein polymers used by organisms from all domains of life due to their exceptional properties. We have previously...... in complex samples based on their structural stability in the presence of increasing concentrations of formic acid....

  2. The Thioredoxin Domain of Neisseria Gonorrhoeae PilB can use Electrons from DsbD to Reduce Downstream Methionine Sulfoxide Reductases

    Energy Technology Data Exchange (ETDEWEB)

    Brot,N.; Collet, J.; Johnson, L.; Jonsson, T.; Weissbach, H.; Lowther, W.

    2006-01-01

    The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the {alpha} domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologs are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this framework there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6 {angstrom} crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules including TlpA, CcmG and ResA. Subtle differences are observed in this loop when compared to the N. meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.

  3. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  4. On the detection and monitoring of reduced water content in plants using spectral responses in the visible domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2016-05-01

    The water status of cultivated plants can have a significant impact not only on food production, but also on the appropriate usage of increasingly scarce freshwater supplies. Accordingly, the cost-effective detection and monitoring of changes in their water content are longstanding remote sensing goals. Existing procedures employed to achieve these goals are largely based on the spectral responses of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. Recently, it has been suggested that such procedures could be implemented using spectral responses, more specifically spectral subsurface reflectance to transmittance ratios, obtained in the visible domain. The basis for this proposition resides on the premise that a reduced water content (RWC) can result in histological changes whose effects on the foliar optical properties may not be limited to the infrared domain. However, the experiments leading to this proposition were performed on detached leaves, which were not influenced by the whole plant's adaptation mechanisms to water stress. In this work, we investigate whether the spectral responses of living plant leaves in the visible domain can lead to reliable RWC estimations. We employ measured biophysical data and predictive light transport simulations in order to extend qualitatively and quantitatively the scope of previous studies in this area. Our findings indicate that the living specimens' physiological responses to water stress should be taken into account in the design of new procedures for the cost-effective RWC estimation using visible subsurface reflectance to transmittance ratios.

  5. Coconut (Cocos nucifera) Ethanolic Leaf Extract Reduces Amyloid-β (1-42) Aggregation and Paralysis Prevalence in Transgenic Caenorhabditis elegans Independently of Free Radical Scavenging and Acetylcholinesterase Inhibition.

    Science.gov (United States)

    Manalo, Rafael Vincent; Silvestre, Maries Ann; Barbosa, Aza Lea Anne; Medina, Paul Mark

    2017-04-21

    Virgin coconut oil (VCO) has been the subject of several studies which have aimed to alleviate Alzheimer's disease (AD) pathology, focusing on in vitro antioxidant and acetylcholinesterase (AChE) inhibitory activities. Here, we studied an underutilized and lesser-valued part of the coconut tree, specifically the leaves, using in vitro and in vivo approaches. Coconut leaf extract (CLE) was screened for antioxidant and AChE inhibitory properties in vitro and therapeutic effects in two strains of transgenic Caenorhabditis elegans expressing amyloid-β 1-42 (Aβ 1-42 ) in muscle cells. CLE demonstrated free radical scavenging activity with an EC 50 that is 79-fold less compared to ascorbic acid, and an AChE inhibitory activity that is 131-fold less compared to Rivastigmine. Surprisingly, in spite of its low antioxidant activity and AChE inhibition, CLE reduced Aβ deposits by 30.31% in CL2006 in a dose-independent manner, and reduced the percentage of paralyzed nematodes at the lowest concentration of CLE (159.38 μg/mL), compared to dH₂O/vehicle (control). Phytochemical analysis detected glycosides, anthocyanins, and hydrolyzable tannins in CLE, some of which are known to be anti-amyloidogenic. Taken together, these findings suggest that CLE metabolites alternatively decrease AB 1-42 aggregation and paralysis prevalence independently of free radical scavenging and AChE inhibition, and this warrants further investigation on the bioactive compounds of CLE.

  6. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.

    Science.gov (United States)

    Larmuth, Kate M; Masuyer, Geoffrey; Douglas, Ross G; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2016-03-01

    Angiotensin-1-converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N-domain in complex with Aβ fragments. For the physiological Aβ(1-16) peptide, a novel ACE cleavage site was found at His14-Gln15. Furthermore, Aβ(1-16) was preferentially cleaved by the individual N-domain; however, the presence of an inactive C-domain in full-length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4-10)Q and Aβ(4-10)Y, underwent endoproteolytic cleavage at the Asp7-Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4-10)Y. Surprisingly, in contrast to Aβ(1-16) and Aβ(4-10)Q, sACE showed positive domain cooperativity and the double C-domain (CC-sACE) construct no cooperativity towards Aβ(4-10)Y. The structures of the Aβ peptide-ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C-terminal P2' position to the S2' pocket and recognizes the main chain of the P1' peptide. It is likely that N-domain selectivity for the amyloid peptide is conferred through the N-domain specific S2' residue Thr358. Additionally, the N-domain can accommodate larger substrates through movement of the N-terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full-length forms. The atomic coordinates and structure factors for N-domain ACE with Aβ peptides 4-10 (5AM8), 10-16 (5AM9), 1-16 (5AMA), 35-42 (5AMB) and (4-10)Y (5AMC) complexes have been deposited in the

  7. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Helen P McWilliams-Koeppen

    Full Text Available Light chain (AL amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(PH-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  8. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  9. Melanosomal formation of PMEL core amyloid is driven by aromatic residues.

    Science.gov (United States)

    Hee, Jia Shee; Mitchell, Susan M; Liu, Xinran; Leonhardt, Ralf M

    2017-03-08

    PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer's and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrP Sc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms.

  10. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  11. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  12. Cerebral Amyloid Angiopathy

    Directory of Open Access Journals (Sweden)

    Mahmut Edip Gürol

    2009-03-01

    Full Text Available Cerebral amyloid angiopathy (CAA is characterized by the accumulation of amyloid beta-peptides (Ab in the walls of leptomeningeal arteries, arterioles, and veins. Despite the fact that these pathological changes were first described in 1909, major advancement in our understanding of the clinicoradiological manifestations, neurobiology, and course of CAA has occurred only during the last 30 years. No significant associations have been shown between CAA and other systemic/visceral amyloidoses or vascular risk factors, including hypertension. CAA is well known as the most common cause of spontaneous and anticoagulant-related lobar parenchymal ICH in the elderly. It also causes lobar cerebral microbleeds (CMBs, small dot-like dark susceptibility artifacts visible with gradient recalled echo (GRE-magnetic resonance imaging (MRI. CMBs are important markers of disease severity and predictors of CAA progression. Amyloid angiopathy is also a common cause of ischemic microvascular white matter disease (WMD and deep cerebral infarctions. Such WMD is defined as subcortical and periventricular white matter changes without obvious infarction, as well as a dark appearance on computerized tomography (CT and a bright appearance on fluid attenuated inversion recovery (FLAIR-MRI. CAA-related vascular dysfunction, with its hemorrhagic and ischemic complications, is a recognized contributor to vascular cognitive impairment in the elderly, an independent effect that is synergistically increased by Alzheimer pathologies, such as plaques and tangles. A set of clinicoradiological criteria was established for the accurate diagnosis of CAA. According to the Boston Criteria, patients aged 55 years and older with multiple hemorrhages (on CT or GRE-MRI restricted to the lobar, cortical, or corticosubcortical regions (cerebellar hemorrhage allowed are diagnosed as probable CAA when no other etiology is found; a single hemorrhage in the same region is classified as possible

  13. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    Science.gov (United States)

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  14. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria

    DEFF Research Database (Denmark)

    Dragoš, Anna; Kovács, Ákos T.; Claessen, Dennis

    2017-01-01

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils...... in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis. We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know...... surprisingly little about how their assembly is organized to fulfill all these roles....

  15. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  16. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

    Science.gov (United States)

    Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P

    2012-07-13

    The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.

  17. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  18. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy.

    Science.gov (United States)

    Deng, Minzhen; Huang, Liping; Ning, Baile; Wang, Nanbu; Zhang, Qinxin; Zhu, Caixia; Fang, Yongqi

    2016-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, and studies have suggested that β-asarone has pharmacological effects on beta-amyloid (Aβ) injected in the rat hippocampus. However, the effect of β-asarone on autophagy in the APP/PS1 transgenic mouse is unreported. APP/PS1 transgenic mice were randomly divided into six groups (n=10/group): an untreated group, an Aricept-treated group, a 3-MA-treated group, a rapamycin-treated group, an LY294002-treated group, a β-asarone-treated group. The control group consisted of wild-type C57BL/6 mice. All treatments were administered to the mice for 30 days. Spatial learning and memory were assessed by water maze, passive avoidance, and step-down tests. AChE and Aβ 42 levels in the hippocampus were determined by ELISA. p-Akt, p-mTOR, and LC3B expression were detected by flow cytometry. The expression of p-Akt, p-mTOR, Beclin-1, and p62 proteins was assessed by western blot. Changes in autophagy were viewed using a transmission electron microscope. APP and Beclin-1 mRNA levels were measured by Real-Time PCR. The learning and memory of APP/PS1 transgenic mice were improved significantly after β-asarone treatment compared with the untreated group. In addition, β-asarone treatment reduced AChE and Aβ 42 levels, increased p-mTOR and p62 expression, decreased p-Akt, Beclin-1, and LC3B expression, decreased the number of autophagosomes and reduced APP mRNA and Beclin-1 mRNA levels compared with the untreated group. That is, β-asarone treatment can improve the learning and memory abilities of APP/PS1 transgenic mouse by inhibiting Beclin-1-dependent autophagy via the PI3K/Akt/mTOR pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding...

  20. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    Science.gov (United States)

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations

  1. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  2. Comparison among Wavelet filters and others in the frequency domain for reducing Poisson noise in head CT

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Ruiz Gonzalez, Y.; Lorenzo Ginori, J. V.

    2015-01-01

    This paper describes a comparison among some wavelet filters and other most traditional filters in the frequency domain like Median, Wiener and Butter worth to reduce Poisson noise in Computed Tomography (CT) scans. Five slices of CT containing the posterior fossa from an anthropomorphic phantom and from patients were selected. As their original projections contain noise from the acquisition process, some simulated noise-free lesions were added on the images. After that, the whole images were artificially contaminated with Poisson noise over the sinogram-space. The configurations using wavelets drawn from four wavelet families, using various decomposition levels, and different thresholds, were tested in order to determine de-noising performance as well as the rest of the traditional filters. The quality of the resulting images was evaluated by using Contrast to Noise Ratio (CNR), HVS absolute norm (H1), and Structural Similarity Index (SSIM) as quantitative metrics. We have observed that Wavelet filtering is an alternative to be considered for Poisson noise reduction in image processing of posterior fossa images for head CT with similar behavior to Butter worth and better than Median or Wiener filters for the developed experiment. (Author)

  3. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    International Nuclear Information System (INIS)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-01-01

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxΦ domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1 NL4.3 compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  4. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study.

    Science.gov (United States)

    Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J

    2017-01-01

    Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.

  5. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  6. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  7. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  8. Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer.

    Science.gov (United States)

    Galeano, Pablo; Leal, María C; Ferrari, Carina C; Dalmasso, María C; Martino Adami, Pamela V; Farías, María I; Casabona, Juan C; Puntel, Mariana; Do Carmo, Sonia; Smal, Clara; Arán, Martín; Castaño, Eduardo M; Pitossi, Fernando J; Cuello, A Claudio; Morelli, Laura

    2018-03-26

    The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/-)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/-) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aβ) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/-) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1 H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aβ in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aβ pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.

  9. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  10. In vivo detection of amyloid plaques by gadolinium-stained MRI can be used to demonstrate the efficacy of an anti-amyloid immunotherapy

    Directory of Open Access Journals (Sweden)

    Mathieu D. Santin

    2016-03-01

    Full Text Available Extracellular deposition of β amyloid plaques is an early event associated to Alzheimer's disease. Here we have used in vivo gadolinium-stained high resolution (29*29*117µm3 MRI to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952 directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-month-old animals, but not in 5.5-month animals compared to mice treated with a control antibody (DM4. Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-month SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques.

  11. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  12. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  13. Nanomechanical properties of single amyloid fibrils

    International Nuclear Information System (INIS)

    Sweers, K K M; Bennink, M L; Subramaniam, V

    2012-01-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils. (topical review)

  14. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  15. Terapeutika amyloidóz

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Hrubý, Martin

    2016-01-01

    Roč. 110, č. 12 (2016), s. 851-859 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : amyloidosis * amyloid * Alzheimer's disease Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.387, year: 2016 http://www.chemicke-listy.cz/common/article-vol_110-issue_12-page_851.html

  16. Use of amyloid PET across the spectrum of Alzheimer's disease: clinical utility and associated ethical issues.

    Science.gov (United States)

    Leuzy, Antoine; Zimmer, Eduardo Rigon; Heurling, Kerstin; Rosa-Neto, Pedro; Gauthier, Serge

    2014-09-01

    Abstract Recent advances have made possible the in vivo detection of beta-amyloid (Aβ) pathology using positron emission tomography. While the gold standard for amyloid imaging, carbon-11 labeled Pittsburgh compound B is increasingly being replaced by fluorine-18 labeled radiopharmaceuticals, with three already approved for clinical use by US and European regulatory bodies. Appropriate use criteria proposed by an amyloid imaging taskforce convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging recommend restricting use of this technology to the evaluation of patients with mild cognitive impairment or atypical dementia syndromes. While use among asymptomatic individuals is currently viewed as inappropriate due prognostic uncertainty, elevated levels of brain Aβ among asymptomatic individuals may represent preclinical Alzheimer's disease. Amyloid imaging is likewise expected to play a role in the design of clinical trials. Though preliminary results suggest amyloid imaging to possess clinical utility and cost-effectiveness, both domains have yet to be assessed systematically. As the field moves toward adoption of a pro-disclosure stance for amyloid imaging findings, it is imperative that a broad range of stakeholders be involved to ensure the appropriateness of emerging policies and protocols.

  17. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    Science.gov (United States)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  18. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury

    OpenAIRE

    Loane, David J; Pocivavsek, Ana; Moussa, Charbel E-H; Thompson, Rachel; Matsuoka, Yasuji; Faden, Alan I; Rebeck, G William; Burns, Mark P

    2009-01-01

    Amyloid-β (Aβ) peptides, found in Alzheimer’s disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β- or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.

  19. Amyloid Goiter Secondary to Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Bunyamin Aydin

    2016-01-01

    Full Text Available Diffuse amyloid goiter (AG is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn’s disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis.

  20. Amyloid myopathy: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Heli Tuomaala

    2009-08-01

    Full Text Available Amyloid myopathy (AM is a rare manifestation of primary systemic amyloidosis (AL. Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis.

  1. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G; Shama, G

    2009-01-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  2. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  3. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    Directory of Open Access Journals (Sweden)

    Rosengren Lars

    2009-12-01

    Full Text Available Abstract Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ, amyloid beta fragment 1-42 (Aβ1-42, and total and hyperphosphorylated tau (t-tau and p-tau in CSF of 86 HIV-infected (HIV+ subjects, including 21 with AIDS dementia complex (ADC, 25 with central nervous system (CNS opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV- subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those

  4. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  5. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    International Nuclear Information System (INIS)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by "1H-"1"5N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  6. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    Science.gov (United States)

    Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.

    2014-08-01

    Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.

  7. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    International Nuclear Information System (INIS)

    Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.

    2014-01-01

    Long-lived coherences (LLC’s) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening

  8. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadet, A.; Fernandes, L.; Kateb, F., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Balzan, R., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Vasos, P. R. [Laboratoire de Chimie et Biochimie Toxicologiques et Pharmacologiques UMR-8601, Université Paris Descartes - CNRS, PRES Paris Sorbonne Cité, 75006 Paris (France)

    2014-08-07

    Long-lived coherences (LLC’s) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.

  9. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer's disease mouse models

    International Nuclear Information System (INIS)

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2009-01-01

    Amyloid-β plaques are an Alzheimer's disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer's disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1-1000, amyloid burden from 0-10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source-detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source-detector pairs).

  10. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    Science.gov (United States)

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  11. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  12. Why are Functional Amyloids Non-Toxic in Humans?

    Directory of Open Access Journals (Sweden)

    Matthew P. Jackson

    2017-09-01

    Full Text Available Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.

  13. Anti-amyloid treatments in Alzheimer's disease.

    Science.gov (United States)

    Sapra, Mamta; Kim, Kye Y

    2009-06-01

    Alzheimer's disease is one of the most challenging threats to the healthcare system in society. One of the main characteristic of Alzheimer's disease (AD) pathology is formation of amyloid plaques from accumulation of amyloid beta peptide. The therapeutic agents that are currently available for AD including acetylcholinesterase inhibitors (AchEIs) and the N-methyl-D-aspartate (NMDA) antagonist are focused on improving the symptoms and do not revert the progression of the disease. This limitation coupled with the burgeoning increase in the prevalence of AD and resultant impact on healthcare economics calls for more substantial treatments for AD. According to the leading amyloid hypothesis, cleavage of amyloid precursor protein to release amyloid beta peptide is the critical event in pathogenesis of Alzheimer's disease. Recently treatment strategies have been focused on modifying the formation, clearance and accumulation of neurotoxic amyloid beta peptide. This article reviews different therapeutic approaches that have been investigated to target amyloid beta ranging from secretase modulators, antiaggregation agents to amyloid immunotherapy. Authors review the different novel drugs which are in clinical trials.

  14. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability.

    Science.gov (United States)

    Smelter, Dan F; de Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, J Carter

    2018-06-01

    haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.

  15. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data.

    Science.gov (United States)

    Schmidt, Mark E; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E; Margolin, Richard; Landau, Susan; Foster, Norman L; Mason, N Scott; De Santi, Susan; Suhy, Joyce; Koeppe, Robert A; Jagust, William

    2015-09-01

    In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya

    2014-05-01

    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Carbon nanospecies affecting amyloid formation

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Konefal, Rafal; Morávková, Zuzana; Zhigunov, Alexander; Svoboda, Jan; Pop-Georgievski, Ognen; Hromádková, Jiřina; Groborz, Ondřej; Štěpánek, Petr; Hrubý, Martin

    2017-01-01

    Roč. 7, č. 85 (2017), s. 53887-53898 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2015064; GA MZd(CZ) NV16-30544A; GA ČR(CZ) GA16-03156S; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : amyloid fibril * nanodiamond * fullerene Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.108, year: 2016

  18. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Clinical Utility of Amyloid PET Imaging in the Differential Diagnosis of Atypical Dementias and Its Impact on Caregivers.

    Science.gov (United States)

    Bensaïdane, Mohamed Reda; Beauregard, Jean-Mathieu; Poulin, Stéphane; Buteau, François-Alexandre; Guimond, Jean; Bergeron, David; Verret, Louis; Fortin, Marie-Pierre; Houde, Michèle; Bouchard, Rémi W; Soucy, Jean-Paul; Laforce, Robert

    2016-04-18

    Recent studies have supported a role for amyloid positron emission tomography (PET) imaging in distinguishing Alzheimer's disease (AD) pathology from other pathological protein accumulations leading to dementia. We investigated the clinical utility of amyloid PET in the differential diagnosis of atypical dementia cases and its impact on caregivers. Using the amyloid tracer 18F-NAV4694, we prospectively scanned 28 patients (mean age 59.3 y, s.d. 5.8; mean MMSE 21.4, s.d. 6.0) with an atypical dementia syndrome. Following a comprehensive diagnostic workup (i.e., history taking, neurological examination, blood tests, neuropsychological evaluation, MRI, and FDG-PET), no certain diagnosis could be arrived at. Amyloid PET was then conducted and classified as positive or negative. Attending physicians were asked to evaluate whether this result led to a change in diagnosis or altered management. They also reported their degree of confidence in the diagnosis. Caregivers were met after disclosure of amyloid PET results and completed a questionnaire/interview to assess the impact of the scan. Our cohort was evenly divided between positive (14/28) and negative (14/28) 18F-NAV4694 cases. Amyloid PET resulted in a diagnostic change in 9/28 cases (32.1%: 17.8% changed from AD to non-AD, 14.3% from non-AD to AD). There was a 44% increase in diagnostic confidence. Altered management occurred in 71.4% (20/28) of cases. Knowledge of amyloid status improved caregivers' outcomes in all domains (anxiety, depression, disease perception, future anticipation, and quality of life). This study suggests a useful additive role for amyloid PET in atypical cases with an unclear diagnosis beyond the extensive workup of a tertiary memory clinic. Amyloid PET increased diagnostic confidence and led to clinically significant alterations in management. The information gained from that test was well received by caregivers and encouraged spending quality time with their loved ones.

  20. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  1. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis.

    Science.gov (United States)

    Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L

    2008-09-12

    Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.

  2. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  3. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  4. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  5. Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation

    OpenAIRE

    Ribeiro, Diana; Horvath, Istvan; Heath, Nikki; Hicks, Ryan; Forslöw, Anna; Wittung-Stafshede, Pernilla

    2017-01-01

    Protein assembly into amyloid fibers underlies such neurodegenerative disorders as Alzheimer’s disease and Parkinson’s disease. Type 2 diabetes (T2D) also involves amyloid formation, although in the pancreas. Because there are no cures for amyloid diseases and T2D is on the rise due to an increasing prevalence of obesity, identifying involved mechanisms and control processes is of utmost importance. Extracellular vesicles (EVs) can mediate physiological and pathological communication both loc...

  6. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  7. Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis In Vivo

    Directory of Open Access Journals (Sweden)

    G. D. Rabinovici

    2009-01-01

    Full Text Available Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET with ^{11}carbon-labelled Pittsburgh Compound-B (11C-PIB, the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Aβ deposits, and is a sensitive marker for Aβ pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI and Alzheimer’s disease (AD. PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression.

  8. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, P.N.; Lavender, J.P.; Myers, M.J.; Pepys, M.B.

    1988-06-25

    The specific molecular affinity of the normal plasma protein, serum amyloid P component (SAP), for all known types of amyloid fibrils was used to develop a new general diagnostic method for in-vivo radionuclide imaging of amyloid deposits. After intravenous injection of /sup 123/I-labelled purified human SAP there was specific uptake into amyloid deposits in all affected patients, 7 with systematic AL amyloid, 5 with AA amyloid, and 2 with ..beta../sub 2/M amyloid, in contrast to the complete absence of any tissue localisation in 5 control subjects. Distinctive high-resolution scintigraphic images, even of minor deposits in the carpal regions, bone marrow, or adrenals, were obtained. This procedure should yield much information on the natural history and the management of amyloidosis, the presence of which has hitherto been confirmed only by biopsy. Clearance and metabolic studies indicated that, in the presence of extensive amyloidosis, the rate of synthesis of SAP was greatly increased despite maintenance of normal plasma levels. Futhermore, once localised to amyloid deposits the /sup 123/I-SAP persisted for long periods and was apparently protected from its normal rapid degradation. These findings shed new light on the pathophysiology of amyloid and may have implications for therapeutic strategies based upon specific molecular targeting with SAP.

  9. Early Detection of Autism (ASD) by a Non-invasive Quick Measurement of Markedly Reduced Acetylcholine & DHEA and Increased β-Amyloid (1-42), Asbestos (Chrysotile), Titanium Dioxide, Al, Hg & often Coexisting Virus Infections (CMV, HPV 16 and 18), Bacterial Infections etc. in the Brain and Corresponding Safe Individualized Effective Treatment.

    Science.gov (United States)

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Ahdallah; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu

    2015-01-01

    A brief historical background on Autism & some of the important symptoms associated with Autism are summarized. Using strong Electro Magnetic Field Resonance Phenomenon between 2 identical molecules with identical weight (which received U.S. Patent) non-invasively & rapidly we can detect various molecules including neurotransmitters, bacteria, virus, fungus, metals & abnormal molecules. Simple non- invasive measurement of various molecules through pupils & head of diagnosed or suspected Autism patients indicated that in Autism patients following changes were often found: 1) Acetylcholine is markedly reduced; 2) Alzheimer's disease markers (i.e. β-Amyloid (1-42), Tau Protein, Apolipoprotein (Apo E4)) are markedly increased; 3) Chrysotile Asbestos is increased; 4) Titanium Dioxide (TiO2) is moderately increased; 5) Al is moderately increased; 6) Hg is moderately increased; 7) Dopamine, Serotonin & GABA are significantly reduced (up to about 1/10 of normal); 8) Often viral infections (such as CMV, HHV-6, HPV-16, HPV-18, etc.), and Bacterial infections (such as Chlamydia trachomatis, Mycobacterium TB, Borrelia Burgdorferi, etc.) coexist. Research by others on Autism spectrum disorder (ASD) shows that it is a group of complex neurodevelopmental disorders, with about 70% of ASD patients also suffering from gastro-intestinal problems. While Alzheimer disease (AD) is characterized by formation of 1) Amyloid plaques, 2) Neurofibrillary tangles inside of neurons, and 3) Loss of connections between neurons. More than 90% of AD develops in people over the age of 65. These 3 characteristics often progressively worsen over time. Although Autism Spectrum Disorder and Alzheimer's disease are completely different diseases they have some similar biochemical changes. Eight examples of such measurement & analysis are shown for comparison. Most of Autism patients improved significantly by removing the source or preventing intake of Asbestos, TiO2, Al & Hg or enhancing urinary output

  10. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein*

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  11. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  12. beta. -Amyloid gene dosage in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, G H; Manuelidis, L; Kim, J H; Manuelidis, E E

    1988-01-11

    The 4-5 kd amyloid ..beta..-peptide is a major constituent of the characteristic amyloid plaque of Alzheimer's disease. It has been reported that some cases of sporatic Alzheimer's disease are associated with at least a partial duplication of chromosome 21 containing the gene corresponding to the 695 residue precursor of this peptide. To contribute to an understanding of the frequency to such a duplication event in the overall Alzheimer's population, the authors have determined the gene dosage of the ..beta..-amyloid gene in this collection of cases. All cases had a clinical diagnosis of Alzheimer's confirmed neuropathologically. Each Alzheimer's case had an apparent normal diploid ..beta..-amyloid gene dosage, while control Down's cases had the expected triploid dosage. Thus partial duplication of chromosome 21 may be a rare finding in Alzheimer's disease. Similar conclusions were just reported in several studies of the Harvard Alzheimer collection.

  13. Bilateral metachronous periosteal tibial amyloid tumors

    International Nuclear Information System (INIS)

    Murata, H.; Kusuzaki, Katsuyuki; Hashiguchi, S.; Ueda, Hidetaka; Hirasawa, Yasusuke

    2000-01-01

    Localized primary periosteal amyloid tumors are extremely rare. A case of bilateral tibial amyloid tumor is presented. A 62-year-old woman initially presented with a painful mass in the anterior aspect of the right leg. There was no evidence of underlying systemic disease, including chronic infection or malignancy. Based on the results of resistance with Congo red staining to treatment with potassium permanganate and positivity for kappa light chain, we classified this particular case as AL-type amyloidosis. The patient noticed a swelling in the opposite leg 2 years later. The second tumor was also an AL-type amyloidoma. Amyloid tumors are generally solitary. This is the first case of bilateral periosteal amyloid tumors of the AL-type occurring in the tibiae. (orig.)

  14. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn are closely associated with synucleinopathies, including Parkinson's disease (PD. VH14 is a human single domain intrabody selected against the non-amyloid component (NAC hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

  15. Functional amyloid formation by Streptococcus mutans

    Science.gov (United States)

    Oli, M. W.; Otoo, H. N.; Crowley, P. J.; Heim, K. P.; Nascimento, M. M.; Ramsook, C. B.; Lipke, P. N.

    2012-01-01

    Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including Streptococcus mutans. Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the S. mutans cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of S. mutans. We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, S. mutans lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when S. mutans is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by S. mutans extracellular proteins. Taken together, these results indicate that S. mutans is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe. PMID:23082034

  16. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  17. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  19. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.

    Science.gov (United States)

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2016-08-05

    Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.

    Science.gov (United States)

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao

    2017-09-05

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.

  1. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  2. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    OpenAIRE

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. CatalaseAbeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro.

  3. To estimate effective antiamyloidogenic property of melatonin and fisetin and their actions to destabilize amyloid fibrils.

    Science.gov (United States)

    Aarabi, Mohammad Hossein; Mirhashemi, Seyyed Mehdi

    2017-09-01

    Aggregating of amylin as pancreatic deposition is connected with pancreas degeneration in type 2 diabetes mellitus. Suppression of the amylin accumulation and so instability of the pre-formed pancreatic β-amyloid, may be attractive curative goal for mediation of diabetes mellitus. Fluorimetric assay by Thioflavin-T was utilized for investigating the properties of melatonin and fisetin on the generation and instability of β-amyloid near to physiological conditions. The results showed that after 168 hours incubation by shaker incubator in 37oC, melatonin at 10μM and 40 µM repressed amylin amyloid formation by 20.1% and 27.5% respectively (p<0.05) and the similar values of fisetin inhibited the formation of β-sheet structure by 16.5% and 23.2% respectively (p<0.05).The obtained data also confirmed that amyloidal sheet opening was induced by melatonin and fisetin significantly (p<0.05). It may be concluded that islet amyloid cytotoxicity to β-cells may be reduced by melatonin and fisetin, and they should be important constituents of new drugs for diabetes mellitus treatment.

  4. Multiple isoforms of the human pentraxin serum amyloid P component

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH

    1995-01-01

    Human serum amyloid P component (SAP) isolated from 20 healthy individuals was analyzed by anion exchange chromatography and isoelectric focusing (IEF) in order to investigate the existence of multiple forms of SAP and interindividual structural differences. Anion exchange chromatography showed one...... major and several minor subpopulations of SAP. IEF of all SAP isolates showed a previously unreported degree of heterogeneity with six isoelectric forms (pKi range 5.5-6.1) and with minor interindividual differences in respect of isoelectric points. Total enzymatic deglycosylation of SAP reduced...... the number of bands in IEF to two indicating the existence of two types of polypeptide chains....

  5. Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis.

    Science.gov (United States)

    Shu, Cindy C; Jackson, Miriam T; Smith, Margaret M; Smith, Susan M; Penm, Steven; Lord, Megan S; Whitelock, John M; Little, Christopher B; Melrose, James

    2016-04-01

    To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3

  6. Dual role of interleukin-1β in islet amyloid formation and its β-cell toxicity: Implications for type 2 diabetes and islet transplantation.

    Science.gov (United States)

    Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy

    2017-05-01

    Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.

  7. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-β1-42

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2004-05-01

    Full Text Available Abstract Background Neuronal loss in Alzheimer's or prion diseases is preceded by the accumulation of fibrillar aggregates of toxic proteins (amyloid-β1-42 or the prion protein. Since some epidemiological studies have demonstrated that the EGb 761 extract, from the leaves of the Ginkgo biloba tree, has a beneficial effect on Alzheimer's disease, the effect of some of the major components of the EGb 761 extract on neuronal responses to amyloid-β1-42, or to a synthetic miniprion (sPrP106, were investigated. Methods Components of the EGb 761 extract were tested in 2 models of neurodegeneration. SH-SY5Y neuroblastoma cells were pre-treated with ginkgolides A or B, quercetin or myricetin, and incubated with amyloid-β1-42, sPrP106, or other neurotoxins. After 24 hours neuronal survival and the production of prostaglandin E2 that is closely associated with neuronal death was measured. In primary cortical neurons apoptosis (caspase-3 in response to amyloid-β1-42 or sPrP106 was measured, and in co-cultures the effects of the ginkgolides on the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia was tested. Results Neurons treated with ginkgolides A or B were resistant to amyloid-β1-42 or sPrP106. Ginkgolide-treated cells were also resistant to platelet activating factor or arachidonic acid, but remained susceptible to hydrogen peroxide or staurosporine. The ginkgolides reduced the production of prostaglandin E2 in response to amyloid-β1-42 or sPrP106. In primary cortical neurons, the ginkgolides reduced caspase-3 responses to amyloid-β1-42 or sPrP106, and in co-culture studies the ginkgolides reduced the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia. Conclusion Nanomolar concentrations of the ginkgolides protect neurons against the otherwise toxic effects of amyloid-β1-42 or sPrP106. The ginkgolides also prevented the neurotoxicity of platelet activating factor and reduced the production of prostaglandin E2 in

  8. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice.

    Science.gov (United States)

    Pan, Xiaoli; Gong, Neng; Zhao, Jing; Yu, Zhe; Gu, Fenghua; Chen, Jia; Sun, Xiaojing; Zhao, Lei; Yu, Meijing; Xu, Zhiru; Dong, Wenxin; Qin, Yan; Fei, Guoqiang; Zhong, Chunjiu; Xu, Tian-Le

    2010-05-01

    Reduction of glucose metabolism in brain is one of the main features of Alzheimer's disease. Thiamine (vitamin B1)-dependent processes are critical in glucose metabolism and have been found to be impaired in brains from patients with Alzheimer's disease. However, thiamine treatment exerts little beneficial effect in these patients. Here, we tested the effect of benfotiamine, a thiamine derivative with better bioavailability than thiamine, on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 transgenic mouse. We show that after a chronic 8 week treatment, benfotiamine dose-dependently enhanced the spatial memory of amyloid precursor protein/presenilin-1 mice in the Morris water maze test. Furthermore, benfotiamine effectively reduced both amyloid plaque numbers and phosphorylated tau levels in cortical areas of the transgenic mice brains. Unexpectedly, these effects were not mimicked by another lipophilic thiamine derivative, fursultiamine, although both benfotiamine and fursultiamine were effective in increasing the levels of free thiamine in the brain. Most notably, benfotiamine, but not fursultiamine, significantly elevated the phosphorylation level of glycogen synthase kinase-3alpha and -3beta, and reduced their enzymatic activities in the amyloid precursor protein/presenilin-1 transgenic brain. Therefore, in the animal Alzheimer's disease model, benfotiamine appears to improve the cognitive function and reduce amyloid deposition via thiamine-independent mechanisms, which are likely to include the suppression of glycogen synthase kinase-3 activities. These results suggest that, unlike many other thiamine-related drugs, benfotiamine may be beneficial for clinical Alzheimer's disease treatment.

  9. Interaction of magnetic nanoparticles with lysozyme amyloid fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Gdovinová, Veronika [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tomašovičová, Natália, E-mail: nhudak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Batko, Ivan; Batková, Marianna; Balejčíková, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Garamus, Vasyl M. [Helmholtz-Zentrum Geesthacht: Zentrum fr Material, und Kstenforschung GmbH, Max-Plank-Strae 1, Geesthacht 216502 (Germany); Petrenko, Viktor I. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Physics Department, Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kopčanský, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2017-06-01

    This work is devoted to the structural study of complex solutions of magnetic nanoparticles with lysozyme amyloid fibrils due to possible ordering of such system by applying the external magnetic field. The interaction of magnetic nanoparticles with amyloid fibrils has been followed by atomic force microscopy and small-angle X-ray scattering. It has been observed that magnetic nanoparticles (MNPs) adsorb to lysozyme amyloid fibrils. It was found that MNPs alter amyloids structures, namely the diameter of lysozyme amyloid fibrils is increased whereas the length of fibrils is decreased. In the same time MNPs do not change the helical pitch significantly. - Highlights: • Solution of MNPs with lysozyme amyloid fibrils was characterized by AFM and SAXS. • MNPs adsorb to lysozyme amyloid fibrils. • Diameter and size of lysozyme amyloid fibrils change due to doping with MNPs.

  10. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    Science.gov (United States)

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin.

  11. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  12. The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?

    Directory of Open Access Journals (Sweden)

    N. N. Nalivaeva

    2012-01-01

    Full Text Available The amyloid cascade hypothesis of Alzheimer's disease (AD postulates that accumulation in the brain of amyloid β-peptide (Aβ is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs. During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.

  13. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function.

    Science.gov (United States)

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M; Gannon, Moira A; Lesinski, Andrea N; Kim, Doo Yeon; Tanzi, Rudolph E

    2013-10-16

    The generation of Aβ, the main component of senile plaques in Alzheimer's disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that cosegregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer's parents

    DEFF Research Database (Denmark)

    Mosconi, Lisa; Rinne, Juha O; Tsui, Wai H

    2013-01-01

    This study examines the relationship between fibrillar beta-amyloid (Aβ) deposition and reduced glucose metabolism, a proxy for neuronal dysfunction, in cognitively normal (NL) individuals with a parent affected by late-onset Alzheimer's disease (AD). Forty-seven 40-80-year-old NL received positr...

  15. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.

  16. Towards Alzheimer's beta-amyloid vaccination.

    Science.gov (United States)

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  17. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap.

    Science.gov (United States)

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J; Pickersgill, Richard W

    2015-11-30

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release.

  18. Halogenation dictates the architecture of amyloid peptide nanostructures.

    Science.gov (United States)

    Pizzi, Andrea; Pigliacelli, Claudia; Gori, Alessandro; Nonappa; Ikkala, Olli; Demitri, Nicola; Terraneo, Giancarlo; Castelletto, Valeria; Hamley, Ian W; Baldelli Bombelli, Francesca; Metrangolo, Pierangelo

    2017-07-20

    Amyloid peptides yield a plethora of interesting nanostructures though difficult to control. Here we report that depending on the number, position, and nature of the halogen atoms introduced into either one or both phenylalanine benzene rings of the amyloid β peptide-derived core-sequence KLVFF, four different architectures were obtained in a controlled manner. Our findings demonstrate that halogenation may develop as a general strategy to engineer amyloidal peptide self-assembly and obtain new amyloidal nanostructures.

  19. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer's disease and frontotemporal lobar degeneration: a real-time PCR study.

    Science.gov (United States)

    Vignini, Arianna; Morganti, Stefano; Salvolini, Eleonora; Sartini, Davide; Luzzi, Simona; Fiorini, Rosamaria; Provinciali, Leandro; Di Primio, Roberto; Mazzanti, Laura; Emanuelli, Monica

    2013-12-01

    Frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) represent the most frequent causes of early-onset and late-onset degenerative dementia, respectively. A correct diagnosis entails the choice of appropriate therapies. In this view the present study aimed to identify biomarkers that could improve the differential diagnosis. We recently found an overexpression of platelet amyloid precursor protein (APP) in AD; furthermore, recent studies have suggested the presence of changes in APP processing in FTLD. In this context, we analyzed the mRNA expression level of Total APP (TOT) and APP containing a Kunitz-type serine protease inhibitor domain (KPI) in platelets obtained from AD patients, subjects with FTLD, and healthy subjects. In addition, we evaluated the correlation between platelet APP mRNA expression levels and cognitive impairment.Differential gene expression measurements revealed a significant up-regulation of APP TOT and APP KPI in both AD and FTLD patients compared to the controls (being AD/Controls: 1.67 for APP TOT and 1.47 for APP KPI; FTLD/Controls: 1.62 for APP TOT and 1.51 for APP KPI; p < 0.05), although it is interesting to note that in FTLD patients this expression did not correlate with the severity of cognitive impairment.This could be related to a reduced beta-amyloid (Aβ) formation, caused by an alteration of secretase enzymatic activity, even though a post-transcriptional regulation of APP mRNAs in FTLD cannot be excluded.

  20. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a K(D of ∼10 nM. Binding was inhibited in the presence of the -Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas as evidenced by single photon emission (SPECT imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.

  1. Amyloid in basal cell carcinoma and seborrheic keratosis

    DEFF Research Database (Denmark)

    Olsen, K E; Westermark, Per

    1994-01-01

    The frequency of amyloid substance was studied in two different types of skin tumours: basal cell carcinoma and seborrheic keratosis. In 9 out of 49 cases of seborrheic keratosis amyloid substance was found. In the basal cell carcinomas, 194 out of 260 cases showed amyloid deposits, a rate...

  2. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Directory of Open Access Journals (Sweden)

    Langen Ralf

    2008-10-01

    Full Text Available Abstract Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD, age-related macular degeneration (AMD, atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.

  3. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  4. Cerebral hemorrhage caused by amyloid angiopathy

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Tomonaga, Masanori; Yoshimura, Masahiro; Yamanouchi, Hiroshi; Shimada, Hiroyuki.

    1985-01-01

    Cerebral hemorrhage caused by amyloid angiopathy was studied clinicopathologically, with special attention given to the CT images. Cerebral hemorrhage caused by amyloid angiopathy is characterized, by a lobar-type hemorrhage involving the cortex, with direct extension into the subarachnoid space. Multiple hemorrhages are frequent, and cortical infarctions are present as complications in elderly patients without risk factors. CT scans taken in 5 cases demonstrated lobar hemorrhages in superficial locations, frequently in multiple sites or recurrently, with surrounding edema and mass effect. A subarachnoid extension of the hemorrhage through the superficial cortex, proven pathologically in all cases, was noted by CT in 4 of the 5 cases. However, cortical infarction was not detected by CT in any case. Therefore, CT is of value in the diagnosis of cerebral hemorrhage due to amyloid angiopathy based on distinctive findings such as a lobar hemorrhage in superficial regions, with extension into the subarachnoid space, frequently in multiple sites or recurrently. (author)

  5. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Case report 480: Periosteal amyloid tumor

    International Nuclear Information System (INIS)

    Yoshida, S.O.; Karjoo, R.; Johnstone, M.R.

    1988-01-01

    In summary, a 66-year-old woman presented with an asymptomatic left pretibial tumor of 7 years duration. Serial radiographs over this period demonstrated a slowly enlarging periosteal tumor with focal and increasing calcifications/ossifications. No involvement of the underlying medullary bone, as demonstrated by computed tomography was noted. Following the diagnosis by biopsy of an amyloid tumor, serum and urine electrophoreses, complete blood count, SMAC panel, erythrocyte sedimentation rate, and serum rheumatoid factor level were found to be within reference ranges. A needle biopsy of the abdominal wall failed to reveal amyloid in the fat by Congo-red staining. (orig.)

  7. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    Science.gov (United States)

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  8. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studies....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  9. A routine PET/CT protocol with simple calculations for assessing cardiac amyloid using 18F-Florbetapir

    Directory of Open Access Journals (Sweden)

    Dustin Ryan Osborne

    2015-05-01

    Full Text Available Introduction: Cardiac amyloidosis is a rare condition characterized by the deposition of well-structured protein fibrils, proteoglycans, and serum proteins as amyloid. Recent work has shown that it may be possible to use 18F-Florbetapir to image cardiac amyloidosis. Current methods for assessment include invasive biopsy techniques. This work enhances foundational work by Dorbala et al. by developing a routine imaging and analysis protocol using 18F-Florbetapir for cardiac amyloid assessment.Methods: Ten patients, 3 healthy controls and 7 amyloid positive patients, were imaged using 18F-Florbetapir to assess cardiac amyloid burden. Four of the patients also were imaged using 82Rb-Chloride to evaluate possible 18F-Florbetapir retention because of reduced myocardial blood flow. Quantitative methods using modeling, SUVs and SUV ratios were used to define a new streamlined clinical imaging protocol that could be used routinely and provide patient stratification.Results: Quantitative analysis of 18F-Florbetapir cardiac amyloid data were compiled from a 20 minute listmode protocol with data histogrammed into two static images at 0-5 minutes and, 10-15 min or 15-20 min. Data analysis indicated the use of SUVs or ratios of SUVs calculated from regions draw in the septal wall were adequate in identification of all healthy controls from amyloid positive patients in this small cohort. Additionally, we found that it may be possible to use this method to differentiate patients suffering from AL vs. TTR amyloid.Conclusions: This work builds on the seminal work by Dorbala et Al. by describing a short 18F-Florbetapir imaging protocol that is suitable for routine clinical use and uses a simple method for quantitative analysis of cardiac amyloid disease.

  10. Investigation of the inhibitory effects of TiO{sub 2} on the β-amyloid peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Byrne, John A. [Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Keyes, Tia E. [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-06-01

    TiO{sub 2} thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO{sub 2} films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1–42), using XRD, Raman spectroscopy, XPS and AFM. The TiO{sub 2} film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668 cm{sup −1} and 1263 cm{sup −1}, with the XPS spectral feature for nitrogen at 400 eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO{sub 2} to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591 cm{sup −1}, which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2 eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. - Highlights: • TiO{sub 2} thin films synthesised and characterised • Absorption study using β-amyloid (1–42) • Investigation of peptide configuration via Raman, AFM and XPS spectroscopies • β-Amyloid was subsequently degraded by photocatalytic activity of TiO{sub 2}.

  11. Perforin Promotes Amyloid Beta Internalisation in Neurons.

    Science.gov (United States)

    Lana, Erica; Khanbolouki, Mahbod; Degavre, Charline; Samuelsson, Eva-Britt; Åkesson, Elisabet; Winblad, Bengt; Alici, Evren; Lithner, Christina Unger; Behbahani, Homira

    2017-03-01

    Studies on the mechanisms of neuronal amyloid-β (Aβ) internalisation are crucial for understanding the neuropathological progression of Alzheimer's disease (AD). We here investigated how extracellular Aβ peptides are internalised and focused on three different pathways: (i) via endocytic mechanisms, (ii) via the receptor for advanced glycation end products (RAGE) and (iii) via the pore-forming protein perforin. Both Aβ 40 and Aβ 42 were internalised in retinoic acid differentiated neuroblastoma (RA-SH-SY5Y) cells. A higher concentration was required for Aβ 40 (250 nM) compared with Aβ 42 (100 nM). The internalised Aβ 40 showed a dot-like pattern of distribution whereas Aβ 42 accumulated in larger and distinct formations. By confocal microscopy, we showed that Aβ 40 and Aβ 42 co-localised with mitochondria, endoplasmic reticulum (ER) and lysosomes. Aβ treatment of human primary cortical neurons (hPCN) confirmed our findings in RA-SH-SY5Y cells, but hPCN were less sensitive to Aβ; therefore, a 20 (Aβ 40 ) and 50 (Aβ 42 ) times higher concentration was needed for inducing uptake. The blocking of endocytosis completely inhibited the internalisation of Aβ peptides in RA-SH-SY5Y cells and hPCN, indicating that this is a major pathway by which Aβ enters the cells. In addition, the internalisation of Aβ 42 , but not Aβ 40 , was reduced by 55 % by blocking RAGE. Finally, for the first time we showed that pore formation in cell membranes by perforin led to Aβ internalisation in hPCN. Understanding how Aβ is internalised sheds light on the pathological role of Aβ and provides further ideas of inhibitory strategies for preventing Aβ internalisation and the spreading of neurodegeneration in AD.

  12. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo.

    Science.gov (United States)

    Maussang, David; Mujić-Delić, Azra; Descamps, Francis J; Stortelers, Catelijne; Vanlandschoot, Peter; Stigter-van Walsum, Marijke; Vischer, Henry F; van Roy, Maarten; Vosjan, Maria; Gonzalez-Pajuelo, Maria; van Dongen, Guus A M S; Merchiers, Pascal; van Rompaey, Philippe; Smit, Martine J

    2013-10-11

    The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced β-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.

  13. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    International Nuclear Information System (INIS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  14. Bone marrow amyloid spherulites in a case of AL amyloidosis.

    Science.gov (United States)

    Bommannan B K, Karthik; Sonai, Mukinkumar; Sachdeva, Man Updesh Singh

    2016-05-01

    Parallel arrangement of β-pleated sheets by amyloidogenic proteins is a well known phenomenon. Rarely, amyloid fibrils undergo radial orientation to form globular structures called spherulites. These amyloid spherulites show Maltese cross pattern under polarized microscopy. The clinical significance of amyloid spherulites is undetermined. Amyloidogenic proteins like insulin and β-lactoglobulin form spherulites in vitro. The senile plaques of Alzheimer's disease rarely form in vivo spherulites. Amyloid spherulites have been described in the liver and small intestine. For the first time, we document amyloid spherulite formation in the bone marrow biopsy of an AL amyloidosis patient. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    Science.gov (United States)

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-07-14

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  17. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    OpenAIRE

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Boun...

  18. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  19. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  20. Nanoparticles and amyloid systems: A fatal encounter?

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Bernd [Leibniz Institute of Surface Modification, Chemical Department, Permoserstr. 15, D-04318 Leipzig, Germany and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Linnéstr. 3, D-04103 Leipzig (Germany)

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  1. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Elena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Gath, Julia [ETH Zurich, Physical Chemistry (Switzerland); Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Ravotti, Francesco; Szekely, Kathrin; Huber, Matthias [ETH Zurich, Physical Chemistry (Switzerland); Buchner, Lena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Guentert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2013-07-15

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and {alpha}-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.

  2. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    International Nuclear Information System (INIS)

    Schmidt, Elena; Gath, Julia; Habenstein, Birgit; Ravotti, Francesco; Székely, Kathrin; Huber, Matthias; Buchner, Lena; Böckmann, Anja; Meier, Beat H.; Güntert, Peter

    2013-01-01

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218–289) and α-synuclein yielded 88–97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77–90 % correctness if also assignments classified as tentative by the algorithm are included

  3. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update

    Directory of Open Access Journals (Sweden)

    Karim Farid

    2017-01-01

    Full Text Available Sporadic cerebral amyloid angiopathy (CAA is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH, dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers in sporadic CAA. We focus on two key areas: (a the diagnostic utility of amyloid-PET in CAA and (b the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth

  4. Neuroprotective effects of statins against amyloid β-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Li

    2018-01-01

    Full Text Available A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD. In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ levels by affecting amyloid precursor protein (APP cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.

  5. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  6. Domain Engineering

    Science.gov (United States)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  7. Telomere shortening reduces Alzheimer's disease amyloid pathology in mice

    NARCIS (Netherlands)

    Rolyan, Harshvardhan; Scheffold, Annika; Heinrich, Annette; Begus-Nahrmann, Yvonne; Langkopf, Britta Heike; Hoelter, Sabine M.; Vogt-Weisenhorn, Daniela M.; Liss, Birgit; Wurst, Wolfgang; Lie, Dieter Chichung; Thal, Dietmar Rudolf; Biber, Knut; Rudolph, Karl Lenhard

    Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells.

  8. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  9. Nuclear imaging of amyloid deposits based upon thioflavins

    International Nuclear Information System (INIS)

    Wang Yanming; Wu Chunying; Wei Jinjun

    2005-01-01

    Alzheimer's Disease (AD) is a chronic neurodegenerative disorders characterized by the presence of amyloid deposits and neurofibrillar tangles in the brain. Direct assessment of local changes of amyloid deposits in vivo would greatly facilitate the diagnosis and therapeutic treatments of AD. The goal of this study is to develop small-molecule probes that can be used to follow amyloid deposition in vivo in patients with neurodegenerative diseases. Over the past years, we set out to develop a series of small molecules based on thioflavins as radiotracers for use in nuclear imaging modalities such as positron emission tomography and single photon emission computed tomography. The potential of these amyloid-imaging agents for in vivo studies of amyloid deposition has been evaluated based on the following methods: 1) spectrophotometric binding. assays with synthetic amyloid-β (Aβ) fibrils and AD brain homogenates; 2) fluorescent staining of brain tissue sections to evaluate specificity of binding to amyloid deposits; 3) fluorescent microscopy in mouse models to determine the brain permeability and characterize the binding specificity in vivo, and 4) PET studies in human subjects diagnosed with AD and age-matched control subjects. To date, we have identified some lead compounds as molecular probes with specificity towards amyloid deposits. The in vitro and in vivo binding properties of these compounds have been demonstrated in the following ways: 1) they selectively binds to Aβ fibrils; 2) they selectively stains amyloid deposits in AD brain tissue sections; 3) they readily penetrates the blood-brain barrier, selectively detects amyloid deposits in vivo iri living mice; and 4) One of these compounds, termed PIB, has been successfully used in PET studies in human subjects. In conclusion, amyloid-imaging probes have been developed that could be used to monitor amyloid load in vivo. Applications of the probes are under investigation for potential pathophysiology studies

  10. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    Directory of Open Access Journals (Sweden)

    Hedia Fgaier

    2015-01-01

    Full Text Available The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT which is responsible for synthesizing acetylcholine (ACh in human brain is investigated through the two-enzyme/two-compartment (2E2C model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD.

  11. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.

    Science.gov (United States)

    Liu, Jihua; Dehle, Francis C; Liu, Yanqin; Bahraminejad, Elmira; Ecroyd, Heath; Thorn, David C; Carver, John A

    2016-02-17

    When not incorporated into the casein micelle, κ-casein, a major milk protein, rapidly forms amyloid fibrils at physiological pH and temperature. In this study, the effects of milk components (calcium, lactose, lipids, and heparan sulfate) and crowding agents on reduced and carboxymethylated (RCM) κ-casein fibril formation was investigated using far-UV circular dichroism spectroscopy, thioflavin T binding assays, and transmission electron microscopy. Longer-chain phosphatidylcholine lipids, which form the lining of milk ducts and milk fat globules, enhanced RCM κ-casein fibril formation irrespective of whether the lipids were in a monomeric or micellar state, whereas shorter-chain phospholipids and triglycerides had little effect. Heparan sulfate, a component of the milk fat globule membrane and catalyst of amyloid deposition in extracellular tissue, had little effect on the kinetics of RCM κ-casein fibril formation. Major nutritional components such as calcium and lactose also had no significant effect. Macromolecular crowding enhances protein-protein interactions, but in contrast to other fibril-forming species, the extent of RCM κ-casein fibril formation was reduced by the presence of a variety of crowding agents. These data are consistent with a mechanism of κ-casein fibril formation in which the rate-determining step is dissociation from the oligomer to give the highly amyloidogenic monomer. We conclude that the interaction of κ-casein with membrane-associated phospholipids along its secretory pathway may contribute to the development of amyloid deposits in mammary tissue. However, the formation of spherical oligomers such as casein micelles is favored over amyloid fibrils in the crowded environment of milk, within which the occurrence of amyloid fibrils is low.

  12. Brain amyloid β protein and memory disruption in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Weiming Xia

    2010-09-01

    Full Text Available Weiming XiaCenter for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: The development of amyloid-containing neuritic plaques is an invariable characteristic of Alzheimer’s diseases (AD. The conversion from monomeric amyloid β protein (Aβ to oligomeric Aβ and finally neuritic plaques is highly dynamic. The specific Aß species that is correlated with disease severity remains to be discovered. Oligomeric Aβ has been detected in cultured cells, rodent and human brains, as well as human cerebrospinal fluid. Synthetic, cell, and brain derived Aβ oligomers have been found to inhibit hippocampal long-term potentiation (LTP and this effect can be suppressed by the blockage of Aβ oligomer formation. A large body of evidence suggests that Aβ oligomers inhibit N-methyl-D-aspartate receptor dependent LTP; additional receptors have also been found to elicit downstream pathways upon binding to Aβ oligomers. Amyloid antibodies and small molecular compounds that reduce brain Aβ levels and block Aβ oligomer formation are capable of reversing synaptic dysfunction and these approaches hold a promising therapeutic potential to rescue memory disruption.Keywords: Alzheimer, amyloid, oligomer, long-term potentiation, NMDA

  13. A Cultivated Form of a Red Seaweed (Chondrus crispus, Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jatinder Singh Sangha

    2015-10-01

    Full Text Available We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE, delayed β-amyloid-induced paralysis, whereas the water extract (CCW was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS.

  14. Evidence that Self-Affirmation Reduces Body Dissatisfaction by Basing Self-Esteem on Domains Other than Body Weight and Shape

    Science.gov (United States)

    Armitage, Christopher J.

    2012-01-01

    Background: Body satisfaction interventions have typically been multifaceted and targeted at clinical populations. The aim of the present research was to isolate the effects of self-affirmation on body satisfaction in a community sample and to see whether self-affirmation works by basing one's self-esteem on domains other than body weight and…

  15. Biophysical and Structural Characterization of the Thioredoxin-binding Domain of Protein Kinase ASK1 and Its Interaction with Reduced Thioredoxin

    Czech Academy of Sciences Publication Activity Database

    Košek, Dalibor; Kylarová, Salome; Pšenáková, Katarína; Řežábková, L.; Herman, P.; Večeř, J.; Obšilová, Veronika; Obšil, T.

    2014-01-01

    Roč. 289, č. 35 (2014), s. 24463-24474 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 Keywords : ASK1 * thioredoxin * AUC * SAXS * coiled-coiled domain Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  16. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    Science.gov (United States)

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  17. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  18. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  19. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    We recently reported the identification of human calumenin, a novel Ca(2+) binding, transformation-sensitive and secreted protein [Vorum et al. (1998) Biochim. Biophys. Acta 1386, 121-131; Vorum et al. (1999) Exp. Cell Res. 248, 473-481] belonging to the family of multiple EF-hand proteins...... with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  20. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing.

    Science.gov (United States)

    Satoskar, Anjali A; Efebera, Yvonne; Hasan, Ayesha; Brodsky, Sergey; Nadasdy, Gyongyi; Dogan, Ahmet; Nadasdy, Tibor

    2011-11-01

    Although systemic amyloidosis commonly presents with renal disease, cardiac involvement usually determines the patient's prognosis. Cardiac involvement is seen in light chain amyloid and transthyretin amyloidosis. Distinguishing between these two is critical because prognosis and treatment differ. Our study demonstrates the unreliability of transthyretin immunostaining in subtyping cardiac amyloid. Between January 2003 and August 2010, we retrieved 229 native endomyocardial biopsies, of which 24 had amyloid. Immunohistochemistry for κ, λ, transthyretin, and serum amyloid A protein was performed on formalin-fixed, paraffin-embedded sections. Staining was graded as weak (trace to 1+) or strong (2 to 3+). Mass spectrometry (MS)-based proteomic typing of microdissected amyloid material was performed on selected cases. Fifteen patients had monoclonal gammopathy/plasma cell dyscrasia with cardiac amyloid. Eight of them (53%) showed strong transthyretin staining in the cardiac amyloid deposits. MS was performed in 5 of these 8 biopsies, and all 5 biopsies revealed light chain amyloid-type amyloid. Two of these 5 light chain amyloid biopsies did not even have concomitant strong staining for the appropriate light chain. Among the 15 cases with plasma cell dyscrasia, only 7 biopsies showed strong staining for the corresponding monoclonal light chain. Strong, false-positive immunostaining for transthyretin in cardiac amyloid is a potential pitfall, augmented by the frequent lack of staining for immunoglobulin light chains. Therefore, the presence of amyloid in the cardiac biopsy should prompt a search for plasma cell dyscrasia irrespective of transthyretin staining. Confirmation with MS should be sought, particularly if there is any discrepancy between κ/λ staining and serum immunofixation results.

  1. Amyloid PET in pseudotumoral multiple sclerosis.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Cabrera-Martín, María Nieves; Cortés-Martínez, Ana; Pytel, Vanesa; Moreno-Ramos, Teresa; Oreja-Guevara, Celia; Carreras, José Luis; Matías-Guiu, Jorge

    2017-07-01

    Pseudotumoral multiple sclerosis is a rare form of demyelinating disease of the central nervous system. Positron emission tomography (PET) using amyloid-tracers has also been suggested as a marker of damage in white matter lesions in multiple sclerosis due to the nonspecific uptake of these tracers in white matter. We present the case of a 59 year-old woman with a pathological-confirmed pseudotumoral multiple sclerosis, who was studied with the amyloid tracer 18 F-florbetaben. The patient had developed word-finding difficulties and right hemianopia twelve years ago. In that time, MRI showed a lesion on the left hemisphere with an infiltrating aspect in frontotemporal lobes. Brain biopsy showed demyelinating areas and inflammation. During the following years, two new clinical relapses occurred. 18 F-florbetaben PET showed lower uptake in the white matter lesion visualized in the CT and MRI images. Decreased tracer uptake was also observed in a larger area of the left hemisphere beyond the lesions observed on MRI or CT. White matter lesion volume on FLAIR was 44.2mL, and tracer uptake change between damaged white matter and normal appearing white matter was - 40.5%. Standardized uptake value was inferior in the pseudotumoral lesion than in the other white matter lesions. We report the findings of amyloid PET in a patient with pseudotumoral multiple sclerosis. This case provides further evidence on the role of amyloid PET in the assessment of white matter and demyelinating diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Transbronchial biopsies safely diagnose amyloid lung disease

    Science.gov (United States)

    Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.

    2018-01-01

    Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574

  3. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  4. Beta-amyloid and cholinergic neurons

    Czech Academy of Sciences Publication Activity Database

    Doležal, Vladimír; Kašparová, Jana

    2003-01-01

    Roč. 28, 3-4 (2003), s. 499-506 ISSN 0364-3190 R&D Projects: GA ČR GA305/01/0283; GA AV ČR IAA5011206 Institutional research plan: CEZ:AV0Z5011922 Keywords : cholinergic neurons * AlzheimerŽs disease * beta-amyloid Subject RIV: FH - Neurology Impact factor: 1.511, year: 2003

  5. Cerebral amyloid angiopathy: diagnosis and potential therapies.

    Science.gov (United States)

    Weber, Stewart A; Patel, Ranish K; Lutsep, Helmi L

    2018-06-01

    Cerebral amyloid angiopathy (CAA) is characterized by the pathologic deposition of amyloid-beta within cortical and leptomeningeal arteries, arterioles, capillaries and, in rare cases, the venules of the brain. It is often associated with the development of lobar intracerebral hemorrhages (ICHs) but may cause other neurologic symptoms or be asymptomatic. Magnetic resonance imaging characteristics, such as lobar microbleeds, support a diagnosis of CAA and assist with hemorrhage risk assessments. Immunosuppressants are used to treat rarer inflammatory forms of CAA. For the more common forms of CAA, the use of antihypertensive medications can prevent ICH recurrence while the use of antithrombotics may increase hemorrhage risk. Anti-amyloid approaches to treatment have not yet been investigated in phase 3 trials. Areas covered: A literature search was conducted using MEDLINE on the topics of imaging, biomarkers, ICH prevention and treatment trials in CAA, focusing on its current diagnosis and management and opportunities for future therapeutic approaches. Expert commentary: There is likely a significant unrecognized burden of CAA in the elderly population. Continued research efforts to discover biomarkers that allow the early diagnosis of CAA will enhance the opportunity to develop treatment interventions.

  6. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  7. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    2007-07-01

    Full Text Available Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta production via beta and gamma secretases in Alzheimer's Disease (AD, is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE and neprilysin (NEP. The known association of human acetylcholinesterase (hAChE with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614 is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR with high propensity for conversion to non-native (hidden beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599 encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599, or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers. Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation

  8. Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia

    Science.gov (United States)

    Santos-Santos, Miguel A.; Rabinovici, Gil D.; Iaccarino, Leonardo; Ayakta, Nagehan; Tammewar, Gautam; Lobach, Iryna; Henry, Maya L.; Hubbard, Isabel; Mandelli, Maria Luisa; Spinelli, Edoardo; Miller, Zachary A.; Pressman, Peter S.; O’Neil, James P.; Ghosh, Pia; Lazaris, Andreas; Meyer, Marita; Watson, Christa; Yoon, Soo Jin; Rosen, Howard J.; Grinberg, Lea; Seeley, William W.; Miller, Bruce L.; Jagust, William J.; Gorno-Tempini, Maria Luisa

    2018-01-01

    IMPORTANCE The ability to predict the pathology underlying different neurodegenerative syndromes is of critical importance owing to the advent of molecule-specific therapies. OBJECTIVE To determine the rates of positron emission tomography (PET) amyloid positivity in the main clinical variants of primary progressive aphasia (PPA). DESIGN, SETTING, AND PARTICIPANTS This prospective clinical-pathologic case series was conducted at a tertiary research clinic specialized in cognitive disorders. Patients were evaluated as part of a prospective, longitudinal research study between January 2002 and December 2015. Inclusion criteria included clinical diagnosis of PPA; availability of complete speech, language, and cognitive testing; magnetic resonance imaging performed within 6 months of the cognitive evaluation; and PET carbon 11–labeled Pittsburgh Compound-B or florbetapir F 18 brain scan results. Of 109 patients referred for evaluation of language symptoms who underwent amyloid brain imaging, 3 were excluded because of incomplete language evaluations, 5 for absence of significant aphasia, and 12 for presenting with significant initial symptoms outside of the language domain, leaving a cohort of 89 patients with PPA. MAIN OUTCOMES AND MEASURES Clinical, cognitive, neuroimaging, and pathology results. RESULTS Twenty-eight cases were classified as imaging-supported semantic variant PPA (11 women [39.3%]; mean [SD] age, 64 [7] years), 31 nonfluent/agrammatic variant PPA (22 women [71.0%]; mean [SD] age, 68 [7] years), 26 logopenic variant PPA (17 women [65.4%]; mean [SD] age, 63 [8] years), and 4 mixed PPA cases. Twenty-four of 28 patients with semantic variant PPA (86%) and 28 of 31 patients with nonfluent/agrammatic variant PPA (90%) had negative amyloid PET scan results, while 25 of 26 patients with logopenic variant PPA (96%) and 3 of 4 mixed PPA cases (75%) had positive scan results. The amyloid positive semantic variant PPA and nonfluent/agrammatic variant PPA cases

  9. How curcumin affords effective protection against amyloid fibrillation in insulin?

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim Habibi, Azadeh; Ghasemi, Atiyeh Ghasemi

    2013-01-01

    Since the formation of amyloid structures from proteins was recognized in numerous diseases, many efforts have been devoted to the task of finding effective anti-amyloidogenic compounds. In a number of these investigations, the existence of “generic” compounds is implicitly acknowledged. Curcumin...... been shown effectively influenced by micro molar concentrations of curcumin. Under amyloidogenic conditions (pH 2.5 and 37°C), the compound was observed to inhibit fibril formation of insulin in a dose-dependent manner. Moreover, addition of curcumin to the protein incubated in such conditions...... at different time points resulted in reduced amounts of final fibrils. Disaggregation of pre-formed fibrils was also observed upon addition of curcumin, as well as reduction in final fibril amounts after seeding. Overall, this compound appears to be able to interact with native, intermediate and fibrillar...

  10. Adaptive template generation for amyloid PET using a deep learning approach.

    Science.gov (United States)

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  11. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    Science.gov (United States)

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  12. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  13. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    Science.gov (United States)

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  14. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    Science.gov (United States)

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  15. The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid- ? Production in Alzheimer's Disease

    OpenAIRE

    Zuo, Li; Hemmelgarn, Benjamin T.; Chuang, Chia-Chen; Best, Thomas M.

    2015-01-01

    An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer’s disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection betwee...

  16. A residue-specific shift in stability and amyloidogenicity of antibody variable domains.

    Science.gov (United States)

    Nokwe, Cardine N; Zacharias, Martin; Yagi, Hisashi; Hora, Manuel; Reif, Bernd; Goto, Yuji; Buchner, Johannes

    2014-09-26

    Variable (V) domains of antibodies are essential for antigen recognition by our adaptive immune system. However, some variants of the light chain V domains (VL) form pathogenic amyloid fibrils in patients. It is so far unclear which residues play a key role in governing these processes. Here, we show that the conserved residue 2 of VL domains is crucial for controlling its thermodynamic stability and fibril formation. Hydrophobic side chains at position 2 stabilize the domain, whereas charged residues destabilize and lead to amyloid fibril formation. NMR experiments identified several segments within the core of the VL domain to be affected by changes in residue 2. Furthermore, molecular dynamic simulations showed that hydrophobic side chains at position 2 remain buried in a hydrophobic pocket, and charged side chains show a high flexibility. This results in a predicted difference in the dissociation free energy of ∼10 kJ mol(-1), which is in excellent agreement with our experimental values. Interestingly, this switch point is found only in VL domains of the κ family and not in VLλ or in VH domains, despite a highly similar domain architecture. Our results reveal novel insight into the architecture of variable domains and the prerequisites for formation of amyloid fibrils. This might also contribute to the rational design of stable variable antibody domains. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin

    2010-03-01

    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  18. Prevalence of cerebral amyloid pathology in persons without dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Knol, Dirk L

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies...

  19. Prevalence of amyloid PET positivity in dementia syndromes

    DEFF Research Database (Denmark)

    Ossenkoppele, Rik; Jansen, Willemijn J; Rabinovici, Gil D

    2015-01-01

    IMPORTANCE: Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use...

  20. FKBP12 regulates the localization and processing of amyloid ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... One of the pathological hallmarks of Alzheimer's disease is the presence of insoluble extracellular amyloid plaques. These plaques ... The proteolytic cleavage of amyloid precursor protein (APP) ..... lower sAPPα/sAPPs ratio, which may lead to an increase in ..... spine density in healthy adult mouse brain.

  1. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  2. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  3. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity

    Directory of Open Access Journals (Sweden)

    James S. Foster

    2017-09-01

    Full Text Available There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

  4. Cardiac resynchronization therapy in a patient with amyloid cardiomyopathy.

    Science.gov (United States)

    Zizek, David; Cvijić, Marta; Zupan, Igor

    2013-06-01

    Cardiac involvement in systemic light chain amyloidosis carries poor prognosis. Amyloid deposition in the myocardium can alter regional left ventricular contraction and cause dyssynchrony. Cardiac resynchronization therapy (CRT) is an effective treatment strategy for patients with advanced heart failure and echocardiographic dyssynchrony. We report a clinical and echocardiographic response of a patient with amyloid cardiomyopathy, treated with a combination of chemotherapy and CRT.

  5. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  6. Amyloid goitre following chronic osteomyelitis: case report and ...

    African Journals Online (AJOL)

    Amyloid goitre following chronic osteomyelitis: case report and review of literature. AZ Mohammed, ST Edino, O Ochicha. Abstract. Amyloid Goitre is a rare clinical entity associated with systemic amyloidosis. It poses a significant diagnostic and therapeutic challenge and may be confused with a neoplastic goiter. We present ...

  7. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  8. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Conformational dynamics of amyloid proteins at the aqueous interface

    Science.gov (United States)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  10. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    Science.gov (United States)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  11. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  12. Amyloid-like protein inclusions in tobacco transgenic plants.

    Directory of Open Access Journals (Sweden)

    Anna Villar-Piqué

    Full Text Available The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.

  13. Preparation of Amyloid Fibrils Seeded from Brain and Meninges.

    Science.gov (United States)

    Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C

    2016-01-01

    Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.

  14. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice.

    Science.gov (United States)

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan

    2018-01-01

    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Design and Construction of Large Amyloid Fibers

    OpenAIRE

    Ridgley, Devin M.; Rippner, Caitlin M. W.; Barone, Justin R.

    2015-01-01

    Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known a...

  16. Conjugated Quantum Dots Inhibit the Amyloid β (1–42 Fibrillation Process

    Directory of Open Access Journals (Sweden)

    Garima Thakur

    2011-01-01

    Full Text Available Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA capped CdSe/ZnS quantum dots (QDs of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM and atomic force microscopy (AFM were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42 (Aβ (1–42 is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.

  17. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  18. Barriers and facilitators to healthcare professional behaviour change in clinical trials using the Theoretical Domains Framework: a case study of a trial of individualized temperature-reduced haemodialysis.

    Science.gov (United States)

    Presseau, Justin; Mutsaers, Brittany; Al-Jaishi, Ahmed A; Squires, Janet; McIntyre, Christopher W; Garg, Amit X; Sood, Manish M; Grimshaw, Jeremy M

    2017-05-22

    Implementing the treatment arm of a clinical trial often requires changes to healthcare practices. Barriers to such changes may undermine the delivery of the treatment making it more likely that the trial will demonstrate no treatment effect. The 'Major outcomes with personalized dialysate temperature' (MyTEMP) is a cluster-randomised trial to be conducted in 84 haemodialysis centres across Ontario, Canada to investigate whether there is a difference in major outcomes with an individualized dialysis temperature (IDT) of 0.5 °C below a patient's body temperature measured at the beginning of each haemodialysis session, compared to a standard dialysis temperature of 36.5 °C. To inform how to deploy the IDT across many haemodialysis centres, we assessed haemodialysis physicians' and nurses' perceived barriers and enablers to IDT use. We developed two topic guides using the Theoretical Domains Framework (TDF) to assess perceived barriers and enablers to IDT ordering and IDT setting (physician and nurse behaviours, respectively). We recruited a purposive sample of haemodialysis physicians and nurses from across Ontario and conducted in-person or telephone interviews. We used directed content analysis to double-code transcribed utterances into TDF domains, and inductive thematic analysis to develop themes. We interviewed nine physicians and nine nurses from 11 Ontario haemodialysis centres. We identified seven themes of potential barriers and facilitators to implementing IDTs: (1) awareness of clinical guidelines and how IDT fits with local policies (knowledge; goals), (2) benefits and motivation to use IDT (beliefs about consequences; optimism; reinforcement; intention; goals), (3) alignment of IDTs with usual practice and roles (social/professional role and identity; nature of the behaviour; beliefs about capabilities), (4) thermometer availability/accuracy and dialysis machine characteristics (environmental context and resources), (5) impact on workload (beliefs

  19. The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity.

    Science.gov (United States)

    Renziehausen, Jana; Hiebel, Christof; Nagel, Heike; Kundu, Arpita; Kins, Stefan; Kögel, Donat; Behl, Christian; Hajieva, Parvana

    2015-01-01

    Alzheimer's disease (AD) is the major age-associated form of dementia characterized by gradual cognitive decline. Aberrant cleavage of the amyloid-β protein precursor (AβPP) is thought to play an important role in the pathology of this disease. Two principal AβPP processing pathways exist: amyloidogenic cleavage of AβPP resulting in production of the soluble N-terminal fragment sAβPPβ, amyloid-β (Aβ), which accumulates in AD brain, and the AβPP intracellular domain (AICD) sAβPPα, p3 and AICD are generated in the non-amyloidogenic pathway. Prevalence of amyloidogenic versus non-amyloidogenic processing leads to depletion of sAβPPα and an increase in Aβ. Although sAβPPα is a well-accepted neurotrophic protein, molecular effects of this fragment remains unknown. Different studies reported impaired protein degradation pathways in AD brain, pointing to a role of disturbed proteasomal activity in the pathogenesis of this disease. Here we studied the possible role of sAβPPα in Bag3-mediated selective macroautophagy and proteasomal degradation. Employing human IMR90 cells, HEK 293 cells, and primary neurons, we demonstrate that sAβPPα prevents the proteotoxic stress-induced increase of Bag3 at the protein and at the mRNA level indicating a transcriptional regulation. Intriguingly, p62 and LC3, two other key players of autophagy, were not affected. Moreover, the formation and the accumulation of disease-related protein aggregates were significantly reduced by sAβPPα. Interestingly, there was a significant increase of proteasomal activity by sAβPPα as demonstrated by using various proteasome substrates. Our findings demonstrate that sAβPPα modulates Bag3 expression, aggresome formation, and proteasomal activity, thereby providing first evidence for a function of sAβPPα in the regulation of proteostasis.

  20. Generation of the beta-amyloid peptide and the amyloid precursor protein C-terminal fragment gamma are potentiated by FE65L1.

    Science.gov (United States)

    Chang, Yang; Tesco, Giuseppina; Jeong, William J; Lindsley, Loren; Eckman, Elizabeth A; Eckman, Christopher B; Tanzi, Rudolph E; Guénette, Suzanne Y

    2003-12-19

    Members of the FE65 family of adaptor proteins, FE65, FE65L1, and FE65L2, bind the C-terminal region of the amyloid precursor protein (APP). Overexpression of FE65 and FE65L1 was previously reported to increase the levels of alpha-secretase-derived APP (APPs alpha). Increased beta-amyloid (A beta) generation was also observed in cells showing the FE65-dependent increase in APPs alpha. To understand the mechanism for the observed increase in both A beta and APPs alpha given that alpha-secretase cleavage of a single APP molecule precludes A beta generation, we examined the effects of FE65L1 overexpression on APP C-terminal fragments (APP CTFs). Our data show that FE65L1 potentiates gamma-secretase processing of APP CTFs, including the amyloidogenic CTF C99, accounting for the ability of FE65L1 to increase generation of APP C-terminal domain and A beta 40. The FE65L1 modulation of these processing events requires binding of FE65L1 to APP and APP CTFs and is not because of a direct effect on gamma-secretase activity, because Notch intracellular domain generation is not altered by FE65L1. Furthermore, enhanced APP CTF processing can be detected in early endosome vesicles but not in endoplasmic reticulum or Golgi membranes, suggesting that the effects of FE65L1 occur at or near the plasma membrane. Finally, although FE65L1 increases APP C-terminal domain production, it does not mediate the APP-dependent transcriptional activation observed with FE65.

  1. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels.

    Science.gov (United States)

    Yu, Gui Mei; Zu, Shu Long; Zhou, Wei Wei; Wang, Xi Jun; Shuai, Lei; Wang, Xue Lian; Ge, Jin Ying; Bu, Zhi Gao

    2017-08-31

    Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.

  2. Human serum amyloid genes--molecular characterization

    International Nuclear Information System (INIS)

    Sack, G.H.; Lease, J.J.

    1986-01-01

    Three clones containing human genes for serum amyloid A protein (SAA) have been isolated and characterized. Each of two clones, GSAA 1 and 2 (of 12.8 and 15.9 kilobases, respectively), contains two exons, accouting for amino acids 12-58 and 58-103 of mature SAA; the extreme 5' termini and 5' untranslated regions have not yet been defined but are anticipated to be close based on studies of murine SAA genes. Initial amino acid sequence comparisons show 78/89 identical residues. At 4 of the 11 discrepant residues, the amino acid specified by the codon is the same as the corresponding residue in murine SAA. Identification of regions containing coding regions has permitted use of selected subclones for blot hybridization studies of larger human SAA chromosomal gene organization. The third clone, GSAA 3 also contains SAA coding information by DNA sequence analysis but has a different organization which has not yet been fully described. We have reported the isolation of clones of human DNA hybridizing with pRS48 - a plasmid containing a complementary DNA (cDNA) clone for murine serum amyloid A (SAA; 1, 2). We now present more detailed data confirming the identity and defining some of the organizational features of these clones

  3. MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors.

    Directory of Open Access Journals (Sweden)

    Manuel Hora

    Full Text Available Little structural information is available so far on amyloid fibrils consisting of immunoglobulin light chains. It is not understood which features of the primary sequence of the protein result in fibril formation. We report here MAS solid-state NMR studies to identify the structured core of κ-type variable domain light chain fibrils. The core contains residues of the CDR2 and the β-strands D, E, F and G of the native immunoglobulin fold. The assigned core region of the fibril is distinct in comparison to the core identified in a previous solid-state NMR study on AL-09 by Piehl at. al, suggesting that VL fibrils can adopt different topologies. In addition, we investigated a soluble oligomeric intermediate state, previously termed the alternatively folded state (AFS, using NMR and FTIR spectroscopy. The NMR oligomer spectra display a high degree of similarity when compared to the fibril spectra, indicating a high structural similarity of the two aggregation states. Based on comparison to the native state NMR chemical shifts, we suggest that fibril formation via domain-swapping seems unlikely. Moreover, we used our results to test the quality of different amyloid prediction algorithms.

  4. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  5. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.

    Science.gov (United States)

    Sasahara, Kenji; Naiki, Hironobu; Goto, Yuji

    2005-09-23

    Calorimetric measurements were carried out using a differential scanning calorimeter in the temperature range from 10 to 120 degrees C for characterizing the thermal response of beta2-microglobulin amyloid fibrils. The thermograms of amyloid fibril solution showed a remarkably large decrease in heat capacity that was essentially released upon the thermal unfolding of the fibrils, in which the magnitude of negative heat capacity change was not explicable in terms of the current accessible surface area model of protein structural thermodynamics. The heat capacity-temperature curve of amyloid fibrils prior to the fibril unfolding exhibited an unusual dependence on the fibril concentration and the heating rate. Particularly, the heat needed to induce the thermal response was found to be linearly dependent on the heating rate, indicating that its thermal response is under a kinetic control and precluding the interpretation in terms of equilibrium thermodynamics. Furthermore, amyloid fibrils of amyloid beta peptides also exhibited a heating rate-dependent exothermic process before the fibril unfolding, indicating that the kinetically controlled thermal response may be a common phenomenon to amyloid fibrils. We suggest that the heating rate-dependent negative change in heat capacity is coupled to the association of amyloid fibrils with characteristic hydration pattern.

  6. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  7. Fish β-parvalbumin acquires allergenic properties by amyloid assembly.

    Science.gov (United States)

    Martínez, Javier; Sánchez, Rosa; Castellanos, Milagros; Fernández-Escamilla, Ana M; Vázquez-Cortés, Sonia; Fernández-Rivas, Montserrat; Gasset, María

    2015-01-01

    Amyloids are highly cross-β-sheet-rich aggregated states that confer protease resistance, membrane activity and multivalence properties to proteins, all essential features for the undesired preservation of food proteins transiting the gastrointestinal tract and causing type I allergy. Amyloid propensity of β-parvalbumin, the major fish allergen, was theoretically analysed and assayed under gastrointestinal-relevant conditions using the binding of thioflavin T, the formation of sodium dodecyl sulphate- (SDS-) resistant aggregates, circular dichroism spectroscopy and atomic force microscopy fibril imaging. Impact of amyloid aggregates on allergenicity was assessed with dot blot. Sequences of β-parvalbumin from species with commercial value contain several adhesive hexapeptides capable of driving amyloid formation. Using Atlantic cod β-parvalbumin (rGad m 1) displaying high IgE cross-reactivity, we found that formation of amyloid fibres under simulated gastrointestinal conditions accounts for the resistance to acid and neutral proteases, for the presence of membrane active species under gastrointestinal relevant conditions and for the IgE-recognition in the sera of allergic patients. Incorporation of the anti-amyloid compound epigallocatechin gallate prevents rGad m 1 fibrillation, facilitates its protease digestion and impairs its recognition by IgE. the formation of amyloid by rGad m 1 explains its degradation resistance, its facilitated passage across the intestinal epithelial barrier and its epitope architecture as allergen.

  8. Amyloid plaque imaging in vivo: current achievement and future prospects

    International Nuclear Information System (INIS)

    Nordberg, Agneta

    2008-01-01

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high 11 C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by 11 C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  9. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting

    2008-11-01

    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  10. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    Directory of Open Access Journals (Sweden)

    Yazan S. Batarseh

    2016-03-01

    Full Text Available Amyloid-β (Aβ pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia.

  11. Proteomics with Mass Spectrometry Imaging: Beyond Amyloid Typing.

    Science.gov (United States)

    Lavatelli, Francesca; Merlini, Giampaolo

    2018-04-01

    Detection and typing of amyloid deposits in tissues are two crucial steps in the management of systemic amyloidoses. The presence of amyloid deposits is routinely evaluated through Congo red staining, whereas proteomics is now a mainstay in the identification of the deposited proteins. In article number 1700236, Winter et al. [Proteomics 2017, 17, Issue 22] describe a novel method based on MALDI-MS imaging coupled to ion mobility separation and peptide filtering, to detect the presence of amyloid in histology samples and to identify its composition, while preserving the spatial distribution of proteins in tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inhibition of Alzheimer amyloid {beta} aggregation by polyvalent trehalose

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiko; You, Chouga [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ohnishi, Reiko [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: miuray@jaist.ac.jp

    2008-04-15

    A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid {beta} peptide (1-42) (A{beta}), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of A{beta}, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

  13. In vivo neuronal synthesis and axonal transport of Kunitz protease inhibitor (KPI)-containing forms of the amyloid precursor protein.

    Science.gov (United States)

    Moya, K L; Confaloni, A M; Allinquant, B

    1994-11-01

    We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.

  14. The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli

    Science.gov (United States)

    Smith, Daniel R.; Price, Janet E.; Burby, Peter E.; Blanco, Luz P.; Chamberlain, Justin; Chapman, Matthew R.

    2017-01-01

    Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. PMID:29088115

  15. Domain crossing

    DEFF Research Database (Denmark)

    Schraefel, M. C.; Rouncefield, Mark; Kellogg, Wendy

    2012-01-01

    In CSCW, how much do we need to know about another domain/culture before we observe, intersect and intervene with designs. What optimally would that other culture need to know about us? Is this a “how long is a piece of string” question, or an inquiry where we can consider a variety of contexts a...

  16. Specific localization and imaging of amyloid deposits in vivo using 123I-labeled serum amyloid P component

    International Nuclear Information System (INIS)

    Hawkins, P.N.; Myers, M.J.; Epenetos, A.A.; Caspi, D.; Pepys, M.B.

    1988-01-01

    Highly specific, high-resolution scintigraphic images of amyloid-laden organs in mice with experimentally induced amyloid A protein (AA) amyloidosis were obtained after intravenous injection of 123 I-labeled serum amyloid P component (SAP). Interestingly, a much higher proportion (up to 40%) of the injected dose of heterologous human SAP localized to amyloid and was retained there than was the case with isologous mouse SAP, indicating that human SAP binds more avidly to mouse AA fibrils than does mouse SAP. Specificity of SAP localization was established by the failure of the related proteins, human C-reactive protein and Limulus C-reactive protein, to deposit significantly in amyloid and by the absence of human SAP deposition in nonamyloidotic organs. However, only partial correlations were observed between the quantity of SAP localized and two independent estimates, histology and RIA for AA of the amount of amyloid in particular organs. It is not clear which of the three methods used reflects better the extent or clinical significance of the amyloid deposits but in vivo localization of radiolabeled SAP, detectable and quantifiable by gamma camera imaging, is apparently extremely sensitive. These findings establish the use of labeled SAP as a noninvasive in vivo diagnostic probe in experimental amyloidosis, potentially capable of revealing the natural history of the condition, and suggest that it may also be applicable generally as a specific targeting agent for diagnostic and even therapeutic purposes in clinical amyloidosis

  17. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  18. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    Science.gov (United States)

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  20. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    Directory of Open Access Journals (Sweden)

    Bu Guojun

    2007-07-01

    Full Text Available Abstract Background The generation of the amyloid-β peptide (Aβ through the proteolytic processing of the amyloid precursor protein (APP is a central event in the pathogenesis of Alzheimer's disease (AD. Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.

  1. The proton-pump inhibitor lansoprazole enhances amyloid beta production.

    Science.gov (United States)

    Badiola, Nahuai; Alcalde, Victor; Pujol, Albert; Münter, Lisa-Marie; Multhaup, Gerd; Lleó, Alberto; Coma, Mireia; Soler-López, Montserrat; Aloy, Patrick

    2013-01-01

    A key event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.

  2. Amyloid goiter in a child - US, CT and MR evaluation

    International Nuclear Information System (INIS)

    Perez Fontan, F.J.; Mosquera Oses, J.; Pombo Felipe, F.; Rodriguez Sanchez, I.; Arnaiz Pena, S.

    1992-01-01

    There are few radiological descriptions of amyloid goiter, basically in adult patients or oriental origin. We present a ten-year-old boy with Still's disease and secondary thyroid amyloidosis, describing the US, CT and MR findings. (orig.)

  3. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    Science.gov (United States)

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  4. Trusted Domain

    DEFF Research Database (Denmark)

    Hjorth, Theis Solberg; Torbensen, Rune

    2012-01-01

    remote access via IP-based devices such as smartphones. The Trusted Domain platform fits existing legacy technologies by managing their interoperability and access controls, and it seeks to avoid the security issues of relying on third-party servers outside the home. It is a distributed system...... of wireless standards, limited resources of embedded systems, etc. Taking these challenges into account, we present a Trusted Domain home automation platform, which dynamically and securely connects heterogeneous networks of Short-Range Wireless devices via simple non-expert user. interactions, and allows......In the digital age of home automation and with the proliferation of mobile Internet access, the intelligent home and its devices should be accessible at any time from anywhere. There are many challenges such as security, privacy, ease of configuration, incompatible legacy devices, a wealth...

  5. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease

    Science.gov (United States)

    Madison, Cindee; Baker, Suzanne; Rabinovici, Gil; Jagust, William

    2016-01-01

    Abstract See Hansson and Gouras (doi:10.1093/aww146) for a scientific commentary on this article. Although some brain regions such as precuneus and lateral temporo-parietal cortex have been shown to be more vulnerable to Alzheimer’s disease than other areas, a mechanism underlying the differential regional vulnerability to Alzheimer’s disease remains to be elucidated. Using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography imaging glucose metabolism and amyloid-β deposition, we tested whether and how life-long changes in glucose metabolism relate to amyloid-β deposition and Alzheimer’s disease-related hypometabolism. Nine healthy young adults (age range: 20–30), 96 cognitively normal older adults (age range: 61–96), and 20 patients with Alzheimer’s disease (age range: 50–90) were scanned using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography. Among cognitively normal older subjects, 32 were further classified as amyloid-positive, with 64 as amyloid-negative. To assess the contribution of glucose metabolism to the regional vulnerability to amyloid-β deposition, we defined the highest and lowest metabolic regions in young adults and examined differences in amyloid deposition between these regions across groups. Two-way analyses of variance were conducted to assess regional differences in age and amyloid-β-related changes in glucose metabolism. Multiple regressions were applied to examine the association between amyloid-β deposition and regional glucose metabolism. Both region of interest and whole-brain voxelwise analyses were conducted to complement and confirm the results derived from the other approach. Regional differences in glucose metabolism between the highest and lowest metabolism regions defined in young adults (T = 12.85, P glucose metabolism regions defined in young adults (T = 2.05, P glucose metabolism were found such that frontal glucose metabolism was reduced with age, while glucose

  6. A S52P mutation in the 'α-crystallin domain' of Mycobacterium leprae HSP18 reduces its oligomeric size and chaperone function.

    Science.gov (United States)

    Nandi, Sandip K; Rehna, Elengikal A A; Panda, Alok K; Shiburaj, Sugathan; Dharmalingam, Kuppamuthu; Biswas, Ashis

    2013-12-01

    Mycobacterium leprae HSP18 is a small heat shock protein (sHSP). It is a major immunodominant antigen of M. leprae pathogen. Previously, we have reported the existence of two M. leprae HSP18 variants in various leprotic patients. One of the variants has serine at position 52, whereas the other one has proline at the same position. We have also reported that HSP18 having proline at position 52 (HSP18P(52)) is a nonameric protein and exhibits chaperone function. However, the structural and functional characterization of wild-type HSP18 having serine at position 52 (HSP18S(52)) is yet to be explored. Furthermore, the implications of the S52P mutation on the structure and chaperone function of HSP18 are not well understood. Therefore, we cloned and purified these two HSP18 variants. We found that HSP18S(52) is also a molecular chaperone and an oligomeric protein. Intrinsic tryptophan fluorescence and far-UV CD measurements revealed that the S52P mutation altered the tertiary and secondary structure of HSP18. This point mutation also reduced the oligomeric assembly and decreased the surface hydrophobicity of HSP18, as revealed by HPLC and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding studies, respectively. Mutant protein was less stable against thermal and chemical denaturation and was more susceptible towards tryptic cleavage than wild-type HSP18. HSP18P(52) had lower chaperone function and was less effective in protecting thermal killing of Escherichia coli than HSP18S(52). Taken together, our data suggest that serine 52 is important for the larger oligomerization and chaperone function of HSP18. Because both variants differ in stability and function, they may have different roles in the survival of M. leprae in infected hosts. © 2013 FEBS.

  7. Blood-Based Biomarker Candidates of Cerebral Amyloid Using PiB PET in Non-Demented Elderly

    Science.gov (United States)

    Westwood, Sarah; Leoni, Emanuela; Hye, Abdul; Lynham, Steven; Khondoker, Mizanur R.; Ashton, Nicholas J.; Kiddle, Steven J.; Baird, Alison L.; Sainz-Fuertes, Ricardo; Leung, Rufina; Graf, John; Hehir, Cristina Tan; Baker, David; Cereda, Cristina; Bazenet, Chantal; Ward, Malcolm; Thambisetty, Madhav; Lovestone, Simon

    2018-01-01

    Increasingly, clinical trials for Alzheimer’s disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aβ measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature. PMID:27031486

  8. Immunotherapy of Alzheimer's disease (AD): from murine models to anti-amyloid beta (Abeta) human monoclonal antibodies.

    Science.gov (United States)

    Geylis, Valeria; Steinitz, Michael

    2006-01-01

    The deposition of amyloid beta (Abeta) protein is a key pathological feature in Alzheimer's disease (AD). In murine models of AD, both active and passive immunization against Abeta induce a marked reduction in amyloid brain burden and an improvement in cognitive functions. Preliminary results of a prematurely terminated clinical trial where AD patients were actively vaccinated with aggregated Abeta bear resemblance to those documented in murine models. Passive immunization of AD patients with anti-Abeta antibodies, in particular human antibodies, is a strategy that provides a more cautious management and control of any undesired side effects. Sera of all healthy adults contain anti-Abeta IgG autoimmune antibodies. Hence antigen-committed human B-cells are easily immortalized by Epstein-Barr virus (EBV) into anti-Abeta secreting cell lines. Two anti-Abeta human monoclonal antibodies which we recently prepared bind to the N-terminus of Abeta peptide and were shown to stain amyloid plaques in non-fixed brain sections from an AD patient. It is anticipated that specifically selected anti-Abeta human monoclonal antibodies could reduce and inhibit deposits of amyloid in brain while avoiding the cognitive decline that characterizes AD. In the future, this type of antibody may prove to be a promising immune therapy for the disease.

  9. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    Science.gov (United States)

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  10. Effect of Indigofera tinctoria on ?-amyloid (25-35 mediated Alzheimer’s disease in mice: Relationship to antioxidant activity

    Directory of Open Access Journals (Sweden)

    G. Balamurugan

    2010-03-01

    Full Text Available The oxidative stress reducing effect of methanol extract of Indigofera tinctoria leaves (250 and 500 mg/kg was investigated on β-amyloid (25-35 peptide-induced Alzheimer’s disease in mice. All the antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxide and glutathione reductase in brain were reduced significantly (p<0.001 in the β-amyloid peptide injected group, whereas lipid peroxidation was increased significantly (p<0.001. The reduced enzyme level were restored significantly (p<0.01; p<0.001 by the administration of extract at the tested dose levels. A significant (p<0.001 reduction in lipid peroxidation was observed in the groups of animals administered with extract. Histopathological sections of the hippocampal region showed the extent of neuronal loss and its restoration upon administration of extract. Treatment with extract at the tested doses moderately prevented the neuronal loss.

  11. Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    Directory of Open Access Journals (Sweden)

    Tanya L. Poshusta

    2013-11-01

    Full Text Available Light chain (AL amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.

  12. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  13. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening.

    Directory of Open Access Journals (Sweden)

    Michael P Friedmann

    Full Text Available Enzymes are capable of directing complex stereospecific transformations and of accelerating reaction rates many orders of magnitude. As even the simplest known enzymes comprise thousands of atoms, the question arises as to how such exquisite catalysts evolved. A logical predecessor would be shorter peptides, but they lack the defined structure and size that are apparently necessary for enzyme functions. However, some very short peptides are able to assemble into amyloids, thereby forming a well-defined tertiary structure called the cross-β-sheet, which bestows unique properties upon the peptides. We have hypothesized that amyloids could have been the catalytically active precursor to modern enzymes. To test this hypothesis, we designed an amyloid peptide library that could be screened for catalytic activity. Our approach, amenable to high-throughput methodologies, allowed us to find several peptides and peptide mixtures that form amyloids with esterase activity. These results indicate that amyloids, with their stability in a wide range of conditions and their potential as catalysts with low sequence specificity, would indeed be fitting precursors to modern enzymes. Furthermore, our approach can be efficiently expanded upon in library size, screening conditions, and target activity to yield novel amyloid catalysts with potential applications in aqueous-organic mixtures, at high temperature and in other extreme conditions that could be advantageous for industrial applications.

  14. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    Science.gov (United States)

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Amyloid Imaging: Poised for Integration into Medical Practice.

    Science.gov (United States)

    Anand, Keshav; Sabbagh, Marwan

    2017-01-01

    Amyloid imaging represents a significant advance as an adjunct in the diagnosis of Alzheimer's disease (AD) because it is the first imaging modality that identifies in vivo changes known to be associated with the pathogenesis. Initially, 11 C-PIB was developed, which was the prototype for many 18 F compounds, including florbetapir, florbetaben, and flutemetamol, among others. Despite the high sensitivity and specificity of amyloid imaging, it is not commonly used in clinical practice, mainly because it is not reimbursed under current Center for Medicare and Medicaid Services guidelines in the USA. To guide the field in who would be most appropriate for the utility of amyloid positron emission tomography, current studies are underway [Imaging Dementia Evidence for Amyloid Scanning (IDEAS) Study] that will inform the field on the utilization of amyloid positron emission tomography in clinical practice. With the advent of monoclonal antibodies that specifically target amyloid antibody, there is an interest, possibly a mandate, to screen potential treatment recipients to ensure that they are suitable for treatment. In this review, we summarize progress in the field to date.

  16. Repurposing Diflunisal for Familial Amyloid Polyneuropathy: A Randomized Clinical Trial

    Science.gov (United States)

    Berk, John L.; Suhr, Ole B.; Obici, Laura; Sekijima, Yoshiki; Zeldenrust, Steven R.; Yamashita, Taro; Heneghan, Michael A.; Gorevic, Peter D.; Litchy, William J.; Wiesman, Janice F.; Nordh, Erik; Corato, Manuel; Lozza, Alessandro; Cortese, Andrea; Robinson-Papp, Jessica; Colton, Theodore; Rybin, Denis V.; Bisbee, Alice B.; Ando, Yukio; Ikeda, Shu-ichi; Seldin, David C.; Merlini, Giampaolo; Skinner, Martha; Kelly, Jeffery W.; Dyck, Peter J.

    2014-01-01

    Importance Familial amyloid polyneuropathy (ATTR-FAP), a lethal genetic disease caused by aggregation of variant transthyretin, induces progressive peripheral nerve deficits and disability. Diflunisal, a non-steroidal anti-inflammatory agent, stabilizes transthyretin tetramers and prevents amyloid fibril formation in vitro. Objective To determine the effect of diflunisal on polyneuropathy progression in patients with ATTR-FAP. Design, Setting, and Patients We conducted an investigator-initiated international, randomized, double-blind, placebo-controlled study at amyloid centers in Sweden (Umea), Italy (Pavia), Japan (Matsumoto and Kumamoto), England (London), and the United States (Boston, New York, Rochester, MN) from 2006 through 2012. 130 ATTRFAP patients with clinically detectable peripheral or autonomic neuropathy were randomly assigned to diflunisal 250 mg or placebo twice daily for 2 years. Main Outcome Measures The primary endpoint, the difference in polyneuropathy progression between treatments, was measured by the Neuropathy Impairment Score plus 7 nerve tests (NIS+7) which ranges from 0 (no neurologic deficits) to 270 points (no detectable peripheral nerve function). Secondary outcomes included a quality of life questionnaire (Short Form-36 (SF-36)) and modified body mass index (mBMI). Results One hundred thirty randomized patients (66 placebo, 64 diflunisal) underwent serial NIS+7 evaluations over 2 years. Due to attrition, we employed likelihood based modeling and multiple imputation (MI) analysis of baseline to 2 year data. By MI, NIS+7 increased 25.0 points (95% CI, 18.4 to 31.6) among placebo and 8.7 points (95% CI, 3.3 to 14.1) in the diflunisal group, a difference of 16.3 points (95% CI, 8.1 to 24.5, p=0.001). Mean SF-36 physical scores fell 4.9 points (95% CI, −7.6 to −2.2) among placebo and rose 1.5 points (95% CI, −0.8 to 3.7) in the diflunisal group (p=0.003). SF-36 mental scores declined 1.1 (95% CI, −4.3 to 2.0) among placebo while

  17. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels.

    Science.gov (United States)

    Wang, Hongjie; Dey, Debleena; Carrera, Ivan; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K

    2013-09-13

    Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels.

  18. Evaluation of dementia by acrolein, amyloid-β and creatinine.

    Science.gov (United States)

    Igarashi, Kazuei; Yoshida, Madoka; Waragai, Masaaki; Kashiwagi, Keiko

    2015-10-23

    Plasma, urine and cerebrospinal fluid (CSF) were examined for biochemical markers of dementia. Protein-conjugated acrolein (PC-Acro) and the amyloid-β (Aβ)40/42 ratio in plasma can be used to detect mild cognitive impairment (MCI) and Alzheimer's disease (AD). In plasma, PC-Acro and the Aβ40/42 ratio in MCI and AD were significantly higher relative to non-demented subjects. Furthermore, urine acrolein metabolite, 3-hydroxypropyl mercapturic acid (3-HPMA)/creatinine (Cre) and amino acid-conjugated acrolein (AC-Acro)/Cre in AD were significantly lower than MCI. It was also shown that reduced urine 3-HPMA/Cre correlated with increased plasma Aβ40/42 ratio in dementia. The Aβ40/PC-Acro ratio in CSF, together with Aβ40 and Aβ40/42 ratio, was lower in AD than MCI. Increased plasma PC-Acro and Aβ40/42 ratio and decreased urine 3-HPMA/Cre correlated with cognitive ability (MMSE). These results indicate that the measurements of acrolein derivatives together with Aβ and Cre in biologic fluids is useful to estimate severity of dementia. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  20. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  1. Lack of evidence for protein AA reactivity in amyloid deposits of lattice corneal dystrophy and amyloid corneal degeneration.

    Science.gov (United States)

    Gorevic, P D; Rodrigues, M M; Krachmer, J H; Green, C; Fujihara, S; Glenner, G G

    1984-08-15

    Amyloid fibrils occurring in primary and myeloma-associated (AL), secondary (AA), and certain neuropathic hereditary forms of systemic amyloidosis can be distinguished biochemically or immunohistologically as being composed of immunoglobulin light chain, protein AA, or prealbumin respectively. All types of systemic and several localized forms of amyloidosis contain amyloid P component (protein AP). We studied formalin-fixed tissue from eight cases of lattice corneal dystrophy by the immunoperoxidase method using antisera to proteins AA and AP, to normal serum prealbumin and prealbumin isolated from a case of hereditary amyloidosis, and to light-chain determinants; additional cases were examined by indirect immunofluorescence of fresh-frozen material. We found weak (1:10 dilution) staining with anti-AP, but no reactivity with other antisera. Congo red staining was resistant to pretreatment of sections with potassium permanganate, a characteristic of non-AA amyloid. Two-dimensional gels of solubilized proteins from frozen tissue from two cases of lattice corneal dystrophy resembled those obtained from normal human cornea. Western blots of two cases of polymorphous amyloid degeneration and solubilized protein from normal cornea did not react with radioactive iodine-labeled anti-AA or anti-AP with purified protein AP and unfixed protein AA amyloid tissue as controls. We were unable to corroborate the presence of protein AA in the amyloid deposits of lattice corneal dystrophy. Although staining with antiserum to protein AP was demonstrable, the molecular configuration of this protein in stromal deposits remains to be defined.

  2. Imaging β-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization

    International Nuclear Information System (INIS)

    Shoghi-Jadid, Kooresh; Barrio, Jorge R.; Kepe, Vladimir; Wu, H.-M.; Small, Gary W.; Phelps, Michael E.; Huang, S.-C.

    2005-01-01

    The polymerization of β-amyloid (Aβ) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. Aβ molecular imaging probes (Aβ-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of Aβ with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of Aβ-MIPs with fibrils. Subsequently, we hypothesize four Aβ-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B max and K D to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions

  3. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with Amyloid-β Peptide in Mice

    Science.gov (United States)

    Morzelle, Maressa Caldeira; Salgado, Jocelem Mastrodi; Telles, Milena; Mourelle, Danilo; Bachiega, Patricia; Buck, Hudson Sousa

    2016-01-01

    Alzheimer’s disease is a chronic and degenerative condition that had no treatment until recently. The current therapeutic strategies reduce progression of the disease but are expensive and commonly cause side effects that are uncomfortable for treated patients. Functional foods to prevent and/or treat many conditions, including neurodegenerative diseases, represent a promising field of study currently gaining attention. To this end, here we demonstrate the effects of pomegranate (Punica granatum) peel extract (PPE) regarding spatial memory, biomarkers of neuroplasticity, oxidative stress and inflammation in a mouse model of neurodegeneration. Male C57Bl/6 mice were chronically infused for 35 days with amyloid-β peptide 1–42 (Aβ) or vehicle (control) using mini-osmotic pumps. Another group, also infused with Aβ, was treated with PPE (p.o.– βA+PPE, 800 mg/kg/day). Spatial memory was evaluated in the Barnes maze. Animals treated with PPE and in the control group exhibited a reduction in failure to find the escape box, a finding that was not observed in the Aβ group. The consumption of PPE reduced amyloid plaque density, increased the expression of neurotrophin BDNF and reduced the activity of acetylcholinesterase enzyme. A reduction in lipid peroxidation and in the concentration of the pro-inflammatory cytokine TNF-α was also observed in the PPE group. No hepatic lesions were observed in animals treated with PPE. In conclusion, administration of pomegranate peel extract has neuroprotective effects involving multiple mechanisms to prevent establishment and progression of the neurodegenerative process induced by infusion with amyloid-β peptide in mice. PMID:27829013

  4. Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Sadati, Monirosadat [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Apik, Aslin Izmitli [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; Armas-Perez, Julio C. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Martinez-Gonzalez, Jose [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Hernandez-Ortiz, Juan P. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17 Medellín Colombia; Abbott, Nicholas L. [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; de Pablo, Juan J. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Argonne National Laboratory, Argonne IL 60439 USA

    2015-09-09

    Liquid crystals (LCs) can serve as sensitive reporters of interfacial events, and this property has been used for sensing of synthetic or biological toxins. Here it is demonstrated that LCs can distinguish distinct molecular motifs and exhibit a specific response to beta-sheet structures. That property is used to detect the formation of highly toxic protofibrils involved in neurodegenerative diseases, where it is crucial to develop methods that probe the early-stage aggregation of amyloidogenic peptides in the vicinity of biological membranes. In the proposed method, the amyloid fibrils formed at the lipid-decorated LC interface can change the orientation of LCs and form elongated and branched structures that are amplified by the mesogenic medium; however, nonamyloidogenic peptides form ellipsoidal domains of tilted LCs. Moreover, a theoretical and computational analysis is used to reveal the underlying structure of the LC, thereby providing a detailed molecular-level view of the interactions and mechanisms responsible for such motifs. The corresponding signatures can be detected at nanomolar concentrations of peptide by polarized light microscopy and much earlier than the ones that can be identified by fluorescence-based techniques. As such, it offers the potential for early diagnoses of neurodegenerative diseases and for facile testing of inhibitors of amyloid formation.

  5. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.

    Science.gov (United States)

    Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina

    2017-08-01

    Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.

  6. APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses

    Directory of Open Access Journals (Sweden)

    Hilla Fogel

    2014-06-01

    Full Text Available Accumulation of amyloid-β peptides (Aβ, the proteolytic products of the amyloid precursor protein (APP, induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer’s disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer’s disease.

  7. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    Science.gov (United States)

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  8. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    Energy Technology Data Exchange (ETDEWEB)

    García-González, Victor [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); Mas-Oliva, Jaime, E-mail: jmas@ifc.unam.mx [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico)

    2013-04-26

    amyloid fibrils in the highly flexible C-terminus domain of CETP.

  9. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    International Nuclear Information System (INIS)

    García-González, Victor; Mas-Oliva, Jaime

    2013-01-01

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D 470 N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D 470 N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of amyloid

  10. Early enriched environment exposure protects spatial memory and accelerates amyloid plaque formation in APP(Swe/PS1(L166P mice.

    Directory of Open Access Journals (Sweden)

    Francesca Montarolo

    Full Text Available Enriched environment exposure improves several aspects of cognitive performance in Alzheimer's disease patients and in animal models and, although the role of amyloid plaques is questionable, several studies also assessed their response to enriched environment, with contrasting results. Here we report that rearing APP(Swe/PS1(L166P mice in an enriched environment since birth rescued the spatial memory impairment otherwise present at 6 months of age. At the same time, the exposure to the enriched environment caused a transient acceleration of plaque formation, while there was no effect on intracellular staining with the 6E10 antibody, which recognizes β-amyloid, full length amyloid precursor protein and its C-terminal fragments. The anticipation of plaque formation required exposure during early development, suggesting an action within critical periods for circuits formation. On the other hand, chronic neuronal activity suppression by tetrodotoxin decreased the number of plaques without affecting intracellular amyloid. These results indicate that enriched environment exposure since early life has a protective effect on cognitive deterioration although transiently accelerates amyloid deposition. In addition, the effects of the enriched environment might be due to increased neuronal activity, because plaques were reduced by suppression of electrical signaling by tetrodotoxin.

  11. The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Wasco, W.; Tanzi, R.E. (Harvard Medical School, Boston, MA (United States)); Brook, J.D. (Center for Medical Genetics, Nottingham (United Kingdom))

    1993-01-01

    We have recently isolated a cDNA from a mouse brain library that encodes a protein whose predicted amino acid sequence is 42% identical and 64% similar to that of the amyloid [beta] protein precursor (APP; 16). This 653-amino-acid amyloid precursor-like protein (APLP) is similar to APP in overall structure as well as amino acid sequence. The amino acid homologies are particularly strong in three distinct regions of the proteins where the identities are 47, 54, and 56% (16). All three of these regions are also conserved in the Drosophila APP-like gene, APPL (11). Notably, 12 cysteine residues and a N -glyco-sylation site are conserved in the extracellular portion of APLP and APP, and a clathrin-binding domain is conserved in the cytoplasmic domain. The cytoplasmic domain is also conserved in a partial CDNA reported to encode an APP-like gene in rat testes (17), These data suggest that APLP and APP are members of a highly conserved gene family. A panel of DNAs from 31 human-rodent somatic cell lines of known karyotype was digested with EcoR1. These DNAs were then probed with the human APLP cDNA clone and the hybridization pattern was consistent with the assignment of the APLP locus to chromosome 19. 17 refs., 1 fig.

  12. [Angiotensin converting enzyme: the antigenic properties of the domain, role in Alzheimer's disease and tumor progression].

    Science.gov (United States)

    Kugaevskaya, E V; Timoshenko, O S; Solovyeva, N I

    2015-01-01

    Angiotensin converting enzyme (ACE, EC 3.4.15.1) was discovered and characterized in the Laboratory of biochemistry and chemical pathology of proteins under the direction of academician V.N. Orekhovich, where its physiological function, associated with a key role in the regulation of the renin-angiotensin (RAS) and the kallikrein-kinin systems that control blood flow in the body and homeostasis was first deciphered. We carried out a search for structural differences between the two highly homologous domains (N- and C-domains) of somatic ACE (sACE); it was based on a comparative analysis of antigenic determinants (or B-epitopes) of both domains. The revealed epitopes were classified with variable and conserved regions and functionally important sites of the molecule ACE. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. These data indicate the existence of structural differences between the domains of sACE. We studied the role of the domains of ACE in the metabolism of human amyloid beta peptide (Ab) - the main component of senile plaques, found in the brains of patients with Alzheimer's disease (AD). Our results demonstrated that only N-domain ACE cleaved the Ab between residues R5-H6, while, the C-domain of ACE failed to hydrolyze this region. In addition, the effect of post-translational modifications of Ab on its hydrolysis by the ACE was investigated. We show that isomerization of residue D7, a common non-enzymatic age-related modification found in AD-associated species, does not reduce the affinity of the peptide to the N-domain of ACE, and conversely, it increases. According to our data, the role of ACE in the metabolism of Ab becomes more significant in the development of AD. RAS is involved in malignant transformation and tumor progression. RAS components, including ACE and angiotensin II receptors type 1 (AT1R) are expressed in various human tumors. We found a significant increase in the level of ACE activity

  13. Genetic Mechanisms of Coffee Extract Protection in a Caenorhabditis elegans Model of β-Amyloid Peptide Toxicity

    OpenAIRE

    Dostal, Vishantie; Roberts, Christine M.; Link, Christopher D.

    2010-01-01

    Epidemiological studies have reported that coffee and/or caffeine consumption may reduce Alzheimer's disease (AD) risk. We found that coffee extracts can similarly protect against β-amyloid peptide (Aβ) toxicity in a transgenic Caenorhabditis elegans Alzheimer's disease model. The primary protective component(s) in this model is not caffeine, although caffeine by itself can show moderate protection. Coffee exposure did not decrease Aβ transgene expression and did not need to be present during...

  14. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    Directory of Open Access Journals (Sweden)

    Brian A. Gordon

    2015-01-01

    Conclusions: The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels.

  15. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Hisashi [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  16. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces

    NARCIS (Netherlands)

    van Veluw, Susanne J; Biessels, Geert Jan; Bouvy, Willem H; Spliet, Wim Gm; Zwanenburg, Jaco Jm; Luijten, Peter R; Macklin, Eric A; Rozemuller, Annemieke Jm; Gurol, M Edip; Greenberg, Steven M; Viswanathan, Anand; Martinez-Ramirez, Sergi

    2016-01-01

    Perivascular spaces are an emerging marker of small vessel disease. Perivascular spaces in the centrum semiovale have been associated with cerebral amyloid angiopathy. However, a direct topographical relationship between dilated perivascular spaces and cerebral amyloid angiopathy severity has not

  17. A potential amyloid-imaging probe for Alzheimer's disease

    International Nuclear Information System (INIS)

    Cai Jiong; Wang Shizhen; Yuan Jiangang; Qiang Boqin

    2004-01-01

    Purpose: To screen out the human single-chain fragment variable (scFv) against amyloid β peptide 40 from a human synthetic antibody library, sub-clone its gene into E. coli expression system, and express and purify it for amyloid peptide imaging research. The overload of amyloid β peptide and the appearance of senile plaques in the human brain tissue is one of the hallmark of the Alzheimer's disease, and in vivo imaging of amyloidβ peptide is valuable for the earlier diagnosis of Alzheimer's disease. Methods: Amyloid β peptide 40 was bound on the solid surface of Nunc plates as antigen and a human antibody library constructed with human antibody heavy and light chain variable gene and nucleotides sequence coded (Gly4Ser)3 linker and displayed on the protein surface of filamentous phage was used to screen the binding clones. After five rounds of bio-panning, the host E. coli TG1 was infected with eluted filamentous phage from the last turn of selection. 55 well-separated colonies were picked randomly from the plates and several specific positive clones were identified by ELISA testing, and their binding sites were determined by competitive ELISA with amyloid 13 peptide 40, 1-16, 25-35. The single-chain Fv antibody gene was sequenced and their amino acids sequence was deduced. The scFv antibody gene was sub-cloned into a protokayotic expression vector pET-22b(+) and transformed into bacteria strain BL21 to express the His6-tagged single-chain antibody and the whole cell culture was subjected to SDS-PAGE analysis. The antibody was expressed in inclusion bodies and purified with serial buffers and verified with western blotting and their activity was tested by ELISA against amyloid β peptide 40. Results: ELISA testing showed that 33 clones could bind amyloid β peptide 40 and 10 of these clones could be inhibited by amyloid β peptide 40 itself to below 50% of its original binding activities. Five clones could also be inhibited by amyloid β peptide 1-16. DNA

  18. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    Science.gov (United States)

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiotis, Konstantinos [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Carter, Stephen F. [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); University of Manchester, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, Manchester (United Kingdom); Farid, Karim [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); APHP, Hotel-Dieu Hospital, Department of Nuclear Medicine, Paris (France); Savitcheva, Irina [Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Nordberg, Agneta [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Collaboration: for the Diagnostic Molecular Imaging (DiMI) network and the Alzheimer' s Disease Neuroimaging Initiative

    2015-09-15

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  20. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    International Nuclear Information System (INIS)

    Chiotis, Konstantinos; Carter, Stephen F.; Farid, Karim; Savitcheva, Irina; Nordberg, Agneta

    2015-01-01

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  1. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat.

    Science.gov (United States)

    Mirzaei, Fatemeh; Khazaei, Mozafar; Komaki, Alireza; Amiri, Iraj; Jalili, Cyrus

    2018-05-02

    Both dyslipidemia and Alzheimer disease (AD) are associated with aging. In this study, the effects of virgin coconut oil (VCO) on inflammasome and oxidative stress in Alzheimer's model (receiving Amyloid-β (Aβ)) and high-fat diet (HFD) model were determined. A total of 120 male Wistar rats, were divided into 12 groups (n = 10), including; healthy control, sham surgery, sham surgery receiving normal saline, HFD, HFD + 8% VCO, HFD + 10% VCO, Aβ received rats, Aβ + 8%VCO, Aβ + 10%VCO, HFD + Aβ, HFD + Aβ+8%VCO, and HFD + Aβ + 10%VCO. Following memory and learning tests, blood sample prepared from the heart and hippocampus of rats in each group was kept at -70 °C for genes expression, oxidative stress, and biochemical tests. Aβ and HFD significantly impaired memory and learning by activating of both NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress (p<0.05), while treatment with both 8 and 10% VCO normalized inflammasome genes expression and oxidative stress (p<0.05). The Congo Red, Cresyl Violet staining and immunohistochemistry (IHC) test revealed that VCO improved hippocampus histological changes, reduced Aβ plaques and phosphorylated Tau. High-fat diet has exacerbated the effects of Aβ, while VCO showed potential neuroprotective effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Aggregation Potential of the 1-15-and 1-16-Fragments of the Amyloid beta Peptide and Their Influence on the Aggregation of A beta 40

    NARCIS (Netherlands)

    Shabestari, M.; Plug, T.; Motazacker, M. M.; Meeuwenoord, N. J.; Filippov, D. V.; Meijers, J. C. M.; Huber, M.

    2013-01-01

    The aggregation of amyloid beta (A beta) peptide is important in Alzheimer's disease. Shorter A beta fragments may reduce A beta's cytotoxicity and are used in diagnostics. The aggregation of A beta 16 is controversial; Liu et al. (J. Neurosci. Res. 75:162-171, 2004) and Liao et al. (FEBS Lett.

  3. Imaging and quantification of amyloid fibrillation in the cell nucleus.

    Science.gov (United States)

    Arnhold, Florian; Scharf, Andrea; von Mikecz, Anna

    2015-01-01

    Xenobiotics, as well as intrinsic processes such as cellular aging, contribute to an environment that constantly challenges nuclear organization and function. While it becomes increasingly clear that proteasome-dependent proteolysis is a major player, the topology and molecular mechanisms of nuclear protein homeostasis remain largely unknown. We have shown previously that (1) proteasome-dependent protein degradation is organized in focal microenvironments throughout the nucleoplasm and (2) heavy metals as well as nanoparticles induce nuclear protein fibrillation with amyloid characteristics. Here, we describe methods to characterize the landscape of intranuclear amyloid on the global and local level in different systems such as cultures of mammalian cells and the soil nematode Caenorhabditis elegans. Application of discrete mathematics to imaging data is introduced as a tool to develop pattern recognition of intracellular protein fibrillation. Since stepwise fibrillation of otherwise soluble proteins to insoluble amyloid-like protein aggregates is a hallmark of neurodegenerative protein-misfolding disorders including Alzheimer's disease, CAG repeat diseases, and the prion encephalopathies, investigation of intracellular amyloid may likewise aid to a better understanding of the pathomechanisms involved. We consider aggregate profiling as an important experimental approach to determine if nuclear amyloid has toxic or protective roles in various disease processes.

  4. Safety of disclosing amyloid status in cognitively normal older adults.

    Science.gov (United States)

    Burns, Jeffrey M; Johnson, David K; Liebmann, Edward P; Bothwell, Rebecca J; Morris, Jill K; Vidoni, Eric D

    2017-09-01

    Disclosing amyloid status to cognitively normal individuals remains controversial given our lack of understanding the test's clinical significance and unknown psychological risk. We assessed the effect of amyloid status disclosure on anxiety and depression before disclosure, at disclosure, and 6 weeks and 6 months postdisclosure and test-related distress after disclosure. Clinicians disclosed amyloid status to 97 cognitively normal older adults (27 had elevated cerebral amyloid). There was no difference in depressive symptoms across groups over time. There was a significant group by time interaction in anxiety, although post hoc analyses revealed no group differences at any time point, suggesting a minimal nonsustained increase in anxiety symptoms immediately postdisclosure in the elevated group. Slight but measureable increases in test-related distress were present after disclosure and were related to greater baseline levels of anxiety and depression. Disclosing amyloid imaging results to cognitively normal adults in the clinical research setting with pre- and postdisclosure counseling has a low risk of psychological harm. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  5. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  6. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  7. A Novel Small Molecule Modulator of Amyloid Pathology.

    Science.gov (United States)

    Lovell, Mark A; Lynn, Bert C; Fister, Shuling; Bradley-Whitman, Melissa; Murphy, M Paul; Beckett, Tina L; Norris, Christopher M

    2016-05-04

    Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.

  8. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  9. Concordance Between Different Amyloid Immunoassays and Visual Amyloid Positron Emission Tomographic Assessment.

    Science.gov (United States)

    Janelidze, Shorena; Pannee, Josef; Mikulskis, Alvydas; Chiao, Ping; Zetterberg, Henrik; Blennow, Kaj; Hansson, Oskar

    2017-12-01

    Visual assessment of amyloid positron emission tomographic (PET) images has been approved by regulatory authorities for clinical use. Several immunoassays have been developed to measure β-amyloid (Aβ) 42 in cerebrospinal fluid (CSF). The agreement between CSF Aβ42 measures from different immunoassays and visual PET readings may influence the use of CSF biomarkers and/or amyloid PET assessment in clinical practice and trials. To determine the concordance between CSF Aβ42 levels measured using 5 different immunoassays and visual amyloid PET analysis. The study included 262 patients with mild cognitive impairment or subjective cognitive decline from the Swedish BioFINDER (Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) cohort (recruited from September 1, 2010, through December 31, 2014) who had undergone flutemetamol F 18 ([18F]flutemetamol)-labeled PET. Levels of CSF Aβ42 were analyzed using the classic INNOTEST and the newer modified INNOTEST, fully automated Lumipulse (FL), EUROIMMUN (EI), and Meso Scale Discovery (MSD) assays. Concentrations of CSF Aβ were assessed using an antibody-independent mass spectrometry-based reference measurement procedure. The concordance of CSF Aβ42 levels and Aβ42:Aβ40 and Aβ42:tau ratios with visual [18F]flutemetamol PET status. Of 262 participants (mean [SD] age, 70.9 [5.5] years), 108 were women (41.2%) and 154 were men (58.8%). The mass spectrometry-derived Aβ42 values showed higher correlations with the modified Aβ42-INNOTEST (r = 0.97), Aβ42-FL (r = 0.93), Aβ42-EI (r = 0.93), and Aβ42-MSD (r = 0.95) assays compared with the classic Aβ42-INNOTEST assay (r = 0.88; P ≤ .01). The signal in the classic Aβ42-INNOTEST assay was partly quenched by recombinant Aβ1-40 peptide. However, the classic Aβ42-INNOTEST assay showed better concordance with visual [18F]flutemetamol PET status (area under the receiver operating characteristic curve [AUC], 0.92) compared with the

  10. Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits.

    Directory of Open Access Journals (Sweden)

    Yujun Hou

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS, a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT, Poria cum Radix Pini (PRP and Radix Polygalae (RP, is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease.

  11. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: A study of DNAJB6 chaperone

    Directory of Open Access Journals (Sweden)

    Rasha Mohamed Hussein

    2015-07-01

    Full Text Available Alzheimer’s disease is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid β (Aβ peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid β peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP that maintain cellular protein homeostasis might be candidates for disease amelioration. We recently found that DNAJB6, a member of DNAJ family of heat shock proteins, effectively prevented the aggregation of short aggregation-prone peptides containing large poly glutamines (associated with CAG repeat diseases both in vitro and in cells. Moreover, recent in vitro data showed that DNAJB6 can delay the aggregation of Aβ42 peptides. In this study, we investigated the ability of DNAJB6 to prevent the aggregation of extracellular and intracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP fusion construct and performing western blotting and immunofluorescence techniques. We found that DNAJB6 indeed suppresses Aβ-GFP aggregation, but not seeded aggregation initiated by extracellular Aβ peptides. Unexpectedly and unlike what we found for peptide-mediated aggregation, DNAJB6 required interaction with HSP70 to prevent the aggregation of the Aβ-GFP fusion protein and its J-domain was crucial for its anti-aggregation effect. In addition, other DNAJ proteins as well as HSPA1a overexpression also suppressed Aβ-GFP aggregation efficiently. Our findings suggest that Aβ aggregation differs from poly Q peptide induced aggregation in terms of chaperone handling and sheds doubt on the usage of Aβ-GFP fusion construct for studying Aβ peptide aggregation in cells.

  12. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.

    Science.gov (United States)

    Leliveld, S Rutger; Stitz, Lothar; Korth, Carsten

    2008-06-10

    A misfolded conformation of the prion protein (PrP), PrP (Sc), is the essential component of prions, the infectious agents that cause transmissible neurodegenerative diseases. Insertional mutations that lead to an increase in the number of octarepeats (ORs) in PrP are linked to familial human prion disease. In this study, we investigated how expansion of the OR domain causes PrP to favor a prion-like conformation. Therefore, we compared the conformational and aggregation modulating properties of wild-type versus expanded OR domains, either as a fusion construct with the protein G B1 domain (GB1-OR) or as an integral part of full-length mouse PrP (MoPrP). Using circular dichroism spectroscopy, we first demonstrated that ORs are not unfolded but exist as an ensemble of three distinct conformers: polyproline helix-like, beta-turn, and "Trp-related". Domain expansion had little effect on the conformation of GB1-OR fusion proteins. When part of MoPrP however, OR domain expansion changed PrP's folding landscape, not by hampering the production of native alpha-helical monomers but by greatly reducing the propensity to form amyloid and by altering the assembly of misfolded, beta-rich aggregates. These features may relate to subtle pH-dependent conformational differences between wild-type and mutant monomers. In conclusion, we propose that PrP insertional mutations are pathogenic because they enhance specific misfolding pathways of PrP rather than by undermining native folding. This idea was supported by a trial bioassay in transgenic mice overexpressing wild-type MoPrP, where intracerebral injection of recombinant MoPrP with an expanded OR domain but not wild-type MoPrP caused prion disease.

  13. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes.

    Science.gov (United States)

    Nhan, Hoang S; Chiang, Karen; Koo, Edward H

    2015-01-01

    The amyloid precursor protein (APP) has occupied a central position in Alzheimer's disease (AD) pathophysiology, in large part due to the seminal role of amyloid-β peptide (Aβ), a proteolytic fragment derived from APP. Although the contribution of Aβ to AD pathogenesis is accepted by many in the research community, recent studies have unveiled a more complicated picture of APP's involvement in neurodegeneration in that other APP-derived fragments have been shown to exert pathological influences on neuronal function. However, not all APP-derived peptides are neurotoxic, and some even harbor neuroprotective effects. In this review, we will explore this complex picture by first discussing the pleiotropic effects of the major APP-derived peptides cleaved by multiple proteases, including soluble APP peptides (sAPPα, sAPPβ), various C- and N-terminal fragments, p3, and APP intracellular domain fragments. In addition, we will highlight two interesting sequences within APP that likely contribute to this duality in APP function. First, it has been found that caspase-mediated cleavage of APP in the cytosolic region may release a cytotoxic peptide, C31, which plays a role in synapse loss and neuronal death. Second, recent studies have implicated the -YENPTY- motif in the cytoplasmic region as a domain that modulates several APP activities through phosphorylation and dephosphorylation of the first tyrosine residue. Thus, this review summarizes the current understanding of various APP proteolytic products and the interplay among them to gain deeper insights into the possible mechanisms underlying neurodegeneration and AD pathophysiology.

  14. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...

  15. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2015-01-01

    Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer’s disease (AD) is directly linked to deposits of amyloid-β (Aβ) derived from the amyloid-β protein precursor (AβPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids...

  16. Whole body amyloid deposition imaging by 123I-SAP scintigraphy

    NARCIS (Netherlands)

    van Rheenen, Ronald; Glaudemans, Andor; Hazenberg, Bouke

    2011-01-01

    Amyloidosis is the name of a group of diseases characterized by extracellular deposition of amyloid fibrils. Deposition of amyloid can be localized or systemic. The 123I-SAP-scan can be used to image extent and distribution of amyloid deposition in patients with systemic AA, AL and ATTR amyloidosis.

  17. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution

    DEFF Research Database (Denmark)

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero

    2016-01-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being r...

  18. Novel squarylium dyes for detection of amyloid fibrils in vitro

    Directory of Open Access Journals (Sweden)

    K. O. Vus

    2015-04-01

    Full Text Available A series of novel symmetrical and asymmetrical squarylium dyes with the different substituents in the donor moieties have been tested for their ability to detect and characterize insulin and lysozyme amyloid fibrils prepared in acidic buffer at elevated temperature. The dye-protein binding parameters were estimated in terms of the one-site Langmuir adsorption model using the data of direct and reverse fluorimetric titrations. By comparing the dye quantum yields, binding affinities, and extents of the fluorescence enhancement in the protein-bound state, G6 and G7 were selected as the most prospective amyloid tracers. Furthermore, these probes provided evidence for the lower polarity of the lysozyme fibrillar grooves compared to insulin aggregates. The novel dyes G6 and G7 were recommended for amyloid fibril detection and characterization in the near-infrared region.

  19. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.

    Science.gov (United States)

    Barage, Sagar H; Sonawane, Kailas D

    2015-08-01

    Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Computational Modelling of the Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby

    2014-01-01

    to interpret results correctly. Computational studies and molecular dynamics (MD) simulations in particular have become important tools in the effort to understand biological mechanisms. The strength of these methods is the high resolution in time and space, and the ability to specifically design the system....... Using MD simulations we have investigated the binding of 13 different imaging agents to a fibril segment. Using clustering analysis and binding energy calculations we have identified a common binding mode for the 13 agents in the surface grooves of the fibril, which are present on all amyloid fibrils....... This information combined with specific knowledge about the AD amyloid fibril is the building block for the design of highly specific amyloid imaging agents. We have also used MD simulations to study the interaction between hIAPP and a phospholipid membrane. At neutral pH, we find that the attraction is mainly...

  1. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.; Magistretti, Pierre J.; Pellerin, Luc

    2015-01-01

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  2. Analysis of amyloid fibrils in the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Bergström, Joakim; Ueda, Mitsuharu; Une, Yumi; Sun, Xuguo; Misumi, Shogo; Shoji, Shozo; Ando, Yukio

    2006-06-01

    Recently, a high prevalence of amyloid A (AA) amyloidosis has been documented among captive cheetahs worldwide. Biochemical analysis of amyloid fibrils extracted from the liver of a Japanese captive cheetah unequivocally showed that protein AA was the main fibril constituent. Further characterization of the AA fibril components by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis revealed three main protein AA bands with approximate molecular weights of 8, 10 and 12 kDa. Mass spectrometry analysis of the 12-kDa component observed in SDS-PAGE and Western blotting confirmed the molecular weight of a 12,381-Da peak. Our finding of a 12-kDa protein AA component provides evidence that the cheetah SAA sequence is longer than the previously reported 90 amino acid residues (approximately 10 kDa), and hence SAA is part of the amyloid fibril.

  3. Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective

    Directory of Open Access Journals (Sweden)

    Massimiliano Meli

    2018-06-01

    Full Text Available The self-assembly of proteins and peptides into amyloids is a key feature of an increasing number of diseases. Amyloid fibrils display a unique surface reactivity endowing the sequestration of molecules such as MicroRNAs, which can be the active moiety of the toxic action. To test this hypothesis we studied the recognition between a model RNA and two different steric zipper spines using molecular dynamics simulations. We found that the interaction occurs and displays peptide-sequence dependence. Interestingly, interactions with polar zipper surfaces such as the formed by SNQNNF are more stable and favor the formation of β-barrel like complexes resembling the structures of toxic oligomers. These sequence-structure-recognition relationships of the two different assemblies may be exploited for the design of compounds targeting the fibers or competing with RNA-amyloid attachment

  4. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.

    2015-01-14

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer\\'s disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  5. .Gov Domains API

    Data.gov (United States)

    General Services Administration — This dataset offers the list of all .gov domains, including state, local, and tribal .gov domains. It does not include .mil domains, or other federal domains outside...

  6. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  7. Stop-and-go kinetics in amyloid fibrillation

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Fonslet, Jesper; Andersen, Christian Beyschau

    2010-01-01

    Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermi......Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow...

  8. Native human serum amyloid P component is a single pentamer

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH

    1995-01-01

    Serum amyloid P component (SAP) and C-reactive protein (CRP) are members of the pentraxin protein family. SAP is the precursor protein to amyloid P component present in all forms of amyloidosis. The prevailing notion is that SAP in circulation has the form of a double pentameric molecule (decamer...... by rocket immunoelectrophoresis and electron microscopy. Thus, electron micrographs of purified SAP showed a predominance of decamers. However, the decamer form of SAP reversed to single pentamers when purified SAP was incorporated into SAP-depleted serum....

  9. New fluorescent probes for detection and characterization of amyloid fibrils

    Science.gov (United States)

    Gorbenko, Galyna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Vasilev, Aleksey; Kaloyanova, Stefka; Deligeorgiev, Todor

    2010-08-01

    The applicability of the novel fluorescent probes, aminoderivative of benzanthrone ABM, squaraine dye SQ-1 and polymethine dye V2 to identification and structural analysis of amyloid fibrils has been evaluated using the lysozyme model system in which fibrillar aggregates have been formed in concentrated ethanol solution. The association constant, binding stoichiometry and molar fluorescence of the bound dye have been determined. ABM was found to surpass classical amyloid marker ThT in the sensitivity to the presence of fibrillar aggregates. Resonance energy transfer measurements involving ABM-SQ-1 and SQ-1-V2 donor-acceptor pairs yielded the limits for fractal-like dimension of lysozyme fibrils.

  10. Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies.

    Science.gov (United States)

    Ji, Xuan-Ru; Cheng, Kuan-Chung; Chen, Yu-Ru; Lin, Tzu-Yu; Cheung, Chun Hei Antonio; Wu, Chia-Lin; Chiang, Hsueh-Cheng

    2018-03-01

    The endosomal-lysosomal system (ELS), autophagy, and ubiquitin-proteasome system (UPS) are cellular degradation pathways that each play a critical role in the removal of misfolded proteins and the prevention of the accumulation of abnormal proteins. Recent studies on Alzheimer's disease (AD) pathogenesis have suggested that accumulation of aggregated β-amyloid (Aβ) peptides in the AD brain results from a dysfunction in these cellular clearance systems. However, the specific roles of these pathways in the removal of Aβ peptides and the pathogenesis underlying AD are unclear. Our in vitro and in vivo genetic approaches revealed that ELS mainly removed monomeric β-amyloid42 (Aβ42), while autophagy and UPS clear oligomeric Aβ42. Although overproduction of phosphatidylinositol 4-phosphate-5 increased Aβ42 clearance, it reduced the life span of Aβ42 transgenic flies. Our behavioral studies further demonstrated impaired autophagy and UPS-enhanced Aβ42-induced learning and memory deficits, but there was no effect on Aβ42-induced reduction in life span. Results from genetic fluorescence imaging showed that these pathways were damaged in the following order: UPS, autophagy, and finally ELS. The results of our study demonstrate that different degradation pathways play distinct roles in the removal of Aβ42 aggregates and in disease progression. These findings also suggest that pharmacologic treatments that are designed to stimulate cellular degradation pathways in patients with AD should be used with caution.-Ji, X.-R., Cheng, K.-C., Chen, Y.-R., Lin, T.-Y., Cheung, C. H. A., Wu, C.-L., Chiang, H.-C. Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies.

  11. TARGETING THE SEMEN DERIVED AMYLOIDS TO CONTROL HIV TRANSMISSION: PERSPECTIVES AND CHALLENGE

    Directory of Open Access Journals (Sweden)

    Shalini Gour

    2016-03-01

    Full Text Available Since the discovery of Acquired Immuno Deficiency Syndrome (AIDS in 1981 in United States, there have been tremendous efforts to reduce the rate of HIV transmission. Although, the epidemic is stabilized in most of the affected regions, its occurrence is reasonably evident in Eastern Europe and Central Asia due to high rate of new HIV infections. It is surprising to know that despite the high rate of infection, the virus is a weak pathogen. This paradox has been answered by a recent discovery stating that human semen contains a proteinaceous factor derived from prostatic acid phosphatase (PAP, which is commonly known as PAP248-286 peptide, plays an important role in enhancing the HIV infectivity. It forms well-defined amyloid structure, frequently referred as Semen-derived Enhancer of Viral Infection (SEVI and enhances HIV infection up to 1,00,000 fold. Serendipitous discovery of this semen derived amyloid has provided an opportunity to design an alternative approach to dismantle the mechanism of HIV infection. It is a need of the hour to search and design novel molecules and compounds that can help in destabilizing SEVI under natural conditions. In this direction, a number of molecules have been identified that have shown promising results under laboratory conditions. However, there are several critical issues that remain untouched and their addressal is highly recommended in order to develop an effective regime to control the HIV transmission via sexual route. This review is an effort to consolidate major challenges in developing a therapeutic strategy against semen derived amyloids to combat HIV transmission.

  12. Cardiorespiratory Fitness Attenuates the Influence of Amyloid on Cognition.

    Science.gov (United States)

    Schultz, Stephanie A; Boots, Elizabeth A; Almeida, Rodrigo P; Oh, Jennifer M; Einerson, Jean; Korcarz, Claudia E; Edwards, Dorothy F; Koscik, Rebecca L; Dowling, Maritza N; Gallagher, Catherine L; Bendlin, Barbara B; Christian, Bradley T; Zetterberg, Henrik; Blennow, Kaj; Carlsson, Cynthia M; Asthana, Sanjay; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Stein, James H; Okonkwo, Ozioma C

    2015-11-01

    The aim of this study was to examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer's disease (AD). Sixty-nine enrollees in the Wisconsin Registry for Alzheimer's Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. There were significant VO2peak*PiB-PET interactions for Immediate Memory (p=.041) and Verbal Learning & Memory (p=.025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p<.001). Specifically, in the context of high Aβ burden, that is, increased PiB-PET binding or reduced CSF Aβ42, individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD.

  13. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration

    NARCIS (Netherlands)

    Rozemuller, A.J.M.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J.M.

    2012-01-01

    Background: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa β-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and

  14. Enhancement of Herpes Simplex Virus (HSV Infection by Seminal Plasma and Semen Amyloids Implicates a New Target for the Prevention of HSV Infection

    Directory of Open Access Journals (Sweden)

    Lilith Torres

    2015-04-01

    Full Text Available Human herpesviruses cause different infectious diseases, resulting in world-wide health problems. Sexual transmission is a major route for the spread of both herpes simplex virus-1 (HSV-1 and -2. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa and, thereby, initiates viral replication. Previously, we demonstrated that the amyloid fibrils semenogelin (SEM and semen-derived enhancer of viral infection (SEVI, and seminal plasma (SP augment cytomegalovirus infection (Tang et al., J. Virol 2013. Whether SEM or SEVI amyloids or SP could also enhance other herpesvirus infections has not been examined. In this study, we found that the two amyloids as well as SP strongly enhance both HSV-1 and -2 infections in cell culture. Along with SP, SEM and SEVI amyloids enhanced viral entry and increased infection rates by more than 10-fold, as assessed by flow cytometry assay and fluorescence microscopy. Viral replication was increased by about 50- to 100-fold. Moreover, viral growth curve assays showed that SEM and SEVI amyloids, as well as SP, sped up the kinetics of HSV replication such that the virus reached its replicative peak more quickly. The interactions of SEM, SEVI, and SP with HSVs are direct. Furthermore, we discovered that the enhancing effects of SP, SEM, and SEVI can be significantly reduced by heparin, a sulfated polysaccharide with an anionic charge. It is probable that heparin abrogates said enhancing effects by interfering with the interaction of the viral particle and the amyloids, which interaction results in the binding of the viral particles and both SEM and SEVI.

  15. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley

  16. Augmenting Amyloid PET Interpretations With Quantitative Information Improves Consistency of Early Amyloid Detection.

    Science.gov (United States)

    Harn, Nicholas R; Hunt, Suzanne L; Hill, Jacqueline; Vidoni, Eric; Perry, Mark; Burns, Jeffrey M

    2017-08-01

    Establishing reliable methods for interpreting elevated cerebral amyloid-β plaque on PET scans is increasingly important for radiologists, as availability of PET imaging in clinical practice increases. We examined a 3-step method to detect plaque in cognitively normal older adults, focusing on the additive value of quantitative information during the PET scan interpretation process. Fifty-five F-florbetapir PET scans were evaluated by 3 experienced raters. Scans were first visually interpreted as having "elevated" or "nonelevated" plaque burden ("Visual Read"). Images were then processed using a standardized quantitative analysis software (MIMneuro) to generate whole brain and region of interest SUV ratios. This "Quantitative Read" was considered elevated if at least 2 of 6 regions of interest had an SUV ratio of more than 1.1. The final interpretation combined both visual and quantitative data together ("VisQ Read"). Cohen kappa values were assessed as a measure of interpretation agreement. Plaque was elevated in 25.5% to 29.1% of the 165 total Visual Reads. Interrater agreement was strong (kappa = 0.73-0.82) and consistent with reported values. Quantitative Reads were elevated in 45.5% of participants. Final VisQ Reads changed from initial Visual Reads in 16 interpretations (9.7%), with most changing from "nonelevated" Visual Reads to "elevated." These changed interpretations demonstrated lower plaque quantification than those initially read as "elevated" that remained unchanged. Interrater variability improved for VisQ Reads with the addition of quantitative information (kappa = 0.88-0.96). Inclusion of quantitative information increases consistency of PET scan interpretations for early detection of cerebral amyloid-β plaque accumulation.

  17. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease-implicated ......Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease...... cerebral Abeta deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD....

  18. Establishing and validating the fluorescent amyloid ligand h-FTAA (heptamer formyl thiophene acetic acid) to identify transthyretin amyloid deposits in carpal tunnel syndrome.

    Science.gov (United States)

    Hahn, Katharina; Nilsson, K Peter R; Hammarström, Per; Urban, Peter; Meliss, Rolf Rüdiger; Behrens, Hans-Michael; Krüger, Sandra; Röcken, Christoph

    2017-06-01

    Transthyretin-derived (ATTR) amyloidosis is a frequent finding in carpal tunnel syndrome. We tested the following hypotheses: the novel fluorescent amyloid ligand heptameric formic thiophene acetic acid (h-FTAA) has a superior sensitivity for the detection of amyloid compared with Congo red-staining; Amyloid load correlates with patient gender and/or patient age. We retrieved 208 resection specimens obtained from 184 patients with ATTR amyloid in the carpal tunnel. Serial sections were stained with Congo red, h-FTAA and an antibody directed against transthyretin (TTR). Stained sections were digitalized and forwarded to computational analyses. The amount of amyloid was correlated with patient demographics. Amyloid stained intensely with h-FTAA and an anti-TTR-antibody. Congo red-staining combined with fluorescence microscopy was significantly less sensitive than h-FTAA-fluorescence and TTR-immunostaining: the highest percentage area was found in TTR-immunostained sections, followed by h-FTAA and Congo red. The Pearson correlation coefficient was .8 (Congo red vs. h-FTAA) and .9 (TTR vs. h-FTAA). Amyloid load correlated with patient gender, anatomical site and patient age. h-FTAA is a highly sensitive method to detect even small amounts of ATTR amyloid in the carpal tunnel. The staining protocol is easy and h-FTAA may be a much more sensitive procedure to detect amyloid at an earlier stage.

  19. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  20. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  1. Kinetics of human serum amyloid A

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Martin, M.E.; Solomon, N.

    1986-01-01

    In order to better understand the pathogenetic role of serum amyloid A (SAA) we studied the kinetics of 131 I radiolabelled pure SAA, extracted from 400 ml serum of a human volunteer. 50 microCi of 131 I SAA and 15 microCi 125 I labelled sodium iodide were administered i.v. on two occasions at 6 month intervals. Serum and plasma samples were collected at 10-20 min intervals x 10, then once daily x 10; lymphocytes were separated from monocytes and granulocytes. Counts per minute of 131 I and 125 I were measured in each sample in the serum, in serum precipitates resulting after addition of a rabbit anti-SAA antibody and of TCA and in various cell subpopulations as well as in the whole urine and TCA precipitated urine from each micturition. The 131 I disappearance curves from the plasma and serum precipitates were semilogarithmically plotted; cumulative 131 I cpm in plasma, cells and urine at various intervals were determined. Body scanning was performed at 2, 16, and 48 h. The results of the two experiments were very similar. The curve of 131 I SAA in plasma TCA precipitates indicated the existence of 4 compartments likely due to uptake of 131 I SAA by some plasma proteins, circulating cells and other tissues; later release from tissues started at 6 h. The 131 I SAA half-life time in these compartments was found to be 35, 170, 255, and 550 min, respectively. Tissue binding of 131 I was also suggested by a rising of the 125 I: 131 I ratio with time and by a 26% release of 131 I in the urine at 15 h which could not account for its plasma disappearance. Scanning, except for 131 I uptake in the spleen at 2 h likely due to blood activity, showed no organ concentration. 92% of the injected 131 I was found in the urine but only 6.2% of 131 I SAA was accounted for in urine precicipitates

  2. Diagrammatic Representations in Domain-Specific Languages

    OpenAIRE

    Tourlas, Konstantinos

    2002-01-01

    One emerging approach to reducing the labour and costs of software development favours the specialisation of techniques to particular application domains. The rationale is that programs within a given domain often share enough common features and assumptions to enable the incorporation of substantial support mechanisms into domain-specific programming languages and associated tools. Instead of being machine-oriented, algorithmic implementations, programs in many domain-speci...

  3. Beta-amyloid, cholinergní neurony a Alzheimerova choroba

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Doležal, Vladimír

    2002-01-01

    Roč. 51, č. 2 (2002), s. 82-94 ISSN 0009-0557 R&D Projects: GA MZd NF5183; GA ČR GA305/01/0283 Institutional research plan: CEZ:AV0Z5011922 Keywords : Alzheimer 's disease * beta-amyloid * cholinergic neurons Subject RIV: FR - Pharmacology ; Medidal Chemistry

  4. Effects of diet-induced hypercholesterolemia on amyloid ...

    Indian Academy of Sciences (India)

    2012-10-27

    Oct 27, 2012 ... A central hypothesis in the study of Alzheimer's disease (AD) is the accumulation and aggregation of β-amyloid ... protein (APP) and estrogen has been implicated in the pre- .... inant in HCL in the intensity of the expression was lower ..... estrogen replacement therapy of the Women's Health Initiative.

  5. Visuospatial Functioning in Cerebral Amyloid Angiopathy : A Pilot Study

    NARCIS (Netherlands)

    Valenti, Raffaella; Charidimou, Andreas; Xiong, Li; Boulouis, Gregoire; Fotiadis, Panagiotis; Ayres, Alison; Riley, Grace; Kuijf, Hugo J.; Reijmer, Yael D.; Pantoni, Leonardo; Gurol, M. Edip; Davidsdottir, Sigurros; Greenberg, Steven M.; Viswanathan, Anand

    2017-01-01

    Cerebral amyloid angiopathy (CAA) is a contributor to cognitive impairment in the elderly. We hypothesized that the posterior cortical predilection of CAA would cause visual-processing impairment. We systematically evaluated visuospatial abilities in 22 non-demented CAA patients. Neurocognitive

  6. Renal amyloid A amyloidosis as a complication of hidradenitis suppurativa

    DEFF Research Database (Denmark)

    Schandorff, Kristine D; Miller, Iben M; Krustrup, Dorrit

    2016-01-01

    Rheumatic disease is the dominant cause of amyloid A (AA) amyloidosis, but other chronic inflammatory diseases may have similar consequences. Hidradenitis suppurativa (HS) is a relatively common, but little known skin disease characterized by chronic inflammation. Here we present a case of chronic...

  7. Rational heterodoxy: cholesterol reformation of the amyloid doctrine.

    Science.gov (United States)

    Castello, Michael A; Soriano, Salvador

    2013-01-01

    According to the amyloid cascade hypothesis, accumulation of the amyloid peptide Aβ, derived by proteolytic processing from the amyloid precursor protein (APP), is the key pathogenic trigger in Alzheimer's disease (AD). This view has led researchers for more than two decades and continues to be the most influential model of neurodegeneration. Nevertheless, close scrutiny of the current evidence does not support a central pathogenic role for Aβ in late-onset AD. Furthermore, the amyloid cascade hypothesis lacks a theoretical foundation from which the physiological generation of Aβ can be understood, and therapeutic approaches based on its premises have failed. We present an alternative model of neurodegeneration, in which sustained cholesterol-associated neuronal distress is the most likely pathogenic trigger in late-onset AD, directly causing oxidative stress, inflammation and tau hyperphosphorylation. In this scenario, Aβ generation is part of an APP-driven adaptive response to the initial cholesterol distress, and its accumulation is neither central to, nor a requirement for, the initiation of the disease. Our model provides a theoretical framework that places APP as a regulator of cholesterol homeostasis, accounts for the generation of Aβ in both healthy and demented brains, and provides suitable targets for therapeutic intervention. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  9. Raman optical activity study on insulin amyloid- and prefibril intermediate

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, Shigeki; Watarai, H.

    2012-01-01

    Roč. 24, č. 2 (2012), s. 97-103 ISSN 0899-0042 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * amyloid * fibril * intermediate * insulin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.718, year: 2012

  10. Aggregation properties of a short peptide that mediates amyloid fibril ...

    Indian Academy of Sciences (India)

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The ... proteins. These peptide fibrils have the conformational features of β-structure that .... water and immediately deposited on freshly cleaved surface of mica .... with the peptide via electrostatic interactions. NaCl would.

  11. Quantification of amyloid-beta 40 in cerebrospinal fluid

    NARCIS (Netherlands)

    Verwey, N.A.; Veerhuis, R.; Twaalfhoven, H.A.M.; Wouters, D.; Hoozemans, J.J.M.; Bollen, Y.J.M.; Killestein, J.; Bibl, M.; Wiltfang, J.; Hack, C.E.; Scheltens, P.; Blankenstein, M.A.

    2009-01-01

    Background: Truncated forms and full-length forms of the amyloid-beta 40 (Aβ40) are key molecules in the pathogenesis of dementia, and are detectable in CSF. Reliable methods to detect these biomarkers in CSF are of great importance for understanding the disease mechanisms and for diagnostic

  12. The recombinant C-terminal fragment of tetanus toxin protects against cholinotoxicity by intraseptal injection of β-amyloid peptide (25-35) in rats.

    Science.gov (United States)

    Patricio-Martínez, A; Mendieta, L; Martínez, I; Aguilera, J; Limón, I D

    2016-02-19

    The recombinant C-terminal domain of tetanus toxin (Hc-TeTx) is a new non-toxic peptide of the tetanus toxin that exerts a protective action against glutamate excitotoxicity in motoneurons. Moreover, its efficacy as a neuroprotective agent has been demonstrated in several animal models of neurodegeneration. The eleven amino acids in the β amyloid peptide (Aβ25-35) mimic the toxic effects of the full β amyloid peptide (Aβ1-42), causing the impairment of the cholinergic system in the medial septum (MS) which, in turn, alters the septo-hippocampal pathway and leads to learning and memory impairments. The aim of this study was to examine the neuroprotective effects of the Hc-TeTx fragment against cholinotoxicity. The Hc-TeTx fragment (100 ng) was injected into the rats intercranially, with the Aβ(25-35) (2 μg) then injected into their MS. The animals were tested for spatial learning and memory in the eight-arm radial maze. The brains were removed to assess cholinergic markers, such as choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), and to explore neurodegeneration in the MS and hippocampus, using amino-cupric silver and H&E staining. Finally, capase-3, a marker of apoptosis, was examined in the MS. Our results clearly demonstrate that the application of Hc-TeTx prevents the loss of cholinergic markers (ChAT and AChE), the activation of capase-3, and neurodegeneration in the MS and the CA1 and CA3 subfields of the hippocampus. All these improvements were reflected in spatial learning and memory performance, and were significantly higher compared with animals treated with Aβ(25-35). Interestingly, the single administration of Hc-TeTx into the MS modified the ChAT and AChE expression that affect cognitive processes, without inducing neurodegeneration or an increase in capase-3 expression in the MS and hippocampus. In summary, our findings suggest that the recombinant Hc-TeTx fragment offers effective protection for the septo-hippocampal pathway

  13. Age-related functional changes in domain-specific medial temporal lobe pathways.

    Science.gov (United States)

    Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah

    2018-05-01

    reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimer's disease in relation to amyloid or tau pathology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Use of ade1 and ade2 mutations for development of a versatile red/white colour assay of amyloid-induced oxidative stress in saccharomyces cerevisiae.

    Science.gov (United States)

    Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K

    2016-12-01

    Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI + ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi - ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI + ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    Science.gov (United States)

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  16. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  17. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ Formation and Increase Aβ-Degradation

    Directory of Open Access Journals (Sweden)

    Marcus O. W. Grimm

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ, as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol on AD-relevant mechanisms. D2 and D3 analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.

  18. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation.

    Science.gov (United States)

    Grimm, Marcus O W; Thiel, Andrea; Lauer, Anna A; Winkler, Jakob; Lehmann, Johannes; Regner, Liesa; Nelke, Christopher; Janitschke, Daniel; Benoist, Céline; Streidenberger, Olga; Stötzel, Hannah; Endres, Kristina; Herr, Christian; Beisswenger, Christoph; Grimm, Heike S; Bals, Robert; Lammert, Frank; Hartmann, Tobias

    2017-12-19

    Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D₂ and D₃ analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.

  19. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  20. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. β-Amyloid-derived pentapeptide RIIGLa inhibits Aβ1-42 aggregation and toxicity

    International Nuclear Information System (INIS)

    Fueloep, Livia; Zarandi, Marta; Datki, Zsolt; Soos, Katalin; Penke, Botond

    2004-01-01

    Pr-IIGL a , a derivative of the tetrapeptide β-amyloid 31-34 (Aβ 31-34 ), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Aβ 1-42 . For an understanding of this phenomenon, a new pentapeptide, RIIGL a was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL a forms fibrillar aggregates, whereas RIIGL a does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL a acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL a does not display inherent toxicity. RIIGL a co-incubated with Aβ 1-42 inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Aβ 1-42 . These results indicate that RIIGL a is an effective inhibitor of both the aggregation and the toxic effects of Aβ 1-42 and can serve as a lead compound for the design of novel neuroprotective peptidomimetics

  2. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    Science.gov (United States)

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  4. Estrogen has anti-amyloidogenic effects on Alzheimer's β-amyloid fibrils in vitro

    International Nuclear Information System (INIS)

    Morinaga, Akiyoshi; Hirohata, Mie; Ono, Kenjiro; Yamada, Masahito

    2007-01-01

    Inhibition of the assembly of amyloid β-peptide (Aβ) as well as the destabilization of preformed β-amyloid fibrils (fAβ) in the central nervous system could be valuable therapeutics of patients with Alzheimer's disease (AD). Epidemiological studies have indicated that estrogen therapy reduced the risk of developing AD in women. Here, we examined the effects of estrogen (estrone (E1), estradiol (E2), and estriol (E3)) and related sexual steroids (androstenedione (AND) and testosterone (TES)) on the polymerization, extension and destabilization of fAβ(1-42) and fAβ(1-40) at pH 7.5 at 37 o C in vitro, using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies. E1, E2, and E3 dose-dependently inhibited the formation, as well as destabilization of fAβs. The overall anti-amyloidogenic activity of these molecules was in the order of: E3 > E2 = E1 >>AND = TES. Estrogen could be a potential therapeutic agent to prevent or delay AD progression

  5. A Survey of FDG- and Amyloid-PET Imaging in Dementia and GRADE Analysis

    Directory of Open Access Journals (Sweden)

    Perani Daniela

    2014-01-01

    Full Text Available PET based tools can improve the early diagnosis of Alzheimer’s disease (AD and differential diagnosis of dementia. The importance of identifying individuals at risk of developing dementia among people with subjective cognitive complaints or mild cognitive impairment has clinical, social, and therapeutic implications. Within the two major classes of AD biomarkers currently identified, that is, markers of pathology and neurodegeneration, amyloid- and FDG-PET imaging represent decisive tools for their measurement. As a consequence, the PET tools have been recognized to be of crucial value in the recent guidelines for the early diagnosis of AD and other dementia conditions. The references based recommendations, however, include large PET imaging literature based on visual methods that greatly reduces sensitivity and specificity and lacks a clear cut-off between normal and pathological findings. PET imaging can be assessed using parametric or voxel-wise analyses by comparing the subject’s scan with a normative data set, significantly increasing the diagnostic accuracy. This paper is a survey of the relevant literature on FDG and amyloid-PET imaging aimed at providing the value of quantification for the early and differential diagnosis of AD. This allowed a meta-analysis and GRADE analysis revealing high values for PET imaging that might be useful in considering recommendations.

  6. The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation*

    Science.gov (United States)

    Benilova, Iryna; Gallardo, Rodrigo; Ungureanu, Andreea-Alexandra; Castillo Cano, Virginia; Snellinx, An; Ramakers, Meine; Bartic, Carmen; Rousseau, Frederic; Schymkowitz, Joost; De Strooper, Bart

    2014-01-01

    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously. PMID:25253695

  7. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production.

    Science.gov (United States)

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H

    2014-11-01

    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  8. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    Science.gov (United States)

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  9. [Effects of grain-sized moxibustion on learning and memory ability and amyloid deposition of transgenic Alzheimer's disease mice].

    Science.gov (United States)

    Yu, Jing; Chu, Jia-Mei; Gao, Ling-Ai; Zhang, Yong-Sheng; Bao, Ye-Hua

    2014-02-01

    To observe the effect of grain-sized moxibustion at "Xinshu" (BL 15) and "Shenshu" (BL 23) on memory-learning ability and amyloid deposition in transgenic Alzheimer's disease (AD) mice. seventeen amyloid precursor protein (APP)/presenilin (PS)1 (APP+/PS 1+) double transgenic 6799 mice aged 3-4 weeks were randomly divided into model group (n = 9) and moxibustion group (n = 8). Nine wide-type (C 57 BL/6 J) female mice were used as the normal control group. Moxibustion (ignited grain-sized moxa cone) was applied to bilateral "Xinshu" (BL 15) and "Shenshu" (BL 23) for about 30 s, once a day for 9 courses (10 days constitute a therapeutic course, with 2 days' break between every two courses). Morris water maze tests were performed to detect the mice's learning-memory ability. The alterations of beta-amyloid deposition (number of the positive plaques) in the cerebral cortex and hippocampus were detected by using an imaging analysis system following Congo red staining of the cerebral tissue sections. Compared with the normal group, the average escape latency of place navigation tests was significantly increased (P memory ability after moxibustion. Results of Congo red staining of the cerebral tissue showed that there were many irregular, uneven staining positive plaques in the cerebral cortex and hippocampus of AD mice in the model group. Compared with the model group, the positive plaque numbers in both cerebral cortex and hippocampus were considerably reduced in the moxibustion group (P memory ability and restrain the formation of amyloid deposition in AD mice.

  10. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  11. Mouse senile amyloid fibrils deposited in skeletal muscle exhibit amyloidosis-enhancing activity.

    Directory of Open Access Journals (Sweden)

    Jinze Qian

    2010-05-01

    Full Text Available Amyloidosis describes a group of protein folding diseases in which amyloid proteins are abnormally deposited in organs and/or tissues as fine fibrils. Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (apoA-II deposits as amyloid fibrils (AApoAII and can be transmitted from one animal to another both by the feces and milk excreted by mice with amyloidosis. Thus, mouse AApoAII amyloidosis has been demonstrated to be a "transmissible disease". In this study, to further characterize the transmissibility of amyloidosis, AApoAII amyloid fibrils were injected into transgenic Apoa2(cTg(+/- and normal R1.P1-Apoa2(c mice to induce AApoAII systemic amyloidosis. Two months later, AApoAII amyloid deposits were found in the skeletal muscles of amyloid-affected mice, primarily in the blood vessels and in the interstitial tissues surrounding muscle fibers. When amyloid fibrils extracted from the skeletal muscles were subjected to Western blot analysis, apoA-II was detected. Amyloid fibril fractions isolated from the muscles not only demonstrated the structure of amyloid fibrils but could also induce amyloidosis in young mice depending on its fibril conformation. These findings present a possible pathogenesis of amyloidosis: transmission of amyloid fibril conformation through muscle, and shed new light on the etiology involved in amyloid disorders.

  12. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Siposova, Katarina [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Bednarikova, Zuzana [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Department of Biochemistry, Faculty of Science, Safarik University, Kosice (Slovakia); Safarik, Ivo [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Kubovcikova, Martina; Kopcansky, Peter [Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Gazova, Zuzana, E-mail: gazova@saske.sk [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe{sub 3}O{sub 4}-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC{sub 50} values decreased with increasing size of nanoparticles.

  13. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    International Nuclear Information System (INIS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-01-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe 3 O 4 -based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC 50 values decreased with increasing size of nanoparticles.

  14. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; Fischetti, Robert F.; Hyman, Bradley; Frosch, Matthew; Gomez-Isla, Teresa; Makowski, Lee

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinct clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest

  15. Multiple Myeloma Presenting as Massive Amyloid Deposition in a Parathyroid Gland Associated with Amyloid Goiter: A Medullary Thyroid Carcinoma Mimic on Intra-operative Frozen Section.

    Science.gov (United States)

    Hill, Kirk; Diaz, Jason; Hagemann, Ian S; Chernock, Rebecca D

    2018-06-01

    Clinical examples of amyloid deposition in parathyroid glands are exceedingly rare and usually present as an incidental finding in a patient with amyloid goiter. Here, we present the first histologically documented case of parathyroid amyloid deposition that presented as a mass. The patient did not have hyperparathyroidism. The parathyroid gland was submitted for intra-operative frozen section and concern for medullary thyroid carcinoma was raised. An important histologic clue arguing against medullary thyroid carcinoma was the evenly dispersed nature of the amyloid. Histologic perinuclear clearing and parathyroid hormone immunohistochemistry confirmed parathyroid origin on permanent sections. The patient was also found to have associated amyloid goiter. Mass spectrometry of the amyloid showed it to be composed of kappa light chains. On further work-up, the patient was diagnosed with multiple myeloma. Awareness of parathyroid amyloid deposition is important as it is a histologic mimic of medullary thyroid carcinoma, especially on frozen section. Amyloid typing with evaluation for multiple myeloma in any patient with kappa or lambda light chain restriction is also important.

  16. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology.

    Directory of Open Access Journals (Sweden)

    Hamid Gholami Pourbadie

    Full Text Available The entorhinal cortex (EC is one of the earliest affected brain regions in Alzheimer's disease (AD. EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs, nimodipine and isradipine, were investigated. The amyloid beta (Aβ 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days, almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.

  17. Feasibility and acceptance of simultaneous amyloid PET/MRI

    International Nuclear Information System (INIS)

    Schuetz, Lisa; Tiepolt, Solveig; Werner, Peter; Jochimsen, Thies; Rullmann, Michael; Sattler, Bernhard; Patt, Marianne; Barthel, Henryk; Lobsien, Donald; Fritzsch, Dominik; Hoffmann, Karl-Titus; Schroeter, Matthias L.; Villringer, Arno; Berrouschot, Joerg; Saur, Dorothee; Classen, Joseph; Hesse, Swen; Sabri, Osama; Gertz, Hermann-Josef

    2016-01-01

    Established Alzheimer's disease (AD) biomarker concepts classify into amyloid pathology and neuronal injury biomarkers, while recent alternative concepts classify into diagnostic and progression AD biomarkers. However, combined amyloid positron emission tomography/magnetic resonance imaging (PET/MRI) offers the chance to obtain both biomarker category read-outs within one imaging session, with increased patient as well as referrer convenience. The aim of this pilot study was to investigate this matter for the first time. 100 subjects (age 70 ± 10 yrs, 46 female), n = 51 with clinically defined mild cognitive impairment (MCI), n = 44 with possible/probable AD dementia, and n = 5 with frontotemporal lobe degeneration, underwent simultaneous [ 18 F]florbetaben or [ 11 C]PIB PET/MRI (3 Tesla Siemens mMR). Brain amyloid load, mesial temporal lobe atrophy (MTLA) by means of the Scheltens scale, and other morphological brain pathologies were scored by respective experts. The patients/caregivers as well as the referrers were asked to assess on a five-point scale the convenience related to the one-stop-shop PET and MRI approach. In three subjects, MRI revealed temporal lobe abnormalities other than MTLA. According to the National Institute on Aging-Alzheimer's Association classification, the combined amyloid-beta PET/MRI evaluation resulted in 31 %, 45 %, and 24 % of the MCI subjects being categorized as ''MCI-unlikely due to AD'', ''MCI due to AD-intermediate likelihood'', and ''MCI due to AD-high likelihood'', respectively. 50 % of the probable AD dementia patients were categorized as ''High level of evidence of AD pathophysiological process'', and 56 % of the possible AD dementia patients as ''Possible AD dementia - with evidence of AD pathophysiological process''. With regard to the International Working Group 2 classification, 36 subjects had both positive

  18. Unwinding fibril formation of medin, the peptide of the most common form of human amyloid

    International Nuclear Information System (INIS)

    Larsson, Annika; Soederberg, Linda; Westermark, Gunilla T.; Sletten, Knut; Engstroem, Ulla; Tjernberg, Lars O.; Naeslund, Jan; Westermark, Per

    2007-01-01

    Medin amyloid affects the medial layer of the thoracic aorta of most people above 50 years of age. The consequences of this amyloid are not completely known but the deposits may contribute to diseases such as thoracic aortic aneurysm and dissection or to the general diminished elasticity of blood vessels seen in elderly people. We show that the 50-amino acid residue peptide medin forms amyloid-like fibrils in vitro. With the use of Congo red staining, Thioflavin T fluorescence, electron microscopy, and a solid-phase binding assay on different synthetic peptides, we identified the last 18-19 amino acid residues to constitute the amyloid-promoting region of medin. We also demonstrate that the two C-terminal phenylalanines, previously suggested to be of importance for amyloid formation, are not required for medin amyloid formation

  19. Kinetic studies with iodine-123-labeled serum amyloid P component in patients with systemic AA and AL amyloidosis and assessment of clinical value

    NARCIS (Netherlands)

    Jager, PL; Hazenberg, BPC; Franssen, EJF; Limburg, PC; van Rijswijk, MH; Piers, DA

    In systemic amyloidosis, widespread amyloid deposition interferes with organ function, frequently with fatal consequences. Diagnosis rests on demonstrating amyloid deposits in the tissues, traditionally with histology although scintigraphic imaging with radiolabeled serum amyloid P component (SAP)

  20. Associations Between β-Amyloid Kinetics and the β-Amyloid Diurnal Pattern in the Central Nervous System.

    Science.gov (United States)

    Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W; Elbert, Donald L; Ovod, Vitaliy; Kasten, Tom; Morris, John C; Bateman, Randall J

    2017-02-01

    Recent studies found that the concentration of amyloid-β (Aβ) fluctuates with the sleep-wake cycle. Although the amplitude of this day/night pattern attenuates with age and amyloid deposition, to our knowledge, the association of Aβ kinetics (ie, production, turnover, and clearance) with this oscillation has not been studied. To determine the association between Aβ kinetics, age, amyloid levels, and the Aβ day/night pattern in humans. We measured Aβ concentrations and kinetics in 77 adults aged 60 to 87 years with and without amyloid deposition by a novel precise mass spectrometry method at the Washington University School of Medicine in St Louis, Missouri. We compared findings of 2 orthogonal methods, enzyme-linked immunosorbent assay and mass spectrometry, to validate the day/night patterns and determine more precise estimates of the cosinor parameters. In vivo labeling of central nervous system proteins with stable isotopically labeled leucine was performed, and kinetics of Aβ40 and Aβ42 were measured. Serial cerebrospinal fluid collection via indwelling lumbar catheter over 36 to 48 hours before, during, and after in vivo labeling, with a 9-hour primed constant infusion of 13C6-leucine. The amplitude, linear increase, and other cosinor measures of each participant's serial cerebrospinal fluid Aβ concentrations and Aβ turnover rates. Of the 77 participants studied, 46 (59.7%) were men, and the mean (range) age was 72.6 (60.4-87.7) years. Day/night patterns in Aβ concentrations were more sharply defined by the precise mass spectrometry method than by enzyme-linked immunosorbent assay (mean difference of SD of residuals: Aβ40, -7.42 pM; P effects of age and amyloid on Aβ42 amplitude at least partially affect each other. Production and turnover rates suggest that day/night Aβ patterns are modulated by both production and clearance mechanisms active in sleep-wake cycles and that amyloid deposition may impair normal circadian patterns. These findings

  1. Human amyloid beta protein gene locus: HaeIII RFLP

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J E; Gonzalez-DeWhitt, P A; Fuller, F; Cordell, B; Frossard, P M [California Biotechnology Inc., Mountain View (USA); Tinklenberg, J R; Davies, H D; Eng, L F; Yesavage, J A [Stanford Univ. School of Medicine, Palo Alto, CA (USA)

    1988-07-25

    A 2.2 kb EcoRI-EcoRI fragment from the 5{prime} end of the human amyloid beta protein cDNA was isolated from a human fibroblast cDNA library and subcloned into pGEM3. HaeIII (GGCC) detects 6 invariant bands at 0.5 kb, 1.0 kb, 1.1 kb, 1.3 kb, 1.4 kb and 1.6 kb and a two-allele polymorphism with bands at either 1.9 kb or 2.1 kb. Its frequency was studied in 50 North Americans. Human amyloid beta protein gene mapped to the long arm of chromosome 21 (21q11.2-21q21) by Southern blot analysis of human-rodent somatic cell hybrids. Co-dominant segregation was observed in two families (15 individuals).

  2. Semen amyloids participate in spermatozoa selection and clearance.

    Science.gov (United States)

    Roan, Nadia R; Sandi-Monroy, Nathallie; Kohgadai, Nargis; Usmani, Shariq M; Hamil, Katherine G; Neidleman, Jason; Montano, Mauricio; Ständker, Ludger; Röcker, Annika; Cavrois, Marielle; Rosen, Jared; Marson, Kara; Smith, James F; Pilcher, Christopher D; Gagsteiger, Friedrich; Sakk, Olena; O'Rand, Michael; Lishko, Polina V; Kirchhoff, Frank; Münch, Jan; Greene, Warner C

    2017-06-27

    Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens.

  3. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.

    Science.gov (United States)

    Romero, Diego; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2010-02-02

    Bacillus subtilis forms biofilms whose constituent cells are held together by an extracellular matrix. Previous studies have shown that the protein TasA and an exopolysaccharide are the main components of the matrix. Given the importance of TasA in biofilm formation, we characterized the physicochemical properties of this protein. We report that purified TasA forms fibers of variable length and 10-15 nm in width. Biochemical analyses, in combination with the use of specific dyes and microscopic analyses, indicate that TasA forms amyloid fibers. Consistent with this hypothesis, TasA fibers required harsh treatments (e.g., formic acid) to be depolymerized. When added to a culture of a tasA mutant, purified TasA restored wild-type biofilm morphology, indicating that the purified protein retained biological activity. We propose that TasA forms amyloid fibers that bind cells together in the biofilm.

  4. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    Science.gov (United States)

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  5. New Cyclolignans from Origanumglandulosum Active Against b -amyloid Aggregation

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2014-05-01

    Full Text Available Origanum glandulosum Desf is an endemic flavoring herb widely distributed in North Africa that is commonly used in traditional medicine. This oregano species is rich in essential oils but little is known about its phenolic composition. In the present study, a crude extract of O. glandulosum was prepared in order to isolate and investigate its neuroprotective potential to inhibit β-amyloid peptide (Aβ aggregation. The three major compounds of the extract were isolated: rosmarinic acid and two cyclolignans in Origanum genus, globoidnan A and a new derivative named globoidnan B. Rosmarinic acid and globoidnan A showed significant anti-aggregative activity against β amyloid aggregation (IC50 7.0 and 12.0 µM, respectively. In contrast, globoidnan B was found to be less active.

  6. Solitary osteosclerotic plasmacytoma: association with demyelinating polyneuropathy and amyloid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Voss, S.D.; Hall, F.M. [Dept. of Radiology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Murphey, M.D. [Dept. of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Dept. of Radiology and Nuclear Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD (United States); Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2001-09-01

    A 51-year-old man presented with a 1-year history of polyneuropathy necessitating the use of a wheelchair. Initial diagnosis was idiopathic chronic inflammatory demyelinating polyneuropathy (CIDP) and associated monoclonal gammopathy. Investigations for multiple myeloma, including bone marrow aspiration and biopsy, were negative. What was initially felt to be an incidental osteosclerotic focus noted on the radiographic bone survey was eventually shown to be a solitary osteosclereotic plasmacytoma with associated amyloid. This dramatically altered treatment. This case emphasizes the importance of including osteosclerotic plasmacytoma in the differential diagnosis of a focal sclerotic bone lesion in the clinical setting of polyneuropathy. These lesions are less likely to progress to multiple myeloma than lytic plasma cell neoplasms, and the presence of polyneuropathy often results in earlier diagnosis and treatment with enhanced prospect of cure. The finding of amyloid deposition within the osteosclerotic lesion may be of prognostic importance. (orig.)

  7. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  8. Benzofuranone derivatives as effective small molecules related to insulin amyloid fibrillation: a structure-function study

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim-Habibi, Azadeh; Navidpour, Latifeh

    2011-01-01

    amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds...... of the five tested compounds was observed to enhance amyloid fibrillation, while the others inhibited the process when used at micromolar concentrations, which could make them interesting potential lead compounds for the design of therapeutic antiamyloidogenic compounds....

  9. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins.As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l.We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of proteins (amyloidogenic proteins and non-amyloidogenic proteins has been

  10. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.

    Science.gov (United States)

    Buell, Alexander K

    2017-01-01

    The condensation and aggregation of individual protein molecules into dense insoluble phases is of relevance in such diverse fields as materials science, medicine, structural biology and pharmacology. A common feature of these condensation phenomena is that they usually are nucleated processes, i.e. the first piece of the condensed phase is energetically costly to create and hence forms slowly compared to its subsequent growth. Here we give a compact overview of the differences and similarities of various protein nucleation phenomena, their theoretical description in the framework of colloid and polymer science and their experimental study. Particular emphasis is put on the nucleation of a specific type of filamentous protein aggregates, amyloid fibrils. The current experimentally derived knowledge on amyloid fibril nucleation is critically assessed, and we argue that it is less advanced than is generally believed. This is due to (I) the lack of emphasis that has been put on the distinction between homogeneous and heterogeneous nucleation in experimental studies (II) the use of oversimplifying and/or inappropriate theoretical frameworks for the analysis of kinetic data of amyloid fibril nucleation. A strategy is outlined and advocated of how our understanding of this important class of processes can be improved in the future. © 2017 Elsevier Inc. All rights reserved.

  11. AMYPdb: A database dedicated to amyloid precursor proteins

    Directory of Open Access Journals (Sweden)

    Delamarche Christian

    2008-06-01

    Full Text Available Abstract Background Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of in silico methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases. Results We therefore created a free online knowledge database (AMYPdb dedicated to amyloid precursor proteins and we have performed large scale sequence analysis of the included data. Currently, AMYPdb integrates data on 31 families, including 1,705 proteins from nearly 600 organisms. It displays links to more than 2,300 bibliographic references and 1,200 3D-structures. A Wiki system is available to insert data into the database, providing a sharing and collaboration environment. We generated and analyzed 3,621 amino acid sequence patterns, reporting highly specific patterns for each amyloid family, along with patterns likely to be involved in protein misfolding and aggregation. Conclusion AMYPdb is a comprehensive online database aiming at the centralization of bioinformatic data regarding all amyloid proteins and their precursors. Our sequence pattern discovery and analysis approach unveiled protein regions of significant interest. AMYPdb is freely accessible 1.

  12. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  13. [Behavioural problems and personality change related to cerebral amyloid angiopathy].

    Science.gov (United States)

    Gahr, Maximilian; Connemann, Bernhard J; Schönfeldt-Lecuona, Carlos

    2012-11-01

    Cerebral amyloid angiopathy (CAA) belongs to the group of amyloidoses that are characterized by the deposition of insoluble and tissue-damaging amyloid proteins. Spontaneous intracerebral hemorrhage is the common clinical presentation of CAA resulting from the degenerative effect of beta amyloid on the cerebral vascular system. Though CAA is rather a neurological disease psychiatric symptoms can occur and even dominate the clinical picture. A case report is presented in order to illustrate the association between CAA and psychiatric symptoms. We report the case of a 54-year-old female patient with radiologic references to a probable CAA and mild cognitive impairment who developed behavioural difficulties and personality change that necessitated a psychiatric treatment. Psychiatric symptoms were most likely due to CAA. CAA can be associated with psychiatric symptoms and hence should be considered in the treatment of elderly patients with behavioural problems or personality changes. Diagnostic neuroimaging and examination of cerebrospinal fluid is recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor.

    Science.gov (United States)

    Endo, Hitoshi; Nikaido, Yuri; Nakadate, Mamiko; Ise, Satomi; Konno, Hiroyuki

    2014-12-15

    Inhibition of the amyloid β aggregation process could possibly prevent the onset of Alzheimer's disease. In this article, we report a structure-activity relationship study of curcumin analogues for anti amyloid β aggregation activity. Compound 7, the ideal amyloid β aggregation inhibitor in vitro among synthesized curcumin analogues, has not only potent anti amyloid β aggregation effects, but also water solubility more than 160 times that of curcumin. In addition, new approaches to improve water solubility of curcumin-type compounds are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model.

    Directory of Open Access Journals (Sweden)

    William J Netzer

    Full Text Available beta-amyloid levels are elevated in Down syndrome (DS patients throughout life and are believed to cause Alzheimer's disease (AD in adult members of this population. However, it is not known if beta-amyloid contributes to intellectual disability in younger individuals. We used a gamma-secretase inhibitor to lower beta-amyloid levels in young mice that model DS. This treatment corrected learning deficits characteristic of these mice, suggesting that beta-amyloid-lowering therapies might improve cognitive function in young DS patients.

  16. No association of cortical amyloid load and EEG connectivity in older people with subjective memory complaints

    Directory of Open Access Journals (Sweden)

    Stefan Teipel

    2018-01-01

    Full Text Available Changes in functional connectivity of cortical networks have been observed in resting-state EEG studies in healthy aging as well as preclinical and clinical stages of AD. Little information, however, exists on associations between EEG connectivity and cortical amyloid load in people with subjective memory complaints. Here, we determined the association of global cortical amyloid load, as measured by florbetapir-PET, with functional connectivity based on the phase-lag index of resting state EEG data for alpha and beta frequency bands in 318 cognitively normal individuals aged 70–85 years with subjective memory complaints from the INSIGHT-preAD cohort. Within the entire group we did not find any significant associations between global amyloid load and phase-lag index in any frequency band. Assessing exclusively the subgroup of amyloid-positive participants, we found enhancement of functional connectivity with higher global amyloid load in the alpha and a reduction in the beta frequency bands. In the amyloid-negative participants, higher amyloid load was associated with lower connectivity in the low alpha band. However, these correlations failed to reach significance after controlling for multiple comparisons. The absence of a strong amyloid effect on functional connectivity may represent a selection effect, where individuals remain in the cognitively normal group only if amyloid accumulation does not impair cortical functional connectivity.

  17. [Clinical Laboratory Test Using Proteomics: The Usefulness of Proteomic Techniques for Amyloid Typing].

    Science.gov (United States)

    Tasaki, Masayoshi; Obayashi, Konen; Ando, Yukio

    2015-08-01

    Amyloidosis is a heterogeneous group of disorders characterized by the deposition of amyloid fibrils. To diagnose amyloidosis, it is important to detect amyloid deposits and identify the amyloid precursor protein in specimens, such as tissues and serum. Mass spectrometry is a powerful tool to measure the molecular weight and identify the protein. Recently, mass spectrometries such as liquid chromatography/tandem mass spectrometry and surface-enhanced laser desorption/ionization time of flight mass spectrometry, have made a contribution to amyloid typing. In the paper, we describe the usefulness of mass spectrometric analyses for the typing of amyloidosis.

  18. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)

    2012-01-15

    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa

    2015-04-01

    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  20. Short-term effects of beta-amyloid25-35 peptide aggregates on transmitter release in neuromuscular synapses.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Tomàs, Josep

    2008-03-01

    The beta-amyloid (AB) peptide25-35 contains the functional domain of the AB precursor protein that is both required for neurotrophic effects in normal neural tissues and is involved in the neurotoxic effects in Alzheimer disease. We demonstrated the presence of the amyloid precursor protein/AB peptide in intramuscular axons, presynaptic motor nerve terminals, terminal and myelinating Schwann cells, and the postsynaptic and subsarcolemmal region in the Levator auris longus muscle of adult rats by immunocytochemistry. Using intracellular recording, we investigated possible short-term functional effects of the AB fragment (0.1-10 micromol/L) on acetylcholine release in adult and newborn motor end plates. We found no change in evoked, spontaneous transmitter release or resting membrane potential of the muscle cells. A previous block of the presynaptic muscarinic receptor subtypes and a previous block or stimulation of protein kinase C revealed no masked effect of the peptide on the regulation of transmitter release. The aggregated form of AB peptide25-35, however, interfered acutely with acetylcholine release (quantal content reduction) when synaptic activity was maintained by electric stimulation. The possible relevance of this inhibition of neurotransmission by AB peptide25-35 to the pathogenesis of Alzheimer remains to be determined.

  1. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    Science.gov (United States)

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  2. The ARIC-PET amyloid imaging study: Brain amyloid differences by age, race, sex, and APOE.

    Science.gov (United States)

    Gottesman, Rebecca F; Schneider, Andrea L C; Zhou, Yun; Chen, Xueqi; Green, Edward; Gupta, Naresh; Knopman, David S; Mintz, Akiva; Rahmim, Arman; Sharrett, A Richey; Wagenknecht, Lynne E; Wong, Dean F; Mosley, Thomas H

    2016-08-02

    To evaluate differences in amyloid deposition in a community-based cohort without dementia by age, sex, race, education, and APOE ε4 allele status. Recruited from the longitudinal Atherosclerosis Risk in Communities study, 329 participants without dementia, ages 67-88 years, were imaged using florbetapir PET at 3 US community sites (Washington County, Maryland; Forsyth County, North Carolina; and Jackson, Mississippi). Standardized uptake value ratios (SUVRs) were calculated; global cortical SUVR >1.2 was evaluated as the primary outcome. Age, race, sex, education level, and number of APOE ε4 alleles were evaluated in multivariable models including vascular risk factors, brain white matter hyperintensity and total intracranial volume, and cognitive status. A total of 141 of the participants (43%) were black. In multivariable models, odds of elevated SUVR was increased in participants with increasing age (odds ratio [OR] 1.63, 95% confidence interval [CI] 1.01-2.65 per 10 years of age) and black race (OR 2.08, 95% CI 1.23-3.51) but did not differ by educational level. Each ε4 allele was associated with increased odds of elevated SUVR (OR 2.65, 95% CI 1.61-4.39). In this community-based cohort without dementia, florbetapir uptake is associated with older age and APOE genotype. Black race was associated with higher SUVR, after adjusting for demographics, vascular risk factors, cognitive status, white matter hyperintensity volume, and APOE genotype, with effect sizes nearing those seen for APOE ε4. Replication of these findings is needed in other cohorts, and reasons for and consequences of these observed differences by race warrant further study. © 2016 American Academy of Neurology.

  3. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    Science.gov (United States)

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and

  4. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads

    1997-01-01

    precursor protein beta2M was observed. This binding was also enhanced at slightly acid pH, most pronounced at pH 5.0. The results of this study indicate that SAP can exhibit both Ca2(+)-dependent and -independent binding to ligands involved in amyloid fibril formation and that the binding is enhanced under...... and beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  5. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    Science.gov (United States)

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  7. Sphingolipid Metabolism Correlates with Cerebrospinal Fluid Beta Amyloid Levels in Alzheimer’s Disease

    Science.gov (United States)

    Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.

    2015-01-01

    Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired

  8. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  9. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E

    2010-01-01

    Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.

  10. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  11. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  12. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling.

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Wong, J.; Monks, B.G.; Gay, N.J.; Netea, M.G.; Fitzgerald, K.A.; Golenbock, D.

    2009-01-01

    The adapter protein MyD88 adapter-like (Mal), encoded by TIR-domain containing adapter protein (Tirap) (MIM 606252), is the most polymorphic of the five adapter proteins involved in Toll-like receptor signaling, harboring eight non-synonymous single nucleotide polymorphisms in its coding region. We

  13. Clinical and imaging correlates of amyloid deposition in dementia with Lewy bodies.

    Science.gov (United States)

    Donaghy, Paul C; Firbank, Michael J; Thomas, Alan J; Lloyd, Jim; Petrides, George; Barnett, Nicola; Olsen, Kirsty; O'Brien, John T

    2018-04-19

    Amyloid deposition is common in dementia with Lewy bodies, but its pathophysiological significance is unclear. The objective of this study was to investigate the relationship between amyloid deposition and clinical profile, gray matter volume, and brain perfusion in dementia with Lewy bodies. Dementia with Lewy bodies (n = 37), Alzheimer's disease (n = 20), and controls (n = 20) underwent a thorough clinical assessment, 3T MRI, and early- and late-phase 18 F-Florbetapir PET-CT to assess cortical perfusion and amyloid deposition, respectively. Amyloid scans were visually categorized as positive or negative. Image analysis was carried out using statistical parametric mapping (SPM) 8. There were no significant differences between amyloid-positive and amyloid-negative dementia with Lewy bodies cases in age (P = .78), overall cognitive impairment (P = .83), level of functional impairment (P = .80), or any other clinical or cognitive scale. There were also no significant differences in hippocampal or gray matter volumes. However, amyloid-positive dementia with Lewy bodies cases had lower medial temporal lobe perfusion (P = .03) than amyloid-negative cases, although a combination of medial temporal lobe perfusion, hippocampal volume, and cognitive measures was unable to accurately predict amyloid status in dementia with Lewy bodies. Amyloid deposition was not associated with differences in clinical or neuropsychological profiles in dementia with Lewy bodies, but was associated with imaging evidence of medial temporal lobe dysfunction. The presence of amyloid in dementia with Lewy bodies cannot be identified on the basis of clinical and other imaging features and will require direct assessment via PET imaging or CSF. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf

  14. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Kusters, B.; Maat-Schieman, M.L.; Waal, R.M.W. de; Verbeek, M.M.

    2006-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions, such as senile plaques (SPs) and cerebral amyloid angiopathy (CAA), both predominantly consisting of a proteolytic cleavage product of the amyloid-beta precursor protein (APP), the amyloid-beta peptide (Abeta). CAA is also the major

  15. Fractional-Fourier-domain weighted Wigner distribution

    NARCIS (Netherlands)

    Stankovic, L.; Alieva, T.; Bastiaans, M.J.

    2001-01-01

    A fractional-Fourier-domain realization of the weighted Wigner distribution (or S-method), producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms, is presented. The computational cost of this fractional-domain realization is the same as the

  16. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment

    NARCIS (Netherlands)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A.; Jagust, William; Weiner, Michael W.; Saradha, A.; Abdi, Herve; Abdulkadir, Ahmed; Abeliovich, Asa; Abellan van Kan, Gabor; Abner, Erin; Acharya, Deepa; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmed, Shiek; Ahn, Jae Eun; Aisen, Paul; Aksu, Yaman; Al-Akhras, Mousa; Alarcon, Marcelo; Alberca, Roman; Alexander, Gene; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Andrew, Marilee; Angersbach, Steve; Anjum, Ayesha; Aoyama, Eiji; Arfanakis, Konstantinos; Armor, Tom; Arnold, Steven; Arunagiri, Vidhya; Asatryan, Albert; Ashe-McNalley, Cody; Ashiga, Hirokazu; Assareh, Arezoo; Le Page, Aurelie; Avants, Brian; Avinash, Gopal; Aviv, Richard; Awasthi, Sukrati; Ayan-Oshodi, Mosun; Babic, Tomislav; Baek, Young; Bagci, Ulas; Bai, Shuyang; Baird, Geoffrey; Baker, John; Banks, Sarah; Bard, Jonathan; Barnes, Josephine; Bartlett, Jonathan; Bartzokis, George; Barua, Neil; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Beg, Mirza Faisal; Bek, Stephan; Belaroussi, Boubakeur; Belmokhtar, Nabil; Bernard, Charlotte; Bertram, Lars; Bhaskar, Uday; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Ronald; Bogorodzki, Piotr; Bokde, Arun; Bonner-Jackson, Aaron; Boppana, Madhu; Bourgeat, Pierrick; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brooks, David; Browndyke, Jeffrey; Brunton, Simon; Buchert, Ralph; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Burger, Cyrill; Burnham, Samantha; Burns, Jeffrey; Burton, David; Butman, John; Cabeza, Rafael; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Cantillon, Marc; Capella, Heraldo; Carbotti, Angela; Cardona-Sanclemente, Luis Eduardo; Carle, Adam; Carmasin, Jeremy; Carranza-Ath, Fredy; Casabianca, Jodi; Casanova, Ramon; Cash, David; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chanu, Pascal; Chao, Linda; Charil, Arnaud; Chemali, Zeina; Chen, Rong; Chen, Jake; Chen, Gennan; Chen, Wei; Chen, Kewei; Chen, Shuzhong; Chen, Minhua; Cheng, Wei-Chen; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Charlton; Cheung, Vinci; Chiang, Gloria; Chiba, Koji; Chin, Simon; Chisholm, Jane; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Clark, David; Clark, Chris; Clarkson, Matt; Clayton, David; Clunie, David; Coen, Michael; Coimbra, Alexandre; Compton, David; Coppola, Giovanni; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Curtis, Steven; Cutter, Gary; Daiello, Lori; Dake, Michael; Dale, Anders; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; Dave, Jay; David, Renaud; DavidPrakash, Bhaskaran; Davidson, Julie; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Dejkam, Arsalan; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Depy Carron, Delphine; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; DeVous, Michael; Diaz-Arrastia, Ramon; Bradford, Dickerson; Ding, Xiaobo; Dinov, Ivo; Dobson, Howard; Dodge, Hiroko; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Duan, Xujun; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jrgen; Durazzo, Timothy; Dykstra, Kevin; Earl, Nancy; Edula, Goutham; Ekin, Ahmet; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Engelman, Corinne; Epstein, Noam; Erten-Lyons, Deniz; Eskildsen, Simon; Falcone, Guido; Fan, Lingzhong; Fan, Yong; Farahibozorg, Seyedehrezvan; Farb, Norman; Farnum, Michael; Farrer, Lindsay; Farzan, Ali; Faux, Noel; Feldman, Betsy; Feldman, Howard; Feldman, Susan; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferrarini, Luca; Ferreira, Manuel Joao; Ferrer, Eugene; Figurski, Michal; Filipovych, Roman; Fillit, Howard; Finch, Stephen; Finlay, Daniel; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, P. Thomas; Fletcher, Evan; Flynn Longmire, Crystal; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Francis, Alexander L.; Franco-Villalobos, Conrado; Franko, Edit; Freeman, Stefanie; Friedrich, Christoph M.; Friesenhahn, Michel; Frings, Lars; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Furney, Simon; Gallins, Paul; Galvin, Ben; Gamst, Anthony; Gan, Ke; Garcia, Maria Teresa; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gauthier, Serge; Gavett, Brandon; Gavidia, Giovana; Gazdzinski, Stefan; Ge, Qi; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Ghassabi, Zeinab; Gieschke, Ronald; Gil, Juan E.; Gill, Ryan; Gitelman, Darren; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Goghari, Vina; Gold, Michael; Goldberg, Terry; Goldman, Jennifer; Gomeni, Roberto; Gong, Shangwenyan; Gonzales, Celedon; Goodro, Robert; Gordon, Brian; Gore, Chris; Gorriz, Juan Manuel; Grachev, Igor; Grandey, Emily; Grasela, Thaddeus; Gratt, Jeremy; Gray, Katherine; Greenberg, Barry; Gregg, Keith; Gregory, Erik; Greicius, Michael; Greve, Douglas; Grill, Joshua; Gross, Alden; Gross, Alan; Guignot, Isabelle; Guo, Jeffrey; Guo, Qimiao; Guo, Hongbin; Guo, Lianghao; Habeck, Christian; Hai, Yizhen; Haight, Thaddeus; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Tony; Hanif, Muhammad; Hanna, Yousef; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Hazart, Aurelien; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heidebrink, Judith; Henderson, David; Henrard, Sebastien; Herholz, Karl; Hernandez, Monica; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Hobart, Jeremy; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Honigberg, Lee; Hoppin, Jack; Hou, Yangyang; Hsu, Ailing; Hsu, Wei-Wen; Hu, Xiaolan; Hu, Zhiwei; Hu, William; Huang, Juebin; Huang, Chien-Chih; Huang, Chingwen; Huang, Shuai; Huang, Yifan; Huang, Fude; Huang, Chun-Jung; Huang, Shu-Pang; Hubbard, Rebecca; Huentelman, Matthew; Hui, Shen; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Huyck, Susan; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Irungu, Benson mwangi; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ismail, Shahina; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacobson, Mark; Jacqmin, Philippe; Jafari, Aria; Jafari-Khouzani, Kourosh; Jaffe, Carl; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jing, Huang; Johnson, Julene; Johnson, Sterling; Johnson, David K.; Jones, Richard; Juengling, Freimut; Juh, Rahyeong; Julin, Per; Kadish, Bill; Kahle-Wrobleski, Kristin; Kallam, Hanimi Reddy; Kamboh, M. Ilyas; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Ju Hee; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kazimipoor, Borhan; Kelleher, Thomas; Kennedy, Richard; Kerchner, Geoffrey; Kerrouche, Nacer; Khalil, Iya; Khalil, Andre; Killeen, Neil; Killiany, Ron; Kim, Jong Hun; Kim, Heeyoung; Kim, Ana; Kim, Yeonhee; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Hyewon; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koikkalainen, Juha; Kokomoor, Anders; Kolasny, Anthony; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kouassi, Alex; Kowalczyk, Adam; Kozma, Lynn; Krams, Michael; Kratzer, Martina; Kuceyeski, Amy; Kuhn, Felix Pierre; Kumar, Sreedhar; Kuo, Hsun Ting; Kuo, Julie; Kurosawa, Ken; Kwon, Oh Hun; Labrish, Catherine; Laforet, Genevieve; Lai, Song; Lakatos, Anita; Lam, On Ki; Lampron, Antoine; Landau, Susan; Landen, Jaren; Lane, Richard; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Laxamana, Joel; Le, Trung; Leahy, Richard; Lee, Jong-Min; Lee, Vita; Lee, Joseph H.; Lee, Grace; Lee, Dongsoo; Lee, Noah; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leoutsakos, Jeannie-Marie; Lester, Gayle; Levey, Allan; Li, Shi-jiang; Li, Shanshan; Li, Wenjun; Li, Chin-Shang; Li, Xiaodong; Li, Rui; Li, Ming; Li, Lexin; Li, Jinhe; Li, Yi; Li, Quanzheng; Li, Gang; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Yuan-Lin; Lin, Ling-chih; Lin, Lan; Lin, Mingkuan; Lin, Ai-Ling; Liu, Songling; Liu, Yuan; Liu, Tianming; Liu, Meijie; Liu, Xiuwen; Liu, Li; Liu, Honggang; Liu, Pu; Liu, Tao; Liu, Sophia; Liu, Dazhong; Lo, Raymond; Lobanov, Victor; Loewenstein, David; Logovinsky, Veronika; Long, Xiaojing; Long, Ziyi; Looi, Jeffrey; Lu, Po-Haong; Lukic, Ana; Lull, Juan J.; Luo, Xiongjian; Lynch, John; Ma, Lei; Mackin, Scott; Mada, Marius; Magda, Sebastian; Maglio, Silvio; Maikusa, Norihide; Mak, Henry Ka-Fung; Malave, Vicente; Maldjian, Joseph; Mandal, Pravat; Mangin, Jean-Francois; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marambaud, Philippe; Marchewka, Artur; Marek, Kenneth; Markind, Samuel; Marshall, Gad; Martinez Torteya, Antonio; Mather, Mara; Mathis, Chester; Matoug, Sofia; Matsuo, Yoshiyuki; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Mehta, Nirav; Melie-Garcia, Lester; Melrose, Rebecca; Mendonca, Brian; Menendez, Manuel; Meredith, Jere; Merrill, David; Mesulam, Marek-Marsel; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikhno, Arthur; Miller, David; Millikin, Colleen; Min, Ye; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mohan, Ananth; Moore, Dana; Moradi Birgani, Parmida; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Mortamet, Benedicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mueller, Notger; Mukherjee, Shubhabrata; Mulder, Emma; Murayama, Shigeo; Murphy, Michael; Murray, Brian; Musiek, Erik; Myers, Amanda; Najafi, Shahla; Nazarparvar, Babak; Nazeri, Arash; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nguyen Xuan, Tuong; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Notomi, Keiji; Nutakki, Gopi Chand; O'Bryant, Sid; O'Neil, Alison; Obisesan, Thomas; Oh, Dong Hoon; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Olmos, Salvador; Ortner, Marion; Ostrowitzki, Susanne; Oswald, Annahita; Ott, Brian; Ourselin, Sebastien; Ouyang, Gaoxiang; Paiva, Renata; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Hyunjin; Park, Lovingly; Park, Moon Ho; Park, Sang hyun; Park, Kee Hyung; Park, Sujin; Parsey, Ramin; Parveen, Riswana; Paskavitz, James; Patel, Yogen; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Peavy, Guerry; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Perea, Rodrigo; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Pezoa, Jorge; Pham, Chi-Tuan; Phillips, Justin; Phillips, Nicole; Pierson, Ronald; Piovezan, Mauro; Podhorski, Adam; Pollari, Mika; Pontecorvo, Michael; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prasad, Gautam; Prenger, Kurt; Prince, Jerry; Priya, Anandh; Puchakayala, Shashidhar Reddy; Qiu, Ruolun; Qiu, Anqi; Qiu, Wendy; Qualls, Constance Dean; Rabie, Huwaida; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramage, Amy; Randolph, Christopher; Rao, Anil; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Redolfi, Alberto; Reed, Bruce; Reid, Andrew; Reilhac, Anthonin; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Richards, John; Riddle, William; Ries, Michele; Rincon, Mariano; Rischall, Matt; Rizk-Jackson, Angela; Robieson, Weining; Rocha-Rego, Vanessa; Rogalski, Emily; Rogers, Elizabeth; Rojas, Ignacio; Rojas Balderrama, Javier; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Allyson; Rosen, Ori; Rosenberg, Paul; Ross, David; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Ruiz, Agustin; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabbagh, Marway; Sabuncu, Mert; Sachs, Michael; Sadeghi, Ali; Said, Yasmine; Saint-Aubert, Laure; Sakata, Muneyuki; Salat, David; Salmon, David; Salter, Hugh; Samwald, Matthias; Sanchez, Luciano; Sanders, Elizabeth; Sanjo, Nobuo; Sarnel, Haldun; Sato, Hajime; Sato, Shinji; Saumier, Daniel; Savio, Alexandre; Sawada, Ikuhisa; Saykin, Andrew; Schaffer, J. David; Scharre, Douglas; Schegerin, Marc; Schlosser, Gretchen; Schmand, Ben; Schmansky, Nick; Schmidt, Mark; Schmidt-Wilcke, Tobias; Schneider, Lon; Schramm, Hauke; Schuerch, Markus; Schwartz, Eben; Schwartz, Craig; Schwarz, Adam; Seethamraju, Ravi; Seixas, Flavio; Selnes, Per; Senjem, Matthew; Senlin, Wang; Seo, Sang Won; Sethuraman, Gopalan; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Feng; Shukla, Vinay; Shuler, Catherine; Shulman, Joshua; Siegel, Rene; Siemers, Eric; Silveira, Margarida; Silver, Michael; Silverman, Daniel; Sim, Ida; Simmons, Andy; Simoes, Rita; Simon, Melvin; Simpson, Ivor; Singh, Simer Preet; Singh, Nikhil; Siuciak, Judy; Sjogren, Niclas; Skinner, Jeannine; Skup, Martha; Small, Gary; Smith, Michael; Smith, Benjamin; Smith, Charles; Smyth, Timothy; Snow, Sarah; Soares, Holly; Soldea, Octavian; Solomon, Paul; Solomon, Alan; Som, Subhojit; Song, Changhong; Song, Mingli; Sosova, Iveta; Soudah, Eduardo; Soydemir, Melih; Spampinato, Maria Vittoria; Spenger, Christian; Sperling, Reisa; Spiegel, Rene; Spies, Lothar; Squarcia, Sandro; Squire, Larry; Staff, Roger; Stern, Yaakov; Straw, Jack; Stricker, Nikki; Strittmatter, Stephen; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Sugishita, Morihiro; Sukkar, Rafid; Sun, Jia; Sun, Ying; Sun, Yu; Sundell, Karen; Suri, Muhammad; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Shoji; Tanchi, Chaturaphat; Tancredi, Daniel; Tao, Wenwen; Tao, Dacheng; Taylor-Reinwald, Lisa; Teng, Edmond; Terlizzi, Rita; Thames, April; Thiele, Frank; Thomas, Benjamin; Thomas, Ronald; Thompson, Paul; Thompson, Wesley; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Titeux, Laurence; Tokuda, Takahiko; Toledo, Juan B.; Tolli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Trittschuh, Emily; Trojanowski, John; Truran, Diana; Tsechpenakis, Gavriil; Tucker-Drob, Elliot; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Ullrich, Lauren; Umadevi Venkataraju, Kannan; Umar, Nisser; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van Horn, John; van Leemput, Koen; van Train, Kenneth; van Zeeland, Ashley; Vasanawala, Minal; Vemuri, Prashanthi; Verwaerde, Philippe; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Visser, Pieter Jelle; Vitolo, Ottavio; Vounou, Maria; Wade, Sara; Walhovd, Kristine B.; Wan, Hong; Wang, Huanli; Wang, Yongmei Michelle; Wang, Yalin; Wang, Angela; Wang, Lei; Wang, Yue; Wang, Xu; Wang, Ze; Wang, Yaping; Wang, Tiger; Wang, Alex; Wang, Huali; Wang, Li-San; Wang, Wei; Wang, Li; Ward, Michael; Warfield, Simon; Waring, Stephen; Watanabe, Toshiyuki; Webb, David; Wei, Lili; Weiner, Michael; Wen, Shu-Hui; Wenjing, Li; Wenzel, Fabian; Westlye, Lars T.; Whitcher, Brandon; Whitlow, Christopher; Whitwell, Jennifer; Wilhelmsen, Kirk; Williams, David; Wilmot, Beth; Wimsatt, Matt; Wingo, Thomas; Wiste, Heather; Wolfson, Tanya; Wolke, Ira; Wolz, Robin; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Worth, Eric; Wouters, Hans; Wu, Teresa; Wu, Yi-Gen; Wu, Liang; Wu, Xiaoling; Wyman, Bradley; Wyss-Coray, Tony; Xiao, Guanghua; Xiao, Liu; Xie, Sharon; Xu, Shunbin; Xu, Ye; Xu, Yi-Zheng; Xu, Guofan; Xu, Jun; Yamane, Tomohiko; Yamashita, Fumio; Yan, Yunyi; Yan, Pingkun; Yang, Eric; Yang, Jinzhong; Yang, Qing X.; Yang, Zijiang; Yang, Guang; Yang, Zhitong; Yang, Wenlu; Ye, Liang; Ye, Byoung Seok; Ye, Jieping; Ye, Jong; Yee, Laura; Yesavage, Jerome; Ying, Song; Yoo, Bongin; Young, Jonathan; Yu, Shiwei; Yu, Dongchuan; Yuan, Guihong; Yuan, Kai; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zhang, Kurt; Zhang, Huixiong; Zhang, Tianhao; Zhang, Xin; Zhang, Ping; Zhang, Bin; Zhang, Jing; Zhang, Linda; Zhang, Lijun; Zhang, Zhiguo; Zhao, Qinying; Zhao, Jim; Zhao, Peng; Zhen, Xiantong; Zheng, Yuanjie; Zhijun, Yao; Zhou, Bin; Zhou, Sheng; Zhu, Wen; Zhu, Hongtu; Zhu, Wanlin; Zilka, Samantha; Zito, Giancarlo; Zou, Heng

    2011-01-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by

  17. A comparative analysis of the aggregation behavior of amyloid-β peptide variants

    NARCIS (Netherlands)

    Vandersteen, Annelies; Hubin, Ellen; Sarroukh, Rabia; De Baets, Greet; Schymkowitz, Joost; Rousseau, Frederic; Subramaniam, Vinod; Raussens, Vincent; Wenschuh, Holger; Wildemann, Dirk; Broersen, Kerensa

    2012-01-01

    Aggregated forms of the amyloid-β peptide are hypothesized to act as the prime toxic agents in Alzheimer disease (AD). The in vivo amyloid-β peptide pool consists of both C- and N-terminally truncated or mutated peptides, and the composition thereof significantly determines AD risk. Other

  18. Amyloid Load in Fat Tissue Reflects Disease Severity and Predicts Survival in Amyloidosis

    NARCIS (Netherlands)

    Van Gameren, Ingrid I.; Hazenberg, Bouke P. C.; Bijzet, Johan; Haagsma, Elizabeth B.; Vellenga, Edo; Posthumus, Marcel D.; Jager, Pieter L.; Van Rijswijk, Martin H.

    Objective. The severity of systemic amyloidosis is thought to be related to the extent of amyloid deposition. We studied whether amyloid load in fat tissue reflects disease severity and predicts survival. Methods. We studied all consecutive patients with systemic amyloidosis seen between January

  19. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent.

    NARCIS (Netherlands)

    Hashemi, Shabestari M.; Meeuwenoord, N.J.; Filippov, D.V.; Huber, M.I.

    2016-01-01

    The amyloid β (A β) peptide is important in the context of Alzheimer's disease, since it is one of the major components of the fibrils that constitute amyloid plaques. Agents that can influence fibril formation are important, and of those, membrane mimics are particularly relevant, because the

  20. Microglia kill amyloid-beta1-42 damaged neurons by a CD14-dependent process

    NARCIS (Netherlands)

    Bate, Clive; Veerhuis, Robert; Eikelenboom, Piet; Williams, Alun

    2004-01-01

    Activated microglia are closely associated with neuronal damage in Alzheimer's disease. In the present study, neurons exposed to low concentrations of amyloid-beta1-42, a toxic fragment of the amyloid-beta protein, were killed by microglia in a process that required cell-cell contact. Pre-treating

  1. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that

  2. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia A Meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies.

  3. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.J.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; Alexander, M.; Almdahl, I.S.; Arnold, S.E.; Baldeiras, I.; Barthel, H.; Berckel, B.N. van; Bibeau, K.; Blennow, K.; Brooks, D.J.; Buchem, M.A. van; Camus, V.; Cavedo, E.; Chen, K.; Chetelat, G.; Cohen, A.D.; Drzezga, A.; Engelborghs, S.; Fagan, A.M.; Fladby, T.; Fleisher, A.S.; Flier, W.M. van der; Ford, L.; Forster, S.; Fortea, J.; Foskett, N.; Frederiksen, K.S.; Freund-Levi, Y.; Frisoni, G.B.; Froelich, L.; Gabryelewicz, T.; Gill, K.D.; Gkatzima, O.; Gomez-Tortosa, E.; Gordon, M.F.; Grimmer, T.; Hampel, H.; Hausner, L.; Hellwig, S.; Herukka, S.K.; Hildebrandt, H.; Ishihara, L.; Ivanoiu, A.; Jagust, W.J.; Johannsen, P.; Kandimalla, R.; Kapaki, E.; Klimkowicz-Mrowiec, A.; Klunk, W.E.; Kohler, S.; Koglin, N.; Kornhuber, J.; Kramberger, M.G.; Laere, K. Van; Landau, S.M.; Lee, D.Y.; Leon, M.; Lisetti, V.; Lleo, A.; Madsen, K.; Maier, W.; Marcusson, J.; Mattsson, N.; Mendonca, A. de; Meulenbroek, O.V.; Meyer, P.T.; Mintun, M.A.; Mok, V.; Molinuevo, J.L.; Mollergard, H.M.; Morris, J.C.; Mroczko, B.; Mussele, S. Van der; Na, D.L.; Newberg, A.; Nordberg, A.; Nordlund, A.; Novak, G.P.; Paraskevas, G.P.; Parnetti, L.; Perera, G.; Peters, O.; Popp, J.; Prabhakar, S.; Rabinovici, G.D.; Ramakers, I.H.; Rami, L.; Oliveira, C.R.; Rinne, J.O.; Rodrigue, K.M.; Rodriguez-Rodriguez, E.; Verbeek, M.M.; et al.,

    2015-01-01

    IMPORTANCE: Cerebral amyloid-beta aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention

  4. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Massimo Stefani

    2013-06-01

    Full Text Available Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i to stabilize toxic amyloid precursors; (ii to prevent the growth of toxic oligomers or speed that of fibrils; (iii to inhibit fibril growth and deposition; (iv to disassemble preformed fibrils; and (v to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.

  5. Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer's disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Zhan, S. S.; Kamphorst, W.; van der Valk, P.; Rozemuller, J. M.

    1994-01-01

    Integrins belonging to different subfamilies can be identified immunohistochemically in cerebral amyloid plaques. Monoclonal antibodies against the VLA family beta 1-integrins show staining of the corona of classical amyloid plaques for beta 1, alpha 3 and alpha 6. Immunostaining reveal also the

  6. Minocycline does not affect amyloid beta phagocytosis by human microglial cells

    NARCIS (Netherlands)

    Familian, Atoosa; Eikelenboom, Piet; Veerhuis, Robert

    2007-01-01

    Activated microglia accumulate in amyloid beta (Abeta) plaques containing amyloid associated factors SAP and C1q in Alzheimer's disease (AD) brain. Microglia are involved in AD pathogenesis by promoting Abeta plaque formation and production of pro-inflammatory cytokines. On the other hand,

  7. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition

    DEFF Research Database (Denmark)

    Agholme, Lotta; Hallbeck, Martin; Benedikz, Eirikur

    2012-01-01

    , as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPP(Swe) transfected SH-SY5Y neuroblastoma cells. We show...

  8. Association of Cerebral Amyloid-β Aggregation With Cognitive Functioning in Persons Without Dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Tijms, Betty M

    2018-01-01

    Importance: Cerebral amyloid-β aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention tr...

  9. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2005-01-01

    The conformational change of the 39-43 residues of the amyloid beta-peptide (A beta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the

  10. <